

DETECTION OF NON-TECHNICAL ENERGY LOSSES IN
POWER UTILITIES USING DATA MINING TECHNIQUES

AND APACHE SPARK

Facoltà di Ingegneria dell’informazione, Informatica e Statistica

Dipartimento di Scienze Statistiche

Corso di laurea in Data Science

Emmanuele Conti

Matricola 1610955

Relatore

Ioannis Chatzigiannakis

i

Abstract

In the last years, the problem of detecting non-technical losses (NTL) in energy

distribution systems have been investigated by the Electric Companies supported

by the Academic research community.

The NTL investigation requires the analysis of the consumption data collected by

the energy metering systems, on potentially millions of end users over a

timeframe of several months or years. Moreover, it requires the execution of

compute-intensive Machine Learning algorithms on the metering data.

The data collected from the metering systems have the characteristics to be

considered Big Data, and the NTL problem is one of the toughest issues in the

Energy Data Management, suitable to verify if the emerging technologies for Big

Data Analysis provide advantages for their application in this field.

This work has experimented Apache Spark: Clustering Computing and MLlib

Machine Learning library models to address a real-world NTL problem using a

dataset with more than 1.6M customers, demonstrating that a new generation of

Energy Data Management solutions can be efficiently implemented on this

technology.

Index Terms - Electricity Theft Detection, Clustering, Apache Spark, Data

Mining, Unsupervised Learning, Non-Technical Losses

ii

Acknowledgements

IL SIGNORE È MIO PASTORE, NULLA MI MANCA.

SALMO 23,1

Primo su tutti voglio ringraziare il Signore perché veramente non mi ha fatto

mancare nulla nella vita sostenendomi attraverso tante persone che voglio cercare

di ringraziare tutte, partendo da chi mi è stato messo accanto solo nella parte

finale di questo percorso arrivando a chi c’è stato fin dal principio.

Un grazie particolare va dunque a Simone e l’INNAAS e a tutte le persone che ci

lavorano perché mi hanno messo a mio agio fin da subito. Un grazie particolare a

miei due relatori esterni Francesco e Matteo.

Un grazie al professore Chatzigiannakis per la sua grande disponibilità e pazienza

dimostrata per far fronte alle scadenze personali.

Voglio ringraziare tutti i colleghi che ho incontrato e che hanno in qualche modo

aggiunto un mattoncino per arrivare a questo traguardo, in particolare Valerio un

collega speciale nonché grande amico che mi ha dato l’aiuto più concreto di

chiunque altro nell’ambito universitario e inevitabilmente anche personale grazie

alla sua umiltà e pazienza.

Voglio ringraziare Dio per tutti i miei fratelli di comunità e le loro esperienze di

vita e per la mia seconda famiglia per eccellenza, i miei amici quale fonte

inesauribile di forze. Ognuno di loro che è stato fondamentale in questi 5 anni di

studio intenso essendoci stati sempre e regalandomi la leggerezza e la semplicità

di cui ha veramente bisogno uno studente universitario sotto pressione.

Infine, il ringraziamento senza dubbio più importante va alla base della montagna,

la mia famiglia partendo dal nonno, passando per mamma e papà fino ad arrivare

alle mie due splendide sorelle e i miei fenomenali 4 fratelli. Questa famiglia è

senza dubbio il dono più prezioso e caro per me, una famiglia splendida che mi ha

sempre amato e regalalo una fiducia sconfinata che spero abbia ripagato in parte

con la mia vita e in parte anche grazie a questa laurea che conclude un ciclo di

vita.

iii

Table of Contents

1. Introduction .. 1

1.1 Literature review ... 5

1.2 Contribution of this thesis ... 5

1.3 Structure of this thesis document .. 6

2. Big Data ... 7

2.1 Big Data Analysis .. 10

2.2 Platforms ... 13

2.3 Apache Spark, Databricks distribution .. 15

2.3.1 Getting Started with Apache Spark™ on Databricks 15

2.3.2 Overview ... 18

2.3.3 Datasets ... 21

2.3.4 Dataframes .. 28

2.3.5 Machine Learning ... 30

3. Data Structure .. 34

3.1 Datasets provided .. 34

3.2 Master Dataset ... 34

3.2.1 Id customer ... 35

3.2.1 Market ... 35

3.2.2 Contracted power values and bands.. 37

3.2.3 Number zone ... 38

3.2.4 Meter type ... 40

3.2.5 Status customer ... 42

3.3 Metering Dataset ... 42

3.3.1 Transformation.. 44

3.3.2 Missing values .. 45

iv

3.4 Joined Dataset .. 45

4. Data Preprocessing .. 46

4.1 Customer filtering and selection .. 46

4.2 Feature selection and extraction .. 47

4.3 Identifying Relevant Attributes ... 49

4.4 Data Normalization ... 50

4.5 Final datasets ... 51

5. NTL Detection methods... 52

5.1 Anomalous Consumption .. 52

5.2 Interquartile Range Method ... 52

5.3 Clustering .. 54

5.3.1 K-means Algorithm .. 56

5.3.2 Distance intra-cluster Method ... 56

5.3.3 Cluster Less Numerous Method ... 62

5.4 NTL detection methods result ... 66

6. Conclusion ... 68

7. References .. 71

v

List of Tables

Table 3-1 Data Dictionary of Master Dataset ... 34

Table 3-2 Market Types .. 35

Table 3-3 Contracted power values and bands ... 37

Table 3-4 Meter Types .. 41

Table 3-5 Status Customer Values .. 42

Table 3-6 Data Dictionary on Metering Dataset ... 43

Table 4-1 Categorical Features and Labels ... 48

Table 5-1 Cluster number and sizes .. 59

Table 5-2 Cluster number and sizes of anomalous ids .. 60

Table 5-3 Cluster number and sizes .. 64

Table 5-4 Customer selected to be inspected .. 66

Table 6-1 Commands and relative time to computing .. 68

vi

List of Figures

Figure 2-1 The world of Big Data [44] ... 8

Figure 2-2 Big Data 8 V' [46] ... 9

Figure 2-3 Architecture of Hadoop ... 13

Figure 2-4 Architecture of Spark .. 16

Figure 2-5 Some embedded visualization ... 25

Figure 2-6 Some embedded visualization ... 26

Figure 3-1 Market distribution .. 36

Figure 3-2 Market and Zone comparison .. 37

Figure 3-3 Contracted Power distribution ... 38

Figure 3-4 Contracted Power and Zone comparison... 38

Figure 3-5 Zone map ... 39

Figure 3-6 Zone distribution ... 39

Figure 3-7 LENNT meter [49] .. 40

Figure 3-8 Meter type distribution .. 41

Figure 3-9 Trend of monthly status customer ... 42

Figure 3-10 Metering Dataset view .. 44

Figure 3-11 Trend of NULL values by month .. 45

Figure 4-1 Daily Consumption dataset view ... 48

Figure 4-2 Categorial features view .. 49

Figure 4-3 General Pattern Consumption dataset view.. 50

Figure 4-4 Daily Consumption Normalized dataset view 51

Figure 5-1 IQR detection dataframe view ... 53

Figure 5-2 DC on average by month of suspicious customer found by IQR

Method .. 54

Figure 5-3 Elbow method with K-means .. 57

Figure 5-4 DCN on average by month of clusters .. 58

Figure 5-5 DC on average by month of suspicious customer found by First

Clustering Method ... 59

Figure 5-6 Histograms of the distances within cluster 0-3 60

Figure 5-7 Histograms of the distances within cluster 4-7 61

Figure 5-8 Histograms of the distances within cluster 8-10 61

vii

Figure 5-9 Focus on DC of customer belonging to cluster 0 62

Figure 5-10 Focus on DC of customer belonging to cluster 3 62

Figure 5-11 Focus on DC of customer belonging to cluster 6 62

Figure 5-12 Elbow method for K-means .. 63

Figure 5-13 DCN on average by month of clusters .. 64

Figure 5-14 DCN on average by month of clusters removed the suspicious clusters

 ... 65

Figure 5-15 DC on average by month of suspicious customer found by Second

Clustering Method ... 65

Figure 5-16 Flow Chart of the detection process .. 67

1

1. Introduction

Our modern society and daily activities strongly depend on the availability of

electricity. Electrical power grids allow to distribute and deliver electricity from

generation infrastructures such as power plants or solar cells to customers such as

residences or factories. Electrical power grids are the backbone of today’s society.

Losses during generation and distribution cause major problems, including

financial losses to electricity providers, and a decrease of stability and reliability.

One frequently appearing problem are losses in power grids, namely the

difference between the generated or bought energy and the billed ones, can be

divided into two distinct categories: technical and non-technical losses.

According also to [1] the former is related with problems in the system through

the physical characteristics of the equipment, that is, the technical losses are the

energy lost in the transport, the transformation and the equipment of

measurement, becoming a very high cost to the electric power companies. The

non-technical losses are those associated with the commercialization of the

supplied energy to the user, and refer to the delivered and not billed energy

resulting in a loss in the profits. They are also defined as the difference between

the total losses and the technical losses, being strongly related to illegal

connections in the distribution system.

In recent years, the problem of detecting non-technical losses in distribution

systems has been paramount. Theft and adulteration of power meters, with the

purpose to modify the measurement of the energy consumption, are the main

causes that lead to non-technical losses in power companies. Since then to

perform periodic inspections to minimize such frauds may be very expensive, it is

a hard task to calculate or measure the amount of losses, and in most cases, it is

almost impossible to know where they occur. Aimed at reducing fraud and energy

theft, several electric power companies have been concerned that the illegal

connections should be better profiled. Electric utilities will never be able to

eliminate fraud, but more realistically, minimization of such losses may guarantee

investments in energy quality programs, as well as enable a reduction in its price

to the consumer. Currently, some improvement in this area can be observed with

2

the use of various artificial intelligence techniques to automatically identify non-

technical losses, which are a real application in Smart Grids. Despite the

widespread use of machine learning techniques for the identification of non-

technical losses in power systems, the problem of selecting the most

representative features has not been widely discussed in the context of

nontechnical losses.

Technical losses:

o Copper losses those are due to I2R losses that are inherent in all inductors

because of the finite resistance of conductors

o Dielectric losses that are losses that resulting from the heating effect on the

dielectric material between conductors

o Induction and radiation losses, produced by the electromagnetic fields

surrounding conductors. Technical losses computable and controllable,

provided the power system in question consists of known quantities of

loads. The following are the causes of technical losses:

• Harmonics distortion

• Improper earthing at consumer end

• Long single-phase lines

• Unbalanced loading

• Losses due to overloading and low voltage

• Losses due to a poor standard of equipment.

Non-Technical Losses

o Tampering with meters to ensure the meter recorded a lower consumption

reading

o Errors in technical losses computation

o Tapping (hooking) on LT lines

o Arranging false readings by bribing meter readers

o Stealing by bypassing the meter or otherwise making illegal connections

o By just ignoring unpaid bills

o Faulty energy meters or un-metered supply

o Errors and delay in meter reading and billing

o Non-payment by customers.

According to [2] there are also two types of adversaries. The first type is the usual

customers who are using the meters, let is call them inside adversaries. Inside

adversaries may have some knowledge of smart meters, and thus they can tamper

3

these meters to lower their electricity bills. Or they may know nothing about smart

meters, but they can obtain hacking tools to tamper meters for free [3]. The

second type of adversaries are from the outside. Let is call them outside

adversaries. Outside adversaries can manipulate meters remotely or manipulate

billing messages in communication networks. They could increase the electricity

bills as well as decrease them (however increasing the electricity bills is another

type of frauds which is out of the scope of this thesis). In message manipulation

attacks, the meters are intact. However, the adversaries must intercept the

connections between meters and the head-end system to obtain encryption keys.

Therefore, the utility company must still locate the meters to replace their keys.

Under the aforementioned consideration, a meter is called tampered when it is

either message-manipulated or tampered. The inside adversaries could falsify

power consumption and attribute it to the neighbors. The prerequisite of this type

of attack is the same as message manipulation

Investigations are undertaken by electric utility companies to assess the impact of

technical losses in generation, transmission and distribution networks, and the

overall performance of power networks [4,5]. Nontechnical losses (NTLs)

comprise one of the most important concerns for electricity distribution utilities

worldwide. In 2004, Tenaga Nasional Berhad (TNB), the sole electricity provider

in peninsular Malaysia recorded revenue losses as high as U.S.$229 million a year

as a result of electricity theft, faulty metering, and billing errors [6]. NTLs faced

by electric utility companies in the United States was estimated between 0.5% and

3.5% of the gross annual revenue [7], which is relatively low when compared to

losses faced by electric utilities in developing countries such as Bangladesh [8],

India [9] and Pakistan [10]. Nevertheless, the loss is amounted between U.S.$1

billion and U.S.$10 billion given that utility companies in the U.S. had revenues

around U.S.$280 billion in 1998 [7]. Due to the problem associated with NTLs in

electric utilities [11] methods for efficient management of NTLs [12], protecting

revenue in the distribution industry [13], [14] and detecting fraud electricity

consumers [15] have been proposed. The most effective method to reduce NTLs

and commercial losses up to date is by using intelligent and smart electronic

meters that make fraudulent activities more difficult, and easy to detect [14]. From

4

an electrical engineering perspective, one method to detect losses is to calculate

the energy balance reported in [33], which requires topological information of the

network. In emerging economies, which are of particular interest due to their high

NTL proportion, this is not realistic for the following reasons: (i) network

topology undergoes continuous changes to satisfy the rapidly growing demand of

electricity, (ii) infrastructure may break and lead to wrong energy balance

calculations and (iii) it requires transformers, feeders and connected meters to be

read at the same time.

In order to detect NTLs, inspections of customers are carried out, based on

predictions whether there may be an NTL. The inspection results are then used in

the learning of algorithms to improve predictions. However, carrying out

inspections is expensive, as it requires the physical presence of technicians. It is

therefore important to make accurate predictions to reduce the number of false

positives.

In recent years, several data mining and research studies on fraud identification

and prediction techniques have been carried out in the electricity distribution

sector. These include statistical methods [16,17,18,19]; decision trees [20,21];

artificial neural networks (ANNs) [18,22,23]; knowledge discovery in databases

(KDD) [23,24,25,26]; clustering techniques [26,27,28]; Support Vector Machine

[29]; and multiple classifiers using cross-identification and voting schemes [30].

Among these methods, load profiling is one of the most widely used [31]

approaches, which is defined as the pattern of electricity consumption of a

customer or group of customers over a period [32].

Detecting NTLs is challenging because of the wide range of possible causes of

NTLs, such as different fraudulent types of customers.

The challenge of supervised learning for anomaly detection. It must be noted that

most NTL detection methods are supervised. Anomaly detection - a superclass of

NTL - is generally challenging to learn in a supervised manner for the reasons

stated in [34]: (i) anomaly datasets contain a very small number of positive

examples and a large number of negative examples, resulting in imbalanced

classes, (ii) it is used for many different kinds of anomalies as it is hard for any

algorithm to learn from just a few positive examples what the anomalies might

5

look like and (iii) there may be also future anomalies which may look completely

different to any of the anomalous examples learned so far. In contrast, supervised

learning works best for (i) large numbers of both positive and negative examples,

(ii) when there are enough positive examples so that the algorithm can get a sense

of what positive examples might look like and (iii) future positive examples are

likely to be similar to the ones in the training set.

1.1 Literature review

Literature review NTL detection can be treated as a special case of fraud

detection, for which a general survey is provided in [35].

One method to detect NTLs is to analyze the customer load profile using artificial

intelligence methods, such as machine learning or expert systems. Support Vector

Machines (SVM) are used in [29], working on daily average consumption features

of the last 24 months for less than 400 highly imbalanced training examples,

ignoring the class imbalance in the results reported. That work is combined with

fuzzy logic [36] or genetic algorithms [37], focusing on an optimization of the

SVM output. A rule-based expert system outperforms a SVM in [38] for an

unknown number of customers, focusing on high performance implementations.

Fuzzy logic following C-means fuzzy clustering is applied to a dataset of ~20K

customers in [26]. Furthermore, neural networks using handcrafted features

calculated from the consumption time series plus customer-specific pre-computed

attributes are used in [39] for ~1K balanced customers. Applying smart half-hour

meter readings of three weeks of ~6K customers are fed into a neural network in

[40]. Optimum-path forest are applied to NTL detection in [41] for ~10K

customers outperforming different SVMs and a neural network.

1.2 Contribution of this thesis

In this thesis, we focus on a large dataset comprising of ~1M records spanning

two years of consumption data and apply different NTL detection methods on this

real dataset of a big energy utilities. In this context this thesis presents a proposal

for identifying suspect profiles of energy consumption compared to regular

6

consumption profiles with Apache Spark on Databricks1. In this work, we try to

formulate a model for an end-to-end Big Data analytics platform based on these

technologies, that can ingest data from heterogeneous sources, process it in an

efficient way, mine the data to generate insights based on business logic and then

present the information using interactive visualizations. The proposed approaches

define a framework to determine a list of irregular consumption in order to find

any fraud. Thereafter a list of consumers classified as fraudsters is generated to

help perform the costly inspections with the main objective being the

improvement of the hit rate of the inspections to reduce unnecessary operational

cost. As seen before, there are several types of fraud that can occur, but this

research only concentrates on scenario when abrupt changes appear in customer

load profiles, which indicate possible fraud events.

1.3 Structure of this thesis document

The rest of this thesis is organized as follows: in Chapter 2 will be discussed about

Big Data Analysis and platforms and includes the implementation of the

mentioned Big Data platform Databricks to perform the analyses on real-life use

cases and generate useful insights. Chapter 3 provides really fine details on data

structure. In Chapter 4 will be presented the framework used for preparing the

data to the analysis, which include: filtering and selection of customers and

features, identifying of new features and data normalization. Chapter 5 describes

different proposed NTL detection models on the data of different dataset, Chapter

6 presents the results of this work and provides an outreach on future work.

1 https://databricks.com/

7

2. Big Data

Big Data describes a massive collection of structured and unstructured

information that has been collected over the past few years [46]. This data can be

used for analysis and the discovery of information that was not available, or even

possible, just a few years ago. This collection of information will transform the

way to make business and understand the market by analyzing available data and

using that information to improve their business processes. The term Big Data

was first used to refer to increasing data volumes in the mid-1990s. In 2001, Doug

Laney, then an analyst at consultancy Meta Group Inc., expanded the notion of

Big Data to also include increases in the variety of data being generated by

organizations and the velocity at which that data was being created and updated.

Those three factors Volume, Velocity and Variety became known as the 3Vs of

Big Data, a concept Gartner popularized after acquiring Meta Group and hiring

Laney in 2005.

• Volume: Is currently know that the exponential growth in the data storage.

Is possible to find data in the format of videos, music and large images on

our social media channels. It is very common to have Terabytes and

Petabytes of the storage system for enterprises. As the database grows, the

applications and architecture built to support the data needs to be

reevaluated quite often. Sometimes the same data is re-evaluated with

multiple angles and even though the original data is the same the new

found intelligence creates an explosion of the data. The big volume indeed

represents Big Data.

• Velocity: The data growth and social media explosion have changed how

the data is looked at. There was a time when was believe that data of

yesterday is recent. However, news channels and radios have changed how

fast they receive the news. Today, people rely on social media to update

them with the latest happenings. On social media sometimes a few seconds

is enough to classify a message as old (a tweet, status updates etc.) and

then something in which users are interested anymore. The data movement

is now almost real time and the update window has reduced to fractions of

the seconds. This high-velocity data represents Big Data.

8

• Variety: Data can be stored in multiple formats. For example: database,

Excel, CSV, Access or, related to the context, it can be stored in a simple

text file. Sometimes the data is not even in the traditional format as were

assumed, it may be in the form of video, SMS, pdf or something different.

The organization needs to arrange it and make it meaningful. It will be

easy to do so if a user has data in the same format, however, it is not the

case in most of the time. The real world has data in many different formats

and that is the challenge that needs to be addressed with the Big Data. This

variety of the data represent Big Data.

Fig 2.1 gives an idea of Big Data with some values and Fig 2.2 shows a more

recent description of Big Data, in this image taken from [46], the number of V’s is

increased up to 8.

Figure 2-1 The world of Big Data [44]

9

Figure 2-2 Big Data 8 V' [46]

Separately, the Hadoop2 distributed processing framework was launched as an

Apache open source project in 2006, planting the seeds for a clustered platform

built on top of commodity hardware and geared to run Big Data applications. By

2011, Big Data analytics began to take a firm hold in organizations and the public

eye, along with Hadoop and various related Big Data technologies that had sprung

up around it. Data Analytics talked about many situations where Big Data comes

into play. For example Big Data has a strong presence in the food industry,

providing businesses with information about customer’s activity, likes, and

preferences for different items. As instance, McDonald’s uses data analytics to

figure out what is going on in their stores. They use this information to optimize

2 http://hadoop.apache.org/

10

different aspects of their business, such as the drive-thru. McDonald’s designs the

drive-thru around three different items from Big Data: design, information

provided, and the different types of people who order from the drive-thru. By

analyzing this information, McDonald’s can cater to an even broader crowd then

they currently do, making sure that they are doing the right thing not only for their

business but also for their customers. Instances like this allow companies to really

get the information that they need from customers, rather than playing a guessing

game. Big Data will change the way businesses conduct their practices, and it has

already begun.

2.1 Big Data Analysis

Big Data analytics is the process of examining Big Data to uncover hidden

patterns, unknown correlations, market trends, customer preferences and other

useful information that can help organizations make more-informed business

decisions.

Driven by specialized analytics systems and software, Big Data analytics can

point the way to various business benefits, including new revenue opportunities,

more effective marketing, better customer service, improved operational

efficiency and competitive advantages over rivals. Big Data analytics applications

enable data scientists, predictive modelers, statisticians and other analytics

professionals to analyze growing volumes of structured transaction data, plus

other forms of data that are often left untapped by conventional business

intelligence (BI) and analytics programs. That encompasses a mix of semi-

structured and unstructured data, for example, internet clickstream data, web

server logs, social media content, text from customer emails and survey responses,

mobile-phone call-detail records and machine data captured by sensors connected

to the internet of things.

On a broad scale, data analytics technologies and techniques provide a means of

analyzing data sets and drawing conclusions about them to help organizations

make informed business decisions. Big Data analytics is a form of advanced

analytics, which involves complex applications with elements such as predictive

11

models, statistical algorithms and what-if analyses powered by high-performance

analytics systems.

Initially, as the Hadoop ecosystem took shape and started to mature, Big Data

applications were primarily used by the largest internet and e-commerce

companies, such as Yahoo, Google and Facebook, as well as analytics and

marketing services providers. In ensuing years, though, Big Data analytics has

increasingly been embraced by retailers, financial services firms, insurers,

healthcare organizations, manufacturers, energy companies and other mainstream

enterprises.

Unstructured and semi-structured data types typically do not fit well in traditional

data warehouses that are based on relational databases oriented to structured data

sets. Furthermore, data warehouses may not be able to handle the processing

demands posed by sets of Big Data that need to be updated frequently, or even

continually, as in the case of real-time data on stock trading, the online activities

of website visitors or the performance of mobile applications.

In some cases, Hadoop clusters and NoSQL systems are being used primarily as

landing pads and staging areas for data before it gets loaded into a data warehouse

or analytical database for analysis, usually in a summarized form that is more

conducive to relational structures.

More frequently, however, Big Data analytics users are adopting the concept of a

Hadoop data lake that serves as the primary repository for incoming streams of

raw data. In such architectures, data can be analyzed directly in a Hadoop cluster

or run through a processing engine like Spark. As in data warehousing, sound data

management is a crucial first step in the Big Data analytics process. Data stored in

the Hadoop Distributed File System must be organized, configured and

partitioned properly to get good performance on both extract, transform and load

(ETL) integration jobs and analytical queries.

Once the data is ready, it can be analyzed with the software commonly used in

advanced analytics processes. That includes tools for data mining, which sift

through data sets in search of patterns and relationships; predictive analytics,

which build models for forecasting customer behavior and other future

12

developments; machine learning, which tap algorithms to analyze large data sets;

and deep learning, a more advanced offshoot of machine learning. Text mining

and statistical analysis software can also play a role in the Big Data analytics

process, as can mainstream BI software and data visualization tools. For both ETL

and analytics applications, queries can be written in batch-mode MapReduce;

programming languages, such as R, Python and Scala; and SQL, the standard

language for relational databases that is supported via SQL-on-Hadoop

technologies.

Big Data analytics applications often include data from both internal systems and

external sources, such as weather data or demographic data on consumers

compiled by third-party information services providers. In addition, streaming

analytics applications are becoming common in Big Data environments, as users

look to do real-time analytics on data fed into Hadoop systems through Spark's

Streaming module or other open source stream processing engines, such as Flink

and Storm.

Early Big Data systems were mostly deployed on-premises, particularly in large

organizations that were collecting, organizing and analyzing massive amounts of

data. But cloud platform vendors, such as Amazon Web Services (AWS) and

Microsoft, have made it easier to set up and manage Hadoop clusters in the cloud,

as have Hadoop suppliers such as Cloudera and Hortonworks, which support their

distributions of the Big Data framework on the AWS and Microsoft Azure clouds.

Users can now spin up clusters in the cloud, run them for as long as needed and

then take them offline, with usage-based pricing that does not require ongoing

software licenses.

Potential pitfalls that can trip up organizations on Big Data analytics initiatives

include a lack of internal analytics skills and the high cost of hiring experienced

data scientists and data engineers to fill the gaps. The amount of data that is

typically involved, and its variety, can cause data management issues in areas

including data quality, consistency and governance; also, data silos can result

from the use of different platforms and data stores in a Big Data architecture. In

addition, integrating Hadoop, Spark and other Big Data tools into a cohesive

architecture that meets the Big Data analytics necessities of an organization is a

13

challenging proposition for many IT and analytics teams, which have to identify

the right mix of technologies and then put the pieces together.

2.2 Platforms

An essential component of a Big Data platform [43] is the process that enables the

ingestion, storage and management of data, and Hadoop is a major open-source

framework which helps achieve this, an example of an underlying architecture is

showed Fig 2.3.

Figure 2-3 Architecture of Hadoop

 It supports the processing and storage of extremely large datasets in a distributed

computing environment. Hadoop’s architecture basically involves cluster

planning, i.e. dedicating multi-core CPUs with RAM and HDDs of heavy

configurations to facilitate ingression via two main approaches: batch and event-

driven. The former is appropriate for file and structured data, while the latter is

appropriate for most near-real-time events such as logs, transactional or sensor

data. Hadoop’s MapReduce does an excellent job in processing batch events, but

its efficiency is reduced while processing real-time streams. To compensate for

this, it can be used Apache Spark or Storm along with Hadoop, since they are

naturally meant for real-time processing. The storage of this processed data is

14

done in either HDFS or HBase, and both are highly performant databases with fast

read and write capabilities.

Since Hadoop processes in a parallel distributed manner, a central infrastructure is

required for cross-node synchronization. A ZooKeeper 3 server does that job

efficiently, by keeping a copy of the state of the entire system and persisting this

information in local log files. Hadoop also provides access control in the form of

Information architecture, i.e. a concise access schema that controls tightly who

has access to what data and is very helpful when a cluster is shared across

departments. On an enterprise level, the continuously generated data far exceeds

the limits of our ability to store, process, analyze and transmit it, and this situation

is causing stress on all the underlying infrastructure used to generate and process

it.

This shortcoming can be taken care of by employing cloud-based large-scale

distributed compute and storage infrastructures. It helps enable, either the manual

setup of Hadoop and other computing engines like Storm4 and Spark in a VM or

provide these capabilities as services out-of-the-box with automatic scalability of

the arrangement as per the usage. These out-of-the-box services have been heavily

adopted by SMEs and startups since they provide efficient resource utilization.

Azure’s HDInsight5 and Amazon’s EMR6 are such solutions, which provide easy

distribution of these technologies as managed clusters with enterprise-level

security and monitoring and are the leading players in this domain. Given the

current trend of the usage of cloud-based services, it can be stated that is going to

see the rise of the information service organizations, the same way the banking

industry arose centuries or millennia ago to manage and handle our financial

assets.

 Since the overall focus of employing a big-data strategy is on gaining business

insights, companies are looking forward to developing a comprehensive

information management strategy that involves more than simply ingesting Big

Data. Specifically, they want to integrate their existing data systems, including the

3 https://zookeeper.apache.org/
4 http://storm.apache.org/
5 https://azure.microsoft.com/it-it/services/hdinsight/
6 https://aws.amazon.com/it/emr/

15

relational DBMS, enterprise content management systems, data warehouses, etc.

This is where the concept of Data exploration comes into the picture, that

describes the data by means of statistical and visualization techniques which help

to explore it, to bring its important aspects into focus for further analysis. To

achieve comprehensive Data exploration, companies need to do away with

traditional analytic techniques and move from hindsight to foresight analytics. If

this variable data is the oil, data analysis must be the engine that drives its

exploration, and therefore the tools used for this task should be able to harness

data from all the given data systems.

In all, can be said that the Big Data technologies have the propensity within them

to foster great results for the organizations if combined with efficiently sought-

after result-oriented analytics. But for that to happen, organizations must evolve

their existing data ingestion architectures. With more data and more potential

relationships between data points, businesses will need experts to sift through and

pinpoint the signal from the noise, and this is where the role of data scientist

comes into the picture. IT departments also need to continue building up a data-

driven mindset which includes investing in the back end of data by improving

governance policies and data quality.

2.3 Apache Spark, Databricks distribution

Databricks offers a Unified Analytics Platform that unites three realms of

experiences together: people, processes and infrastructure (platform).

Surrounding, and built atop Apache Spark, are software components that enhance

Spark’s performance, security, fast IO access, and collaborative workspace

environment so data analysts, data engineers and data scientists can work

together.

2.3.1 Getting Started with Apache Spark™ on Databricks

In the following paragraphs, it will be possible to familiarize a user with the Spark

UI, learn how to create Spark jobs, load data and work with Datasets, get familiar

with Spark’s DataFrames API and run machine learning algorithms. Instead of

worrying about spinning up clusters, maintaining clusters, maintaining code

history, or Spark versions, it is possible to start writing Spark queries instantly and

16

focus on data problems. It will show 4 modules to getting started: An overview on

how to use open source Apache Spark and then leverage this knowledge to learn

how to use Spark DataFrames with Spark SQL. In time for Spark 2.0, it will be

also discussed how to use Datasets and how DataFrames and Datasets are now

unified. Each of these modules refers to standalone usage scenarios, including IoT

and home sales, with notebooks and datasets.

Apache Spark is a powerful open-source processing engine built around speed,

ease of use, and sophisticated analytics, its infrastructure is showed in Fig 2.4.

Figure 2-4 Architecture of Spark

The Spark Core is the underlying general execution engine for the Spark platform

that all other functionality is built on top of. It provides in-memory computing

capabilities to deliver speed, a generalized execution model to support a wide

variety of applications, and Java, Scala, and Python APIs for ease of development.

Many data scientists, analysts, and general BI users rely on interactive SQL

queries for exploring data. Spark SQL is a Spark module for structured data

processing. It provides a programming abstraction called DataFrames and can also

act as distributed SQL query engine. It enables unmodified Hadoop Hive queries

to run up to 100x faster on existing deployments and data. It also provides

powerful integration with the rest of the Spark ecosystem (e.g., integrating SQL

query processing with machine learning).

17

Many applications need the ability to process and analyze not only batch data but

also streams of new data in real-time. Running on top of Spark, Spark Streaming

enables powerful interactive and analytical applications across both streaming and

historical data, while inheriting Spark’s ease of use and fault tolerance

characteristics. It readily integrates with a wide variety of popular data sources,

including HDFS7, Flume8, Kafka9, and Twitter10. Machine learning has quickly

emerged as a critical piece in mining Big Data for actionable insights. Built on top

of Spark, MLlib is a scalable machine learning library that delivers both high-

quality algorithms (e.g., multiple iterations to increase accuracy) and blazing

speed (up to 100x faster than MapReduce). The library is usable in Java, Scala,

and Python as part of Spark applications, so can include it in complete workflows.

GraphX is a graph computation engine built on top of Spark that enables users to

interactively build, transform and reason about graph-structured data at scale. It

comes complete with a library of common algorithms.

“At Databricks, we’re working hard to make Spark easier to use and run

than ever, through our efforts on both the Spark codebase and support

materials around it. All of our work on Spark is open source and goes

directly to Apache.”

Matei Zaharia, VP, Apache Spark, Co-founder & Chief Technologist, Databricks

Databricks is a Unified Analytics Platform on top of Apache Spark that

accelerates innovation by unifying data science, engineering and business. With

our fully managed Spark clusters in the cloud, it can easily provide clusters with

just a few clicks. Databricks incorporates an integrated workspace for exploration

and visualization so users can learn, work, and collaborate in a single, easy to use

environment. It can easily schedule any existing notebook or locally developed

Spark code to go from prototype to production without re-engineering.

7 https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
8 https://flume.apache.org/
9 https://kafka.apache.org/
10 https://twitter.com/

18

2.3.2 Overview

This module allows to quickly start using Apache Spark. As this is a quick start,

will be discussed the various concepts briefly so a user can complete end-to-end

examples.

To write a first Apache Spark Job using Databricks, the user will writes the code

in the cells of a Databricks notebook. In this example, it will be used Python. For

more information, there is also an available reference on the Apache Spark Quick

Start Guide and the Databricks Guide. The purpose of this quick start is to

showcase RDD’s (Resilient Distributed Datasets) operations so that a user will be

able to understand the Spark UI when debugging or trying to understand the tasks

being undertaken.

When running this first command, it is reviewed a folder within the Databricks

File System (an optimized version of S3) which contains the files.

Look at the file system

%fs ls /databricks-datasets/samples/docs/

In the next command, it will be used the Spark Context to read the README.md

text file.

Setup the textFile RDD to read the README.md file

Note this is lazy

textFile = sc.textFile("/databricks-datasets/samples/docs/README.md")

And then it will be possible to count the lines of this text file by running the

command

Perform a count against the README.md file

textFile.count()

One thing that can be noticed is that the first command, reading the textFile via

the Spark Context (sc), did not generate any output while the second command

(performing the count) did. The reason for this is because RDDs have actions

(which returns values) as well as transformations (which returns pointers to new

19

RDDs). The first command was a transformation while the second one was an

action. This is important because when Spark performs its calculations, it will not

execute any of the transformations until an action occurs. This allows Spark to

optimize (e.g. run a filter prior to a join) for performance instead of following the

commands serially.

To see what is happening when running the count() command, it will be possible

to see the jobs and stages within the Spark Web UI. It can access directly from the

Databricks notebook, so the user does not need to change the context as is

debugging the Spark job. As can be seen from the below Jobs view, when

performing the action count() it also includes the previous transformation to access

the text file.

What is happening under the covers becomes more apparent when reviewing the

Stages view from the Spark UI (also directly accessible within the Databricks

notebook). As it can be seen from the DAG visualization below, prior to the

PythonRDD [1333] count() step, Spark will perform the task of accessing the

file ([1330] textFile) and running MapPartitionsRDD [1331] textFile.

20

As noted in the previous section, RDDs have actions which return values and

transformations which return points to new RDDs. Transformations are lazy and

executed when an action is run. Some examples include:

• Transformations: map(), flatMap(), filter(), mapPartitions(),

mapPartitionsWithIndex(), sample(), union(), distinct(),

groupByKey(), reduceByKey(), sortByKey(), join(), cogroup(),

pipe(), coalesce(), repartition(), partitionBy(), …

• Actions: reduce(), collect(), count(), first(), take(),

takeSample(), takeOrdered(), saveAsTextFile(),

saveAsSequenceFile(), saveAsObjectFile(), countByKey(),

foreach(), …

In many scenarios, especially with the performance optimizations embedded in

DataFrames and Datasets, it will not be necessary to work with RDDs. But it is

important to bring this up because:

• RDDs are the underlying infrastructure that allows Spark to run so fast (in-

memory distribution) and provide data lineage.

21

• If is divided into more advanced components of Spark, it may be

necessary to utilize RDDs.

• All the DAG visualizations within the Spark UI reference RDDs.

Saying this, when developing Spark applications, is typically used DataFrames

and Datasets. As of Apache Spark 2.0, the DataFrame and Dataset APIs are

merged together; a DataFrame is the Dataset Untyped API while what was known

as a Dataset is the Dataset Typed API (Fig 2.4)

2.3.3 Datasets

The Apache Spark Dataset API provides a type-safe, object-oriented

programming interface. In other words, in Spark 2.0 DataFrame and Datasets are

unified as explained in Quick Start about RDDs, DataFrames, and Datasets, and

DataFrame is an alias for an untyped Dataset [Row]. Like DataFrames, Datasets

take advantage of Spark’s Catalyst optimizer11 by exposing expressions and data

fields to a query planner. Beyond Catalyst’s optimizer, Datasets also leverage

Tungsten’s fast in-memory encoding. They extend these benefits with compile-

time type safety, meaning production applications can be checked for errors

before they are running, and they also allow direct operations over user-defined

11 At the core of Spark SQL is the Catalyst optimizer, which leverages advanced programming language

features (e.g. Scala’s pattern matching and quasi-quotes) in a novel way to build an extensible query

optimizer.

https://databricks.com/glossary/what-is-spark-sql

22

classes, as it showed in a couple of simple examples below. Lastly, the Dataset

API offers a high-level domain specific language operation like sum(), avg(),

join(), select(), groupBy(), making the code a lot easier to express, read,

and write.

In this module, it will be learnt two ways to create Datasets: dynamically creating

a data and reading from JSON file using Spark Session. Additionally, through

simple and short examples, it will be learnt about Dataset API operations on the

Dataset, issue SQL queries and visualize data. For learning purposes, were used a

small IoT Device dataset; however, there is no reason why it cannot be used a

large dataset12.

There are two easy ways to have structured data accessible and process it using

Dataset APIs within a notebook. First, for primitive types in examples or demos,

can be created them within a Scala or Python notebook or in a sample Spark

application. For example, here’s a way to create a Dataset of 100 integers in a

notebook. Note that in Spark 2.0, the SparkContext is subsumed by

SparkSession, a single point of entry, called Spark. Going forward, a user can

use this handle in the driver or notebook cell, as showed below, in which were

created 100 integers as Dataset[Long].

// range of 100 numbers to create a Dataset.

val range100 = spark.range(100)

range100.collect()

Second, the more common way is to read a data file from an external data sources,

such as HDFS, S3, NoSQL, RDBMS, or local filesystem. Spark supports multiple

formats: JSON, CSV, Text, Parquet, ORC etc. To read a JSON file can be simply

used the SparkSession handle spark.

// read a JSON file from a location mounted on a DBFS mount point

// Note that there is used the new entry point in Spark 2.0 called spark

val jsonData = spark.read.json("/databricks-

datasets/data/people/person.json")

12 There are several datasets available in the /databricks-datasets folder which is accessible within

the Databricks platform.

23

At the time of reading the JSON file, Spark does not know the structure of the

data on-hand, how a user wants to organize data into a type-specific JVM object.

It attempts to infer the schema from the JSON file and creates a DataFrame =

Dataset[Row] of generic Row objects. Alternatively, to convert the DataFrame

into a Dataset reflecting a Scala class object, the user can define a domain specific

Scala case class, followed by explicitly converting into that type, as showed

below.

// First, define a case class that represents our type-specific Scala JVM

Object

case class Person (email: String, iq: Long, name: String)

// Read the JSON file, convert the DataFrames into a type-specific JVM

Scala object Person. Note that at this stage Spark, upon reading JSON,

created a generic

// DataFrame = Dataset[Rows]. By explicitly converting DataFrame into

Dataset

// results in a type-specific rows or collection of objects of type

Person

val ds = spark.read.json("/databricks-

datasets/data/people/person.json").as[Person]

In a second example, is done something similar with IoT devices state information

captured in a JSON file: define a case class and read the JSON file from the

FileStore and convert the DataFrame = Dataset[DeviceIoTData].

There are a couple of reasons why a user wants to convert a DataFrame into a

type-specific JVM objects. First, after an explicit conversion, for all relational and

query expressions using Dataset API, it will be possible to get the compile-type

safety. For example, if the user applies a filter operation using the wrong data

type, Spark will detect mismatch types and issue a compile error rather an

execution runtime error, resulting in catching errors earlier. Second, the Dataset

API provides high-order methods making code much easier to read and develop.

In the following submodule, Processing and Visualizing a Dataset, it will be

noticed how the use of Dataset typed objects make the code much easier to

express and read. As above with Person example, below was created a case class

that encapsulates our Scala object.

24

// define a case class that represents our Device data.

case class DeviceIoTData (

 battery_level: Long,

 c02_level: Long,

 cca2: String,

 cca3: String,

 cn: String,

 device_id: Long,

 device_name: String,

 humidity: Long,

 ip: String,

 latitude: Double,

 longitude: Double,

 scale: String,

 temp: Long,

 timestamp: Long

)

// fetch the JSON device information uploaded into the Filestore

val jsonFile = "/databricks-datasets/data/iot/iot_devices.json"

// read the json file and create the dataset from the case class

DeviceIoTData

// ds is now a collection of JVM Scala objects DeviceIoTData

val ds = spark.read.json(jsonFile).as[DeviceIoTData]

To view this data in a tabular format instead of exporting this data out to a third

party tool, can be used the Databricks display() command. That is, once is

loaded the JSON data and converted into a Dataset for a type-specific collection

of JVM objects, the user can view them as it would view a DataFrame, by using

either display() or using standard Spark commands, such as take(),

foreach(), and println() API calls.

// display the dataset table just read in from the JSON file

display(ds)

25

// Using the standard Spark commands, take() and foreach(), print the

first

// 10 rows of the Datasets.

ds.take(10).foreach(println(_))

An additional benefit of using the Databricks display() command is that it can

quickly view this data with several embedded visualizations (Fig. 2.5-6). For

example, in a new cell, the user can issue SQL queries and click on the map to see

the data. But first, is mandatory to save the dataset, ds, as a temporary table.

// registering the Dataset as a temporary table to which the user can

issue SQL queries

ds.createOrReplaceTempView("iot_device_data")

Figure 2-5 Some embedded visualization

26

Figure 2-6 Some embedded visualization

Like RDD, Dataset has transformations and actions methods. Most importantly

are the high-level domain specific operations such as sum(), select(), avg(),

join(), and union() that are absent in RDDs. For more information, look at the

Scala Dataset API. Let is look at a few handy ones in action.

In the example below, is used filter(), map(), groupBy(), and avg(), all higher-

level methods, to create another Dataset, with only fields that were wishing to

view. What is noteworthy is that is accessed the attributes the user wanted to filter

by their names as defined in the case class. That is, was used the dot notation to

access individual fields. As such, it makes code easy to read and write.

// filter out all devices whose temperature exceed 25 degrees and

generate another Dataset with three fields that of interest and then

display the mapped Dataset

val dsTemp = ds.filter(d => d.temp > 25).map(d => (d.temp, d.device_name,

d.cca3)

display(dsTemp)

27

// Apply higher-level Dataset API methods such as groupBy() and avg().

// Filter temperatures > 25, along with their corresponding

// devices' humidity, compute averages, groupBy cca3 country codes,

// and display the results, using table and bar charts

val dsAvgTmp = ds.filter(d => {d.temp > 25}).map(d => (d.temp,

d.humidity, d.cca3)).groupBy($"_3").avg()

// display averages as a table, grouped by the country

display(dsAvgTmp)

// display the averages as bar graphs, grouped by the country

display(dsAvgTmp)

// Select individual fields using the Dataset method select()

// where battery_level is greater than 6. Note this high-level

// domain specific language API reads like a SQL query

display(ds.select($"battery_level", $"c02_level",

$"device_name").where($"battery_level" > 6).sort($"c02_level"))

28

2.3.4 Dataframes

Apache Spark DataFrames were created to run Spark programs faster from both a

developer and an execution perspective. With less code to write and less data to

read, the Catalyst optimizer solves common problems efficiently and faster using

DataFrame functions (e.g. select columns, filtering, joining different data sources,

aggregation, etc.). DataFrames also allow to seamlessly intermix operations with

custom SQL, Python, Java, R, or Scala code.

The easiest way to work with DataFrames is to access an example dataset13. For

example, to access the file that compares city population vs. median sale prices of

homes, the user can access the file /databricks-datasets/samples/population-vs-

price/data_geo.csv.

Was used the spark-csv package from Spark Packages (a community index of

packages for Apache Spark) to quickly import the data, specify that a header

exists, and infer the schema.

Use the Spark CSV datasource with options specifying:

- First line of file is a header

- Automatically infer the schema of the data

data = sqlContext.read.format("csv")

 .option("header", "true")

 .option("inferSchema", "true")

 .load("/databricks-datasets/samples/population-vs-price/data_geo.csv")

data.cache() # Cache data for faster reuse

data = data.dropna() # drop rows with missing values

Register table so it is accessible via SQL Context

For Apache Spark = 2.0

data.createOrReplaceTempView("data_geo")

13 There are made several datasets available in the /databricks-datasets folder which is accessible

within the Databricks platform

29

Now that was created the data DataFrame, the user can quickly access the data

using standard Spark commands such as take(). For example, it can use the

command data.take(10) to view the first ten rows of the data DataFrame.

To view this data in a tabular format, was used the display() command within

Databricks.

An additional benefit of using the Databricks display() command is that it can

quickly view this data with a number of embedded visualizations. For example, in

a new cell, can be specified the following SQL query and click on the map.

%sql select `State Code`, `2015 median sales price` from data

30

2.3.5 Machine Learning

As organizations create more diverse and more user-focused data products and

services, there is a growing need for machine learning, which can be used to

develop personalization, recommendations, and predictive insights. Apache

Spark’s Machine Learning Library (MLlib) allows data scientists to focus on their

data problems and models instead of solving the complexities surrounding

distributed data (such as infrastructure, configurations, and so on).

The easiest way to work with DataFrames is to access an example dataset. For

example, to access the file that compares city population vs. median sale prices of

homes, the user can access the file /databricks-datasets/samples/population-vs-

price/data_geo.csv.

Was used the spark-csv package from Spark Packages (a community index of

packages for Apache Spark) to quickly import the data, specify that a header

exists, and infer the schema.

31

Use the Spark CSV datasource with options specifying:

- First line of file is a header

- Automatically infer the schema of the data

data = sqlContext.read.format("csv")

 .option("header", "true")

 .option("inferSchema", "true")

 .load("/databricks-datasets/samples/population-vs-price/data_geo.csv")

data.cache() # Cache data for faster reuse

data = data.dropna() # drop rows with missing values

Register table so it is accessible via SQL Context

For Apache Spark = 2.0

data.createOrReplaceTempView("data_geo")

To view this data in a tabular format, was used the display() command within

Databricks.

In supervised learning, such as a regression algorithm, the user typically will

define a label and a set of features. In our linear regression example, the label is

the 2015 median sales price while the feature is the 2014 Population

Estimate. That is, is was tried to use the feature (population) to predict the label

(sales price). To simplify the creation of features within Python Spark MLlib, was

used LabeledPoint to convert the feature (population) to a Vector type.

convenience for specifying schema

from pyspark.mllib.regression import LabeledPoint

data = data.select("2014 Population estimate", "2015 median sales price")

 .map(lambda r: LabeledPoint(r[1], [r[0]]))

 .toDF()

display(data)

32

In this section, it will be executed two different linear regression models using

different regularization parameters and determine its efficacy. That is, how well

do either of these two models predict the sales price (label) based on the

population (feature).

Import LinearRegression class

from pyspark.ml.regression import LinearRegression

Define LinearRegression algorithm

lr = LinearRegression()

Fit 2 models, using different regularization parameters

modelA = lr.fit(data, {lr.regParam:0.0})

modelB = lr.fit(data, {lr.regParam:100.0})

The model can also make predictions by using the transform() function which

adds a new column of predictions. For example, the code below takes the first

model (modelA) and shows both the label (original sales price) and prediction

(predicted sales price) based on the features (population).

Make predictions

predictionsA = modelA.transform(data)

display(predictionsA)

To evaluate the regression analysis, it will be calculated the root mean square error

using the RegressionEvaluator. Below is the pySpark code for evaluating the

two models and their output.

from pyspark.ml.evaluation import RegressionEvaluator

evaluator = RegressionEvaluator(metricName="rmse")

RMSE = evaluator.evaluate(predictionsA)

print("ModelA: Root Mean Squared Error = " + str(RMSE))

ModelA: Root Mean Squared Error = 128.602026843

predictionsB = modelB.transform(data)

RMSE = evaluator.evaluate(predictionsB)

print("ModelB: Root Mean Squared Error = " + str(RMSE))

ModelB: Root Mean Squared Error = 129.496300193

As is typical for many machine learning algorithms, the user will want to visualize

the scatterplot. As Databricks supports Python pandas and ggplot, the code

33

below creates a linear regression plot using Python Pandas DataFrame (pydf) and

ggplot to display the scatterplot and the two regression models.

Import numpy, pandas, and ggplot

import numpy as np

from pandas import *

from ggplot import *

Create Python DataFrame

pop = data.map(lambda p: (p.features[0])).collect()

price = data.map(lambda p: (p.label)).collect()

predA = predictionsA.select("prediction").map(lambda r: r[0]).collect()

predB = predictionsB.select("prediction").map(lambda r: r[0]).collect()

pydf = DataFrame({'pop':pop,'price':price,'predA':predA, 'predB':predB})

Visualizing the Model :

Create scatter plot and two regression models (scaling exponential)

using ggplot

p = ggplot(pydf, aes('pop','price')) +

geom_point(color='blue') +

geom_line(pydf, aes('pop','predA'), color='red') +

geom_line(pydf, aes('pop','predB'), color='green') +

scale_x_log10() + scale_y_log10()

display(p)

34

3. Data Structure

This section describes the structure of the data used to conduct the analysis on

non-technical losses over smart energy grids.

3.1 Datasets provided

The analysis is based on two kinds of datasets:

o A dataset that includes all the information in respect to the consumers,

such as their location, the type of customer, etc. These data do not change

frequently. This dataset was called: “Master dataset”.

o The second dataset includes information on the energy measured by the

metering devices deployed at the customers throughout the year, where

measures are sampled over each month. This dataset was called:

“Metering dataset”.

3.2 Master Dataset

The master data represent customer reference data, which typically changes

infrequently and count more than 1.6 million customers of 2017, in the Table 3.1

the data dictionary.

Field Name Type Description

Id_customer String POD : Alphanumeric national code that

uniquely identify the final customer

year_month String The year and month in reference to the

single record

market String Type of energetic market

meter_type String Type of device that measures the amount

of electric energy

status_customer Binary Indicator if the customer active or not in

that month

contracted_power Double Indicate the power level in the contract

contracted_power_band String Indicate the power level in the contract

divided by band

zone_number Double Indicate the number of zone where the

customer resides

Table 3-1 Data Dictionary of Master Dataset

35

3.2.1 Id customer

The Point of Delivery (POD) is an alphanumeric national code that uniquely

identify the point on the national territory where the electric energy is delivered to

supplier and provided for the final customer. This is simple to recognize because

start with two letter that identify the country, in the thesis, always IT acronym to

Italy, after that can be found three numbers that identify the provider and the letter

E, that stand for electric energy. The POD is completed by 8 digit that correspond

to the client number directly found on the meter. An example of POD is

"IT123E12345678".

This code remains the same also when someone change the supplier, in that case,

the meter will be the same and there will be no change on the meter unless the

customer demand higher contracted power. For sake of anonymity, the

“id_customer” field has been provided masked as an increased number from 0 to

about 1.600.000.

3.2.1 Market

Two are the main type of market in the energetic market: the deregulated and the

protected ones. In the first one, the economic and contractual conditions for the

supply of electricity are agreed between parties and not fixed by the energy

Authorities. From the 1° July 2007 the customers can freely choose from which

supplier buy the electricity and determine the conditions. In the second one, the

economic and contractual conditions for the electric energy supply are fixed by

the energy Authorities. The customer cannot decide at which supplier relying on

but will follow the established prices that will update every three months based of

prices trend of the oil and gas markets. Below in Table 3.2 the list of possible

values for this feature.

Table 3-2 Market Types

Market

Deregulated Market

Protected Market

Internal Usage

Other Market

36

The Internal Usage refer to all the meters that track the acquisition and

distribution among the city and Other Market refer to a particular type of

customers that require a specific distinction of market.

The market feature presents a very imbalanced distribution given that the

deregulated and protected market represent the 98 % of the customers (Fig 3.1).

The number of customers with missing market values are 17.854 and are

presented in the figures as unlabeled market type.

Figure 3-1 Market distribution

Compared with zone number as it can be seen in Fig 3.2 that, aside

OTHERMARKET with Zone_1, there is a uniformly distribution of the type of

market over the city.

37

Figure 3-2 Market and Zone comparison

3.2.2 Contracted power values and bands

The contracted power indicates the power level written in the contract and is made

available by supplier. The contracted power is defined according to customer

necessities in the moment of contract stipulation based on type and number of

electrical devices usually utilized. It is measured in kW and the bands according

to the National Electric Service [48] are described in Table 3.3.

Band Description

B1 Customers with contracted power until 1.5 kW

B2 Customers with contracted power greater than 1.5 kWh until 3 kW

B3 Customers with contracted power greater than 3 kW until 6 kW

B4 Customers with contracted power greater than 6 kW until 10 kW

B5 Customers with contracted power greater than 10 kW until 15 kW

B6 Customers with contracted power greater than 15 kW

Table 3-3 Contracted power values and bands

In Italy, the most part of the households is 3 kW and if the user wants a higher

power level, until 10 kW, needs to request directly to the supplier. The power

contracted level is reported on the bill within the section “Type of contract” or

“delivery date”.

As it can be seen in Fig 3.3, the contracted power bands also present an

unbalanced distribution because the B2 and B3 bands includes respectively the

75% and the 15%. As before the unlabeled band in the figures represent the

missing values and the number amounts to 2.110.

38

Figure 3-3 Contracted Power distribution

As can be expected the comparison with the zone number reveal a high presence

of B2 and B3 for all the zone. In particular, the first one, B2, reach for all the area

under observation at least the 55% of the total area, visible in Fig 3.4 below, the

figure indicates also the numerosity of each area.

Figure 3-4 Contracted Power and Zone comparison

3.2.3 Number zone

The city under observation is divided into 11 sub-areas and the variable

“zone_number” indicate the zone where customer belongs. The city can be

imaged divided as in Fig 3.5.

39

Figure 3-5 Zone map

The zones distribution observable in Fig 3.6, as can be expected from Fig 3.4,

show the “zone_3” as the biggest zone with 236.731 costumers. The number of

missing value is bigger compared to the other variables and count 26.085 missing

values.

Figure 3-6 Zone distribution

40

3.2.4 Meter type

The smart meters are installed at almost all the final users. In 2007 the installation

of electronic meters for medium voltage users was completed, while in 2011 the

installation covered 95% of low voltage users. Electronic meters allow the

measurement of active power and reactive power in and out; the user can,

therefore, supply energy to the network, and this encourages self-production and

the use of renewable sources (in particular photovoltaic systems). These meters

also allow the application of different tariffs for the time slots, prompting users to

use appliances outside peak hours and rightly reflecting the value of electricity on

the exchange of energy.

The LENNT meters (Fig 3.7) is equipped with a circuit breaker with

magnetothermal protection and release coil.

Figure 3-7 LENNT meter [49]

41

The circuit-breaker can be maneuvered manually at the output and can be

controlled by the electronics (locally, in the case of power supercharging, or

remotely, on command of the center, in case, and closing of the contract) for

opening only. The circuit-breaker can therefore only be closed manually. The

possible values for this feature are reported in Table 3.4.

Type of Meter

LENNT_type1

LENNT_type2

GME

Table 3-4 Meter Types

The difference between a three-phase (type2) and a single-phase system (type1) is

that in the first case the system is based on three phase cables with the presence of

the neutral cable. The single-phase connection is obtained from the three-phase

connection using a single phase cable and the neutral one. The production of

electricity in the large power stations, as well as transmission and distribution in

the territory, take place in three phases for both technical and economic reasons.

For domestic systems, a single-phase system is normally used, derived from the

three-phase current that arrives at the transformer station. the two types of

LENNT is also related to the type of fee, while GME is used for customers

powered by high and medium voltage.

Figure 3-8 Meter type distribution

42

A global view of the meter type variable (Fig 3.8) show that the 98% are LENNT

type 1, this variable is almost a constant for this dataset.

3.2.5 Status customer

The status customer is a simple binary variable that tell us if the customer has an

active contract, the dictionary of this variable in Table 3.5

Status Customer Value

Inactive customer 0

Active customer 1

Unknow status 2

Table 3-5 Status Customer Values

In Fig 3.9 there may be a growing trend of monthly active users among the 2017,

every month it can be granted at least 1.287.557 active users. Vice versa the trend

of inactive ones decreases until it reaches a value of 32.421 missing entry for the

feature in December.

Figure 3-9 Trend of monthly status customer

3.3 Metering Dataset

The dataset (data dictionary in Table 3.6) contain 1.547.939 customers with a

monthly records of cumulative energy consumption for a period of 24 months, i.e.

from January 2016 to December 2017.

43

Field Name Type Description

Id_customer String POD: Alphanumeric national code that uniquely

identify the final customer

year_month String The year and month in reference to the single

record

Tot_active_energy String Cumulative consumption until specific year-month

Table 3-6 Data Dictionary on Metering Dataset

According to [50], the mainly system for monitoring energy are Active and

Reactive Energy and Power Factor.

Active energy is that which is transformed into work and heat by electrical

devices. Devices such as incandescent light bulbs only absorb active energy. The

unit of measure is the kWh (kilowatt hour). It is the unit of measurement of

electrical energy; it represents the energy absorbed in 1 hour by a device with the

power of 1 kW. In the bill, electricity consumption is billed in kWh.

The reactive energy is that portion of energy that instead of being consumed

immediately by the user is stored for a few fractions of a second and released into

the electric network. The use of reactive energy concerns equipment that needs a

magnetic field to work, such as electric motors, fluorescent lamps (neon),

electronic devices (television, computers, etc.). The unit of measurement for

reactive energy is the varh (Volt-Ampere Reactive hour). This energy is not

commercialized; therefore, a moderate consumption of reactive energy is to be

considered as physiological. A maximum quantity of reactive energy sampling is

tolerated, currently valid only for supplies above 16.5 kW, beyond which a

penalty is triggered. The parameter that is normally taken into consideration to

check whether the system has too high a reactive energy consumption is the

power factor or cos φ. This parameter evaluates the link between active energy

and reactive energy and in the case of an ideal load, only resistive and therefore

without consumed reactive energy, it is 1. Reactive energy sampling is considered

normal until the user has a power factor (cos φ) greater than 0.9. Values below

44

this limit indicate problems with the system and the simultaneous request for

penalties by the electricity distributor with whom the contract was stipulated.

The withdrawal of reactive energy by a user device can be limited or even

canceled by means of some simple technological devices installed on the

customer's electrical system, in this case, it will need to speak of power factor

correction of the electrical system.

3.3.1 Transformation

For the purpose analyze monthly consumption, was decided to pivot the Metering

dataset fixing the “Id_customer” as primary key with so creating a feature for each

month, every new variable name’s has this pattern “tot_active_energy_yyyy-mm”,

where “yyyy-mm” represent the tuple (year, month) the output of this

transformation gives a dataframe with 1.547.939 with 24 features. For doing this

pivoting was used the function written in PySpark below:

Once done the pivoting (code below), the monthly consumption, our target

feature, was calculated by the difference between the energy measured on a month

minus the energy measured the previous month, an example of display of 2 entries

of the dataset is reported in Fig 3.10.

To execute this command PySpark took 40.48 seconds.

Figure 3-10 Metering Dataset view

45

3.3.2 Missing values

In statistics, missing data, or missing values, occur when no data value is stored

for the variable in an observation. Missing data are a common occurrence and can

have a significant effect on the conclusions that can be drawn from the data.

The amount of missing record for each month is reported below (Fig 3.11), in that

Figure is possible see that the minimum number of missing entries over the entire

period was about 163.000.

Figure 3-11 Trend of NULL values by month

3.4 Joined Dataset

Before the join, it was decided to remove all new customers registered after the

first month, i.e. customer registered after January 2016. This operation was

performed by filtering all the costumers with the value 1 in the “status_customer”

feature on January 2016, then the feature was dropped.

After that, the Metering dataset has been enriched with 4 features of the Master

dataset: “market”, “meter_type”, “contracted_power_band”, “zone_number”.

To execute this command PySpark took 0.07 seconds.

The final result is a dataset with 1.547.939 customers and 28 features:

Id_customer, 23 monthly consumptions and the 4 features coming from Master

dataset.

46

4. Data Preprocessing

The setting used on Databricks cluster for the analysis is based on Serverless

Pool14 (beta, R/Python/SQL) cluster type with Databricks Runtime Version 4.0

(includes Apache Spark 2.3.0, Scala 2.11), the Python version is 3 and below the

number and type of Driver and Worker:

o 1 Driver r3.xlarge with 30.5 GB Memory, 4 cores, 1DBU

o 3 Worker r3.xlarge with 30.5 GB Memory, 4 cores, 1DBU

4.1 Customer filtering and selection

The main objective of this paragraph are data homogenization and detection of

simple anomalies.

Homogenization pretends to group customer who can be compared among each

other: customer with similar consumption habits under the period of study.

For this purpose, 4 different operations were performed:

o Given that the meter type LENNT type 1 represent the 98% of the

customers, seems like a good choice to keep only customers of this

specific type and remove the others. This step filtered out 13.783

customer ids

o Given that the deregulated and protected markets represent the 98% of the

customers, only customers of this specific two types of market were

retained. This step filtered out 3.750 customer ids

o Look for customers that changed their market along the 2017. Zero found,

no customers were filtered out

o Look for customers that changed their contracted band along the 2017.

Zero found, no customers were filtered out

The following step performed was the detection of simple abnormalities. This

kind of detection pretends to eliminate the customers from the study whose

14 A serverless pool is self-managed pool of cloud resources that is auto-configured for interactive

Spark workloads. It provides the minimum and maximum number of workers and the worker type,

and Databricks provisions the computer and local storage based on the user usage.

47

abnormality is so obvious that they do not need to be further analyzed. There are

four kind of obvious abnormality consumption:

o Negative metered energy, zero customer ids found

o Negative consumption, 3.359 customer ids found

o Zero consumption for the whole period, 7.422 customer ids found

o Few number of metered values from the measurements equipment (under

10 from the 23 monthly consumption records), 136.461 customer ids

found

The customers successively were merged in order to remove detection id

duplication. The number of different customer ids found was respectively

563.963, with the addition of the customers registered after January 2016, was

reached a considerable number of 967.324 customer ids remained from the initial

number of 1.547.938 of customer population.

4.2 Feature selection and extraction

After all the operation and filter applied, as described in the previous paragraph,

the number of missing value for the remaining categorial features “zone_number”,

“contracted_power_band” and “market” was respectively 11.528, 14 and 0. All

the customers with these Null values in the categorical features were removed, the

missing values on the metering data were filled by linear interpolation. At the end

of the process the number of selected customers was 955.782.

At this point, the consumption data need to be represented in a normalized scale

for further analyze, for M customers {1,2,…,m,…M} over the N month

{1,…,h,…,23} a feature matrix is computed, in which element is a daily average

kWh consumption feature during that month:

xh
m =

𝐿ℎ
𝑚

𝐷ℎ
 (1)

Where for customer m, 𝐿ℎ represents the monthly kWh consumption of the

month, h and 𝐷ℎ represents the number of days of the current month, a display of

the feature matrix is reported in Fig 4.1.

To execute this command PySpark took 0.13 seconds.

48

The lack of synchronism in the days of month between the readings of a customer

make necessary to normalize them, as the meter reading dates affect the monthly

kWh consumption recorded for each customer, thus, the daily average kWh

consumption values computed using (1) reveals an accurate consumption history

of the costumers.

Figure 4-1 Daily Consumption dataset view

For the treatment of the categorical features the two algorithms of ETL available

on Spark: “StringIndexer” and “OneHotEncoder”. The first one is a label indexer

that maps a string column of labels to an ML column of label indices. The indices

are in [0, numLabels), ordered by label frequencies. So, the most frequent label

gets index 0, this function was applied to all the three features according to Table

4.1 below.

Market Market

label

Zone

number

Zone

number

label

Contracted

power band

Contracted

power band

label

Protected 0 Zone_1 2 B1 3

Deregulated 1 Zone_2 1 B2 0

 Zone_3 0 B3 1

 Zone_4 4 B4 2

 Zone_5 3 B5 4

 Zone_6 6 B6 5

 Zone_7 5

 Zone_8 10

 Zone_9 9

 Zone_10 7

 Zone_11 8

Table 4-1 Categorical Features and Labels

The function “OneHotEncoder” one maps a column of label indices to a column

of binary vectors, with at most a single one-value. This encoding allows

algorithms which expect continuous features to use categorical features, this

function was applied only to “contracted_power_band” variable.

49

To execute this command PySpark took 1.20 seconds.

In Fig 4.2 is visible a display of these two functions.

Figure 4-2 Categorial features view

4.3 Identifying Relevant Attributes

Eleven attributes have been chosen to create a general pattern of power

consumption for each client.

o M1, M2, M3, M4 represents the average consumption (in kWh) of a

specific client for each semester (where M1 is 1st half 2016 to M4 that is

2nd half 2017)

o MAX represents the maximum consumption (in kWh) of a specific client

in the whole period

o DEV1, DEV2, DEV3, DEV4 represent the standard deviation of the

consumption of a specific client for each semester

o ZNM represents the average power consumption in the area where the

client lives.

o MM represents the average power consumption for the market where the

client belongs

The code use is reported below:

50

To execute this command PySpark took 8.34 seconds.

Therefore, each client is represented by a vector with the 11 considered attributes.

In other words, this vector represents a pattern of consumption. According to [26]

the motivation for choosing them was obtained by analyzing real data from

electric utilities and examining some existing fraud detection systems. Two main

reasons for using the six-months interval were identified. First, this period was

chosen to minimize the effects of adverse events such as vacant properties, season

changes, and occupancy increases, among others. Second, it was found that

several expert systems have also successfully used this time span to establish

relevant rules for the process. Regarding the selected attributes, each one was

included to model specific information. Each attribute makes its own contribution

to the energy profile. The last two attributes are mutually independent, providing

information on the average power consumption in the zone of a particular

consumer group and in the type of market. Therefore, each attribute provides

different kinds of information to the clustering algorithm (or different perspectives

of the available information) and complement each other. By means of a cluster-

based classification process, one can mutually validate the intrinsic information

carried out by each variable in order to improve the overall system detection rate,

a display of a portion of the new dataset is reported in Fig 4.3.

Figure 4-3 General Pattern Consumption dataset view

4.4 Data Normalization

The size of peak load may vary among all costumers. Therefore, all the measured

load profiles need to be further normalized to allow their comparison and

calculation. A normalize measured load profile is calculated by this formula:

𝑧h
m =

𝐿ℎ
𝑚 − min(𝐿𝑚)

max(𝐿𝑚) − min(𝐿𝑚)
 (2)

𝐿ℎ
𝑚 represents the monthly kWh consumption for customer h on the month 𝑚 and

𝑧 is the actual value of normalized load profile.

51

Min-max normalization is a linear normalization technique. It does not change the

distribution of the data set and scale the values between 0 and 1.

A display of the new dataset is reported in Fig 4.4.

To execute this command PySpark took 0.24 seconds.

Figure 4-4 Daily Consumption Normalized dataset view

4.5 Final datasets

After all the previous step was decided to create three final datasets described

below:

• Daily Consumption (DC): 23 daily consumption from the 23

consumptions for month (Fig. 4.1).

• Daily Consumption Normalized (DCN): 23 daily consumption of the

previous dataset normalized by the maximum and minimum normalizer

and three remained categorical features transformed “market_label”,

”zone_number_label” and “contracted_power_band_encoded” (Fig 4.2-

4.4).

• General Pattern Consumption (GPC): Each costumer is defined by the

following 11 new features: M1, M2, M3, M4, MAX, DEV1, DEV2,

DEV3, DEV4, ZNM and MM (Fig 4.3).

52

5. NTL Detection methods

This part describes the different methodologies applied with the purpose of find

abnormalities or fraud. The strategies are briefly described below:

1. Check-Steps on the consumption pattern on DC

2. Interquartile range on DC

3. Clustering on DNC

4. Clustering on GPC

5.1 Anomalous Consumption

One simple method to detect anomalies consider two different simple check-step,

this method marks as suspicious all those customers that have a consumption

greater than 2 kWh (for a round matter) and status customer equal to 0, thus

inactive. The second ones signal all those customers that present negative

consumption. All these ids will give aside as a list of obvious suspicious

consumers.

5.2 Interquartile Range Method

The second method encompass the interquartile range. The abbreviated "IQR", is

just the width of the box in the box-and-whisker plot. That is, IQR = Q3 – Q1. The

IQR can be used as a measure of how spread-out the values are. Statistics assumes

that the values are clustered around some central value. The IQR tells how spread

out the "middle" values are; it can also be used to tell when some of the other

values are "too far" from the central value. These "too far away" points are called

"outliers", because they "lie outside" the range in which had expected them. The

IQR is the length of the box in the box-and-whisker plot. An outlier is any value

that lies more than one and a half times the length of the box from either end of

the box. That is, if a data point is below Q1 – 1.5×IQR or above Q3 + 1.5×IQR, it

is viewed as being too far from the central values to be reasonable. The values for

Q1 – 1.5×IQR and Q3 + 1.5×IQR are the "fences" that mark off the "reasonable"

values from the outlier values, outliers lie outside the fences.

53

It this paragraph was considered not the outliers but the "extreme values", then the

values for Q1 – 1.5×IQR and Q3 + 1.5×IQR are the "inner" fences and the values

for Q1 – 3×IQR and Q3 + 3×IQR are the "outer" fences.

The IQR of the consumption was calculated, using the DC dataset, for each

customer and thereby compared with the current value of the consumption, this

comparison is reported in a new column named “check_filtering_IQR”. The code

implemented is:

To execute this command PySpark took 1.62 seconds.

A display of the output for a single costumer is showed in Fig 5.1.

Figure 5-1 IQR detection dataframe view

All the consumers that present at least one month with consumption marked as

extreme values was selected for the creation of another dataset and then pivoted

by “pivot_monthly_udf”. This new dataset contains only the “Id_customer” and

“check_filtering_IQR” for each month as a binary vector.

Then by using a user-defined function that count the consecutive one in an array,

was calculated, for each costumer, the longest number of consecutive one namely

month with extreme values. The costumers with at least 4 consecutive extreme

values was labeled as suspicious customers.

The code follows:

54

To execute this command PySpark took 6.44 minutes.

The following image (Fig 5.2) show the daily consumption trend in average of

those suspicious customers.

Figure 5-2 DC on average by month of suspicious customer found by IQR Method

As affirm [19], a drastic drop of the consumption can be due to a real slope of the

consumers like a change of type of contract or by a different use of the consumed

energy. This kind of slope can be due to a failure in the measurement equipment

or voluntary alterations of the equipment, both case generate NTLs to the

company and a loss of money for it, this kind of detection gives 1.117 customers.

5.3 Clustering

Clustering is the task of assigning entities into groups based on similarities among

those entities. The goal is to construct clusters in such a way that entities in one

cluster are more closely related, i.e. similar to each other than entities in other

clusters. As opposed to classification problems where the goal is to learn based on

examples, clustering involves learning based on observation. For this reason, it is

a form of unsupervised learning task.

There are many different clustering algorithms and a central notion in all of those

is the definition of ’similarity’ between the entities that are being grouped.

Different clustering algorithms may have different ways of measuring the

similarity. In many clustering algorithms, another common notion is the so-called

cluster center, which is a basis to represent the cluster. For example, in K-means

55

clustering algorithm, the cluster center is the arithmetic mean position of all the

points in that cluster.

As an exploratory data analysis tool, clustering has many application areas across

various disciplines including social sciences, biology, medicine, business &

marketing and computer sciences. Below are some examples [52]:

o Use clustering to group entities based on certain features and then analyze

if other features in each group are also close to each other. An example is

grouping of tumor DNA microarray data based on gene expressions and

then inferring if those groups will imply presence of certain types of

cancer. Another example is grouping of patient data based on symptoms

and signs and then deducing if those groups will differ from each other

with respect to their therapeutic responsiveness or their prognosis.

o Use clustering to group entities into a single cluster only to calculate a

center. The center can later be utilized as a representative of all the entities

in the group. An example is image compression where an image is first

partitioned into small blocks of predetermined size and a cluster center is

calculated for the pixels in each block. Then, the image is compressed

where each block is replaced by an equally sized block approximated by

block's center.

o Use clustering to reduce the amount of data for simplification of analysis.

For example, grouping of patient laboratory results based on measured

variables (qualitative or quantitative analytes or mathematically derived

quantities) may help in understanding how lab data is structured for

patients with certain diseases. Another example is segmentation i.e. pixel

classification of medical images in order to aid in medical diagnosis.

o Use clustering to solve a classification problem. For example, MRI images

of liver belonging to Cirrhosis patients at different stages and non-patients

(i.e. free of Cirrhosis) are clustered into two groups, one representing

cirrhotic and the other one representing non-cirrhotic cases. Then, MRI

image of a new patient is compared to the cluster centers and based on

proximity a prediction is made whether the patient is cirrhotic or not.

56

5.3.1 K-means Algorithm

K-means is among the most popular clustering algorithms [52]. Number of

clusters, k, is defined in advance. The centers of clusters and the data points in

each cluster are adjusted via an iterative algorithm to finally define k clusters.

There is an underlying cost minimization objective where the cost function is

so-called Within-Cluster Sum of Squares (WSS). Spark MLlib library

provides an implementation for K-means clustering.

5.3.2 Distance intra-cluster Method

The first method that use clustering, in this thesis, sets up the use of distance

between points and cluster center, on dataset DCN. In this method was calculated

the distances between the points and the cluster centers and fixed a threshold

above which every point can be flagged as general errors or potential fraud

costumer.

As was already said the k-means algorithm needs to fix the number of cluster k in

advance, unfortunately, there is no definitive answer to this problem. The optimal

number of clusters is somehow subjective and depends on the method used for

measuring similarities and the parameters used for partitioning.

The mainly method to find the right number of cluster: the elbow method and the

average silhouette. The first one method looks at the total WSS as a function of

the number of clusters: One should choose a number of clusters so that adding

another cluster does not improve much better the total WSS. The second ones, the

Average Silhouette method computes the average silhouette of observations for

different values of k. The optimal number of clusters k is the one that maximize

the Average Silhouette over a range of possible values for k. Unlikely this second

method is not scalable, since it uses pairwise distances, and this will always take

O(𝑛2) time to compute.

57

The optimal number of clusters in the Elbow method can be defined as follow:

1. Compute clustering algorithm (e.g., k-means clustering) for

different values of k.

2. For each k, calculate the total within-cluster sum of square (WSS).

3. Plot the curve of WSS according to the number of clusters k.

4. The location of a bend (knee) in the plot is generally considered as

an indicator of the appropriate number of clusters.

In this paragraph, the clustering algorithm used was k-means with a range for the

number to cluster that goes from 5 to 30, in Fig 5.3 is possible to see the trend of

WSS for each k (each iteration used only the 25% of the rows for time related

problems).

To execute this command PySpark took 32.05 minutes.

 Figure 5-3 Elbow method with K-means

Therefore, for k=11 the WSS tends to change slowly and remain less changing as

compared to other k’s, so for this dataset 11 should be a good choice for number

of clusters.

Hence, at this point, it was used a k-means with k equal to 11, the configuration

for the “initMode” parameter that regard the initialization algorithm was set to “k-

58

means||” with 4 initial step, the convergence tolerance and the maximum number

of iteration was respectively set to 0.001 and 100.

The code implemented is showed below:

To execute this command PySpark took 1.05 minutes.

“VectorAssembler” is a transformer that combines a given list of columns into a

single vector column. It is useful for combining raw features and features

generated by different feature transformers into a single feature vector, in order to

train ML models.

The Fig 5.4 shows the trend of the daily consumption normalized for each cluster

consider for every single point the average of the daily consumption for costumers

that belong to that specific cluster in that specific month, in Table 5.1 was

reported the cluster’s size.

Figure 5-4 DCN on average by month of clusters

Then was calculated all the distances between the customers and the respective

center point of each cluster in order to find a good threshold for separate them.

Was decided to put the threshold customized for every cluster at 85% of the

maximum distance in the current cluster.

59

Cluster Size

0 110.580

1 64.841

2 122.222

3 67.447

4 124.334

5 108.273

6 82.230

7 59.040

8 50.816

9 116.965

10 48.222

This threshold flagged 2.484 customers and the figure below (Fig.5.5) showed the

daily consumption trend in average of those suspicious customers.

Figure 5-5 DC on average by month of suspicious customer found by First Clustering Method

The performance of the consumption could suggest that the algorithm label as

suspicious all those costumers that experiment an abrupt change in the

consumption, in this case, an increased consumption starting from January 2017.

The following figures (Fig 5.6-8) will show all the histograms of the distances

between the points and the center of the cluster with the threshold highlighted by a

vertical blue line. In Table 5.2 is possible see how many anomalous costumers

was found by each cluster.

Table 5-1 Cluster number and sizes

60

Cluster Size

0 316

1 140

2 252

3 520

4 130

5 225

6 93

7 200

8 114

9 302

10 192

Table 5-2 Cluster number and sizes of anomalous ids

Figure 5-6 Histograms of the distances within cluster 0-3

61

Figure 5-7 Histograms of the distances within cluster 4-7

Figure 5-8 Histograms of the distances within cluster 8-10

The next figures (Fig 5,9-11) focus on three cluster in particular:

• 0 and 3 because provide the largest number of anomalous

• 6 because provide the smallest number of anomalous

This focus has as goal to underline the different trend within the cluster for the

customers above the threshold and those below signed respectively as 1 and 0.

62

Figure 5-9 Focus on DC of customer belonging to cluster 0

Figure 5-10 Focus on DC of customer belonging to cluster 3

Figure 5-11 Focus on DC of customer belonging to cluster 6

5.3.3 Cluster Less Numerous Method

The second method of clustering was performed on the GCP dataset that comes

out by the feature engineering, this method label as errors or potential fraud all

those customers belonging to the smallest clusters.

63

Also, here the clustering algorithm is the k-means and the method to choose the

best k is the Elbow method displayed in Fig 5.12.

To execute this command PySpark took 30.52 minutes.

Figure 5-12 Elbow method for K-means

For k equal to 15 the WSS tends to change slowly and remain less changing as

compared to other k’s but for this type of approach can be better choice a k bigger

at a next step along the slope, so for this data 18 should be a good choice.

With the same configuration of the first method, the k-means was ran with a

tolerance converge rate of 0.001 and a maximum number of iteration at 100.

To execute this command PySpark took 54.07 seconds.

The following figure (Fig 5.13) shows the trend of the daily consumption

normalized for each cluster as in the first method, in Table 5.3 instead, the

cluster’s size.

What is easy emerge at glance is that the cluster with less number of costumers

conveys such a strange consumption trend, in the face of this evidence, was

decided to label those customers belonging to the cluster number 4,10,11,12,14

and 17 as suspicious customers.

64

Figure 5-13 DCN on average by month of clusters

Cluster Size

0 259.358

1 3.604

2 204

3 12.622

4 2

5 29.259

6 84.664

7 218.853

8 766

9 1.831

10 44

11 1

12 2

13 337.557

14 19

15 632

16 6.362

17 2

Table 5-3 Cluster number and sizes

65

A further support of the method is demonstrated in Fig 5.14 below, indeed

removed those customers the cluster is just based on the daily consumption.

Figure 5-14 DCN on average by month of clusters removed the suspicious clusters

This threshold flagged 70 customers in total and the figure below (Fig. 5.15)

shows the daily consumption trend in average of those suspicious customers.

Also, here, in this case, the clustering algorithm highlighted a particular behavior

of costumers, a drastic drop during the first five months an sudden increase

starting from December 2016.

Figure 5-15 DC on average by month of suspicious customer found by Second Clustering Method

66

 5.4 NTL detection methods result

Prior to sending the customers for inspection, the results of all detection methods

were cross-checked in order to examine how many customers were matched and

to ensure that the different algorithms were not redundant. Thus, after merging the

customers detected with each method, the results showed in Table 5.4 were

obtained.

Detection method Size

IQR method 1.117

Distance Intra-Cluster method 2.484

Cluster Less Numerous method 70

Total 3.671

Once merged the results of the previous methods 3.615

Table 5-4 Customer selected to be inspected

As is evident from the table only 56 customers from the 3.671 selected customers

were detected by more than one methods. Thus, we could deduce that each

algorithm detected a type of different patterns of NTL.

Thus, a list of 3.615 customers with an evident and suspicious pattern of

consumption with NTL was obtained. These cases of NTL could be due to a drop

of electrical demand for their business. In summary, a complete flow chart is

showed in Fig. 5.16.

In this diagram, is possible to observe the global scheme and the different steps

for the detections of the NTLs. These results are considered very satisfactory

considering as the little input information used in the algorithms (basically the

evolution of the consumption of the customer and the type of contract)

67

Figure 5-16 Flow Chart of the detection process

68

6. Conclusion

The work on this thesis supervised by INNAAS15 was a really valuable experience

in several aspects. First of all, as I worked for a company, it taught me what it

means to work with qualified people for achieving results, and it taught me how to

deal and navigate in the complex environment of Big Data. In addition, it gave

me the chance to measure up with a real data problem full of many problems

encountered along the work process. The time spent on this elaboration enabled

me to learn more in depth the interesting Spark platform and the PySpark

programming language, Spark is a milestone for the Big Data Analytics and a

very greatly sought skill for a data scientist.

The benefits of the usage of Apache Spark for the elaboration of complex MLlib

algorithms on Big Data are multiple. Throughout the thesis was reported the real-

time performance to compute the main part of the PySpark code of the project.

Command Time

Pivoting Metering Dataset 40.48 sec

Join Dataset 0.07 sec

Feature Selection and Extraction 0.13 sec

Treatment Categorical Features 1.20 sec

Identifying Relevant Attributes 8.34 sec

Data Normalization 9.24 sec

Creation dataframe 1° Method 1.62 sec

1° Method 6.44 min

Find Best K 2° Method 32.05 min

2° Method 1.05 min

Find Best K 3° Method 30.52 min

3° Method 54.07 sec

Total Time Estimated 71.98 min

Table 6-1 Commands and relative time to computing

15 http://www.innaas.com/

69

In Table 6.1 is summarized all the principal steps with the relative time in order to

provide an estimation of the time needed to apply this kind of approach with this

technology.

The total time requested for this work, considering the about 1.6 millions of

customers, is really valid considering its possible future implementation. This

thesis was proposed a methodology based on IQR and clustering technique for

classifying abnormalities in the profiles of energy consumption.

The main contributions of this paper are as follows:

• Deploy a simple method that requires basically only the historical

consumption, which is appropriate for most practical distributions systems.

• Promote Apache Spark as a unified platform for Big Data Analytics

• Some parameter can be adjusted by the user like:

▪ The number of the month out of the interquartile distance that labels as

suspicious.

▪ The threshold distance in the first clustering method.

▪ The number of clusters to consider in the second clustering method.

• The utility using this method to guide inspection can actually increase the

detection hitrate and the financial return.

• The proposed methods are unsupervised and, therefore does not depend on

rules. It can be applied to any distribution utility.

As conclusions, it is necessary to remark that NTL is an important issue in power

utilities because it has a high impact on company profits. Despite this, nowadays

the methodology of detection of NTLs of the companies is very limited since

these companies use detection methods that do not exploit the use of data mining

techniques. Different methods to detect NTLs have been developed and tested on

a real database supplied by the Energy Company. Concretely, in this thesis, a line

of work based on 3 different methods has been presented for the detection of

NTLs.

A possible line of work in the future might be the application of different and

more complex input parameters or other data mining techniques as well as the

70

integration of human expert knowledge in these new techniques in order to

improve the results.

71

7. References

1. Sankari, E., Siva, and Rajesh, R., Matheswaran, P., "Detection of Non-

Technical Loss in Power Utilities using Data Mining Techniques.",

International Journal for Innovative Research in Science & Technology,

1(9). 97-100.

2. Han, W., and Yang X.. "Design a fast Non‐Technical Loss fraud

detector for smart grid.", Security and Communication Networks , 9(18).

5116-5132.

3. Protalinski, E. (2018). Smart meter hacking tool released | ZDNet.

[online] ZDNet. Available at: https://www.zdnet.com/article/smart-meter-

hacking-tool-released/.

4. Paul, C. R., "System loss in a Metropolitan utility network.", Power

Engineering Journal, 1(5). 305-307.

5. Davidson, I. E., Odubiyi, A., Kachienga, M. O., Manshire, B.,

"Technical loss computation and economic dispatch model for T&D

systems in a deregulated ESI.", Power Engineering Journal, 16(2). 55-60.

6. Tenaga Nasional Berhad. Annual Report Tenaga Nasional Berhad 2004.

Kuala Lumpur, KL: TNB, 2004.

7. Smith, T. B., "Electricity theft: a comparative analysis.", Energy policy,

32(18). 2067-2076.

8. Alam, M. S., Kabir, E., Rahman, M. M., Chowdhury, M. A. K., "Power

sector reform in Bangladesh: Electricity distribution system.", Energy,

29(11). 1773-1783.

9. Saxena, A. K., "Decision priorities and scenarios for minimizing

electrical power loss in an Indian power system network.", Electric Power

components and systems, 31(8). 717-727.

10. Shrestha, R. M., and Azhar, M., "Environmental and utility planning

implications of electricity loss reduction in a developing country: A

72

comparative study of technical options.", International Journal of Energy

Research, 22(1). 47-59.

11. Nizar, A. H., Dong, Z. Y., Wang, Y., "Power utility nontechnical loss

analysis with extreme learning machine method.", IEEE Transactions on

Power Systems, 23(3). 946-955.

12. Davidson, I. E., "Evaluation and effective management of nontechnical

losses in electrical power networks." in Africon Conference, (George,

South Africa, 2002), IEEE, Vol. 1

13. Mano, R., Cespedes, R., and Maia, D., "Protecting revenue in the

distribution industry: a new approach with the revenue assurance and audit

process." in Transmission and Distribution Conference and Exposition,

(San Paolo, Brazil, 2004), IEEE

14. Krishna Rao, M., V., and Miller, S., H., "Revenue improvement from

intelligent metering systems." in Metering and Tariffs for Energy Supply,

(Birmingham, UK ,1999), IET, 218-222.

15. Dick, A. J., "Theft of electricity-how UK electricity companies detect

and deter." in Security and Detection, (Brighton, UK, 1995), IET, 90-95.

16. Fourie, J. W., and Calmeyer, J. E., "A statistical method to minimize

electrical energy losses in a local electricity distribution network." in

AFRICON, 2004. 7th AFRICON Conference in Africa, (Gaborone,

Botswana ,2004), IEEE, Vol. 2.

17. Cabral, J. E., and Gontijo, E. M., "Fraud detection in electrical energy

consumers using rough sets." in Systems, Man and Cybernetics, 2004

IEEE International Conference on., (The Hague, Netherlands, 2004),

IEEE, Vol. 4.

18. Monedero, I., Leon, C., Biscarri, J., and Millan, R. "Midas: Detection

of non-technical losses in electrical consumption using neural networks

and statistical techniques." in International Conference on Computational

Science and Its Applications. Springer, Berlin, 2006.

73

19. Monedero, I., Leon, C., Biscarri, J., and Millan, R., Guerrero, J., I.

"Detection of frauds and other non-technical losses in a power utility using

Pearson coefficient, Bayesian networks and decision trees.". International

Journal of Electrical Power & Energy Systems, 34(1), 90-98.

20. Gontijo, E. M., Filho, J. R., Delaiba, A. C., Cabral, J. E., Pinto, J. O. P.

"Fraud identification in electricity company customers using decision

tree." In Systems, Man and Cybernetics, 2004 IEEE International

Conference on., (The Hague, Netherlands, 2004), IEEE, Vol. 4.

21. Nizar, A. H., Dong, Z. Y., Zhao, J. H., Zhang, P. "A data mining based

NTL analysis method." in Power Engineering Society General Meeting,

(Tampa, FL, USA, 2007), IEEE

22. Galvan, J. R., Elices, A., Munoz, A., Czernichow, T., Sanz-Bobi, M.

A. "System for detection of abnormalities and fraud in customer

consumption." In Proc. of the 12th Conference on the Electric Power

Supply Industry, (Pattaya, Thailand ,1998)

23. Costa, B. C., Alberto, B. L. A., Portela, A. M., Maduro, W., Eler, E. O.

"Fraud detection in electric power distribution networks using an ANN-

based knowledge-discovery process." International Journal of Artificial

Intelligence & Applications, 4(6). 17

24. Nizar, A. H., Dong, Z. Y., and Zhao, J. H., "Load profiling and data

mining techniques in electricity deregulated market." In Power

Engineering Society General Meeting, (Montreal, Que., Canada, 2006),

IEEE

25. Nizar, A. H., Dong, Z. Y., Jalaluddin, M., Raffles, M. J., "Load

profiling method in detecting non-technical loss activities in a power

utility." in Power and Energy Conference PECon'06. IEEE International,

(Putra Jaya, Malaysia, 2006). IEEE

26. Angelos, E. W. S., Saavedra, O. R., Carmona Cortes, O. A., de Souza,

A. N. "Detection and identification of abnormalities in customer

74

consumptions in power distribution systems." IEEE Transactions on

Power Delivery, 26(4). 2436-2442.

27. Nizar, A. H., Dong, Z. Y. and Zhang, P. "Detection rules for non-

technical losses analysis in power utilities." in Power and Energy Society

General Meeting-Conversion and Delivery of Electrical Energy in the 21st

Century, (Pittsburgh, PA, USA , 2008), IEEE

28. Júnior, L. A. P., Ramos, C. C. O., Rodrigues, D., Pereira, D. R., de

Souza, A. N., da Costa, K. A. P., Papa, J. P. "Unsupervised non-technical

losses identification through optimum-path forest." Electric Power

Systems Research, 140. 413-423.

29. Nagi, J., Yap, K. S., Tiong, S. K., Ahmed, S. K., Mohamad, M.

"Nontechnical loss detection for metered customers in power utility using

support vector machines.". IEEE transactions on Power Delivery, 25(2).

1162-1171.

30. Jiang, R., Tagaris, H., Lachsz, A., Jeffrey, M. "Wavelet based feature

extraction and multiple classifiers for electricity fraud detection." in

Transmission and Distribution Conference and Exhibition 2002: Asia

Pacific. IEEE/PES, (Yokohama, Japan, Japan, 2002), Vol. 3.

31. Gerbec, D., Gasperic, S., Smon, I., Gubina, F. "Allocation of the load

profiles to consumers using probabilistic neural networks." IEEE

Transactions on Power Systems, 20(2). 548-555.

32. Allera, S. V., and Horsburgh, A. G. "Load profiling for the energy

trading and settlements in the UK electricity markets." In Proc.

DistribuTECH Europe DA/DSM Conference, (London, UK, 1998)

33. Méffe, A., Oliveira, C. C. B., Kagan N., Jonathan, S., Caparroz, S.,

Cavaretti, J. L. "A new method for the computation of technical losses in

electrical power distribution systems." in Electricity Distribution,

(Amsterdam, Netherlands, 2001), IET

34. Coursera. (2018). Machine Learning | Coursera. [online] Available at:

https://www.coursera.org/learn/machine-learning.

75

35. Glauner, P., Meira, J. A., Valtchev, P., State, R., Bettinger, F. "The

challenge of non-technical loss detection using artificial intelligence: A

survey.", International Journal of Computational Intelligence

Systems (IJCIS), 10(1). 760-775.

36. Nagi, J., Yap. K. S., Tiong, S. K., Ahmed, S. K., Nagi, F. "Improving

SVM-based nontechnical loss detection in power utility using the fuzzy

inference system." IEEE Transactions on power delivery, 26(2). 1284-

1285.

37. Nagi, J., Yap. K. S., Tiong, S. K., Ahmed, S. K., Mohammad, A. M.

"Detection of abnormalities and electricity theft using genetic support

vector machines." in TENCON 2008-2008 IEEE Region 10 Conference,

(Hyderabad, India, 2008), IEEE

38. Depuru, S. S. S. R., Wnag, L., Devabhaktuni, V., Green, R. C. "High

performance computing for detection of electricity theft." International

Journal of Electrical Power & Energy Systems, 47. 21-30.

39. Muniz, C., Figueiredo, K., Vellasco, M., Chavez, G., Pacheco, M.

"Irregularity detection on low tension electric installations by neural

network ensembles." in Neural Networks, 2009. IJCNN 2009.

International Joint Conference on, (Atlanta, GA, USA, 2009), IEEE

40. Ford, V., Siraj, A., and Eberle, W. "Smart grid energy fraud detection

using artificial neural networks." In Computational Intelligence

Applications in Smart Grid (CIASG), 2014 IEEE Symposium on,

(Orlando, FL, USA, 2014), IEEE

41. Ramos, C. C. O., Souza, A. N., Papa, J. P., Falcao, A. X. "Fast non-

technical losses identification through optimum-path forest." in Intelligent

System Applications to Power Systems, 2009. ISAP'09. 15th International

Conference on, (Curitiba, Brazil, 2009), IEEE

42. Glauner, O. P., Boechat, A., Dolberg, L., State, R., Bettinger, F.,

Rangoni, Y., Duarte, D. "Large-scale detection of non-technical losses in

76

imbalanced data sets." In Innovative Smart Grid Technologies Conference

(ISGT 2016), (Luxembourg, Luxembourg, 2016), Choice Holdings.

43. Chaturvedi, K. (2017). The Characteristics Of Big Data Platforms And

Their Importance For Data Exploration | Linkedin. [online] Linkedin.

Available at: https://www.linkedin.com/pulse/characteristics-big-data-

platforms-importance-kamal-chaturvedi/

44. Scanlon, S. (2018). Big Data. [online] Available at:

http://community.mis.temple.edu/sscanlon/big-data/

45. Blog.sqlauthority.com. (2018). [online] Available at:

https://blog.sqlauthority.com/2013/10/02/big-data-what-is-big-data-3-vs-

of-big-data-volume-velocity-and-variety-day-2-of-21/

46. M-Brain Market & Media Intelligence Solutions. (2018). Big Data

Technology with 8 V´s - M-Brain Market & Media Intelligence Solutions.

[online] Available at: https://www.m-brain.com/home/technology/big-

data-with-8-vs/

47. It.wikipedia.org. (2018). Point of Delivery. [online] Available at:

https://it.wikipedia.org/wiki/Point_of_Delivery

48. Servizioelettriconazionale.it. (2018). Tariffe usi diversi abitazione |

Servizio Elettrico Nazionale. [online] Available at:

https://www.servizioelettriconazionale.it/it-IT/tariffe/altri-usi

49. Nuovi contatori elettronici LENNT ®Landis+Gyr MANUALE

D’USO (2018). [online] Available at:

http://www.amaie.it/impianto%20elettrico/ManualeCE_V2.pdf

50. Zeuslog.com. (2018). Energia Attiva, Reattiva e Fattore di Potenza –

ZeusLog. [online] Available at:

http://www.zeuslog.com/?page_id=68&lang=it

51. Methods, D. (2018). Determining The Optimal Number Of Clusters: 3

Must Know Methods - Articles - STHDA. [online] Sthda.com. Available at:

http://www.sthda.com/english/articles/29-cluster-validation-essentials/96-

77

determining-the-optimal-number-of-clusters-3-must-know-

methods/#elbow-method

52. Unyelioglu, K. (2018). Data Clustering Using Apache Spark - DZone

Big Data. [online] dzone.com. Available at:

https://dzone.com/articles/cluster-analysis-using-apache-spark-exploring-

colo

