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Abstract 

In the last years, the problem of detecting non-technical losses (NTL) in energy 

distribution systems have been investigated by the Electric Companies supported 

by the Academic research community.  

The NTL investigation requires the analysis of the consumption data collected by 

the energy metering systems, on potentially millions of end users over a 

timeframe of several months or years. Moreover, it requires the execution of 

compute-intensive Machine Learning algorithms on the metering data. 

The data collected from the metering systems have the characteristics to be 

considered Big Data, and the NTL problem is one of the toughest issues in the 

Energy Data Management, suitable to verify if the emerging technologies for Big 

Data Analysis provide advantages for their application in this field. 

This work has experimented Apache Spark: Clustering Computing and MLlib 

Machine Learning library models to address a real-world NTL problem using a 

dataset with more than 1.6M customers, demonstrating that a new generation of 

Energy Data Management solutions can be efficiently implemented on this 

technology. 

Index Terms - Electricity Theft Detection, Clustering, Apache Spark, Data 

Mining, Unsupervised Learning, Non-Technical Losses 
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1. Introduction 

Our modern society and daily activities strongly depend on the availability of 

electricity. Electrical power grids allow to distribute and deliver electricity from 

generation infrastructures such as power plants or solar cells to customers such as 

residences or factories. Electrical power grids are the backbone of today’s society. 

Losses during generation and distribution cause major problems, including 

financial losses to electricity providers, and a decrease of stability and reliability. 

One frequently appearing problem are losses in power grids, namely the 

difference between the generated or bought energy and the billed ones, can be 

divided into two distinct categories: technical and non-technical losses.  

According also to [1] the former is related with problems in the system through 

the physical characteristics of the equipment, that is, the technical losses are the 

energy lost in the transport, the transformation and the equipment of 

measurement, becoming a very high cost to the electric power companies. The 

non-technical losses are those associated with the commercialization of the 

supplied energy to the user, and refer to the delivered and not billed energy 

resulting in a loss in the profits. They are also defined as the difference between 

the total losses and the technical losses, being strongly related to illegal 

connections in the distribution system. 

In recent years, the problem of detecting non-technical losses in distribution 

systems has been paramount. Theft and adulteration of power meters, with the 

purpose to modify the measurement of the energy consumption, are the main 

causes that lead to non-technical losses in power companies. Since then to 

perform periodic inspections to minimize such frauds may be very expensive, it is 

a hard task to calculate or measure the amount of losses, and in most cases, it is 

almost impossible to know where they occur. Aimed at reducing fraud and energy 

theft, several electric power companies have been concerned that the illegal 

connections should be better profiled. Electric utilities will never be able to 

eliminate fraud, but more realistically, minimization of such losses may guarantee 

investments in energy quality programs, as well as enable a reduction in its price 

to the consumer. Currently, some improvement in this area can be observed with 
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the use of various artificial intelligence techniques to automatically identify non-

technical losses, which are a real application in Smart Grids. Despite the 

widespread use of machine learning techniques for the identification of non-

technical losses in power systems, the problem of selecting the most 

representative features has not been widely discussed in the context of 

nontechnical losses. 

Technical losses: 

o Copper losses those are due to I2R losses that are inherent in all inductors 

because of the finite resistance of conductors 

o Dielectric losses that are losses that resulting from the heating effect on the 

dielectric material between conductors 

o Induction and radiation losses, produced by the electromagnetic fields 

surrounding conductors. Technical losses computable and controllable, 

provided the power system in question consists of known quantities of 

loads. The following are the causes of technical losses: 

• Harmonics distortion 

• Improper earthing at consumer end 

• Long single-phase lines 

• Unbalanced loading 

• Losses due to overloading and low voltage 

• Losses due to a poor standard of equipment. 

Non-Technical Losses 

o Tampering with meters to ensure the meter recorded a lower consumption 

reading 

o Errors in technical losses computation 

o Tapping (hooking) on LT lines 

o Arranging false readings by bribing meter readers 

o Stealing by bypassing the meter or otherwise making illegal connections 

o By just ignoring unpaid bills 

o Faulty energy meters or un-metered supply 

o Errors and delay in meter reading and billing 

o Non-payment by customers. 

 

According to [2] there are also two types of adversaries. The first type is the usual 

customers who are using the meters, let is call them inside adversaries. Inside 

adversaries may have some knowledge of smart meters, and thus they can tamper 
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these meters to lower their electricity bills. Or they may know nothing about smart 

meters, but they can obtain hacking tools to tamper meters for free [3]. The 

second type of adversaries are from the outside. Let is call them outside 

adversaries. Outside adversaries can manipulate meters remotely or manipulate 

billing messages in communication networks. They could increase the electricity 

bills as well as decrease them (however increasing the electricity bills is another 

type of frauds which is out of the scope of this thesis). In message manipulation 

attacks, the meters are intact. However, the adversaries must intercept the 

connections between meters and the head-end system to obtain encryption keys. 

Therefore, the utility company must still locate the meters to replace their keys. 

Under the aforementioned consideration, a meter is called tampered when it is 

either message-manipulated or tampered. The inside adversaries could falsify 

power consumption and attribute it to the neighbors. The prerequisite of this type 

of attack is the same as message manipulation 

Investigations are undertaken by electric utility companies to assess the impact of 

technical losses in generation, transmission and distribution networks, and the 

overall performance of power networks [4,5]. Nontechnical losses (NTLs) 

comprise one of the most important concerns for electricity distribution utilities 

worldwide. In 2004, Tenaga Nasional Berhad (TNB), the sole electricity provider 

in peninsular Malaysia recorded revenue losses as high as U.S.$229 million a year 

as a result of electricity theft, faulty metering, and billing errors [6]. NTLs faced 

by electric utility companies in the United States was estimated between 0.5% and 

3.5% of the gross annual revenue [7], which is relatively low when compared to 

losses faced by electric utilities in developing countries such as Bangladesh [8], 

India [9] and Pakistan [10]. Nevertheless, the loss is amounted between U.S.$1 

billion and U.S.$10 billion given that utility companies in the U.S. had revenues 

around U.S.$280 billion in 1998 [7]. Due to the problem associated with NTLs in 

electric utilities [11] methods for efficient management of NTLs [12], protecting 

revenue in the distribution industry [13], [14] and detecting fraud electricity 

consumers [15] have been proposed. The most effective method to reduce NTLs 

and commercial losses up to date is by using intelligent and smart electronic 

meters that make fraudulent activities more difficult, and easy to detect [14]. From 



 

 

4 

 

an electrical engineering perspective, one method to detect losses is to calculate 

the energy balance reported in [33], which requires topological information of the 

network. In emerging economies, which are of particular interest due to their high 

NTL proportion, this is not realistic for the following reasons: (i) network 

topology undergoes continuous changes to satisfy the rapidly growing demand of 

electricity, (ii) infrastructure may break and lead to wrong energy balance 

calculations and (iii) it requires transformers, feeders and connected meters to be 

read at the same time. 

In order to detect NTLs, inspections of customers are carried out, based on 

predictions whether there may be an NTL. The inspection results are then used in 

the learning of algorithms to improve predictions. However, carrying out 

inspections is expensive, as it requires the physical presence of technicians. It is 

therefore important to make accurate predictions to reduce the number of false 

positives. 

In recent years, several data mining and research studies on fraud identification 

and prediction techniques have been carried out in the electricity distribution 

sector. These include statistical methods [16,17,18,19]; decision trees [20,21]; 

artificial neural networks (ANNs) [18,22,23]; knowledge discovery in databases 

(KDD) [23,24,25,26]; clustering techniques [26,27,28]; Support Vector Machine 

[29]; and multiple classifiers using cross-identification and voting schemes [30]. 

Among these methods, load profiling is one of the most widely used [31] 

approaches, which is defined as the pattern of electricity consumption of a 

customer or group of customers over a period [32]. 

Detecting NTLs is challenging because of the wide range of possible causes of 

NTLs, such as different fraudulent types of customers.  

The challenge of supervised learning for anomaly detection. It must be noted that 

most NTL detection methods are supervised. Anomaly detection - a superclass of 

NTL - is generally challenging to learn in a supervised manner for the reasons 

stated in [34]: (i) anomaly datasets contain a very small number of positive 

examples and a large number of negative examples, resulting in imbalanced 

classes, (ii) it is used for many different kinds of anomalies as it is hard for any 

algorithm to learn from just a few positive examples what the anomalies might 
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look like and (iii) there may be also future anomalies which may look completely 

different to any of the anomalous examples learned so far. In contrast, supervised 

learning works best for (i) large numbers of both positive and negative examples, 

(ii) when there are enough positive examples so that the algorithm can get a sense 

of what positive examples might look like and (iii) future positive examples are 

likely to be similar to the ones in the training set. 

1.1 Literature review 

Literature review NTL detection can be treated as a special case of fraud 

detection, for which a general survey is provided in [35].  

One method to detect NTLs is to analyze the customer load profile using artificial 

intelligence methods, such as machine learning or expert systems. Support Vector 

Machines (SVM) are used in [29], working on daily average consumption features 

of the last 24 months for less than 400 highly imbalanced training examples, 

ignoring the class imbalance in the results reported. That work is combined with 

fuzzy logic [36] or genetic algorithms [37], focusing on an optimization of the 

SVM output. A rule-based expert system outperforms a SVM in [38] for an 

unknown number of customers, focusing on high performance implementations. 

Fuzzy logic following C-means fuzzy clustering is applied to a dataset of ~20K 

customers in [26]. Furthermore, neural networks using handcrafted features 

calculated from the consumption time series plus customer-specific pre-computed 

attributes are used in [39] for ~1K balanced customers. Applying smart half-hour 

meter readings of three weeks of ~6K customers are fed into a neural network in 

[40]. Optimum-path forest are applied to NTL detection in [41] for ~10K 

customers outperforming different SVMs and a neural network. 

1.2 Contribution of this thesis 

In this thesis, we focus on a large dataset comprising of ~1M records spanning 

two years of consumption data and apply different NTL detection methods on this 

real dataset of a big energy utilities. In this context this thesis presents a proposal 

for identifying suspect profiles of energy consumption compared to regular 



 

 

6 

 

consumption profiles with Apache Spark on Databricks1. In this work, we try to 

formulate a model for an end-to-end Big Data analytics platform based on these 

technologies, that can ingest data from heterogeneous sources, process it in an 

efficient way, mine the data to generate insights based on business logic and then 

present the information using interactive visualizations. The proposed approaches 

define a framework to determine a list of irregular consumption in order to find 

any fraud. Thereafter a list of consumers classified as fraudsters is generated to 

help perform the costly inspections with the main objective being the 

improvement of the hit rate of the inspections to reduce unnecessary operational 

cost.  As seen before, there are several types of fraud that can occur, but this 

research only concentrates on scenario when abrupt changes appear in customer 

load profiles, which indicate possible fraud events. 

1.3 Structure of this thesis document 

The rest of this thesis is organized as follows: in Chapter 2 will be discussed about 

Big Data Analysis and platforms and includes the implementation of the 

mentioned Big Data platform Databricks to perform the analyses on real-life use 

cases and generate useful insights. Chapter 3 provides really fine details on data 

structure. In Chapter 4 will be presented the framework used for preparing the 

data to the analysis, which include: filtering and selection of customers and 

features, identifying of new features and data normalization. Chapter 5 describes 

different proposed NTL detection models on the data of different dataset, Chapter 

6 presents the results of this work and provides an outreach on future work.  

  

                                                 
1 https://databricks.com/ 
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2. Big Data 

Big Data describes a massive collection of structured and unstructured 

information that has been collected over the past few years [46]. This data can be 

used for analysis and the discovery of information that was not available, or even 

possible, just a few years ago. This collection of information will transform the 

way to make business and understand the market by analyzing available data and 

using that information to improve their business processes. The term Big Data 

was first used to refer to increasing data volumes in the mid-1990s. In 2001, Doug 

Laney, then an analyst at consultancy Meta Group Inc., expanded the notion of 

Big Data to also include increases in the variety of data being generated by 

organizations and the velocity at which that data was being created and updated. 

Those three factors Volume, Velocity and Variety became known as the 3Vs of 

Big Data, a concept Gartner popularized after acquiring Meta Group and hiring 

Laney in 2005. 

• Volume: Is currently know that the exponential growth in the data storage. 

Is possible to find data in the format of videos, music and large images on 

our social media channels. It is very common to have Terabytes and 

Petabytes of the storage system for enterprises. As the database grows, the 

applications and architecture built to support the data needs to be 

reevaluated quite often. Sometimes the same data is re-evaluated with 

multiple angles and even though the original data is the same the new 

found intelligence creates an explosion of the data. The big volume indeed 

represents Big Data. 

• Velocity: The data growth and social media explosion have changed how 

the data is looked at. There was a time when was believe that data of 

yesterday is recent. However, news channels and radios have changed how 

fast they receive the news. Today, people rely on social media to update 

them with the latest happenings. On social media sometimes a few seconds 

is enough to classify a message as old (a tweet, status updates etc.) and 

then something in which users are interested anymore. The data movement 

is now almost real time and the update window has reduced to fractions of 

the seconds. This high-velocity data represents Big Data. 



 

 

8 

 

 

• Variety: Data can be stored in multiple formats. For example: database, 

Excel, CSV, Access or, related to the context, it can be stored in a simple 

text file. Sometimes the data is not even in the traditional format as were 

assumed, it may be in the form of video, SMS, pdf or something different. 

The organization needs to arrange it and make it meaningful. It will be 

easy to do so if a user has data in the same format, however, it is not the 

case in most of the time. The real world has data in many different formats 

and that is the challenge that needs to be addressed with the Big Data. This 

variety of the data represent Big Data. 

Fig 2.1 gives an idea of Big Data with some values and Fig 2.2 shows a more 

recent description of Big Data, in this image taken from [46], the number of V’s is 

increased up to 8. 

 

Figure 2-1 The world of Big Data [44] 
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Figure 2-2 Big Data 8 V' [46] 

Separately, the Hadoop2 distributed processing framework was launched as an 

Apache open source project in 2006, planting the seeds for a clustered platform 

built on top of commodity hardware and geared to run Big Data applications. By 

2011, Big Data analytics began to take a firm hold in organizations and the public 

eye, along with Hadoop and various related Big Data technologies that had sprung 

up around it. Data Analytics talked about many situations where Big Data comes 

into play. For example Big Data has a strong presence in the food industry, 

providing businesses with information about customer’s activity, likes, and 

preferences for different items. As instance, McDonald’s uses data analytics to 

figure out what is going on in their stores. They use this information to optimize 

                                                 
2 http://hadoop.apache.org/ 
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different aspects of their business, such as the drive-thru. McDonald’s designs the 

drive-thru around three different items from Big Data: design, information 

provided, and the different types of people who order from the drive-thru. By 

analyzing this information, McDonald’s can cater to an even broader crowd then 

they currently do, making sure that they are doing the right thing not only for their 

business but also for their customers. Instances like this allow companies to really 

get the information that they need from customers, rather than playing a guessing 

game. Big Data will change the way businesses conduct their practices, and it has 

already begun. 

2.1 Big Data Analysis 

Big Data analytics is the process of examining Big Data to uncover hidden 

patterns, unknown correlations, market trends, customer preferences and other 

useful information that can help organizations make more-informed business 

decisions. 

Driven by specialized analytics systems and software, Big Data analytics can 

point the way to various business benefits, including new revenue opportunities, 

more effective marketing, better customer service, improved operational 

efficiency and competitive advantages over rivals. Big Data analytics applications 

enable data scientists, predictive modelers, statisticians and other analytics 

professionals to analyze growing volumes of structured transaction data, plus 

other forms of data that are often left untapped by conventional business 

intelligence (BI) and analytics programs. That encompasses a mix of semi-

structured and unstructured data, for example, internet clickstream data, web 

server logs, social media content, text from customer emails and survey responses, 

mobile-phone call-detail records and machine data captured by sensors connected 

to the internet of things.  

On a broad scale, data analytics technologies and techniques provide a means of 

analyzing data sets and drawing conclusions about them to help organizations 

make informed business decisions. Big Data analytics is a form of advanced 

analytics, which involves complex applications with elements such as predictive 
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models, statistical algorithms and what-if analyses powered by high-performance 

analytics systems. 

Initially, as the Hadoop ecosystem took shape and started to mature, Big Data 

applications were primarily used by the largest internet and e-commerce 

companies, such as Yahoo, Google and Facebook, as well as analytics and 

marketing services providers. In ensuing years, though, Big Data analytics has 

increasingly been embraced by retailers, financial services firms, insurers, 

healthcare organizations, manufacturers, energy companies and other mainstream 

enterprises. 

Unstructured and semi-structured data types typically do not fit well in traditional 

data warehouses that are based on relational databases oriented to structured data 

sets. Furthermore, data warehouses may not be able to handle the processing 

demands posed by sets of Big Data that need to be updated frequently, or even 

continually, as in the case of real-time data on stock trading, the online activities 

of website visitors or the performance of mobile applications. 

In some cases, Hadoop clusters and NoSQL systems are being used primarily as 

landing pads and staging areas for data before it gets loaded into a data warehouse 

or analytical database for analysis, usually in a summarized form that is more 

conducive to relational structures. 

More frequently, however, Big Data analytics users are adopting the concept of a 

Hadoop data lake that serves as the primary repository for incoming streams of 

raw data. In such architectures, data can be analyzed directly in a Hadoop cluster 

or run through a processing engine like Spark. As in data warehousing, sound data 

management is a crucial first step in the Big Data analytics process. Data stored in 

the Hadoop Distributed File System must be organized, configured and 

partitioned properly to get good performance on both extract, transform and load 

(ETL) integration jobs and analytical queries.  

Once the data is ready, it can be analyzed with the software commonly used in 

advanced analytics processes. That includes tools for data mining, which sift 

through data sets in search of patterns and relationships; predictive analytics, 

which build models for forecasting customer behavior and other future 
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developments; machine learning, which tap algorithms to analyze large data sets; 

and deep learning, a more advanced offshoot of machine learning. Text mining 

and statistical analysis software can also play a role in the Big Data analytics 

process, as can mainstream BI software and data visualization tools. For both ETL 

and analytics applications, queries can be written in batch-mode MapReduce; 

programming languages, such as R, Python and Scala; and SQL, the standard 

language for relational databases that is supported via SQL-on-Hadoop 

technologies. 

Big Data analytics applications often include data from both internal systems and 

external sources, such as weather data or demographic data on consumers 

compiled by third-party information services providers. In addition, streaming 

analytics applications are becoming common in Big Data environments, as users 

look to do real-time analytics on data fed into Hadoop systems through Spark's 

Streaming module or other open source stream processing engines, such as Flink 

and Storm. 

Early Big Data systems were mostly deployed on-premises, particularly in large 

organizations that were collecting, organizing and analyzing massive amounts of 

data. But cloud platform vendors, such as Amazon Web Services (AWS) and 

Microsoft, have made it easier to set up and manage Hadoop clusters in the cloud, 

as have Hadoop suppliers such as Cloudera and Hortonworks, which support their 

distributions of the Big Data framework on the AWS and Microsoft Azure clouds. 

Users can now spin up clusters in the cloud, run them for as long as needed and 

then take them offline, with usage-based pricing that does not require ongoing 

software licenses. 

Potential pitfalls that can trip up organizations on Big Data analytics initiatives 

include a lack of internal analytics skills and the high cost of hiring experienced 

data scientists and data engineers to fill the gaps. The amount of data that is 

typically involved, and its variety, can cause data management issues in areas 

including data quality, consistency and governance; also, data silos can result 

from the use of different platforms and data stores in a Big Data architecture. In 

addition, integrating Hadoop, Spark and other Big Data tools into a cohesive 

architecture that meets the Big Data analytics necessities of an organization is a 
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challenging proposition for many IT and analytics teams, which have to identify 

the right mix of technologies and then put the pieces together. 

2.2 Platforms 

An essential component of a Big Data platform [43] is the process that enables the 

ingestion, storage and management of data, and Hadoop is a major open-source 

framework which helps achieve this, an example of an underlying architecture is 

showed Fig 2.3. 

 

Figure 2-3 Architecture of Hadoop 

 It supports the processing and storage of extremely large datasets in a distributed 

computing environment. Hadoop’s architecture basically involves cluster 

planning, i.e. dedicating multi-core CPUs with RAM and HDDs of heavy 

configurations to facilitate ingression via two main approaches: batch and event-

driven. The former is appropriate for file and structured data, while the latter is 

appropriate for most near-real-time events such as logs, transactional or sensor 

data. Hadoop’s MapReduce does an excellent job in processing batch events, but 

its efficiency is reduced while processing real-time streams. To compensate for 

this, it can be used Apache Spark or Storm along with Hadoop, since they are 

naturally meant for real-time processing. The storage of this processed data is 
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done in either HDFS or HBase, and both are highly performant databases with fast 

read and write capabilities. 

Since Hadoop processes in a parallel distributed manner, a central infrastructure is 

required for cross-node synchronization. A ZooKeeper 3  server does that job 

efficiently, by keeping a copy of the state of the entire system and persisting this 

information in local log files. Hadoop also provides access control in the form of 

Information architecture, i.e. a concise access schema that controls tightly who 

has access to what data and is very helpful when a cluster is shared across 

departments. On an enterprise level, the continuously generated data far exceeds 

the limits of our ability to store, process, analyze and transmit it, and this situation 

is causing stress on all the underlying infrastructure used to generate and process 

it. 

This shortcoming can be taken care of by employing cloud-based large-scale 

distributed compute and storage infrastructures. It helps enable, either the manual 

setup of Hadoop and other computing engines like Storm4 and Spark in a VM or 

provide these capabilities as services out-of-the-box with automatic scalability of 

the arrangement as per the usage. These out-of-the-box services have been heavily 

adopted by SMEs and startups since they provide efficient resource utilization. 

Azure’s HDInsight5 and Amazon’s EMR6 are such solutions, which provide easy 

distribution of these technologies as managed clusters with enterprise-level 

security and monitoring and are the leading players in this domain. Given the 

current trend of the usage of cloud-based services, it can be stated that is going to 

see the rise of the information service organizations, the same way the banking 

industry arose centuries or millennia ago to manage and handle our financial 

assets. 

 Since the overall focus of employing a big-data strategy is on gaining business 

insights, companies are looking forward to developing a comprehensive 

information management strategy that involves more than simply ingesting Big 

Data. Specifically, they want to integrate their existing data systems, including the 

                                                 
3 https://zookeeper.apache.org/ 
4 http://storm.apache.org/ 
5 https://azure.microsoft.com/it-it/services/hdinsight/ 
6 https://aws.amazon.com/it/emr/ 
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relational DBMS, enterprise content management systems, data warehouses, etc. 

This is where the concept of Data exploration comes into the picture, that 

describes the data by means of statistical and visualization techniques which help 

to explore it, to bring its important aspects into focus for further analysis. To 

achieve comprehensive Data exploration, companies need to do away with 

traditional analytic techniques and move from hindsight to foresight analytics. If 

this variable data is the oil, data analysis must be the engine that drives its 

exploration, and therefore the tools used for this task should be able to harness 

data from all the given data systems. 

In all, can be said that the Big Data technologies have the propensity within them 

to foster great results for the organizations if combined with efficiently sought-

after result-oriented analytics. But for that to happen, organizations must evolve 

their existing data ingestion architectures. With more data and more potential 

relationships between data points, businesses will need experts to sift through and 

pinpoint the signal from the noise, and this is where the role of data scientist 

comes into the picture. IT departments also need to continue building up a data-

driven mindset which includes investing in the back end of data by improving 

governance policies and data quality. 

2.3 Apache Spark, Databricks distribution 

Databricks offers a Unified Analytics Platform that unites three realms of 

experiences together: people, processes and infrastructure (platform). 

Surrounding, and built atop Apache Spark, are software components that enhance 

Spark’s performance, security, fast IO access, and collaborative workspace 

environment so data analysts, data engineers and data scientists can work 

together. 

2.3.1 Getting Started with Apache Spark™ on Databricks 

In the following paragraphs, it will be possible to familiarize a user with the Spark 

UI, learn how to create Spark jobs, load data and work with Datasets, get familiar 

with Spark’s DataFrames API and run machine learning algorithms. Instead of 

worrying about spinning up clusters, maintaining clusters, maintaining code 

history, or Spark versions, it is possible to start writing Spark queries instantly and 
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focus on data problems. It will show 4 modules to getting started: An overview on 

how to use open source Apache Spark and then leverage this knowledge to learn 

how to use Spark DataFrames with Spark SQL. In time for Spark 2.0, it will be 

also discussed how to use Datasets and how DataFrames and Datasets are now 

unified. Each of these modules refers to standalone usage scenarios, including IoT 

and home sales, with notebooks and datasets. 

Apache Spark is a powerful open-source processing engine built around speed, 

ease of use, and sophisticated analytics, its infrastructure is showed in Fig 2.4. 

 

Figure 2-4 Architecture of Spark 

The Spark Core is the underlying general execution engine for the Spark platform 

that all other functionality is built on top of. It provides in-memory computing 

capabilities to deliver speed, a generalized execution model to support a wide 

variety of applications, and Java, Scala, and Python APIs for ease of development. 

Many data scientists, analysts, and general BI users rely on interactive SQL 

queries for exploring data. Spark SQL is a Spark module for structured data 

processing. It provides a programming abstraction called DataFrames and can also 

act as distributed SQL query engine. It enables unmodified Hadoop Hive queries 

to run up to 100x faster on existing deployments and data. It also provides 

powerful integration with the rest of the Spark ecosystem (e.g., integrating SQL 

query processing with machine learning). 
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Many applications need the ability to process and analyze not only batch data but 

also streams of new data in real-time. Running on top of Spark, Spark Streaming 

enables powerful interactive and analytical applications across both streaming and 

historical data, while inheriting Spark’s ease of use and fault tolerance 

characteristics. It readily integrates with a wide variety of popular data sources, 

including HDFS7, Flume8, Kafka9, and Twitter10. Machine learning has quickly 

emerged as a critical piece in mining Big Data for actionable insights. Built on top 

of Spark, MLlib is a scalable machine learning library that delivers both high-

quality algorithms (e.g., multiple iterations to increase accuracy) and blazing 

speed (up to 100x faster than MapReduce). The library is usable in Java, Scala, 

and Python as part of Spark applications, so can include it in complete workflows. 

GraphX is a graph computation engine built on top of Spark that enables users to 

interactively build, transform and reason about graph-structured data at scale. It 

comes complete with a library of common algorithms. 

“At Databricks, we’re working hard to make Spark easier to use and run 

than ever, through our efforts on both the Spark codebase and support 

materials around it. All of our work on Spark is open source and goes 

directly to Apache.” 

Matei Zaharia, VP, Apache Spark, Co-founder & Chief Technologist, Databricks 

Databricks is a Unified Analytics Platform on top of Apache Spark that 

accelerates innovation by unifying data science, engineering and business. With 

our fully managed Spark clusters in the cloud, it can easily provide clusters with 

just a few clicks.  Databricks incorporates an integrated workspace for exploration 

and visualization so users can learn, work, and collaborate in a single, easy to use 

environment.  It can easily schedule any existing notebook or locally developed 

Spark code to go from prototype to production without re-engineering. 

                                                 
7 https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html 
8 https://flume.apache.org/ 
9 https://kafka.apache.org/ 
10 https://twitter.com/ 
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2.3.2 Overview 

This module allows to quickly start using Apache Spark. As this is a quick start, 

will be discussed the various concepts briefly so a user can complete end-to-end 

examples.  

To write a first Apache Spark Job using Databricks, the user will writes the code 

in the cells of a Databricks notebook. In this example, it will be used Python. For 

more information, there is also an available reference on the Apache Spark Quick 

Start Guide and the Databricks Guide. The purpose of this quick start is to 

showcase RDD’s (Resilient Distributed Datasets) operations so that a user will be 

able to understand the Spark UI when debugging or trying to understand the tasks 

being undertaken. 

When running this first command, it is reviewed a folder within the Databricks 

File System (an optimized version of S3) which contains the files. 

 

# Look at the file system 

%fs ls /databricks-datasets/samples/docs/ 

 

In the next command, it will be used the Spark Context to read the README.md 

text file. 

# Setup the textFile RDD to read the README.md file 

# Note this is lazy 

textFile = sc.textFile("/databricks-datasets/samples/docs/README.md") 

And then it will be possible to count the lines of this text file by running the 

command 

# Perform a count against the README.md file 

textFile.count() 

 

 

One thing that can be noticed is that the first command, reading the textFile via 

the Spark Context (sc), did not generate any output while the second command 

(performing the count) did. The reason for this is because RDDs have actions 

(which returns values) as well as transformations (which returns pointers to new 
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RDDs). The first command was a transformation while the second one was an 

action. This is important because when Spark performs its calculations, it will not 

execute any of the transformations until an action occurs. This allows Spark to 

optimize (e.g. run a filter prior to a join) for performance instead of following the 

commands serially. 

To see what is happening when running the count() command, it will be possible 

to see the jobs and stages within the Spark Web UI. It can access directly from the 

Databricks notebook, so the user does not need to change the context as is 

debugging the Spark job. As can be seen from the below Jobs view, when 

performing the action count() it also includes the previous transformation to access 

the text file. 

 

What is happening under the covers becomes more apparent when reviewing the 

Stages view from the Spark UI (also directly accessible within the Databricks 

notebook). As it can be seen from the DAG visualization below, prior to the 

PythonRDD [1333] count() step, Spark will perform the task of accessing the 

file ([1330] textFile) and running MapPartitionsRDD [1331] textFile. 
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As noted in the previous section, RDDs have actions which return values and 

transformations which return points to new RDDs. Transformations are lazy and 

executed when an action is run. Some examples include: 

• Transformations: map(), flatMap(), filter(), mapPartitions(), 

mapPartitionsWithIndex(), sample(), union(), distinct(), 

groupByKey(), reduceByKey(), sortByKey(), join(), cogroup(), 

pipe(), coalesce(), repartition(), partitionBy(), … 

• Actions: reduce(), collect(), count(), first(), take(), 

takeSample(), takeOrdered(), saveAsTextFile(), 

saveAsSequenceFile(), saveAsObjectFile(), countByKey(), 

foreach(), … 

In many scenarios, especially with the performance optimizations embedded in 

DataFrames and Datasets, it will not be necessary to work with RDDs. But it is 

important to bring this up because: 

• RDDs are the underlying infrastructure that allows Spark to run so fast (in-

memory distribution) and provide data lineage. 
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• If is divided into more advanced components of Spark, it may be 

necessary to utilize RDDs. 

• All the DAG visualizations within the Spark UI reference RDDs. 

Saying this, when developing Spark applications, is typically used DataFrames 

and Datasets. As of Apache Spark 2.0, the DataFrame and Dataset APIs are 

merged together; a DataFrame is the Dataset Untyped API while what was known 

as a Dataset is the Dataset Typed API (Fig 2.4) 

 

2.3.3 Datasets 

The Apache Spark Dataset API provides a type-safe, object-oriented 

programming interface. In other words, in Spark 2.0 DataFrame and Datasets are 

unified as explained in Quick Start about RDDs, DataFrames, and Datasets, and 

DataFrame is an alias for an untyped Dataset [Row]. Like DataFrames, Datasets 

take advantage of Spark’s Catalyst optimizer11 by exposing expressions and data 

fields to a query planner. Beyond Catalyst’s optimizer, Datasets also leverage 

Tungsten’s fast in-memory encoding. They extend these benefits with compile-

time type safety, meaning production applications can be checked for errors 

before they are running, and they also allow direct operations over user-defined 

                                                 

11 At the core of Spark SQL is the Catalyst optimizer, which leverages advanced programming language 

features (e.g. Scala’s pattern matching and quasi-quotes) in a novel way to build an extensible query 

optimizer. 

https://databricks.com/glossary/what-is-spark-sql


 

 

22 

 

classes, as it showed in a couple of simple examples below. Lastly, the Dataset 

API offers a high-level domain specific language operation like sum(), avg(), 

join(), select(), groupBy(), making the code a lot easier to express, read, 

and write. 

In this module, it will be learnt two ways to create Datasets: dynamically creating 

a data and reading from JSON file using Spark Session. Additionally, through 

simple and short examples, it will be learnt about Dataset API operations on the 

Dataset, issue SQL queries and visualize data. For learning purposes, were used a 

small IoT Device dataset; however, there is no reason why it cannot be used a 

large dataset12. 

There are two easy ways to have structured data accessible and process it using 

Dataset APIs within a notebook. First, for primitive types in examples or demos,  

can be created them within a Scala or Python notebook or in a sample Spark 

application. For example, here’s a way to create a Dataset of 100 integers in a 

notebook. Note that in Spark 2.0, the SparkContext is subsumed by 

SparkSession, a single point of entry, called Spark. Going forward, a user can 

use this handle in the driver or notebook cell, as showed below, in which were 

created 100 integers as Dataset[Long]. 

// range of 100 numbers to create a Dataset. 

val range100 = spark.range(100) 

range100.collect() 

 

Second, the more common way is to read a data file from an external data sources, 

such as HDFS, S3, NoSQL, RDBMS, or local filesystem. Spark supports multiple 

formats: JSON, CSV, Text, Parquet, ORC etc. To read a JSON file can be simply 

used the SparkSession handle spark. 

// read a JSON file from a location mounted on a DBFS mount point 

// Note that there is used the new entry point in Spark 2.0 called spark 

val jsonData = spark.read.json("/databricks-

datasets/data/people/person.json") 

 

                                                 
12 There are several datasets available in the /databricks-datasets folder which is accessible within 

the Databricks platform. 
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At the time of reading the JSON file, Spark does not know the structure of the 

data on-hand, how a user wants to organize data into a type-specific JVM object. 

It attempts to infer the schema from the JSON file and creates a DataFrame = 

Dataset[Row] of generic Row objects. Alternatively, to convert the DataFrame 

into a Dataset reflecting a Scala class object, the user can define a domain specific 

Scala case class, followed by explicitly converting into that type, as showed 

below. 

// First, define a case class that represents our type-specific Scala JVM 

Object 

case class Person (email: String, iq: Long, name: String) 

 

// Read the JSON file, convert the DataFrames into a type-specific JVM 

Scala object Person. Note that at this stage Spark, upon reading JSON, 

created a generic 

// DataFrame = Dataset[Rows]. By explicitly converting DataFrame into 

Dataset 

// results in a type-specific rows or collection of objects of type 

Person 

val ds = spark.read.json("/databricks-

datasets/data/people/person.json").as[Person] 

 

In a second example, is done something similar with IoT devices state information 

captured in a JSON file: define a case class and read the JSON file from the 

FileStore and convert the DataFrame = Dataset[DeviceIoTData]. 

There are a couple of reasons why a user wants to convert a DataFrame into a 

type-specific JVM objects. First, after an explicit conversion, for all relational and 

query expressions using Dataset API, it will be possible to get the compile-type 

safety. For example, if the user applies a filter operation using the wrong data 

type, Spark will detect mismatch types and issue a compile error rather an 

execution runtime error, resulting in catching errors earlier. Second, the Dataset 

API provides high-order methods making code much easier to read and develop. 

In the following submodule, Processing and Visualizing a Dataset, it will be 

noticed how the use of Dataset typed objects make the code much easier to 

express and read. As above with Person example, below was created a case class 

that encapsulates our Scala object. 
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// define a case class that represents our Device data. 

case class DeviceIoTData ( 

  battery_level: Long, 

  c02_level: Long, 

  cca2: String, 

  cca3: String, 

  cn: String, 

  device_id: Long, 

  device_name: String, 

  humidity: Long, 

  ip: String, 

  latitude: Double, 

  longitude: Double, 

  scale: String, 

  temp: Long, 

  timestamp: Long 

) 

 

// fetch the JSON device information uploaded into the Filestore 

val jsonFile = "/databricks-datasets/data/iot/iot_devices.json" 

 

// read the json file and create the dataset from the case class 

DeviceIoTData 

// ds is now a collection of JVM Scala objects DeviceIoTData 

val ds = spark.read.json(jsonFile).as[DeviceIoTData] 

 

To view this data in a tabular format instead of exporting this data out to a third 

party tool, can be used the Databricks display() command. That is, once is 

loaded the JSON data and converted into a Dataset for a type-specific collection 

of JVM objects, the user can view them as it would view a DataFrame, by using 

either display() or using standard Spark commands, such as take(), 

foreach(), and println() API calls. 

// display the dataset table just read in from the JSON file 

display(ds) 
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// Using the standard Spark commands, take() and foreach(), print the 

first  

// 10 rows of the Datasets. 

ds.take(10).foreach(println(_)) 

 

 

An additional benefit of using the Databricks display() command is that it can 

quickly view this data with several embedded visualizations (Fig. 2.5-6). For 

example, in a new cell, the user can issue SQL queries and click on the map to see 

the data. But first, is mandatory to save the dataset, ds, as a temporary table. 

// registering the Dataset as a temporary table to which the user can 

issue SQL queries 

ds.createOrReplaceTempView("iot_device_data") 

 

 

Figure 2-5 Some embedded visualization 
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Figure 2-6 Some embedded visualization 

Like RDD, Dataset has transformations and actions methods. Most importantly 

are the high-level domain specific operations such as sum(), select(), avg(), 

join(), and union() that are absent in RDDs. For more information, look at the 

Scala Dataset API. Let is look at a few handy ones in action.  

In the example below, is used filter(), map(), groupBy(), and avg(), all higher-

level methods, to create another Dataset, with only fields that were wishing to 

view. What is noteworthy is that is accessed the attributes the user wanted to filter 

by their names as defined in the case class. That is, was used the dot notation to 

access individual fields. As such, it makes code easy to read and write. 

// filter out all devices whose temperature exceed 25 degrees and 

generate another Dataset with three fields that of interest and then 

display the mapped Dataset 

val dsTemp = ds.filter(d => d.temp > 25).map(d => (d.temp, d.device_name, 

d.cca3) 

display(dsTemp) 
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// Apply higher-level Dataset API methods such as groupBy() and avg(). 

// Filter temperatures > 25, along with their corresponding 

// devices' humidity, compute averages, groupBy cca3 country codes, 

// and display the results, using table and bar charts 

val dsAvgTmp = ds.filter(d => {d.temp > 25}).map(d => (d.temp, 

d.humidity, d.cca3)).groupBy($"_3").avg() 

 

// display averages as a table, grouped by the country 

display(dsAvgTmp) 

 

// display the averages as bar graphs, grouped by the country 

display(dsAvgTmp) 

 

// Select individual fields using the Dataset method select() 

// where battery_level is greater than 6. Note this high-level 

// domain specific language API reads like a SQL query 

display(ds.select($"battery_level", $"c02_level", 

$"device_name").where($"battery_level" > 6).sort($"c02_level")) 
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2.3.4 Dataframes 

Apache Spark DataFrames were created to run Spark programs faster from both a 

developer and an execution perspective. With less code to write and less data to 

read, the Catalyst optimizer solves common problems efficiently and faster using 

DataFrame functions (e.g. select columns, filtering, joining different data sources, 

aggregation, etc.). DataFrames also allow to seamlessly intermix operations with 

custom SQL, Python, Java, R, or Scala code. 

The easiest way to work with DataFrames is to access an example dataset13. For 

example, to access the file that compares city population vs. median sale prices of 

homes, the user can access the file /databricks-datasets/samples/population-vs-

price/data_geo.csv. 

Was used the spark-csv package from Spark Packages (a community index of 

packages for Apache Spark) to quickly import the data, specify that a header 

exists, and infer the schema. 

# Use the Spark CSV datasource with options specifying: 

# - First line of file is a header 

# - Automatically infer the schema of the data 

data = sqlContext.read.format("csv") 

  .option("header", "true") 

  .option("inferSchema", "true") 

  .load("/databricks-datasets/samples/population-vs-price/data_geo.csv") 

 

data.cache() # Cache data for faster reuse 

data = data.dropna() # drop rows with missing values 

 

# Register table so it is accessible via SQL Context 

# For Apache Spark = 2.0 

data.createOrReplaceTempView("data_geo") 

                                                 
13 There are made several datasets available in the /databricks-datasets folder which is accessible 

within the Databricks platform 
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Now that was created the data DataFrame, the user can quickly access the data 

using standard Spark commands such as take(). For example, it can use the 

command data.take(10) to view the first ten rows of the data DataFrame. 

 

To view this data in a tabular format, was used the display() command within 

Databricks. 

 

An additional benefit of using the Databricks display() command is that it can 

quickly view this data with a number of embedded visualizations. For example, in 

a new cell, can be specified the following SQL query and click on the map. 

%sql select `State Code`, `2015 median sales price` from data 
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2.3.5 Machine Learning 

As organizations create more diverse and more user-focused data products and 

services, there is a growing need for machine learning, which can be used to 

develop personalization, recommendations, and predictive insights. Apache 

Spark’s Machine Learning Library (MLlib) allows data scientists to focus on their 

data problems and models instead of solving the complexities surrounding 

distributed data (such as infrastructure, configurations, and so on). 

The easiest way to work with DataFrames is to access an example dataset. For 

example, to access the file that compares city population vs. median sale prices of 

homes, the user can access the file /databricks-datasets/samples/population-vs-

price/data_geo.csv. 

Was used the spark-csv package from Spark Packages (a community index of 

packages for Apache Spark) to quickly import the data, specify that a header 

exists, and infer the schema. 
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# Use the Spark CSV datasource with options specifying: 

# - First line of file is a header 

# - Automatically infer the schema of the data 

data = sqlContext.read.format("csv") 

  .option("header", "true") 

  .option("inferSchema", "true") 

  .load("/databricks-datasets/samples/population-vs-price/data_geo.csv") 

 

data.cache() # Cache data for faster reuse 

data = data.dropna() # drop rows with missing values 

 

# Register table so it is accessible via SQL Context 

# For Apache Spark = 2.0 

data.createOrReplaceTempView("data_geo") 

 

To view this data in a tabular format, was used the display() command within 

Databricks. 

 

In supervised learning, such as a regression algorithm, the user typically will 

define a label and a set of features. In our linear regression example, the label is 

the 2015 median sales price while the feature is the 2014 Population 

Estimate. That is, is was tried to use the feature (population) to predict the label 

(sales price). To simplify the creation of features within Python Spark MLlib, was 

used LabeledPoint to convert the feature (population) to a Vector type. 

# convenience for specifying schema 

from pyspark.mllib.regression import LabeledPoint 

 

data = data.select("2014 Population estimate", "2015 median sales price") 

  .map(lambda r: LabeledPoint(r[1], [r[0]])) 

  .toDF() 

display(data) 
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In this section, it will be executed two different linear regression models using 

different regularization parameters and determine its efficacy. That is, how well 

do either of these two models predict the sales price (label) based on the 

population (feature). 

# Import LinearRegression class 

from pyspark.ml.regression import LinearRegression 

 

# Define LinearRegression algorithm 

lr = LinearRegression() 

 

# Fit 2 models, using different regularization parameters 

modelA = lr.fit(data, {lr.regParam:0.0}) 

modelB = lr.fit(data, {lr.regParam:100.0}) 

 

The model can also make predictions by using the transform() function which 

adds a new column of predictions. For example, the code below takes the first 

model (modelA) and shows both the label (original sales price) and prediction 

(predicted sales price) based on the features (population). 

# Make predictions 

predictionsA = modelA.transform(data) 

display(predictionsA) 

 

To evaluate the regression analysis, it will be calculated the root mean square error 

using the RegressionEvaluator. Below is the pySpark code for evaluating the 

two models and their output. 

from pyspark.ml.evaluation import RegressionEvaluator 

evaluator = RegressionEvaluator(metricName="rmse") 

RMSE = evaluator.evaluate(predictionsA) 

print("ModelA: Root Mean Squared Error = " + str(RMSE)) 

 

# ModelA: Root Mean Squared Error = 128.602026843 

predictionsB = modelB.transform(data) 

RMSE = evaluator.evaluate(predictionsB) 

print("ModelB: Root Mean Squared Error = " + str(RMSE)) 

 

# ModelB: Root Mean Squared Error = 129.496300193 

 

As is typical for many machine learning algorithms, the user will want to visualize 

the scatterplot. As Databricks supports Python pandas and ggplot, the code 
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below creates a linear regression plot using Python Pandas DataFrame (pydf) and 

ggplot to display the scatterplot and the two regression models. 

# Import numpy, pandas, and ggplot 

import numpy as np 

from pandas import * 

from ggplot import * 

 

# Create Python DataFrame 

pop = data.map(lambda p: (p.features[0])).collect() 

price = data.map(lambda p: (p.label)).collect() 

predA = predictionsA.select("prediction").map(lambda r: r[0]).collect() 

predB = predictionsB.select("prediction").map(lambda r: r[0]).collect() 

 

pydf = DataFrame({'pop':pop,'price':price,'predA':predA, 'predB':predB}) 

 

Visualizing the Model :  

# Create scatter plot and two regression models (scaling exponential) 

using ggplot 

p = ggplot(pydf, aes('pop','price')) + 

geom_point(color='blue') + 

geom_line(pydf, aes('pop','predA'), color='red') + 

geom_line(pydf, aes('pop','predB'), color='green') + 

scale_x_log10() + scale_y_log10() 

display(p) 
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3. Data Structure 

This section describes the structure of the data used to conduct the analysis on 

non-technical losses over smart energy grids.  

3.1 Datasets provided 

The analysis is based on two kinds of datasets: 

o A dataset that includes all the information in respect to the consumers, 

such as their location, the type of customer, etc. These data do not change 

frequently. This dataset was called: “Master dataset”. 

o The second dataset includes information on the energy measured by the 

metering devices deployed at the customers throughout the year, where 

measures are sampled over each month. This dataset was called: 

“Metering dataset”. 

3.2 Master Dataset 

The master data represent customer reference data, which typically changes 

infrequently and count more than 1.6 million customers of 2017, in the Table 3.1 

the data dictionary. 

Field Name Type Description 

Id_customer String POD : Alphanumeric national code that 

uniquely identify the final customer 

year_month String The year and month in reference to the 

single record 

market String Type of energetic market 

meter_type String Type of device that measures the amount 

of electric energy 

status_customer Binary Indicator if the customer active or not in 

that month 

contracted_power Double Indicate the power level in the contract 

contracted_power_band String Indicate the power level in the contract 

divided by band 

zone_number Double Indicate the number of zone where the 

customer resides 

Table 3-1 Data Dictionary of Master Dataset 
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3.2.1 Id customer 

The Point of Delivery (POD) is an alphanumeric national code that uniquely 

identify the point on the national territory where the electric energy is delivered to 

supplier and provided for the final customer. This is simple to recognize because 

start with two letter that identify the country, in the thesis, always IT acronym to 

Italy, after that can be found three numbers that identify the provider and the letter 

E, that stand for electric energy. The POD is completed by 8 digit that correspond 

to the client number directly found on the meter. An example of POD is 

"IT123E12345678". 

This code remains the same also when someone change the supplier, in that case, 

the meter will be the same and there will be no change on the meter unless the 

customer demand higher contracted power. For sake of anonymity, the 

“id_customer” field has been provided masked as an increased number from 0 to 

about 1.600.000. 

3.2.1 Market 

Two are the main type of market in the energetic market: the deregulated and the 

protected ones. In the first one, the economic and contractual conditions for the 

supply of electricity are agreed between parties and not fixed by the energy 

Authorities. From the 1° July 2007 the customers can freely choose from which 

supplier buy the electricity and determine the conditions. In the second one, the 

economic and contractual conditions for the electric energy supply are fixed by 

the energy Authorities. The customer cannot decide at which supplier relying on 

but will follow the established prices that will update every three months based of 

prices trend of the oil and gas markets. Below in Table 3.2 the list of possible 

values for this feature. 

 

 

 

 

Table 3-2 Market Types 

Market 

Deregulated Market 

Protected Market 

Internal Usage 

Other Market 
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The Internal Usage refer to all the meters that track the acquisition and 

distribution among the city and Other Market refer to a particular type of 

customers that require a specific distinction of market. 

The market feature presents a very imbalanced distribution given that the 

deregulated and protected market represent the 98 % of the customers (Fig 3.1). 

The number of customers with missing market values are 17.854 and are 

presented in the figures as unlabeled market type. 

 

Figure 3-1 Market distribution 

Compared with zone number as it can be seen in Fig 3.2 that, aside 

OTHERMARKET with Zone_1, there is a uniformly distribution of the type of 

market over the city.  
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Figure 3-2 Market and Zone comparison 

3.2.2 Contracted power values and bands 

The contracted power indicates the power level written in the contract and is made 

available by supplier. The contracted power is defined according to customer 

necessities in the moment of contract stipulation based on type and number of 

electrical devices usually utilized. It is measured in kW and the bands according 

to the National Electric Service [48] are described in Table 3.3. 

Band Description 

B1 Customers with contracted power until 1.5 kW 

B2 Customers with contracted power greater than 1.5 kWh until 3 kW 

B3 Customers with contracted power greater than 3 kW until 6 kW 

B4 Customers with contracted power greater than 6 kW until 10 kW 

B5 Customers with contracted power greater than 10 kW until 15 kW 

B6 Customers with contracted power greater than 15 kW 

Table 3-3 Contracted power values and bands 

In Italy, the most part of the households is 3 kW and if the user wants a higher 

power level, until 10 kW, needs to request directly to the supplier. The power 

contracted level is reported on the bill within the section “Type of contract” or 

“delivery date”. 

As it can be seen in Fig 3.3, the contracted power bands also present an 

unbalanced distribution because the B2 and B3 bands includes respectively the 

75% and the 15%. As before the unlabeled band in the figures represent the 

missing values and the number amounts to 2.110. 
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Figure 3-3 Contracted Power distribution 

As can be expected the comparison with the zone number reveal a high presence 

of B2 and B3 for all the zone. In particular, the first one, B2, reach for all the area 

under observation at least the 55% of the total area, visible in Fig 3.4 below, the 

figure indicates also the numerosity of each area. 

 

Figure 3-4 Contracted Power and Zone comparison 

3.2.3 Number zone 

The city under observation is divided into 11 sub-areas and the variable 

“zone_number” indicate the zone where customer belongs. The city can be 

imaged divided as in Fig 3.5. 
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Figure 3-5 Zone map 

The zones distribution observable in Fig 3.6, as can be expected from Fig 3.4, 

show the “zone_3” as the biggest zone with 236.731 costumers. The number of 

missing value is bigger compared to the other variables and count 26.085 missing 

values. 

 

Figure 3-6 Zone distribution 
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3.2.4 Meter type 

The smart meters are installed at almost all the final users. In 2007 the installation 

of electronic meters for medium voltage users was completed, while in 2011 the 

installation covered 95% of low voltage users. Electronic meters allow the 

measurement of active power and reactive power in and out; the user can, 

therefore, supply energy to the network, and this encourages self-production and 

the use of renewable sources (in particular photovoltaic systems). These meters 

also allow the application of different tariffs for the time slots, prompting users to 

use appliances outside peak hours and rightly reflecting the value of electricity on 

the exchange of energy. 

The LENNT meters (Fig 3.7) is equipped with a circuit breaker with 

magnetothermal protection and release coil.  

 

Figure 3-7 LENNT meter [49] 
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The circuit-breaker can be maneuvered manually at the output and can be 

controlled by the electronics (locally, in the case of power supercharging, or 

remotely, on command of the center, in case, and closing of the contract) for 

opening only. The circuit-breaker can therefore only be closed manually. The 

possible values for this feature are reported in Table 3.4. 

Type of Meter 

LENNT_type1 

LENNT_type2 

GME 

Table 3-4 Meter Types 

The difference between a three-phase (type2) and a single-phase system (type1) is 

that in the first case the system is based on three phase cables with the presence of 

the neutral cable. The single-phase connection is obtained from the three-phase 

connection using a single phase cable and the neutral one. The production of 

electricity in the large power stations, as well as transmission and distribution in 

the territory, take place in three phases for both technical and economic reasons. 

For domestic systems, a single-phase system is normally used, derived from the 

three-phase current that arrives at the transformer station. the two types of 

LENNT is also related to the type of fee, while GME is used for customers 

powered by high and medium voltage.  

 

Figure 3-8 Meter type distribution 
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A global view of the meter type variable (Fig 3.8) show that the 98% are LENNT 

type 1, this variable is almost a constant for this dataset. 

3.2.5 Status customer 

The status customer is a simple binary variable that tell us if the customer has an 

active contract, the dictionary of this variable in Table 3.5 

Status Customer Value 

Inactive customer 0 

Active customer 1 

Unknow status 2 

Table 3-5 Status Customer Values 

In Fig 3.9 there may be a growing trend of monthly active users among the 2017, 

every month it can be granted at least 1.287.557 active users. Vice versa the trend 

of inactive ones decreases until it reaches a value of 32.421 missing entry for the 

feature in December. 

 

Figure 3-9 Trend of monthly status customer 

3.3 Metering Dataset 

The dataset (data dictionary in Table 3.6) contain 1.547.939 customers with a 

monthly records of cumulative energy consumption for a period of 24 months, i.e. 

from January 2016 to December 2017. 
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Field Name Type Description 

Id_customer String POD: Alphanumeric national code that uniquely 

identify the final customer 

year_month String The year and month in reference to the single 

record 

Tot_active_energy String Cumulative consumption until specific year-month 

Table 3-6 Data Dictionary on Metering Dataset 

According to [50], the mainly system for monitoring energy are Active and 

Reactive Energy and Power Factor. 

Active energy is that which is transformed into work and heat by electrical 

devices. Devices such as incandescent light bulbs only absorb active energy. The 

unit of measure is the kWh (kilowatt hour). It is the unit of measurement of 

electrical energy; it represents the energy absorbed in 1 hour by a device with the 

power of 1 kW. In the bill, electricity consumption is billed in kWh. 

The reactive energy is that portion of energy that instead of being consumed 

immediately by the user is stored for a few fractions of a second and released into 

the electric network. The use of reactive energy concerns equipment that needs a 

magnetic field to work, such as electric motors, fluorescent lamps (neon), 

electronic devices (television, computers, etc.). The unit of measurement for 

reactive energy is the varh (Volt-Ampere Reactive hour). This energy is not 

commercialized; therefore, a moderate consumption of reactive energy is to be 

considered as physiological. A maximum quantity of reactive energy sampling is 

tolerated, currently valid only for supplies above 16.5 kW, beyond which a 

penalty is triggered. The parameter that is normally taken into consideration to 

check whether the system has too high a reactive energy consumption is the 

power factor or cos φ. This parameter evaluates the link between active energy 

and reactive energy and in the case of an ideal load, only resistive and therefore 

without consumed reactive energy, it is 1. Reactive energy sampling is considered 

normal until the user has a power factor (cos φ) greater than 0.9. Values below 
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this limit indicate problems with the system and the simultaneous request for 

penalties by the electricity distributor with whom the contract was stipulated.  

The withdrawal of reactive energy by a user device can be limited or even 

canceled by means of some simple technological devices installed on the 

customer's electrical system, in this case, it will need to speak of power factor 

correction of the electrical system. 

3.3.1 Transformation  

For the purpose analyze monthly consumption, was decided to pivot the Metering  

dataset fixing the “Id_customer” as primary key with so creating a feature for each 

month, every new variable name’s has this pattern “tot_active_energy_yyyy-mm”, 

where “yyyy-mm” represent the tuple (year, month) the output of this 

transformation gives a dataframe with 1.547.939 with 24 features. For doing this 

pivoting was used the function written in PySpark below: 

 

Once done the pivoting (code below), the monthly consumption, our target 

feature, was calculated by the difference between the energy measured on a month 

minus the energy measured the previous month, an example of display of 2 entries 

of the dataset is reported in Fig 3.10.  

To execute this command PySpark took 40.48 seconds.

 

Figure 3-10 Metering Dataset view 
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3.3.2 Missing values 

In statistics, missing data, or missing values, occur when no data value is stored 

for the variable in an observation. Missing data are a common occurrence and can 

have a significant effect on the conclusions that can be drawn from the data. 

The amount of missing record for each month is reported below (Fig 3.11), in that 

Figure is possible see that the minimum number of missing entries over the entire 

period was about 163.000. 

 

 

Figure 3-11 Trend of NULL values by month 

3.4 Joined Dataset 

Before the join, it was decided to remove all new customers registered after the 

first month, i.e. customer registered after January 2016. This operation was 

performed by filtering all the costumers with the value 1 in the “status_customer” 

feature on January 2016, then the feature was dropped.  

After that, the Metering dataset has been enriched with 4 features of the Master 

dataset: “market”, “meter_type”, “contracted_power_band”, “zone_number”.  

To execute this command PySpark took 0.07 seconds. 

The final result is a dataset with 1.547.939 customers and 28 features: 

Id_customer, 23 monthly consumptions and the 4 features coming from Master 

dataset. 
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4.  Data Preprocessing 

The setting used on Databricks cluster for the analysis is based on Serverless 

Pool14 (beta, R/Python/SQL) cluster type with Databricks Runtime Version 4.0 

(includes Apache Spark 2.3.0, Scala 2.11), the Python version is 3 and below the 

number and type of Driver and Worker: 

o 1 Driver r3.xlarge with 30.5 GB Memory, 4 cores, 1DBU 

o 3 Worker r3.xlarge with 30.5 GB Memory, 4 cores, 1DBU 

4.1 Customer filtering and selection 

The main objective of this paragraph are data homogenization and detection of 

simple anomalies. 

Homogenization pretends to group customer who can be compared among each 

other: customer with similar consumption habits under the period of study. 

For this purpose, 4 different operations were performed: 

o Given that the meter type LENNT type 1 represent the 98% of the 

customers, seems like a good choice to keep only customers of this 

specific type and remove the others. This step filtered out 13.783 

customer ids 

o Given that the deregulated and protected markets represent the 98% of the 

customers, only customers of this specific two types of market were 

retained. This step filtered out 3.750 customer ids 

o Look for customers that changed their market along the 2017. Zero found, 

no customers were filtered out 

o Look for customers that changed their contracted band along the 2017. 

Zero found, no customers were filtered out 

The following step performed was the detection of simple abnormalities. This 

kind of detection pretends to eliminate the customers from the study whose 

                                                 
14 A serverless pool is self-managed pool of cloud resources that is auto-configured for interactive 

Spark workloads. It provides the minimum and maximum number of workers and the worker type, 

and Databricks provisions the computer and local storage based on the user usage. 
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abnormality is so obvious that they do not need to be further analyzed. There are 

four kind of obvious abnormality consumption: 

o Negative metered energy, zero customer ids found 

o Negative consumption, 3.359 customer ids found 

o Zero consumption for the whole period, 7.422 customer ids found 

o Few number of metered values from the measurements equipment (under 

10 from the 23 monthly consumption records), 136.461 customer ids 

found 

The customers successively were merged in order to remove detection id 

duplication. The number of different customer ids found was respectively 

563.963, with the addition of the customers registered after January 2016, was 

reached a considerable number of 967.324 customer ids remained from the initial 

number of 1.547.938 of customer population. 

4.2 Feature selection and extraction 

After all the operation and filter applied, as described in the previous paragraph, 

the number of missing value for the remaining categorial features “zone_number”, 

“contracted_power_band” and “market” was respectively 11.528, 14 and 0. All 

the customers with these Null values in the categorical features were removed, the 

missing values on the metering data were filled by linear interpolation. At the end 

of the process the number of selected customers was 955.782. 

At this point, the consumption data need to be represented in a normalized scale 

for further analyze, for M customers {1,2,…,m,…M} over the N month 

{1,…,h,…,23} a feature matrix is computed, in which element is a daily average 

kWh consumption feature during that month:  

xh
m =

𝐿ℎ
𝑚

𝐷ℎ
    (1)   

Where for customer m, 𝐿ℎ  represents the monthly kWh consumption of the 

month, h and 𝐷ℎ represents the number of days of the current month, a display of 

the feature matrix is reported in Fig 4.1.  

To execute this command PySpark took 0.13 seconds. 
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The lack of synchronism in the days of month between the readings of a customer 

make necessary to normalize them, as the meter reading dates affect the monthly 

kWh consumption recorded for each customer, thus, the daily average kWh 

consumption values computed using (1) reveals an accurate consumption history 

of the costumers. 

 

Figure 4-1 Daily Consumption dataset view 

For the treatment of the categorical features the two algorithms of ETL available 

on Spark: “StringIndexer” and “OneHotEncoder”. The first one is a label indexer 

that maps a string column of labels to an ML column of label indices. The indices 

are in [0, numLabels), ordered by label frequencies. So, the most frequent label 

gets index 0, this function was applied to all the three features according to Table 

4.1 below. 

Market Market 

label 

Zone 

number 

Zone 

number 

label 

Contracted 

power band 

Contracted 

power band 

label 

Protected 0 Zone_1 2 B1 3 

Deregulated 1 Zone_2 1 B2 0 

  Zone_3 0 B3 1 

  Zone_4 4 B4 2 

  Zone_5 3 B5 4 

  Zone_6 6 B6 5 

  Zone_7 5   

  Zone_8 10   

  Zone_9 9   

  Zone_10 7   

  Zone_11 8   

Table 4-1 Categorical Features and Labels 

The function “OneHotEncoder” one maps a column of label indices to a column 

of binary vectors, with at most a single one-value. This encoding allows 

algorithms which expect continuous features to use categorical features, this 

function was applied only to “contracted_power_band” variable.  
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To execute this command PySpark took 1.20 seconds. 

In Fig 4.2 is visible a display of these two functions. 

 

Figure 4-2 Categorial features view 

4.3 Identifying Relevant Attributes 

Eleven attributes have been chosen to create a general pattern of power 

consumption for each client.  

o M1, M2, M3, M4 represents the average consumption (in kWh) of a 

specific client for each semester (where M1 is 1st half 2016 to M4 that is 

2nd half 2017) 

o MAX represents the maximum consumption (in kWh) of a specific client 

in the whole period 

o DEV1, DEV2, DEV3, DEV4 represent the standard deviation of the 

consumption of a specific client for each semester  

o ZNM represents the average power consumption in the area where the 

client lives.  

o MM represents the average power consumption for the market where the 

client belongs   

The code use is reported below: 
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To execute this command PySpark took 8.34 seconds. 

Therefore, each client is represented by a vector with the 11 considered attributes. 

In other words, this vector represents a pattern of consumption. According to [26] 

the motivation for choosing them was obtained by analyzing real data from 

electric utilities and examining some existing fraud detection systems. Two main 

reasons for using the six-months interval were identified. First, this period was 

chosen to minimize the effects of adverse events such as vacant properties, season 

changes, and occupancy increases, among others. Second, it was found that 

several expert systems have also successfully used this time span to establish 

relevant rules for the process. Regarding the selected attributes, each one was 

included to model specific information. Each attribute makes its own contribution 

to the energy profile. The last two attributes are mutually independent, providing 

information on the average power consumption in the zone of a particular 

consumer group and in the type of market. Therefore, each attribute provides 

different kinds of information to the clustering algorithm (or different perspectives 

of the available information) and complement each other. By means of a cluster-

based classification process, one can mutually validate the intrinsic information 

carried out by each variable in order to improve the overall system detection rate, 

a display of a portion of the new dataset is reported in Fig 4.3. 

 

Figure 4-3 General Pattern Consumption  dataset view 

4.4 Data Normalization 

The size of peak load may vary among all costumers. Therefore, all the measured 

load profiles need to be further normalized to allow their comparison and 

calculation. A normalize measured load profile is calculated by this formula: 

𝑧h
m =

𝐿ℎ
𝑚 − min(𝐿𝑚)

max(𝐿𝑚) − min(𝐿𝑚)
    (2) 

𝐿ℎ
𝑚 represents the monthly kWh consumption for customer h on the month 𝑚 and 

𝑧 is the actual value of normalized load profile. 
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Min-max normalization is a linear normalization technique. It does not change the 

distribution of the data set and scale the values between 0 and 1. 

A display of the new dataset is reported in Fig 4.4. 

To execute this command PySpark took 0.24 seconds. 

 

Figure 4-4 Daily Consumption Normalized dataset view 

4.5 Final datasets 

After all the previous step was decided to create three final datasets described 

below: 

• Daily Consumption (DC): 23 daily consumption from the 23 

consumptions for month (Fig. 4.1). 

• Daily Consumption Normalized (DCN): 23 daily consumption of the 

previous dataset normalized by the maximum and minimum normalizer 

and three remained categorical features transformed “market_label”, 

”zone_number_label” and “contracted_power_band_encoded” (Fig 4.2-

4.4). 

• General Pattern Consumption (GPC): Each costumer is defined by the 

following 11 new features: M1, M2, M3, M4, MAX, DEV1, DEV2, 

DEV3, DEV4, ZNM and MM (Fig 4.3).  
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5. NTL Detection methods 

This part describes the different methodologies applied with the purpose of find 

abnormalities or fraud. The strategies are briefly described below: 

1. Check-Steps on the consumption pattern on DC 

2. Interquartile range on DC 

3. Clustering on DNC 

4. Clustering on GPC 

5.1 Anomalous Consumption 

One simple method to detect anomalies consider two different simple check-step, 

this method marks as suspicious all those customers that have a consumption 

greater than 2 kWh (for a round matter) and status customer equal to 0, thus 

inactive. The second ones signal all those customers that present negative 

consumption. All these ids will give aside as a list of obvious suspicious 

consumers. 

5.2 Interquartile Range Method  

The second method encompass the interquartile range. The abbreviated "IQR", is 

just the width of the box in the box-and-whisker plot. That is, IQR = Q3 – Q1. The 

IQR can be used as a measure of how spread-out the values are. Statistics assumes 

that the values are clustered around some central value. The IQR tells how spread 

out the "middle" values are; it can also be used to tell when some of the other 

values are "too far" from the central value. These "too far away" points are called 

"outliers", because they "lie outside" the range in which had expected them. The 

IQR is the length of the box in the box-and-whisker plot. An outlier is any value 

that lies more than one and a half times the length of the box from either end of 

the box. That is, if a data point is below Q1 – 1.5×IQR or above Q3 + 1.5×IQR, it 

is viewed as being too far from the central values to be reasonable. The values for 

Q1 – 1.5×IQR and Q3 + 1.5×IQR are the "fences" that mark off the "reasonable" 

values from the outlier values, outliers lie outside the fences. 
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It this paragraph was considered not the outliers but the "extreme values", then the 

values for Q1 – 1.5×IQR and Q3 + 1.5×IQR are the "inner" fences and the values 

for Q1 – 3×IQR and Q3 + 3×IQR are the "outer" fences. 

The IQR of the consumption was calculated, using the DC dataset, for each 

customer and thereby compared with the current value of the consumption, this 

comparison is reported in a new column named “check_filtering_IQR”. The code 

implemented is: 

 

To execute this command PySpark took 1.62 seconds. 

A display of the output for a single costumer is showed in Fig 5.1. 

 

Figure 5-1 IQR detection dataframe view 

All the consumers that present at least one month with consumption marked as 

extreme values was selected for the creation of another dataset and then pivoted 

by “pivot_monthly_udf”. This new dataset contains only the “Id_customer” and 

“check_filtering_IQR” for each month as a binary vector. 

Then by using a user-defined function that count the consecutive one in an array, 

was calculated, for each costumer, the longest number of consecutive one namely 

month with extreme values. The costumers with at least 4 consecutive extreme 

values was labeled as suspicious customers. 

The code follows: 
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To execute this command PySpark took 6.44 minutes. 

The following image (Fig 5.2) show the daily consumption trend in average of 

those suspicious customers. 

 

Figure 5-2 DC on average by month of suspicious customer found by IQR Method 

As affirm [19], a drastic drop of the consumption can be due to a real slope of the 

consumers like a change of type of contract or by a different use of the consumed 

energy. This kind of slope can be due to a failure in the measurement equipment 

or voluntary alterations of the equipment, both case generate NTLs to the 

company and a loss of money for it, this kind of detection gives 1.117 customers. 

5.3 Clustering 

Clustering is the task of assigning entities into groups based on similarities among 

those entities. The goal is to construct clusters in such a way that entities in one 

cluster are more closely related, i.e. similar to each other than entities in other 

clusters. As opposed to classification problems where the goal is to learn based on 

examples, clustering involves learning based on observation. For this reason, it is 

a form of unsupervised learning task. 

There are many different clustering algorithms and a central notion in all of those 

is the definition of ’similarity’ between the entities that are being grouped. 

Different clustering algorithms may have different ways of measuring the 

similarity. In many clustering algorithms, another common notion is the so-called 

cluster center, which is a basis to represent the cluster. For example, in K-means 
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clustering algorithm, the cluster center is the arithmetic mean position of all the 

points in that cluster. 

As an exploratory data analysis tool, clustering has many application areas across 

various disciplines including social sciences, biology, medicine, business & 

marketing and computer sciences. Below are some examples [52]: 

o Use clustering to group entities based on certain features and then analyze 

if other features in each group are also close to each other. An example is 

grouping of tumor DNA microarray data based on gene expressions and 

then inferring if those groups will imply presence of certain types of 

cancer. Another example is grouping of patient data based on symptoms 

and signs and then deducing if those groups will differ from each other 

with respect to their therapeutic responsiveness or their prognosis.  

o Use clustering to group entities into a single cluster only to calculate a 

center. The center can later be utilized as a representative of all the entities 

in the group. An example is image compression where an image is first 

partitioned into small blocks of predetermined size and a cluster center is 

calculated for the pixels in each block. Then, the image is compressed 

where each block is replaced by an equally sized block approximated by 

block's center. 

o Use clustering to reduce the amount of data for simplification of analysis. 

For example, grouping of patient laboratory results based on measured 

variables (qualitative or quantitative analytes or mathematically derived 

quantities) may help in understanding how lab data is structured for 

patients with certain diseases. Another example is segmentation i.e. pixel 

classification of medical images in order to aid in medical diagnosis. 

o Use clustering to solve a classification problem. For example, MRI images 

of liver belonging to Cirrhosis patients at different stages and non-patients 

(i.e. free of Cirrhosis) are clustered into two groups, one representing 

cirrhotic and the other one representing non-cirrhotic cases. Then, MRI 

image of a new patient is compared to the cluster centers and based on 

proximity a prediction is made whether the patient is cirrhotic or not. 
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5.3.1 K-means Algorithm 

K-means is among the most popular clustering algorithms [52]. Number of 

clusters, k, is defined in advance. The centers of clusters and the data points in 

each cluster are adjusted via an iterative algorithm to finally define k clusters. 

There is an underlying cost minimization objective where the cost function is 

so-called Within-Cluster Sum of Squares (WSS). Spark MLlib library 

provides an implementation for K-means clustering. 

5.3.2 Distance intra-cluster Method 

The first method that use clustering, in this thesis, sets up the use of distance 

between points and cluster center, on dataset DCN. In this method was calculated 

the distances between the points and the cluster centers and fixed a threshold 

above which every point can be flagged as general errors or potential fraud 

costumer. 

As was already said the k-means algorithm needs to fix the number of cluster k in 

advance, unfortunately, there is no definitive answer to this problem. The optimal 

number of clusters is somehow subjective and depends on the method used for 

measuring similarities and the parameters used for partitioning. 

The mainly method to find the right number of cluster: the elbow method and the 

average silhouette. The first one method looks at the total WSS as a function of 

the number of clusters: One should choose a number of clusters so that adding 

another cluster does not improve much better the total WSS. The second ones, the 

Average Silhouette method computes the average silhouette of observations for 

different values of k. The optimal number of clusters k is the one that maximize 

the Average Silhouette over a range of possible values for k. Unlikely this second 

method is not scalable, since it uses pairwise distances, and this will always take 

O(𝑛2) time to compute. 
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The optimal number of clusters in the Elbow method can be defined as follow: 

1. Compute clustering algorithm (e.g., k-means clustering) for 

different values of k. 

2. For each k, calculate the total within-cluster sum of square (WSS).  

3. Plot the curve of WSS according to the number of clusters k.  

4. The location of a bend (knee) in the plot is generally considered as 

an indicator of the appropriate number of clusters.  

In this paragraph, the clustering algorithm used was k-means with a range for the 

number to cluster that goes from 5 to 30, in Fig 5.3 is possible to see the trend of 

WSS for each k (each iteration used only the 25% of the rows for time related 

problems).  

To execute this command PySpark took 32.05 minutes. 

 

           Figure 5-3 Elbow method with K-means  

Therefore, for k=11 the WSS tends to change slowly and remain less changing as 

compared to other k’s, so for this dataset 11 should be a good choice for number 

of clusters. 

Hence, at this point, it was used a k-means with k equal to 11, the configuration 

for the “initMode” parameter that regard the initialization algorithm was set to “k-
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means||” with 4 initial step, the convergence tolerance and the maximum number 

of iteration was respectively set to 0.001 and 100. 

The code implemented is showed below: 

 

To execute this command PySpark took  1.05  minutes. 

“VectorAssembler” is a transformer that combines a given list of columns into a 

single vector column. It is useful for combining raw features and features 

generated by different feature transformers into a single feature vector, in order to 

train ML models. 

The Fig 5.4 shows the trend of the daily consumption normalized for each cluster 

consider for every single point the average of the daily consumption for costumers 

that belong to that specific cluster in that specific month, in Table 5.1 was 

reported the cluster’s size. 

 

Figure 5-4 DCN on average by month of clusters 

Then was calculated all the distances between the customers and the respective 

center point of each cluster in order to find a good threshold for separate them. 

Was decided to put the threshold customized for every cluster at 85% of the 

maximum distance in the current cluster. 
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Cluster Size 

0 110.580 

1 64.841 

2 122.222 

3 67.447 

4 124.334 

5 108.273 

6 82.230 

7 59.040 

8 50.816 

9 116.965 

10 48.222 

 

This threshold flagged 2.484 customers and the figure below (Fig.5.5) showed the 

daily consumption trend in average of those suspicious customers. 

 

Figure 5-5 DC on average by month of suspicious customer found by First Clustering Method 

The performance of the consumption could suggest that the algorithm label as 

suspicious all those costumers that experiment an abrupt change in the 

consumption, in this case, an increased consumption starting from January 2017. 

The following figures (Fig 5.6-8) will show all the histograms of the distances 

between the points and the center of the cluster with the threshold highlighted by a 

vertical blue line. In Table 5.2 is possible see how many anomalous costumers 

was found by each cluster. 

Table 5-1 Cluster number and sizes 
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Cluster Size 

0 316 

1 140 

2 252 

3 520 

4 130 

5 225 

6 93 

7 200 

8 114 

9 302 

10 192 

Table 5-2 Cluster number and sizes of anomalous ids 

 

Figure 5-6 Histograms of the distances within cluster 0-3 
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Figure 5-7 Histograms of the distances within cluster 4-7 

 

Figure 5-8 Histograms of the distances within cluster 8-10 

The next figures (Fig 5,9-11) focus on three cluster in particular: 

• 0 and 3 because provide the largest number of anomalous 

• 6 because provide the smallest number of anomalous 

This focus has as goal to underline the different trend within the cluster for the 

customers above the threshold and those below signed respectively as 1 and 0.  
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Figure 5-9 Focus on DC of customer belonging to cluster 0 

 

Figure 5-10 Focus on DC of customer belonging to cluster 3 

 

Figure 5-11 Focus on DC of customer belonging to cluster 6 

 

5.3.3 Cluster Less Numerous Method 

The second method of clustering was performed on the GCP dataset that comes 

out by the feature engineering, this method label as errors or potential fraud all 

those customers belonging to the smallest clusters. 
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Also, here the clustering algorithm is the k-means and the method to choose the 

best k is the Elbow method displayed in Fig 5.12.  

To execute this command PySpark took 30.52 minutes.

 

Figure 5-12 Elbow method for K-means 

For k equal to 15 the WSS tends to change slowly and remain less changing as 

compared to other k’s but for this type of approach can be better choice a k bigger 

at a next step along the slope, so for this data 18 should be a good choice. 

With the same configuration of the first method, the k-means was ran with a 

tolerance converge rate of 0.001 and a maximum number of iteration at 100. 

To execute this command PySpark took 54.07 seconds. 

The following figure (Fig 5.13) shows the trend of the daily consumption 

normalized for each cluster as in the first method, in Table 5.3 instead, the 

cluster’s size. 

What is easy emerge at glance is that the cluster with less number of costumers 

conveys such a strange consumption trend, in the face of this evidence, was 

decided to label those customers belonging to the cluster number 4,10,11,12,14 

and 17 as suspicious customers.  
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Figure 5-13 DCN on average by month of clusters 

Cluster Size 

0 259.358 

1 3.604 

2 204 

3 12.622 

4 2 

5 29.259 

6 84.664 

7 218.853 

8 766 

9 1.831 

10 44 

11 1 

12 2 

13 337.557 

14 19 

15 632 

16 6.362 

17 2 

 
Table 5-3 Cluster number and sizes 
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A further support of the method is demonstrated in Fig 5.14 below, indeed 

removed those customers the cluster is just based on the daily consumption. 

 

Figure 5-14 DCN on average by month of clusters removed the suspicious clusters 

This threshold flagged 70 customers in total and the figure below (Fig. 5.15) 

shows the daily consumption trend in average of those suspicious customers. 

Also, here, in this case, the clustering algorithm highlighted a particular behavior 

of costumers, a drastic drop during the first five months an sudden increase 

starting from December 2016.  

 

Figure 5-15 DC on average by month of suspicious customer found by Second Clustering Method 
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 5.4 NTL detection methods result 

Prior to sending the customers for inspection, the results of all detection methods 

were cross-checked in order to examine how many customers were matched and 

to ensure that the different algorithms were not redundant. Thus, after merging the 

customers detected with each method, the results showed in Table 5.4 were 

obtained. 

Detection method Size 

IQR method 1.117 

Distance Intra-Cluster method 2.484 

Cluster Less Numerous method 70 

Total 3.671 

Once merged the results of the previous methods 3.615 

Table 5-4 Customer selected to be inspected 

As is evident from the table only 56 customers from the 3.671 selected customers 

were detected by more than one methods. Thus, we could deduce that each 

algorithm detected a type of different patterns of NTL.  

Thus, a list of 3.615 customers with an evident and suspicious pattern of 

consumption with NTL was obtained. These cases of NTL could be due to a drop 

of electrical demand for their business. In summary, a complete flow chart is 

showed in Fig. 5.16. 

In this diagram, is possible to observe the global scheme and the different steps 

for the detections of the NTLs. These results are considered very satisfactory 

considering as the little input information used in the algorithms (basically the 

evolution of the consumption of the customer and the type of contract) 



 

 

67 

 

 

Figure 5-16 Flow Chart of the detection process 
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6. Conclusion 

The work on this thesis supervised by INNAAS15 was a really valuable experience 

in several aspects. First of all, as I worked for a company, it taught me what it 

means to work with qualified people for achieving results, and it taught me how to 

deal and navigate in the complex environment of Big Data. In addition, it  gave 

me the chance to measure up with a real data problem full of many problems 

encountered along the work process. The time spent on this elaboration enabled 

me to learn more in depth the interesting Spark platform and the PySpark 

programming language, Spark is a milestone for the Big Data Analytics and a 

very greatly sought skill for a data scientist.  

The benefits of the usage of Apache Spark for the elaboration of complex MLlib 

algorithms on Big Data are multiple. Throughout the thesis was reported the real-

time performance to compute the main part of the PySpark code of the project.  

Command Time 

Pivoting Metering Dataset 40.48 sec 

Join Dataset 0.07 sec 

Feature Selection and Extraction 0.13 sec 

Treatment Categorical Features 1.20 sec 

Identifying Relevant Attributes 8.34 sec 

Data Normalization 9.24 sec 

Creation dataframe 1° Method 1.62 sec 

1° Method 6.44 min 

Find Best K 2° Method 32.05 min 

2° Method 1.05 min 

Find Best K 3° Method 30.52 min 

3° Method 54.07 sec 

Total Time Estimated 71.98 min 

Table 6-1 Commands and relative time to computing 

                                                 
15 http://www.innaas.com/ 
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In Table 6.1 is summarized all the principal steps with the relative time in order to 

provide an estimation of the time needed to apply this kind of approach with this 

technology. 

The total time requested for this work, considering the about 1.6 millions of 

customers, is really valid considering its possible future implementation. This 

thesis was proposed a methodology based on IQR and clustering technique for 

classifying abnormalities in the profiles of energy consumption.  

The main contributions of this paper are as follows: 

• Deploy a simple method that requires basically only the historical 

consumption, which is appropriate for most practical distributions systems. 

• Promote Apache Spark as a unified platform for Big Data Analytics  

• Some parameter can be adjusted by the user like:  

▪ The number of the month out of the interquartile distance that labels as 

suspicious. 

▪ The threshold distance in the first clustering method. 

▪ The number of clusters to consider in the second clustering method. 

• The utility using this method to guide inspection can actually increase the 

detection hitrate and the financial return. 

• The proposed methods are unsupervised and, therefore does not depend on 

rules. It can be applied to any distribution utility. 

As conclusions, it is necessary to remark that NTL is an important issue in power 

utilities because it has a high impact on company profits. Despite this, nowadays 

the methodology of detection of NTLs of the companies is very limited since 

these companies use detection methods that do not exploit the use of data mining 

techniques. Different methods to detect NTLs have been developed and tested on 

a real database supplied by the Energy Company. Concretely, in this thesis, a line 

of work based on 3 different methods has been presented for the detection of 

NTLs.  

A possible line of work in the future might be the application of different and 

more complex input parameters or other data mining techniques as well as the 
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integration of human expert knowledge in these new techniques in order to 

improve the results. 
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