
Learning based Adaptation for Fog
and Edge Computing Applications

and Services

Mauricio Fadel Argerich

Thesis presented for the
Master’s Degree in Data Science

Facoltà I3S IOT Group

Sapienza - Università di Roma NEC Laboratories Europe

Rome, Italy Heidelberg, Germany

October 2018

Dedicated to

My family, especially my parents Adriana and Mario, and my aunt Analia; who have

always supported me and encouraged my desire to discover, learn and create.

Learning based Adaptation for Fog and Edge
Computing Applications and Services

Mauricio Fadel Argerich

Submitted for the Master’s Degree in Data Science
October 2018

Abstract

Increasing data tra�c and network utilization are one of the biggest challenges for net-

work operators nowadays, due to the massive amount of data generated by devices in the

edge in the context of the Internet of Things (IoT). Edge and Fog computing allow net-

work operators to reduce network stress and improve the responsiveness of the services

by allocating computation closer to data producers and consumers. However, develop-

ing and managing applications is a challenging task because of hardware heterogeneity,

limited elasticity and unstable network connections that characterize the edge.

In order to facilitate the development, as well as improving the e�ciency of applica-

tions and services, an adaptive framework is proposed. This adaptive framework, uses

Reinforcement Learning to combine adaptation mechanisms, speci�ed in the develop-

ment phase, during runtime in order to optimize the performance of applications and

services. An implementation of this approach is realized on Python along with AdAS,

an Adaptive Applications Simulator to evaluate its e�ciency.

Throughout simulations, the adaptive framework manages to achieve a requirement

satisfaction of almost 85% while keeping a high precision in unstable execution contexts

on low power devices (i.e., changing networking bandwidths and available resource). In

addition, the Reinforcement Learning approach shows to be more �exible and e�cient

than a pre-programmed adaptive logic, yielding a precision between 10% and 25% higher.

Acknowledgements

I would like to thank my university supervisor Ioannis for his guidance throughout the

development of this work and his never ending enthusiasm and positivism. I also thank

my external supervisors Jonathan and Bin, who have given me the chance of being part

of their research group, and have extensively collaborated with my work while sharing

their knowledge and experience with me.

I am grateful to my colleagues Davide, Yoann, Stefano and Julia for the long discus-

sions and their brilliant insights that have helped me to overcome the challenges I have

faced in the development of this work.

I want to thank La Sapienza, Università di Roma, for giving me the opportunity of

accomplishing my Master’s degree at one of the most prestigious institutions of Europe,

as well as NEC Laboratories, for giving me the chance to be a part of their research team.

Throughout the development of my Master’s Degree and in particular this thesis, I

have had the opportunity to meet and work with many wonderful people, many more

than the ones named here. I have learnt from all of them, professionally and personally,

and for this I will be forever grateful.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Context . 1

1.2 Problem . 2

1.3 Hypotheses . 4

1.4 Approach . 4

1.5 Contribution . 5

1.6 Outline . 5

2 Background 6

2.1 Machine Learning . 6

2.2 Reinforcement Learning . 7

2.2.1 Goals and Rewards . 8

2.2.2 Markov Decision Processes . 9

2.2.3 Value Functions . 10

2.2.4 Optimality and Approximations 10

2.3 Edge and Fog Computing . 11

2.3.1 Analytics and Edge, Fog and Cloud Computing 14

3 Gap Analysis of Current Applications and Services at the Edge 15

3.1 Implementing applications and services for Edge and Fog Computing . . 15

3.2 An application use case . 16

v

Contents vi

3.2.1 Application requirements . 18

3.3 Attempting to ensure requirements . 20

3.4 Adaptation mechanisms . 20

3.5 Conclusion . 22

4 Design and Implementation 23

4.1 Design . 23

4.1.1 Formally de�ning requirements and objectives 23

4.1.2 Adaptive Logic (AL) . 25

4.2 Implementation . 31

4.2.1 Architecture overview . 32

4.2.2 Declaration of adaptation mechanisms 33

4.2.3 Pro�ler . 34

4.2.4 Simulator . 34

4.2.5 Environment . 35

4.3 Conclusion . 36

5 Experimental Evaluation 37

5.1 Implementation of the Lost Child application 37

5.2 Environments and Datasets . 39

5.3 Results . 40

5.3.1 Baseline: Heuristics based AL . 40

5.3.2 RL based AL . 41

5.3.3 AL Requirements Ful�llment . 44

5.4 Conclusion . 46

6 Discussion and Related Work 49

6.1 Discussion . 49

6.2 Related Work . 50

7 Conclusions 51

7.1 Hypotheses Evaluation . 52

7.2 Future Work . 53

List of Figures

2.1 The Reinforcement Framework . 8

3.1 Control �ow diagram of the online module for the Lost Child application 18

3.2 Hardware heterogeneity . 19

3.3 Algorithm latency variation . 22

4.1 Control �ow diagram of the heuristics based approach for the Adaptive

Logic . 28

4.2 Diagram of RL approach . 30

5.1 Latency variation according to input . 38

5.2 Simulation of camera input in train station 40

5.3 Histogram of latencies using Heuristics adaptation on the Fixed input

dataset . 41

5.4 Histogram of latencies using Heuristics adaptation on the Full day input

dataset . 41

5.5 Average Utility and Latency for Random input environment using RL

Conf. 1 . 42

5.6 Histogram of latencies using RL Con�guration 1 on the Fixed input dataset 43

5.7 Histogram of latencies using RL Con�guration 1 on the Full day input

dataset . 44

5.8 Rapid response for the Heuristics based Adaptive Logic 45

5.9 Rapid response for the RL Con�guration 1 based Adaptive Logic 45

7.1 Comparison of Adaptive Logic approaches 52

vii

List of Tables

5.1 Adaptive con�gurations for the Lost Child Application 47

5.2 Average utility and latency satisfaction of Heuristics based approach . . 48

5.3 Average utility and latency satisfaction of RL Con�guration 1 approach . 48

5.4 Average utility and latency satisfaction of RL Con�guration 2 approach . 48

5.5 Overhead of Adaptive Logic . 48

viii

Chapter 1

Introduction

1.1 Context

The last decade has been marked by a steady increase in the number of devices located

at the user-facing end of the Internet. New smartphones, tablets and a plethora of smart,

always-on and connected devices have proliferated, creating a new scenario where enor-

mous amounts of data are generated at the edge. However, in order to be processed, all

of these data are usually sent to the cloud.

Because of this, increasing data tra�c and network utilization is one of the biggest

challenges for network operators nowadays. Many mobile and IoT applications depend

on remote services, creating high network load due to data tra�c. In fact, global inter-

net tra�c is estimated to grow nearly threefold in the next 5 years according to recent

research by Cisco Systems [1].

In addition, sending these data back and forth to the Cloud poses several security

and privacy concerns. New encryption mechanisms have risen to secure the end-to-end

communication with the Cloud, but even assuming a safe communication, sensitive and

private data has to be shared with the Cloud in order to be processed.

All of these reasons have led to Edge and Fog Computing, two new paradigms which

allow network operators to reduce network stress and improve the responsiveness of

the services provided, by allocating computational e�orts closer to data producers and

consumers.

Edge and Fog Computing do not aim to replace Cloud Computing but to complement

1

1.2. Problem 2

it. They implement the fundamentals of the Cloud Computing paradigm, but do this

as close as possible to the sources of the data. The Cloud is also seen as an available

resource, but its availability is not considered as permanent; this is due to the fact that

most edge devices are mobile and have wireless connections that are prone to network

outages as well as speed and bandwidth �uctuations.

These technologies have given light to novel applications such as FAST, a fog com-

puting assisted distributed analytics system to monitor fall for stroke mitigation[2] and

Car2Car, which distributes tra�c and meteorological alerts on the highway from car to

car, instead of connecting to a central node. Furthermore, edge and fog frameworks, like

FogFlow[3], have been created to facilitate the development of applications and services

that use these paradigms.

1.2 Problem

Even though the adoption of Edge and Fog computing brings many bene�ts to network

operators and developers, they also impose new challenges:

Hardware Heterogeneity. Edge and Fog applications and services must run on

di�erent devices, in a wide range of contexts. Because of this, applications and services

might provide very di�erent performance characteristics according to where they are

deployed.

Mobility. The connectivity of the devices in the edge is usually wireless, which

means the connectivity to edge nodes is intermittent or highly variable. This requires

distributed applications to be deployed taking into account scenarios with low and no

connectivity in order to avoid failing to provide the expected service in these scenarios.

Elasticity. The cloud provides elasticity mechanisms, that the edge cannot pro-

vide [4]. Services in the cloud scale horizontally over multiple machines or vertically by

increasing their RAM and CPU share, this is in contrast with edge deployments in which

the processing might be done in a single machine with limited hardware capabilities.

Programmability: to take advantage of Fog and Edge computing, developers must

partition the functions of their applications between the Fog, the Edge and the Cloud.

This is generally done manually, which is not scalable or extensible [5].

1.2. Problem 3

Privacy and Security: the data sensed in the edge is usually private and sensitive.

Privacy and security practices represent big challenges for services and application de-

velopers because of the lack of e�cient tools[5].

These challenges have been the focus of extensive research. Saurez et al. [6] present

a container based distributed execution framework for edge-cloud applications that aims

to optimize the task placement by using Quality of Service (QoS). Villari et al. [7] envi-

sion the concept of osmotic computing, where micro services are deployed opportunisti-

cally in both cloud and edge based on QoS requirements and current execution context.

Nonetheless, these works assume that the Cloud is an always available resource and as

it has discussed this is often not true in practice.

These characteristics of Fog and Edge computing make developing applications and

services a complex task. Complying with established application requirements or Ser-

vice Level Objectives (SLOs) is unfeasible when the application or service deployment

environment is unknown:

Is there a a better way – in terms of e�ort as well as e�ciency – to ensure application

and services requirements in the complex setting of edge and fog computing?

In order to deliver high performance and requirement satisfaction rates in such a

challenging environment, applications need to adapt. This adaptation involves changing

the behavior of the application, which will also impact in its results.

For instance, in an application that processes a video stream for estimating the in-

coming highway tra�c, di�erent computer vision algorithms can be used, each of them

have di�erent accuracy and demand di�erent levels of resources. In general, we can talk

about a trade-o� between accuracy and resources demanded: usually the more accurate

an algorithm is, the more resources it demands and viceversa. Cameras have a low power

processing node and the car counting task is performed in this processing node in order

to not overload the network with images. When there are few cars on the highway, an

accurate algorithm that counts each car can be performed. However, when the tra�c

is high, counting each car is too demanding for the low power nodes that will not be

able to deliver timely updates on the tra�c status. It is possible in these cases to use a

less accurate algorithm that enables the processing nodes to keep up delivering timely

updates, even if the accuracy is slightly relegated. With this approach, the application

1.3. Hypotheses 4

adapts by using a di�erent computer vision algorithm. Note that the di�erent options

for the computer vision algorithm should have been given by the developer, while the

application itself must choose the most appropriate alternative for the current context

during runtime.

Choosing the best behavior for a given context it is a complex task, because it is hard

to anticipate the scenarios that the application might encounter and it is also di�cult to

assess the impact that each behavior change will have on its results. However, an AI-

based approach might o�er a good solution to this problem: several AI systems have been

implemented when it is not possible to manually determine rules for the application to

take decisions. An example of this is spam detection, where AI-based spam �lters have

been able to keep up with the changing spam techniques while traditional rule-based

spam �lters have failed to do so[8].

1.3 Hypotheses

The hypotheses of this work are that:

• A framework to implement adaptive applications and services provides an e�cient

solution to the complex challenges of Edge and Fog computing. This will facilitate

the development tasks and provide better suited applications for the edge.

• Reinforcement learning provides an e�cient methodology to �nd the best adap-

tive strategy during runtime, thus optimizing the behavior of the application to

the current execution context and achieving applications and services with higher

satisfaction of its requirements than what can be achieved with a pre-programmed

logic.

1.4 Approach

In order to evaluate these hypotheses, an experimental computer science[9] approach is

taken. A prototype of the adaptive framework is developed, along with a simulator to

test the implementation of di�erent logics to �nd the best adaptive strategy. In addition,

an edge application use case is presented and implemented using this prototype. It is

1.5. Contribution 5

then possible to evaluate the e�ectiveness of the approach throughout the simulation

of the execution of the application in di�erent contexts, to �nally reach to conclusions

about the aforementioned hypotheses.

1.5 Contribution

The aim of this work is to provide a better, more e�cient way to ensure applications

requirements and SLOs in Edge and Fog computing. In an attempt to achieve this, dif-

ferent artifacts have been developed and combined in order to build a framework that

allows developers to create self-adaptive applications with little e�ort.

The contributions of this thesis can be summarized as:

1. Formulation of a general de�nition for expressing and optimizing the application

objective while respecting application requirements and constraints.

2. Implementation of an application pro�ler and simulator, to test applications and

adaptation mechanisms on di�erent devices and registering its results in a simple

and straight forward manner, which is freely available to the public.

3. A prototype of a logic that automatically adapts applications by using reinforce-

ment learning to �nd the best adaptive strategy during runtime and its evaluation.

1.6 Outline

The rest of this thesis is organized as follows:

Firstly, several research works are reviewed to give the reader a background about

the technologies used. Secondly, the challenges faced in the development of Edge and

Fog applications is analyzed more in depth. Then, a new formal general method to de-

�ne the problem is introduced, followed by the design of a framework to build adaptive

applications and its implementation. Subsequently, this framework is tested with the

implementation of a use case, results are displayed and discussed. Finally, related work

is considered and conclusions are reached.

Chapter 2

Background

2.1 Machine Learning

There are di�erent algorithms in machine learning which can be classi�ed according

to several aspects. One of the most common classi�cations used is according to their

learning style. Here it is possible to classify the approaches in Supervised Learning,

Unsupervised Learning and Reinforcement Learning.

Most of the machine learning systems use Supervised Learning. The algorithm is

expected to classify elements according to their features. To do so in Supervised Learn-

ing, the algorithm must learn from a (usually large) number of available samples. These

samples contain information about the features of each element and the classi�cation

they belong to. The challenge for the algorithm then, is to learn from the samples and

generalize its knowledge so that when it is faced with a new element, with an unknown

classi�cation, it can “guess” the proper classi�cation for the element.

It is called Supervised Learning because the training process of using already exist-

ing samples can be seen as the supervision of a teacher for the learning process. The

algorithm iteratively makes predictions on the already known samples and is corrected

by the teacher. The learning process stops when an acceptable performance is achieved.

Unsupervised Learning is not as widespread and frequently used as Supervised Learn-

ing. In Unsupervised Learning there are no samples to learn from. Instead, the algorithm

is expected to model the underlying structure or distribution in the data, to be able to

classify the elements.

6

2.2. Reinforcement Learning 7

It is called Unsupervised Learning because there are no correct (or incorrect) answers

and there is no teacher to supervise the learning process.

Reinforcement Learning, on the other hand, combines concepts of Unsupervised

Learning, by giving the algorithm the capability to determine what the correct answer

it is, with concepts from Supervised Learning, by giving a clear goal to the algorithm, or

agent, so that each decision has a positive or negative feedback.

Particularly, Reinforcement Learning is the chosen machine learning technique to

develop this thesis’ hypothesis, and because of this, its concepts are examined in detail

in the next section.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique in which the agent – or

learner – learns what actions to take based on the situation it encounters, with a deter-

mined goal. For each action the agent performs, it receives a numerical reward signal.

The distinguishing feature of RL is that the learning is perform by using information

that evaluates the actions once they have been taken, instead of learning from a set of

correct actions, such as the samples used in supervised learning. Purely evaluative feed-

back indicates how good or bad the taken decision is, but does not indicate if the action

is the best or the worst. Because of this, the agent needs to employ active exploration,

in a trial-and-error fashion to �nd a good behavior.

RL frames the problem of interactive learning, in which an agent is the learner and

decision-maker, that interacts with its environment. The environment is considered as

anything that cannot be changed arbitrarily by the agent and is considered to be outside

of it. The interaction between agent and environment is continuous; the agent selects

and performs an action and the environment responds to this action, presenting a new

situation, or state, to the agent. The environment also delivers a reward to the agent,

that the agent tries to maximize over time.

Moreover, the agent and environment interact with each other at discrete time steps,

t = 0, 1, 2, At each step the agent observes the environments states, st ∈ S, where S

is the set of possible states, and on basis of its observations, selects an action, at ∈ A(st),

2.2. Reinforcement Learning 8

Figure 2.1 The Reinforcement Framework

where A is the set of all possible actions in state st. In the next step, the agent receives

the reward rt+1 ∈ R, and �nds itself in the state st+1.

To select the action that should be taken in each state, the agent implements a map-

ping from states to probabilities of selection each action. This mapping is called the

agent’s policy, πt, where πt(a|s) is the probability that action at = a if st = s. There

exist di�erent RL methods that specify how the agent changes its policy as a result of its

experience. The goal of the agent is to maximize the sum of the rewards obtained over

the long run.

2.2.1 Goals and Rewards

The reward is a signal fed to the agent by the environment, and it is used to formalize

the purpose of the agent. At each time step, the reward is a simple number rt ∈ R.

The agent’s goal is to maximize the total accumulated reward, this means that the agent

should not try to maximize the reward at every step, but in the long run. It is possible to

de�ne di�erent goals by using di�erent reward functions, this is a task which is highly

dependent on the problem that needs to be solved and has proved to be �exible and

widely applicable. [10]. For instance, for an agent that plays chess, his goal is to win

the match, so the reward from each movement might +1 if it wins the match and -1 if it

looses or 0 if the movement is a nonterminal one.

The reward is always considered to calculated and delivered by the environment

because it de�nes the progress in the task that the agent must perform, and it has to

be beyond its reach to arbitrarily change it. The reward signal tells the agent what to

2.2. Reinforcement Learning 9

achieve, but not how. Because of this, the agent needs to explore the di�erent actions in

each state to �nd out what actions are yield a positive reward.

It has been said that the agent’s goal is to maximize the reward over the long run. If

the sequence of rewards received after time step t is denoted as rt+1 + rt+2 + rt+3 + ...,

the goal is to maximize the expected return Gt, de�ned as some speci�c function of the

reward sequence. In the simplest case, this is the sum of the rewards:

Gt = rt+1 + rt+2 + rt+3 + ...+ rT (2.2.1)

where T is the �nal step. This makes sense when there is a natural notion of �nal time

step and the agent-interaction can be broken into subsequences, called episodes. An

episode can represent a chess match for the previous example. In cases in which there is

no natural breaks and the interaction goes on continually, a slightly di�erent approach

is needed because otherwise the sum of rewards will be in�nite. The di�erent approach

includes the concept of discounting. The agent then, selects actions in order to maximize

the sum of the discounted rewards. The discounted return is expressed mathematically

as:

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1, (2.2.2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate. By assigning values closer

to 1 to γ, the agent values the future steps more, giving more importance to the long

run, while if this value is closer to 0, then the agent becomes more shortsighted.

2.2.2 Markov Decision Processes

A stochastic process has the Markov property if the conditional probability distribution

of future states of the process (conditional on both past and present states) depends only

upon the present state, not on the sequence of events that preceded it[11].

The agent makes its decision based on the environment state, the state is whatever

information that is available to the agent. A state signal that retains all the relevant in-

formation is said to be Markov, or to exhibit the Markov property, because it contains all

the information that really matters for the future step. The Markov property is impor-

tant in RL because decisions and values are assumed to be a function only of the current

state.

2.2. Reinforcement Learning 10

A RL environment that satis�es the Markov property is called a Markov Decision

Process (MDP). Given any state and action, s and a, the probability of each possible next

state, s′, is de�ned as:

Pr(s′|s, a) = Pr{St+1 = s′|St = s, At = a}. (2.2.3)

Similarly, the expected value of the next reward is:

R(s, a, s′) = E[Rt+1|St = s, At = a, St+1 = s′]. (2.2.4)

2.2.3 Value Functions

In order to maximize the accumulated reward, the agent needs to know how “good” it

is to be in a given state and take a given action in terms of expected future rewards. For

this, the agent estimates value functions, or functions of state-action pairs. The value of

a state s under a policy π, denoted vπ(s), is the expected return when starting in s and

following π thereafter. For MDPs, vπ(s) is formally de�ned as

vπ(s) = E[Gt|St = s] = Eπ

[
∞∑
k=0

γkrt+k+1|St = s

]
, (2.2.5)

where Eπ[·] denotes the expected value given that the agent follows policy π and t is

any time step. Similarly, the value of taking action a in state s under a policy π, denoted

qπ(s, a), as the expected return starting from s, taking action a and thereafter following

policy π is de�ned as:

qπ(s, a) = E[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkrt+k+1|St = s, At = a

]
. (2.2.6)

The action-value function for policy π is indicated as qπ. The value functions vπ and qπ
can be estimated from experience.

2.2.4 Optimality and Approximations

The goal of solving a RL task is to �nd a policy that achieves a large reward over the

long run. A policy π is de�ned to be better than or equal to a policy π′ if its expected

return is greater than or equal to that of π′ for all states, i.e. π ≥ π′ if and only if

2.3. Edge and Fog Computing 11

vπ(s) ≥ vπ′(s) ∀ s ∈ S. There is always an optimal policy π∗, i.e. a policy that is better

or equal than all other policies.

Finding the optimal policy in practice is very hard, if not impossible due to computa-

tional constraints. However, it is possible to approximate optimal policies with di�erent

techniques. In tasks with small, �nite state sets, it is possible to use tables with one entry

for each state or state-action pair. This is called tabular methods. In many practical cases

this is not possible because the state space is too large, and then it is necessary to use

some sort of more compact parameterized function representation.

2.3 Edge and Fog Computing

The Internet of Things (IoT) was �rst coined in 1999 in reference to automated supply-

chain management[5]. Since then, the concept has been used in several �elds such as

health care, domotic, environmental engineering, transportation and safety. The idea

behind IoT is to connect physical items to the virtual world, so they can be controlled

remotely and act as physical access points to Internet services[12].

Nowadays, IoT implementation has become wide-spread and devices at the edge

of the network are generating huge amounts of data that need to be processed in the

Cloud[5]. Because of this, increasing data tra�c and network utilization are one of the

biggest challenges for network operators, and this trend is expected to continue as global

internet tra�c is estimated to grow nearly threefold in the next 5 years[1].

Until recently, moving computing tasks to the Cloud has been an e�cient way to pro-

cess data because of the high availability of computing resources in the Cloud compared

to the computing power of devices in the edge. However, with data generation grow-

ing steadily while links’ capacity for upload has stagnated; the network is becoming a

bottleneck.

Edge Computing is a paradigm that has allowed network operators and application

developers to reduce network stress and improve the responsiveness of the services pro-

vided, by allocating computational e�orts closer to the consumers.

Edge Computing does not aim to replace Cloud computing, but to complement it. It

is comprised of the following principles or elements[13]:

2.3. Edge and Fog Computing 12

• Proximity is in the edge: it is more e�cient to communicate and distribute infor-

mation between close-by nodes than to use far-away centralized intermediaries.

This same argument is used by peer-to-peer networks, which gained popularity

in the 1980s and 1990s.

• Intelligence is in the edge: as we have said before, new devices o�er great com-

puting power in the edge and this trend will continue. This opens the way to

autonomous decision-making in the edge, such as distributed crowdsensing appli-

cations or agents reacting to incoming information �ows.

• Trust is in the edge: the data sensed and stored in the edge is generally private

and sensitive. Because of this, it the control and management of these data should

be assigned to the edge.

• Control is in the edge: the management and coordination of the application is

also performed in the devices located at the edge. These devices can assign or

delegate computation, synchronization or storage to other peers or to the Cloud.

• Humans are in the edge: to keep humans in control of their information, the

processing and storage of this information should be performed close to them.

Edge Computing merges the concepts and bene�ts of peer-to-peer networks with

cloud computing and enables the creation of hybrid architectures that take advantage of

the available computing power in the edge while still using the powerful resources of the

Cloud. For tasks that do not require considerable computing power and can be executed

on the Edge, the response time is improved because of reduced communication delay.

For more computationally intensive tasks instead, the processing can still be performed

in the Cloud and the response time will be the same as in Cloud computing.

With Edge Computing, end users bene�t mostly from reduced communication delay,

network operators bene�t from bandwidth reduction and scalability, and application and

services providers pro�t from scalability and faster services[14].

Despite the many advantages of Edge Computing, there is still more computing

power which is not being fully harnessed such as smartphones and user devices which lie

even closer to end users. To take full advantage of the available computing power in the

2.3. Edge and Fog Computing 13

network, another novel paradigm emerged: Fog Computing. This paradigm shares the

same objectives of Edge Computing, but pushes the boundaries even further; by shifting

the processing closer to the user. The term Fog is used because the fog is a cloud close

to the ground.

Computing, storage and networking are the building blocks of Cloud and Fog para-

digms, while “the edge of the network”, implies a number of characteristics that make

the Fog a non-trivial extension of the Cloud[15]. These characteristics can be listed as:

• Edge location, location awareness and low latency. Fog computing concepts

can be traced to proposals to support endpoints with rich services at the edge of

the network, such as applications with low latency requirements, e.g. gaming,

video streaming, augmented reality.

• Geographical distribution. In contrast to the centralized architecture of the

Cloud, the services and applications targeted by the Fog are widely distributed.

The Fog plays an active role in delivering content and services to mobile devices.

In addition, large-scale sensor networks to monitor the environment require dis-

tributed computing and storage resources that the Fog can provide.

• Very large number of nodes. This is a consequence of the wide geographical

distribution.

• Support for mobility. As it has been said, Fog application will communicate di-

rectly with mobile devices, which will change its location in the network regularly.

Because of this, it is necessary for Fog computing to support mobility techniques

that allow to separate host identity from location identity.

• Real-time interactions. Fog applications usually involve real-time interactions

instead of batch processing, which implicate that a fast response is needed.

• Heterogeneity. Fog nodes have di�erent hardware capabilities and are deployed

in a wide variety of environments. In addition, the nodes change their environ-

ment often because of their mobile nature.

• Predominance of wireless access. Few assumptions can be made about the link

availability and characteristics.

2.3. Edge and Fog Computing 14

• Interoperability and federation. Fog components need to interoperate between

them and services must be federated across domains, because the cooperation of

di�erent provides is needed to provide seamless support of services such as stream-

ing.

• Support for online analytics and interplay with the Cloud. Many Fog appli-

cations gather information from several sensors and are used to provide analytics.

The Cloud provides centralization for the data that needs to be shared across de-

vices.

2.3.1 Analytics and Edge, Fog and Cloud Computing

Analytics and Big Data applications require low latency and context awareness while

still having global centralization for its data. For this scenario, Fog computing o�ers the

localization, low latency and context awareness, while the Cloud provides the required

globalization.

Fog nodes collect, and might even preprocess, data in the edge of the network, gen-

erated by a plethora of sensors and devices. Some of these data might relate to tasks that

need real-time processing capabilities, such as control loops, and might be deployed in

Fog nodes. Other data instead, might not need real-time processing and thus can be

processed in the Cloud.

In this way, the tier of Fog nodes collects, processes the data and issues control com-

mand to the actuators. It also �lters the data to be consumed locally, and sends the data

that higher tiers will process. The Cloud deals with visualization and reporting, as well

as systems and processes.

Chapter 3

Gap Analysis of Current Applications

and Services at the Edge

3.1 Implementing applications and services for Edge

and Fog Computing

Even though Edge and Fog Computing bring many bene�ts to end users, network op-

erators and developers, their implementation is more challenging because of their more

complex structure. Some of these challenges are:

Hardware Heterogeneity. Edge and Fog applications and services must run on dif-

ferent devices, in a wide range of contexts. This might include low power devices, tra-

ditional x86–64 machines, high-performance servers equipped with powerful GPUs, or

highly optimized application-speci�c integrated circuits (e.g., Google’s tensor�ow pro-

cessing unit [16]). Because of this, applications and services might provide very di�erent

performance characteristics according to where they are deployed. In addition, the con-

nectivity of the devices might be cabled or more often wireless, so no assumptions should

be made upon the availability of the connection, its bandwidth, speed nor latency.

Mobility. Edge computing advocates that services run on close-by resources. As

it has been mentioned in the previous item, the connectivity of the devices (e.g., au-

tonomous cars, smartphones) in the edge is usually wireless, which means the connec-

tivity to edge nodes is intermittent or highly variable. This is in contrast to highly con-

15

3.2. An application use case 16

nected and centralized cloud data centers, where communication and data movement

is relatively cheap and reliable. This requires distributed applications to be deployed

taking into account scenarios with low and no connectivity in order to avoid failing to

provide the expected service in these scenarios.

Elasticity. The cloud provides elasticity mechanisms, that the edge cannot pro-

vide [4]. Services in the cloud scale horizontally over multiple machines or vertically

by increasing their RAM and CPU share. The edge might consist of a single machine

with limited hardware capabilities. To make matters worse, edge load is highly dynamic

(e.g., determined by the number of close-by users), which results in further limiting of

available resources.

Programmability: to take advantage of Fog and Edge computing, developers must

partition the functions of their applications between the Fog, the Edge and the Cloud.

This is generally done manually and it needs to be carefully tuned because of the trade-

o� between computing capabilities and latencies to the servers, which vary for each

di�erent scenario, and even varies during runtime. This approach is not scalable or ex-

tensible[5].

Privacy and Security: the data sensed in the edge is usually private and sensitive.

For instance, in the case of a smart-home system, a hacker could learn a lot of knowledge

from reading the data from its users, such as when is the best time to burglar a house

because there is nobody at home. Privacy and security practices represent big challenges

for services and application developers because of the lack of e�cient tools[5].

These characteristics of Fog and Edge computing make developing applications and

services a complex task. Complying with established application requirements or Ser-

vice Level Objectives (SLOs) is unfeasible when the application or service deployment

environment is unknown.

3.2 An application use case

In order to better comprehend the challenges of developing applications and services for

Edge and Fog computing, a practical use case is introduced and analyzed.

Modern cities contain a wide range of cameras that generate data which is used for

3.2. An application use case 17

surveillance. Edge and fog computing have enabled the development of applications that

exploit these data, as well as the distributed processing power available in smart cities.

These applications make use of the video feed for di�erent purposes, e.g., to count the

people in particular areas and understand crowd mobility [17], or also to locate speci�c

persons, like a lost or abducted child [3]. We consider this “lost child use case” as an

application scenario.

The application works in the following way: when a child goes missing, law en-

forcement asks their parents for photographs of the child and feed these images to the

application. Then, a service is deployed using existing connected cameras and edge

servers in the city, to analyze images – captured by the cameras – and locate the child

by using face recognition. When a match is found, a noti�cation is sent to nearby law

enforcement o�cers. In this way, we can split the application in two: an o�ine module;

which is trained with pictures of the child, most likely in a server, and the online module;

which is deployed in several devices and is in charge of �nding the child. We will focus

our attention on the latter.

The online module, as seen in �gure 3.1 is composed by the following steps, trans-

lated as functions on the application:

1. Capture image: the image is captured by the camera.

2. Preprocess image: di�erent preprocessing steps such as resizing, colorization,

etc., are performed to improve the accuracy of the face detection and recognition.

3. Extract faces: a face detection classi�er is applied to the preprocessed image and

each face is extracted and returned in an array.

4. Match face: for each face that was found on the image, the previously trained

classi�er that matches the face of the lost child is applied. This function returns

true if the face matches and false otherwise.

5. Alert law enforcement: a noti�cation is sent to nearby police o�cers indicating

the location of the child.

3.2. An application use case 18

Figure 3.1 Control �ow diagram of the online module for the Lost Child application

3.2.1 Application requirements

A small end-to-end latency is crucial to ensure a high frame sampling rate, so the event

of missing the child is unlikely to happen, even if it only appears brie�y on the video

feed, e.g., when the child is moving. Because of this, a Service Level Objective (SLO) is

set to having a minimum rate of one frame analyzed per second, which is translated as

having a maximum end-to-end latency of 1 s for each analyzed frame. At the same time,

3.2. An application use case 19

Figure 3.2 Hardware heterogeneity. Comparison of running times for Haar Face Detection + LBPH Face

Recognition applied to di�erent 640x480 PNG images with 1-6 faces running on di�erent

devices.

it is desired that the application performs with the highest possible accuracy for face

detection and face matching.

More accurate algorithms are computationally intensive, causing them to be slow,

while faster algorithms sacri�ce accuracy in order to have a lower latency. This creates

an accuracy-latency tradeo�, in which the optimal tradeo� that the application devel-

oper wants to �nd, is the one that enables keeping the end-to-end latency under the 1 s

target while getting the highest accuracy possible.

However, the optimal accuracy-latency tradeo� can vary. Existing cameras are con-

nected in di�erent manners to upper layers (wireless, Ethernet) and also have hetero-

geneous hardware capabilities [18]. What is more, there are no guarantees that the

application will have dedicated resources, so the processing capabilities of the devices

might be even further constrained and vary over time, e.g., when other applications run

concurrently on the same device.

In addition, the optimal tradeo� does not only depend on the execution context in

which the application is deployed. While some cameras might be deployed in small

venues with few people, other cameras might be located in highly crowded areas. This

input data variability radically a�ects the performance of the application: processing

facial recognition on 2 faces is very di�erent than performing it on 100 faces.

3.3. Attempting to ensure requirements 20

3.3 Attempting to ensure requirements

In this setting, it is very hard – if not impossible – for the developer to take into account

all of the di�erent scenarios in which its application will run and therefore ensuring

the application requirements is a very challenging task. As it has been said in 2.3.1

developers usually partition and tune the implementation of their applications manually,

which involves a great deal of e�ort and is not e�ective in practice. In doing this, the

developer can choose di�erent paths.

Di�erent implementations of the application can be tested in an o�ine manner, and

the most likely implementation to comply with requirements in di�erent devices can be

used in the �nal product. This path leads to undesired results: it is very hard – if not

impossible – for developers to take into account all of the di�erent devices that their ap-

plication will be deployed on, and so for power-constrained devices requirements might

still fail to be achieved, while in more powerful devices, the application’s performance

could be improved by making better use of its capabilities.

If the developer has direct contact with the application stakeholders, the application

can be customized for running under each di�erent con�guration or for each speci�c

user. This involves an enormous e�ort, and in most cases, it is simply not possible due

to time and cost limitations.

One last option, is that the developer includes some kind of adaptive logic in the

application, so it will adapt to the context in which it will be deployed. This might be

e�ective, but demands more knowledge and e�ort from the developer. Moreover, the

complexity of this task moves the developer’s focus away from the application logic

that contributes to the business goals.

3.4 Adaptation mechanisms

In order to overcome the hardware heterogeneity and the wide range of contexts in

which the application can be deployed, it is necessary to change the application behavior

by using adaptation mechanisms. These adaptation mechanisms depend on the speci�c

application or service and its purpose. However, there are some strategies that can be

generalized for most applications:

3.4. Adaptation mechanisms 21

1. Di�erent implementations of the same function: this is probably the most

radical option and it means changing the implementation of an algorithm in order

to optimize the performance with respect to some constraints. As it has been

shown by [19], di�erent implementations of the same functionality might be used

in di�erent runtime scenarios according to the available resources. If the available

memory of the system is low, an implementation which prioritizes low memory

usage while sacri�cing more processing power will have a better performance

than a di�erent implementation that uses less computing power but requires more

memory.

2. Varying function parameters: most algorithms use di�erent parameter values

that de�ne their performance in terms of required computing resources and �nal

results. For instance, an audio processing application will vary its performance

according to the window size that is used for the samples to be processed. If a

window size of 0.1 s is used to split a 30 s audio, 300 samples will be analyzed,

whereas if the window size is set to 1 s, only 30 samples will. This window size

is a parameter that the developer can change in order to comply with di�erent

application requirements.

3. Task placement: in the current edge and fog computing scenario, the developer

could decide to execute di�erent parts of the application in di�erent nodes, but

this could also be decided by the platform itself.

For instance, in the Lost Child application3.2, di�erent classi�ers can be used for de-

tecting faces (i.e., Haar Cascade, LBP) and also di�erent classi�ers for matching faces

(i.e., LBPH, Fisherfaces). In addition, the preprocessing step can be modi�ed, by resizing

the captured image to di�erent sizes (i.e., 1080p, 720p, 480p). The use of di�erent com-

binations of classi�ers and parameters produces di�erent accuracies as well as di�erent

end-to-end latencies (e.g., Haar Cascade + LBPH + 1080p is more accurate but slower

than LBP + Fisherfaces + 480p).

By modifying its behavior, the application can meet its requirements in spite of being

deployed in di�erent hardware platforms. For example, if the Lost Child application runs

on the same con�guration as above – a Raspberry Pi 1B – and its end-to-end latency

3.5. Conclusion 22

Figure 3.3 Algorithm latency variation. Comparison of running times for di�erent combinations of Face

Detection and Face Recognition algorithms applied to di�erent 640x480 PNG images with 1-6

faces. The test was executed on a Raspberry Pi 1B device.

requirement is 1 s, the combinations of Haar + LBPH and Haar + FisherFaces will violate

the application requirements as we can see in �gure 3.3, so the implementation chosen

should be LBP + Fisherfaces.

However, the “ideal” behavior varies according to the application deployment and

the resources availability during runtime. The decision of which behavior to use must

be taken during runtime, because it is impossible to anticipate all of the di�erent con�g-

uration and scenarios in which the application will run during development. In addition,

the behavior should also adapt dynamically, adjusting to the changing availability of re-

sources the node might experiment. The way to choose the appropriate behavior will be

addressed in following sections.

3.5 Conclusion

As it has been shown, there is no e�cient approach to ensure application or service

requirements in Edge and Fog computing. Neither of the approaches currently used

provide an e�ective solution, and all of them incur considerable additional e�ort during

development. This results in higher development costs and lower satisfaction levels for

the consumers.

Is there a a better way – in terms of e�ort as well as e�ectiveness – to ensure appli-

cation requirements and SLOs in the complex setting of Edge and Fog computing? To

answer this question, a framework to program adaptive applications is proposed in the

next chapter.

Chapter 4

Design and Implementation

4.1 Design

An adaptive framework is proposed to facilitate the development e�orts and improve

the performance of Edge and Fog applications and services. The aim of this framework

is to simplify development tasks and to achieve a higher satisfaction of requirements and

objectives for Edge and Fog applications and services.

4.1.1 Formally de�ning requirements and objectives

As it has been shown with the Lost Child use case, the application has certain require-

ments that need to be guaranteed to ensure its correct functioning. However, because

of the high complexity of the application’s running environment, it is not possible to

guarantee the compliance of these requirements during runtime.

Even though in the use case presented the requirement is to have an end-to-end

latency under certain target, there could be multiple requirements that should be guar-

anteed by the application, e.g., memory usage should be lower than 100MB, minimum

quality of transmitted images should be 720p, etc. All of these requirements should be

clearly expressed by de�ning a metric that can be used during runtime to monitor its

compliance, as well as the range of values in which this metric should be. These require-

ments can be seen as constraints of the problem, and will be generally regarded as costs

of the application.

The application is also expected to have a high accuracy. This can be seen as an objec-
23

4.1. Design 24

tive instead; it is a characteristic of the application that it is desired it will be maximized

(or minimized). This quantity cannot be objectively monitored by the system during

runtime, but the developer can set as input mechanisms to measure it in real-time, e.g.,

providing values that measure the expected accuracy according to which classi�er is

used for face detection. In the case of the “Lost Child” the objective is the accuracy,

but it could also be energy e�ciency or Quality of Experience (QoE). This value can be

considered as the utility of the application.

Moreover, the utility and the costs that the application yields are dependent on its

implementation. As it has been stated in 3.4, there are a number of ways in which the

developer might modify the costs and utility of the application: using di�erent imple-

mentations for the same function or using di�erent parameter values for the same func-

tion. In this framework, we can consider that the di�erent implementations are an extra

parameter for the function, in which di�erent values for the parameter correspond to

di�erent implementations, e.g., ‘lbp’ corresponds to LBP and ‘haar’ corresponds to Haar

cascade for a face detection function.

By using this setting, it is possible to frame the problem as an optimization problem

in the following way:

maximize
θ

U(θ)

subject to ci(θ) ≤ Ci, i = 1, . . . , N

where:

θ : is the combination of parameters used for all of the functions by which

the application is composed

U(θ) : represents the utility of the application, which is determined by the com-

bination of parameters used

ci(θ) : is a constraint to the function (such as latency), also determined by θ

Ci : is the constraint target (e.g., 1 s)

N : is the total number of constraints.

4.1. Design 25

By using this expression, it is possible to frame di�erent applications with diverse

requirements. For instance, in the speci�c case of the “Lost Child” application, its re-

quirements and objectives can be de�ned as:

maximize
θ

accuracy(θImagePreprocessing, θFaceDetection, θFaceRecognition)

subject to latency(θImagePreprocessing, θFaceDetection, θFaceRecognition) ≤ 1 s

Approach assumptions

Note that with this expression, it is possible to de�ne as many constraints as necessary,

but only one utility objective. The utility represents a quantity that cannot be measured

directly by the system and the decision of what it represents and how it is measured its a

decision that the developer must take depending on the speci�c application that is being

developed.

The application utility that results from the use of a combination of parameters, is

calculated as a linear combination of the utility values assigned to each individual pa-

rameter value by the developer. As an example, for the face detection function the pa-

rameter “classi�er” can assume the values ‘lbp’ or ‘haar’. The utility value for each value

represents how accurate this classi�er is, e.g., ‘lbp’: 5, ‘haar’: 10. The actual utility value

is determined by the developer and can be estimated in di�erent ways, such as o�ine

pro�ling for accuracy as described in [20].

From now on, the utility value for any combination of parameters is assumed to be

known or easily computed. While the values for the costs (e.g., end-to-end latency, RAM

usage) can be measured and monitored during runtime.

4.1.2 Adaptive Logic (AL)

Finding the best combination of adaptation mechanisms, or adaptation strategy, is a

complex task. The best combination varies from deployment to deployment, and to

make matter worse, it also varies during runtime according to the variability of available

resources. Because of this, the decision of which behavior should be used at any given

time, must be taken during runtime.

4.1. Design 26

This is the task of the Adaptive Logic (AL). The AL must be able to combine the

di�erent adaptation mechanisms in order to achieve the highest utility possible while

satisfying the application requirements or SLOs.

The implementation of the AL is challenging because of its two main requirements:

• Rapid response. It must adjust its behavior rapidly to keep up with resources

availability and application input as they change during runtime. A slow response

to changes might mean the violation of application requirements or SLOs, if the

resources are further constrained, or the loss of improvement in utility, if more

resources become available.

• Low overhead. Another important consideration for the AL is that it must not

create too much overhead for the system in order to be able to perform in very

low power devices.

Discrete Optimization

In optimization problems, the aim is to �nd solutions which are optimal or near-optimal

to an objective while respecting certain constraints[21, p. 7]. Discrete Optimization (DO)

works with optimization problems in which some or all of its variables assume discrete

values.

Even though our problem could be formulated as a DO problem, it would force us

to make some simplifying assumptions. When formulating a DO problem, it is assumed

that the values for the variables involved are known, whereas in our problem this is not

true, even with the assumption that it is possible to know the utility value that we want

to maximize, because the cost (e.g., latency) remains unknown.

In addition, DO aims to �nd a single set of values that optimizes the function, while

our goal is to �nd the best action for each di�erent state, (i.e., what parameter should be

changed if the available memory has dropped?). Because of this, DO ignores the state

of the system at a given point when adaptation is necessary, missing useful information

about our problem.

4.1. Design 27

Bayesian Optimization

One of the most common problems in machine learning is to �nd the best set of hyper-

parameters – or at least a “good enough set" – for a model. This is an important task,

because the performance of the model greatly depends on the set of hyperparameters.

Unfortunately, �nding the optimal set of values can also be overwhelming; usually the

set of hyperparameters is not small, and trying each set of values for the model, such as

a Neural Network, might take hours or even days.

Bayesian Optimization (BO) has emerged as an automatic approach to optimize the

performance of a model by �nding a “good" set of hyperparameters in an intelligent

manner. BO works in a “black-box" manner: it makes the assumption that the unknown

function that needs to be optimized was sampled from a Gaussian process, and maintains

a posterior distribution for this function as observations are made[22]. In the setting of

model optimization, this means that after every training with a new set of values for

the model hyperparameters, the posterior distribution is updated, the most likely values

for a new maximum are calculated, and the model is trained again. BO has been shown

to �nd the optimal hyperparameter values for many black-box functions in an e�cient

manner [22]–[24].

However, BO is restricted to solve problems of moderate dimension[25]. When devel-

oping adaptable applications, the number of adaptation options can be very large: each

function can have several implementations and each implementation can have several

parameters that need to be tuned in order to �nd the best performance.

What is more, just like DO, BO aims to �nd a single set of values to optimize the

objective function. Again, this means that BO is missing useful information to solve our

problem.

Heuristics

Another approach for de�ning the AL is to create a logic using heuristics. This logic is

based on the assumption of a linear tradeo� between utility and constraints, therefore

it might not be universally applicable. However, it is implemented to provide a baseline

to compare the results of the other AL approaches.

Before starting to run the pipeline, all of the di�erent possible con�gurations of

4.1. Design 28

Figure 4.1 Control �ow diagram of the heuristics based approach for the Adaptive Logic

adaptation mechanisms are made and sorted by utility value in descending order. It

is assumed that the con�guration with the highest utility is the one with the highest

demand of resources.

When the pipeline starts, the con�guration with the highest utility is used �rst. The

logic monitors the application requirement(s), in this case the latency; if the latency is

above the target, then utility is degraded by using the immediate lower con�guration,

this is expected to improve the latency. This process is repeated until the latency is

less or equal than the targeted latency. If the latency is below the target for a number

of continuous steps, i.e. of fully processed images, then the utility is upgraded. If this

upgrade still works within the latency target, then the utility is upgraded again until

the latency is beyond the target, and then the utility is degraded once by utilizing the

last con�guration that worked within the latency target. Figure 4.1 shows a control �ow

diagram for this logic.

The duration of this period of continuous steps is a parameter of the model and it

was adjusted to 20 because it proved to be a good value in practice.

4.1. Design 29

Reinforcement Learning

As described in section 2.2, RL o�ers a good framework to solve our problem. The agent

represents the application and its environment can be seen as the context in which the

application is running. In this setting, the agent can take actions to adapt to di�erent

states of its context, in order to achieve its goal of performing with the best possible

utility under the given constraints.

In comparison with DO and BO, RL can deal with problems when some of the vari-

able values are unknown, by exploring these values and then taking decisions with its

experience. In addition, RL is designed to take into account the state of the agent, which

gives it the ability of taking better decisions depending on the current state. This way,

all of the available information is used unlike in DO and BO.

In order for the RL approach to be computationally inexpensive, as described in the

AL requirements’ in 4.1.2, tabular Q-learning was used. Tabular Q-learning de�nes what

action should be taken in each state by maintaining a table in which there is one row

for each state, and one column for each action. The value in each cell is the expected

reward of being in a given state, and taking a speci�c action.

Before learning begins, the table Q is initialized to arbitrary �xed values. Then, at

each time step t, the agent selects an action at, receives the reward rt and the environ-

ment changes its state to st+1. After this, the Q table is updated by using the following

update rule:

Qnew(st, at) = (1− α) ·Q(st, at) + α · (rt + γ ·max
a
Q(st+1, a)) (4.1.1)

where rt is the reward observed for the current state st and α is the learning rate (0 <

α < 1). γ is the discount factor and has the e�ect of valuing the rewards received earlier

higher than the rewards that are expected to be received in future steps. This is known

as delayed reward, and thanks to it the agent take into account how each action will

a�ect the environment’s state, and how much reward it is possible to get in the next

state.

When the agent has just started, actions are chosen at random from each state, this

is called exploration. After this process has be performed a number of times, the agent

starts exploiting the Q table. To do this, when the agent is in state st, it chooses action

4.1. Design 30

Figure 4.2 Diagram of RL approach. This approach uses the discretized last latency and con�guration of

adaptation mechanisms as state and the con�guration of adaptation mechanisms to as action

for the AL.

aj , that has the highest expected reward by �nding the cell qt,j with the greatest value.

Two di�erent con�gurations of states and actions were de�ned and implemented:

Con�guration 1

• States: Last latency as % of target [3 values (0-80, 80-100, 100- ∞)], current cpu

availability % [3 values (0-50, 50-80, 80-100)], number of last con�guration used

• Actions: Number of con�guration to be used

• Dimension of π: (total con�gurations×9, total con�gurations)

Con�guration 2

• States: Last latency as % of target [3 values (0-80, 80-100, 100-∞)], number of last

con�guration used

• Actions: Number of con�guration to be used

• Dimension of π: (total con�gurations×3, total con�gurations)

Before starting to run the pipeline, all of the di�erent possible con�gurations of adap-

tation mechanisms are made, but unlike for the heuristics approach the con�gurations

do not need to be sorted by utility value. While the heuristics based approach makes the

assumption that the con�guration with the highest utility is the one with the highest

demand of resources, the RL based approach is free of these assumption, which makes

it a better choice.

In addition, an important consideration in tabular Q-learning is the number of states

and actions because the dimension of the Q table is de�ned as (states, actions). The

4.2. Implementation 31

more states or actions, the more q values that need to be kept in memory and calcu-

lated. Because of this, in order to use the tabular Q-learning approach it is necessary

to carefully choose the de�nitions of states and actions. In this sense, con�guration 2

is more e�cient than con�guration 1, but in order to do so, uses less information about

the environment.

4.2 Implementation

All of these concepts have been implemented in the Adaptive Applications Simulator

developed in Python which is publicly available as a Github repository[26]. By using the

simulator, it is possible to de�ne a pipeline and its inputs and experiment with di�erent

adaptation mechanisms and ALs.

Any developer can use the simulator by following the next steps:

1. The developer de�nes the pipeline which will process the inputs as a collection of

functions and implements the functions normally.

2. The simulator functions (objects) are declared, along with the adaptation mecha-

nisms.

3. The inputs for the pipeline are de�ned, using the provided IO objects.

4. The pipeline is pro�led on the real device that will be simulated, by using the Pro-

�ler. The Pro�ler automatically tests all of the di�erent combinations of adaptation

mechanisms for each input and saves execution statistics that will be later used by

the simulator. All of this data is saved in a cloudpickle object, called pro�le.

5. The Simulator is created and the pro�le is loaded (also multiple pro�les can be

loaded for multiple devices).

6. Simulations for the pipeline can be tested by indicating the set of adaptation mech-

anisms and device that should be used. The actual result of the pipeline, the utility

and the execution statistics for each function in the pipeline, such as the latency,

are returned.

4.2. Implementation 32

In addition, a RL environment has been implemented to test the di�erent AL imple-

mentations. The environment implements the same interface as the widely used OpenAI

Gym environments[27] and uses the aforementioned simulator to provide an easy way

to test di�erent RL implementations.

4.2.1 Architecture overview

The simulator is an API that can be imported by any other Python script. The API de�nes

a number of classes to de�ne a pipeline with multiple functions and inputs that will be

run on di�erent devices:

• AdasCPU: it de�nes a CPU by the number of cores and speed.

• AdasDevice: identi�es deployment devices, it has a device id, a Cpu and the mem-

ory in bytes.

• AdasIO: de�nes a functions’ input/output (IO). It contains the actual input/output

value (e.g. a png image) and an AdasIOData object.

• AdasIOData: de�nes the IO’s metadata. It contains an id to identify the IO, the

size in bytes and format (if the IO is an image, the format can by ‘jpg’, ‘png’, etc.).

• AdasFunction: The Function object contains the actual implementation of the

function and a AdasFunctionData object.

• AdasFunctionData: de�nes the metadata for a function. Each function has a

name, parameters’ data and a dictionary called deployments, which contains a

key for each device and the values are all of the executions’ statistics for every

IO and con�guration of parameters. In addition, this class contains the method

‘sim’, used to simulate the execution of a function with the given parameters and

input. A description of how parameters, in particular adaptable parameters, can

be de�ned can be found in next section 4.2.2.

• AdasExecutionData: this object de�nes the data saved for a function execution.

It contains the AdasIOData used as input for the function, the parameters’ data

used to execute the function, the output data that resulted from the execution as

4.2. Implementation 33

another AdasIOData object, and the resulting statistics. The statistics are currently

simply the utility and latency, but can be extended to any number of other statistics

that should be monitored by the pro�ler and can be later used by the simulator.

The developer only needs to import the API and de�ne the pipeline as a list of Func-

tions, in which each Function takes the output of the previous function as input, and the

inputs for the pipeline as a list of IO objects. After this, the pipeline can be used with the

Pro�ler to pro�le a real device and, once the pro�le data is available, with the Simulator

to simulate the execution of the pipeline.

4.2.2 Declaration of adaptation mechanisms

The adaptation mechanisms, i.e. adaptable parameters or di�erent function implemen-

tations, can be speci�ed using the AdasFunction class. All of the adaptation mecha-

nisms are considered as adaptable parameters; in order to include a di�erent function

implementation as an adaptation mechanism, an extra parameter that de�nes which im-

plementation to use can be de�ned, thus converting this mechanism in an adaptable

parameter.

In the class AdasFunction, parameters’ data is contained in a dictionary, in which the

keys are the names of the parameters and the value of each item is another dictionary

with one item per each possible parameter value along with its utility. In this way, a

function with two adaptable parameters can be de�ned in the following way:

def detect_faces(image, scale_factor, img_resize):
...
return faces

adaptive_detect_faces = AdasFunction(function = detect_faces,
params= {'scale_factor': {1.2:10, 1.33:4},

'img_resize': {(1080,1920):10,
(720,1280):8,
(640,480):3}}

})

Note that each parameter has a dictionary in which the key of the item is the parameter

value option and the value of the item is the utility expected for using the function

4.2. Implementation 34

with this parameter. The total utility of the function is calculated as a sum of the value

parameters used.

4.2.3 Pro�ler

The Pro�ler can be simply used in the following way:

from adas_profiler import profile

...

profile('device', pipeline, pipeline_inputs, n)

where pipeline is a list of Functions and pipeline_input is a list of IOs as

de�ned before, and n is the number of times each parameters’ con�guration will be

tested for each input.

The data for the pipeline, by using the AdasFunctionData, AdasIOData and Device

are saved, along with the AdasExecutionData for each independent execution performed

in a cloudpickle �le, called ‘pro�le’.

4.2.4 Simulator

After pro�ling a device, the execution of the pipeline can be simulated for any con�gu-

ration of the adaptation mechanisms and any of the previously de�ned inputs with the

following code:

from adas_simulator import AdasSimulator

simulator = AdasSimulator()
simulator.load_profile('profile.pkl')
simulator.sim('device', pipeline_input,

{'img_resize':'(1080, 1920)',
'scale_factor':'1.2'})

This call returns a dictionary with the statistics for the execution of the method, the

utility and the output as an IO object. The simulation returns a random sample from the

execution data with the same parameter values, device and input as the one speci�ed in

the call.

4.2. Implementation 35

4.2.5 Environment

In addition, the class Environment makes it simple to test di�erent implementations of

the AL. The implemented interface has been inspired by OpenAI Gym environments[27]

and shares the de�nitions of the method step and reset.

Di�erent implementations of the Environment have been de�ned in order to try the

di�erent con�gurations of states and actions, which are detailed in section 4.1.2. The

initialization of the environment is made by specifying a Simulator object, a latency

target and the pipeline_inputs. Each step is de�ned as the execution of a full pipeline

for an input. For each step, the CPU availability is simulated as a Markov Chain, where

the CPU availability at a given time step t, Ct, is calculated as follows:

Ct =

Ct−1 + θ, if Ct−1 + θ > 0.3 and Ct−1 + θ < 1

Ct−1, otherwise
(4.2.2)

where θ ∼ N(0.1, 0.1).

The code to declare an Environment and make a step with it is the following:

from adas_simulator import AdasEnvironment

...

env = AdasEnvironment(simulator,
1.0,
pipeline_inputs,
cpu_availability)

env.reset()
new_s, r, done, inf = env.step(action)

This method, just like OpenAI Gym environments, returns four objects: the new state

(new_s), the reward (r), a boolean indicating if the environment has �nished (if all of the

pipeline_inputs have been processed) (done) and a dictionary with the resulting

execution stats and utility of the given step (inf).

4.3. Conclusion 36

4.3 Conclusion

By using the artifacts developed in this chapter, it is possible to implement applications

that incorporate adaptation mechanisms. After doing this, the applications can be run on

di�erent devices registering its results and execution statistics with the pro�ler. Then,

by loading the pro�les to the simulator, di�erent ALs can be tested and evaluated.

In the next chapter, an adaptive application is implemented by using these tools and

its performance is tested in di�erent scenarios under the Heuristics and RL based AL.

Chapter 5

Experimental Evaluation

In order to test the approach presented in the previous chapter, the use case application

of the “Lost Child” is implemented using the adaptive framework. Di�erent adaptation

mechanisms are implemented for the application so it can vary its behavior during run-

time.

The performance of the application in terms of its objective and its constraint is put

to test during di�erent execution conditions. In addition, the heuristics and the RL based

ALs are tested to shed light on how well do the approaches ful�ll its previously de�ned

requirements.

5.1 Implementation of the Lost Child application

The Lost Child application described in section 3.2 was implemented by making use of

the software developed in section 4.2 and OpenCV[28]. A Raspberry Pi 3 model B+ was

used to pro�le (and later on simulate) the behavior of the application and its di�erent

con�gurations of adaptation methods. There are 16 possible di�erent con�gurations,

made by combining the adaptation mechanisms.

To measure the accuracy, a dataset of 500 images with a random number of between

6 and 24 faces was created, by using the collection of facial images Faces94[29]. The

collection contains 20 images from 153 subjects. 5 randomly chosen subjects were used

as targets to be identi�ed and the other subjects were used to complete the rest of the

faces in each image. The images were composed in a way that there is a 0.5 probability

37

5.1. Implementation of the Lost Child application 38

of containing a target. From the 5 target subjects, 75% of the images were used to train

two di�erent facial recognizers from OpenCV: FisherFaces and LBPH. The rest of the

images were used to build the images in the dataset.

The whole dataset was analyzed with each of the 16 di�erent combinations and the

average accuracy, precision and recall were calculated for each. The results are shown

in table 5.1.

To test the end-to-end latency, a di�erent dataset with very di�erent amount of faces

in each images was created with 12 di�erent images. The images used were also created

using the Faces94 face collection. 6 di�erent pairs of images contain di�erent number

of faces; one pair contains 6 faces, another pair 12 and so on for 24, 48, 96 and 192 faces.

Then, the end-to-end latency was recorded 5 times for each di�erent con�guration. The

average latency recorded for each number of faces and con�guration is shown in �gure

5.1.

Figure 5.1 Latency variation according to input. The con�gurations vary their latencies di�erently

according to the number of faces on the images. The latencies were measured on a Raspberry

Pi 3 B+.

In the implementation of the application, the developer wishes to have the highest

possible precision when detecting the target. The precision is de�ned as the number of

times that the target was identi�ed correctly divided in the number of times it appeared

in the frames. Because of this, the o�ine pro�led precision is used as the utility for

the application, which represents the expected precision for each analyzed image using

a given con�guration, that the AL will try to maximize. As it has been said before, the

constraint is to keep the end-to-end latency in a value of less than 1 s, in order to analyze

5.2. Environments and Datasets 39

at least 1 FPS of the capture images.

5.2 Environments and Datasets

Since the application does not run in exclusive hardware, i.e., other applications are

running in the same processing node, the CPU availability varies over time. As it has

been explained in section 4.2.5, the environment simulates the CPU availability as a

Markov Chain, where the CPU availability varies from 0.3 to 1.0.

As for the datasets, three di�erent options were used for the simulations:

1. Fixed input: 1000 frames with 48 faces each.

2. Variable input: 1100 frames with varying number of faces in each image, from 6

faces to 192. The dataset is composed by blocks of 100 continuous frames with the

same number of faces. The blocks are arranged in the following way: 6, 12, 24, 48,

96, 192, 96, 48, 24, 12, 6; where each number represents the amount of faces in the

block of 100 frames.

3. Full day input: a dataset that simulates the whole input of a full day at a train

station was built. There are 86400 images, one for every second of the day. Again,

the inputs from the previous item were used, but the number of faces varies over

time to simulate peak hours as well as little tra�c hours as it can be seen in �gure

5.2.

In addition, another version of the RL environment was implemented. This version

models the random CPU availability as the previous one, and also incorporates random

inputs. The inputs are simulated by taking random samples from the ones used by the

Variable input dataset. Because the input does not change every second in reality, in

each step there is a 0.1 probability of changing the input with a random sample and 0.9

probability of keeping the same input as in the previous step.

5.3. Results 40

Figure 5.2 Simulation of camera input in train station. Peak hours are visible around 9 AM and 6 PM,

while valleys are visible during nighttime.

5.3 Results

5.3.1 Baseline: Heuristics based AL

The baseline for the AL is the Heuristics based approach as described in section 4.1.2.

Each of the three di�erent datasets and the random input environment were used to

simulate the pipeline of the application 50 times and its results were recorded in table

5.2. In addition, in �gures 5.3 and 5.4, a histogram was plotted to show the utility (or

expected precision) and the latency of the processed images during the 50 runs for the

Fixed input dataset and the Full day dataset.

As it can be seen in table 5.2, the average utility and the latency satisfaction drop as

the complexity of the processed inputs vary. While for the Fixed input 93% of the inputs

are processed in 1 s or less, for the Full day and Random input simulations this value

drops to around 80%. This is also noticeable in the histograms, while plot 5.3 shows very

little inputs over the limit of 1 s, plot 5.4 shows a longer tail after the 1 s mark.

With the utility a similar trend is seen; the Fixed input simulation �nished with a

0.82 utility while the Full day and Random input are between 15% and 20% down, to 0.69

and 0.66 respectively.

5.3. Results 41

Figure 5.3 Histogram of obtained utility and latency for each processed imaged during 50 simulations

using the Heuristics based AL and Fixed input dataset.

Figure 5.4 Histogram of obtained utility and latency for each processed imaged during 50 simulations

using the Heuristics based AL and the Full day input dataset.

5.3.2 RL based AL

The same simulations were performed for each state-action con�guration of RL ap-

proaches. Each simulation was repeated 50 times. Since the RL approach is a learning

approach, the RL logic starts using random adaptation con�gurations and learns over

time which con�gurations perform better in which situations. Because of this, each

simulation was done using the Q-table of the previous simulation, starting from a Q-

table full of zeroes. In �gure 5.5 it is possible to see how the moving average, with a

window of 5, of utility and latency improve over the simulations for con�guration 1.

5.3. Results 42

Figure 5.5 Average Utility and Latency Satisfaction during continuous simulations using the Random

input environment and RL Con�guration 1. The curve of the moving average with a window

of 5 is shown for each metric. Learning improves results until the 10th simulation, then

because of the random nature of the environment, both average utility and latency

satisfaction vary while tending to stabilize around the 0.80-0.85 range.

Con�guration 1

In the tests, Con�guration 1 showed the best results. This con�guration uses the last

end-to-end latency registered, the last con�guration of adaptation mechanisms and the

current CPU availability to decide which con�guration of adaptation mechanisms should

be used next.

The results for the simulations using this con�guration are shown on table 5.3. It is

possible to see a similar trend to the heuristics case (table 5.2, where the average utility

and latency satisfaction drop as the complexity of the inputs increases. However, with

RL the Latency Satisfaction is slightly higher for all cases but Variable input, in which

is slightly lower, and the average utility is always higher by a large margin of between

10% and 25%. It is noticeable that this margin increases as the complexity of the inputs

increases; the improvement is close to 10% for the Fixed input dataset while it reaches a

25% improvement for the random input environment.

In histograms 5.6 and 5.7 it is possible to see how there is once more a longer tail

for the Full day dataset than for the Fixed input dataset. This is again produced by the

5.3. Results 43

higher complexity of the dataset and the exploration phase of the RL approach. However,

the histogram shows two peaks: one around 0.4 s and the other one around 0.8 s, while

in the Heuristics histograms (5.6 and 5.4) there is only one peak around 0.4 s. This is

because the RL approach is able to use the adaptation mechanisms’ con�gurations in a

more optimal way, yielding the highest utility possible while respecting the constraints.

This is why the average utility is higher for this approach as shown on table 5.3.

Moreover, it is interesting to see how the learning processes improves the results of

average utility and latency satisfaction over time. This is shown in �gure 5.5 for the

Random input environment, which o�ers the highest variability – and complexity – of

scenarios that the AL has to deal with.

Figure 5.6 Histogram of obtained utility and latency for each processed imaged during 50 simulations

using the RL Con�guration 1 based AL and Fixed input dataset.

Con�guration 2

Con�guration 2 uses the last end-to-end latency registered and the last con�guration of

adaptation mechanisms to decide which con�guration of adaptation mechanisms should

be used next. This con�guration showed better results than the Heuristics approach,

but with lower average utility than Con�guration 1. This is a logical outcome since this

approach uses less information about the environment to take its decision.

The results for the simulations using this con�guration are shown on table 5.4. A

similar trend to the heuristics and con�guration 1 is visible, where the average utility

and latency satisfaction drop as the complexity of the inputs increases. The latency sat-

5.3. Results 44

Figure 5.7 Histogram of obtained utility and latency for each processed imaged during 50 simulations

using the RL Con�guration 1 based AL and the Full day input dataset.

isfaction performance is similar to con�guration 1, but the average utility improvement

is smaller.

5.3.3 AL Requirements Ful�llment

The AL has managed to achieve a high requirement satisfaction while keeping a high

utility throughout the simulations, but it is still necessary to verify it complies with the

requirements for the AL, exposed in section 4.1.2:

• Rapid response. Plots 5.8 and 5.9 show a fragment of simulations processing the

Fixed input dataset. This dataset was chosen because the number of persons in

the input images is constant, so the latency varies only according the CPU avail-

ability. It is possible to see how the con�guration of the application is adapted

to perform under the 1 s latency requirement when the CPU availability varies,

degrading the utility when the CPU availability is low and upgrading it when the

CPU availability increases. RL o�ers a faster response to changes, achieving a

higher requirement satisfaction as well as a higher average utility.

• Low overhead. Table 5.5 shows the average time it takes to make a decision each

time that an image will be processed (including the update of the Q-table values in

RL) and compares it to the time it takes to process the an image with 6 faces with

the fastest con�guration of adaptation mechanisms. As it can be seen, the time

5.3. Results 45

Figure 5.8 Rapid response for the Heuristics based AL. A fragment of a simulation processing the Fixed

input dataset is shown. The available CPU drops around step 275 generating a higher latency

that ends up being higher than the 1 s latency requirement. After step 325 the AL degrades the

utility to be able to perform under the latency requirement. From step 425 the available CPU

increases and after 20 steps the AL changes its con�guration to achieve a higher utility taking

advantage of this situation.

Figure 5.9 Rapid response for the RL Con�guration 1 based AL. A fragment of a simulation processing

the Fixed input dataset is shown. From step 495 the CPU availability drops, increasing the

latency until just above 1 s, but the RL AL acts almost immediately, using a con�guration of

adaptation mechanisms which is a faster but also produces a lower utility. When the CPU

availability increases, from step 515, the AL changes the con�guration once again, almost

immediately, to obtain a higher utility.

5.4. Conclusion 46

to take the decision is negligible, involving less than 0.3% of the total time in the

case of RL. It is interesting to note that the RL approach produces even a lighter

overhead when compared to the Heuristics one.

5.4 Conclusion

Throughout the simulation of the Lost Child application, the e�ciency of an adaptive

framework to develop applications for Fog and Edge computing has been shown. The

developer only needs to de�ne the functions for the application, the adaptation mecha-

nisms, i.e. adaptive parameters and alternative implementations, and its expected utility.

During runtime the AL in the framework will combine these mechanisms in con�gura-

tions to provide the highest possible utility in the given execution context.

Moreover, the RL based AL improves over the Heuristics based AL as the results

haven shown. The utility of the application, de�ned in this case as the expected preci-

sion, shows a gain between 10% and 25%; the response of the RL approach is also faster

than its counterpart and �nally, the overhead incurred is also smaller than the one pro-

duced by the Heuristics approach.

5.4. Conclusion 47

C
on

�
gu

ra
ti
on

R
es
ul
ts

Fa
ce

D
et
ec
ti
on

Fa
ce

R
ec
og

ni
ti
on

Id
Fa

ce
D
et
ec
to
r

Sc
al
e
Fa

ct
or

Fa
ce

R
es
iz
e
D
im

en
si
on

s
Fa

ce
R
ec
og

ni
ze
r

A
cc
ur

ac
y

Pr
ec
is
io
n

R
ec
al
l

0
H

aa
r

1.2
(1

00
,10

0)
Lo

w
0.8

22
0.4

39
66

15
16

0.9
87

05
50

16

1
H

aa
r

1.2
(1

00
,10

0)
M

ed
iu

m
0.8

37
2

0.4
70

58
82

35
0.9

83
81

87
7

2
H

aa
r

1.2
(1

00
,10

0)
H

ig
h

0.9
92

1
0.9

38
51

13
27

3
H

aa
r

1.2
(1

20
,12

0)
H

ig
h

0.9
91

2
0.9

51
78

19
71

1

4
LB

P
1.2

(1
00

,10
0)

Lo
w

0.8
44

4
0.4

65
59

97
06

0.9
93

52
75

08

5
LB

P
1.2

(1
00

,10
0)

M
ed

iu
m

0.8
58

8
1

0.9
93

52
75

08

6
LB

P
1.2

(1
00

,10
0)

H
ig

h
0.9

95
2

0.4
96

04
96

61
0.9

62
78

31
72

7
LB

P
1.2

(1
20

,12
0)

H
ig

h
0.9

90
4

0.9
54

35
24

42
0.9

93
52

75
08

8
H

aa
r

1.3
3

(1
00

,10
0)

Lo
w

0.8
29

2
0.4

47
11

88
91

0.9
87

05
50

16

9
H

aa
r

1.3
3

(1
00

,10
0)

M
ed

iu
m

0.8
55

6
0.5

01
33

18
11

0.9
93

52
75

08

10
H

aa
r

1.3
3

(1
00

,10
0)

H
ig

h
0.9

98
4

1
0.9

87
05

50
16

11
H

aa
r

1.3
3

(1
20

,12
0)

H
ig

h
0.9

89
6

0.9
39

95
85

92
1

12
LB

P
1.3

3
(1

00
,10

0)
Lo

w
0.8

25
2

0.4
19

50
11

34
0.8

38
72

70
77

13
LB

P
1.3

3
(1

00
,10

0)
M

ed
iu

m
0.8

44
0.4

68
77

48
61

0.8
45

19
95

69

14
LB

P
1.3

3
(1

00
,10

0)
H

ig
h

0.9
76

4
1

0.8
41

96
33

23

15
LB

P
1.3

3
(1

20
,12

0)
H

ig
h

0.9
67

2
0.9

31
81

81
82

0.8
48

43
58

14

Ta
bl

e
5.1

Ad
ap

tiv
e

co
n�

gu
ra

tio
ns

fo
rt

he
Lo

st
Ch

ild
A

pp
lic

at
io

n.
N

ot
e:

so
m

e
co

m
bi

na
tio

ns
ar

e
no

tp
os

sib
le

du
e

to
co

ns
tra

in
ts

of
fa

ce
re

co
gn

iz
er

st
ra

in
in

g,
e.g

.l
ow

fa
ce

re
co

gn
iz

er
w

ith
fa

ce
siz

e
(1

20
,12

0)
.

5.4. Conclusion 48

Avg. Utility (Expected Precision) Latency Satisfaction (%)

Fixed input 0.8271 93.02

Variable input 0.7581 82.43

Full day input 0.6999 79.20

Random input 0.6626 80.22

Table 5.2 Average utility and latency satisfaction of Heuristics based approach

Avg. Utility (Expected Precision) Latency Satisfaction (%)

Fixed input 0.9144 95.00

Variable input 0.8266 79.04

Full day input 0.7779 79.06

Random input 0.83455 83.03

Table 5.3 Average utility and latency satisfaction of RL Con�guration 1 approach

Avg. Utility (Expected Precision) Latency Satisfaction (%)

Fixed input 0.9192 94.72

Variable input 0.7636 81.36

Full day input 0.6865 79.31

Random input 0.7221 80.89

Table 5.4 Average utility and latency satisfaction of RL Con�guration 2 approach

Adaptive

Logic

Image

Processing
Total

Impact of AL

in total latency

Macbook

Pro 2012

Heuristics 0.00029s
0.07023s

0.07052s 0.42%

RL 0.00021s 0.07044s 0.30%

Raspberry

Pi 3 B+

Heuristics 0.00131s*
0.31193s

0.31324s* 0.42%*

RL 0.00093s* 0.31286s* 0.30%*

Table 5.5 Overhead of AL. The average execution time for the logic for simulations in a Macbook Pro

2012 (Intel Core i5-3210M) and compared against the average processing time of images with 6

faces using LBP for face detection and the low accuracy face recognizer (fastest adaptive

con�guration). (*) projected times.

Chapter 6

Discussion and Related Work

6.1 Discussion

The results in the previous section demonstrate the ability of the adaptive framework

developed to adapt to di�erent execution contexts. Even though the results obtained are

satisfactory, better results can be achieved in di�erent ways.

To start with, the current model puts the responsibility of evaluating and assign-

ing utility values of the di�erent adaptation con�gurations to the developer. This is

not an easy task sometimes, especially when there are multiple adaptation mechanisms

available. Di�erent options are being considered to solve this problem, such as using a

developer-provided dataset for o�ine pro�ling of the adaptive con�gurations or using a

“golden” combination that is expected to perform the best as ground truth for evaluating

the performance of the other combinations.

To continue, a characteristic of Edge and Fog computing is the migration of tasks

that a processing node can perform. In this work, it has been assumed that this task

allocation has already been performed by a higher layer. However, taking into account

task migration as an adaptation mechanism can provide further improvement to the

results of the adaptation. This increases the adaptive con�guration space greatly and

thus represents a challenge for e�cient adaptive logic implementations.

Moreover, it has been said that in order for tabular Q-learning RL to work, a limited

number of states must be taken into account and because of this developers should care-

fully choose the adaptation mechanisms that are de�ned. This again can be solved by

49

6.2. Related Work 50

performing o�ine pro�ling of the adaptation con�gurations and choosing the best ones

to take into account during runtime while disregarding the other ones.

Finally, the results presented in this work have been realized by using the Adap-

tive Applications Simulator. Even though the simulations were made using real data to

produce realistic results, real world tests are yet to be implemented.

6.2 Related Work

There is extensive research in the related �elds of this thesis such as programming ab-

stractions and systems adaptive behavior.

Senergy[30] is a framework for programming mobile applications. It enables devel-

opers to automate common latency, power, accuracy trade-o�s by letting them specify

priorities among them. ENT [31] provides a type-based proactive and adaptive energy

management at the application level, where developers characterize energy behavior of

di�erent program fragments with modes that are later used in runtime depending on

the execution context of the application. Nonetheless, these approaches do not permit

the inclusion of constraints for enforcing applications’ requirements.

Natural Adaptive Video Streaming with Pensieve[32] presents a system that gener-

ates adaptive bit rate (ABR) algorithms using Reinforcement Learning. These algorithms

are used for video streaming and must balance a variety of QoE goals This work suc-

cessfully applies a variant of deep RL, A3C, to create algorithms that adapt to a wide

range of environments and QoE. The NN model runs on the server in order to avoid the

overhead on the client.

In Chameleon[33], the performance of video analytics applications is optimized by

performing automatic adaptation of its con�gurations. The application’s behavior is

customized to the execution context by selecting di�erent parameter con�gurations;

the best parameter con�guration is selected by a logic inspired by greedy hill climbing

combined with periodical online pro�ling. However, this research is centered around

applications that use deep convolutional neural networks for video analytics, while the

adaptive framework developed in this thesis aims to o�er a �exible solution that can be

applied to any kind of application.

Chapter 7

Conclusions

Developing applications and services for Edge and Fog computing is a complex task due

to the characteristics of these paradigms such as the hardware heterogeneity and the

limited scalability of the processing nodes. By using the adaptive framework hereby

presented, developers are able to develop e�cient applications and services in a simpler

way.

Firstly, de�ning the application’s or service’s requirements and objective – as de-

scribed in section 4.1.1 – lets developers have a clearer view of what should be optimized

during running time as well as what are the constraints that should be respected while

doing so. This approach has been published as part of Nandu, a system developed with

the IoT Group at NEC Laboratories that adapts and migrates tasks dynamically[20].

Secondly, specifying the adaptation mechanisms the application or service can use

– as explained in sections 3.4 and 4.2.2 – enables developers to take into account several

ways in which the behavior of the software can be modi�ed to provide better perfor-

mance throughout di�erent execution environments and conditions. This has been fur-

ther developed and applied to IoT services as part of another research conducted with

the IoT Group at NEC Laboratories and will be published at the International Conference

on Network and Service Management 2018 in Rome.

To continue, the software developed in order to pro�le and simulate adaptive logics

and adaptation mechanisms – as laid out in section 4.2 – provides a simple way to de�ne

applications or services and experiment with di�erent adaptation schemes to evaluate

them. This software has been made publicly available[26] in order to give the community

51

7.1. Hypotheses Evaluation 52

Figure 7.1 Comparison of Adaptive Logic approaches. The mean latency satisfaction and average utility

of each approach for all datasets is shown. The best logic in terms of average utility and

latency satisfaction is RL Con�guration 1.

the opportunity of testing it and continuing the research conducted in this work.

Finally, by using RL – as conceived in section 4.1.2 –, the best con�guration of adap-

tation methods can be found automatically during runtime without the necessity of im-

plementing a pre-programmed logic. To sum up the results obtained in this work, �gure

7.1 shows how the average utility, which is equal to the expected precision, and the

end-to-end latency requirement satisfaction for the use case application, is improved by

using the adaptive framework developed.

7.1 Hypotheses Evaluation

It is now possible to evaluate the hypotheses presented at the beginning of this thesis:

• The adaptive framework to implement applications and services has been devel-

oped and tested by implementing an application. The adaptive framework made

its development easier and it has shown during several simulations of di�erent

execution conditions, that is able to adapt the applications behavior to deliver a

high requirement satisfaction rate and performance. In addition, the AL proved to

be e�cient by generating a minimal overhead during runtime.

• The RL based AL has proved to be better than the pre-programmed logic in sev-

eral aspects: it has achieved a higher applications’ objective performance, a faster

7.2. Future Work 53

reaction to conditions variations and a lower overhead for the application.

7.2 Future Work

The development of an adaptive framework that implements the concepts presented in

this thesis is still ongoing research. As it has been discussed in section 6.1, there are still

several opportunities to improve the results of the framework, while at the same time

making the developers’ work easier.

The implementation of methods to automatically determine the utility of each adap-

tive con�guration takes o� the responsibility of developers from assigning these values.

In order to do so, two di�erent options are being taken into account. The �rst one is to let

developers specify a dataset (and its groundtruth) that will be used to pro�le the adaptive

con�gurations in an o�ine manner.However, developers might not have access to real

data that the application will process, and because of this the utility calculated will be

an approximation. The other option, is to let developers select a “golden” adaptive con-

�guration, which results will be used as the groundtruth during runtime to evaluate the

performance of other con�gurations. Nonetheless, this approach needs more resources

since the two con�gurations must be run in parallel at least a few times, and this might

be very di�cult to do in practice.

The inclusion of task allocation as another decision of the AL is also an opportunity

to improve the performance of applications and services. This decision increases the

size of adaptive con�gurations to take into account exponentially according to the num-

ber of processing nodes available. Because of this, deep Q-learning is being taken into

consideration to implement the AL. Although deep Q-learning increases the demand of

processing resources greatly, which poses a challenge to its implementation, a number

of techniques have been developed to “compress” deep neural networks such as [34].

A next step is the development of multiple applications or services for Edge and

Fog computing by using this adaptive framework; especially those that have di�erent

objectives and constraints such as precision, battery e�ciency and cost optimization.

Moreover, the implementation of these applications in the real world will give further

insights about this approach’s performance and hint on how to optimize it.

Bibliography

[1] C. V. N. Index, “The zettabyte era – trends and analysis, cisco,”

Cisco company, June, 2017.

[2] Y. Cao, S. Chen, P. Hou, and D. Brown, “Fast: A fog computing assisted

distributed analytics system to monitor fall for stroke mitigation,” in Networking,

Architecture and Storage (NAS), 2015 IEEE International Conference on, IEEE, 2015,

pp. 2–11.

[3] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Kitazawa,

“Fog�ow: Easy programming of iot services over cloud and edges for smart

cities,” IEEE Internet of Things Journal, 2017.

[4] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and

challenges,”

ACM SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–42, 2015.

[5] W. Shi and S. Dustdar, “The promise of edge computing,”

Computer, vol. 49, no. 5, pp. 78–81, 2016.

[6] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,

“Incremental deployment and migration of geo-distributed situation awareness

applications in the fog,” in Proceedings of the 10th ACM International Conference

on Distributed and Event-based Systems, ACM, 2016, pp. 258–269.

[7] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic computing: A

new paradigm for edge/cloud integration,”

IEEE Cloud Computing, vol. 3, no. 6, pp. 76–83, 2016.

54

BIBLIOGRAPHY 55

[8] T. S. Guzella and W. M. Caminhas, “A review of machine learning approaches to

spam �ltering,”

Expert Systems with Applications, vol. 36, no. 7, pp. 10 206–10 222, 2009.

[9] P. J. Denning, “Acm president’s letter: What is experimental computer science?”

Communications of the ACM, vol. 23, no. 10, pp. 543–544, 1980.

[10] R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction.

MIT press, 1998.

[11] A. A. Markov, “The theory of algorithms,”

Trudy Matematicheskogo Instituta Imeni VA Steklova, vol. 42, pp. 3–375, 1954.

[12] F. Mattern and C. Floerkemeier,

“From the internet of computers to the internet of things,”

in From active data management to event-based systems and more, Springer, 2010,

pp. 242–259.

[13] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and

challenges,”

[14] M. T. Beck, M. Werner, S. Feld, and S Schimper,

“Mobile edge computing: A taxonomy,”

in Proc. of the Sixth International Conference on Advances in Future Internet,

Citeseer, 2014, pp. 48–55.

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,

“Fog computing and its role in the internet of things,”

in Proceedings of the �rst edition of the MCC workshop on Mobile cloud computing,

ACM, 2012, pp. 13–16.

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, et al.,

“In-datacenter performance analysis of a tensor processing unit,” in Proceedings

of the 44th Annual International Symposium on Computer Architecture, ACM,

2017, pp. 1–12.

BIBLIOGRAPHY 56

[17] F.-J. Wu and G. Solmaz, “Crowdestimator: Approximating crowd sizes with

multi-modal data for internet-of-things services,” in MobiSys’18, 2018.

[18] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee,

“The design and implementation of a wireless video surveillance system,”

in Proceedings of the 21st Annual International Conference on Mobile Computing

and Networking, ACM, 2015, pp. 426–438.

[19] E. Poormohammady, J. H. Reelfs, M. Sto�ers, K. Wehrle, and A. Papageorgiou,

“Dynamic algorithm selection for the logic of tasks in iot stream processing

systems,” in Network and Service Management (CNSM), 2017 13th International

Conference on, IEEE, 2017, pp. 1–5.

[20] J. Fürst, M. Fadel Argerich, K. Chen, and E. Kovacs, “Towards adaptive actors for

scalable iot applications at the edge,”

Open Journal of Internet Of Things (OJIOT), vol. 4, no. 1, pp. 70–86, 2018.

[21] F. Rothlauf, Design of modern heuristics: principles and application.

Springer Science & Business Media, 2011.

[22] J. Snoek, H. Larochelle, and R. P. Adams,

“Practical bayesian optimization of machine learning algorithms,”

in Advances in neural information processing systems, 2012, pp. 2951–2959.

[23] A. D. Bull, “Convergence rates of e�cient global optimization algorithms,”

Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2879–2904, 2011.

[24] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process

optimization in the bandit setting: No regret and experimental design,”

arXiv preprint arXiv:0912.3995, 2009.

[25] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the

human out of the loop: A review of bayesian optimization,”

Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[26] M. Fadel Argerich, Adas: Adaptive applications simulator,

https://github.com/maufadel/AdAS, 2018.

BIBLIOGRAPHY 57

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[28] G. Bradski and A. Kaehler, “Opencv,”

Dr. Dobb’s journal of software tools, vol. 3, 2000.

[29] L. Spacek, “Collection of facial images: Faces94,”

Computer Vision Science and Research Projects, University of Essex, United

Kingdom, http://cswww. essex. ac. uk/mv/allfaces/faces94. html, 2007.

[30] A. Kansal, S. Saponas, A. Brush, K. S. McKinley, T. Mytkowicz, and R. Ziola, “The

latency, accuracy, and battery (lab) abstraction: Programmer productivity and

energy e�ciency for continuous mobile context sensing,”

ACM SIGPLAN Notices, vol. 48, no. 10, pp. 661–676, 2013.

[31] A. Canino and Y. D. Liu, “Proactive and adaptive energy-aware programming

with mixed typechecking,”

ACM SIGPLAN Notices, vol. 52, no. 6, pp. 217–232, 2017.

[32] H. Mao, R. Netravali, and M. Alizadeh,

“Neural adaptive video streaming with pensieve,” in Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, ACM,

2017, pp. 197–210.

[33] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,

“Chameleon: Scalable adaptation of video analytics,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication, ACM,

2018, pp. 253–266.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

networks with pruning, trained quantization and hu�man coding,”

arXiv preprint arXiv:1510.00149, 2015.

