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Chapter 1

Introduction

Claim watching is the insurer’s activity of monitoring the cost development of a

single claim. This procedure includes different activities that involve both categorical

variables and non-categorical variables. In particular, the non-categorical variables

are more concerned with the payments, and the activity of predicting these variables

is known as Individual claim reserving. The categorical variables are related to the

claim status. For example they are used to model if a claim is closed, if it will

involve a lawyer, what kind of payment it needs, etc. Obviously we can observe the

single claim history until the present day, but an insurance company would like to

know what will be the development path of that claim in the next years. That’s why

different methods of prediction have been proposed. Some of them involve machine

learning. In particular this thesis is based on the methods proposed originally by

Mario Wuthrich [9] and then developed in the article "Claim watching and individual

claims reserving using classification and regression trees" [3]. The aim of this thesis is

to start from the basis described in this paper and to optimize the CART techniques

and then compare them with a bootstrapped method such as Random Forest. In

practise we apply these algorithms to the Italian Motor insurance line, including

CARD and NoCARD procedures.

In this thesis, the main objective is to highlight the comparison between CART and

Random Forest, in terms of overall performance and, most of all, in term of stability

in both aggregate and, in particular, individual claims analysis. The structure of

the chapters has been chosen to allow the reader to understand the theory behind
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the practical implementation of the model and the reasons of the choices made

during the development of the software. The first chapter regards the explanation of

the model proposed in the paper [3]. The second chapter introduces the theory of

CART and Random Forest, with a particular attention to the R implementation

of the algorithms, to show pros and cons of both the models, and their usability in

the motor insurance field. The third chapter explains practically the structure of

the code and the improvements made during the period of work. In particular the

differences and the problems related to CART and Random Forest will be shown,

plus a brief overview of two likelihoods methods, that are still in the initial phase

of development. Finally, in the last chapter it is possible to see the results of the

methods that have been previously explained and some considerations about them.

It is important to stress that in all the thesis, for privacy reasons, data origin will be

never mentioned, such as the real values of the variables. They have been masked to

be unrecognizable, but their meaning is still consistent and meaningful, as it was

originally.
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1.1 Model Description

The aim of this chapter is to explain the theoretical idea behind the methods

proposed, without going into the details of the class of algorithms used. In fact the

model proposed can be implemented with different algorithms. Here the focus is

to highlight the concepts that will help the reader to understand the practical part

discussed in chapter 3.

In a non-life environment, we are interested in the individual claim development in

the years (or in the unit of time used by the company). In particular this means that

we want to know different information about the single claim. The typical claim

watching problem can be expressed in the following form:

E[YC
t+τ |Ft] = µ(xC

t ), τ > 0

where:

• Y C
t+τ is the response variable

• xC
t is the vector of the covariates

• Ft is the information available at time t

• µ is the predictor function, estimated from the data

These information are typically related to each other and they can be represented as

quantitative or qualitative variables. For example questions about the claim status

or the type of damage related to the claim need a qualitative response. Questions

about the payments need a quantitative response.

In the software that we developed we address these problems in particular:

• Claim status (open or closed)

• Type of payment (CARD or NoCARD)

• Type of damage (Objects, people, both)

• CARD payment

• NoCARD payment
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• CARD reserve

• NoCARD reserve

As we can notice, the first three elements of the list require a categorical response,

while the others require a quantitative response. In machine learning these are

two different class of problems. The first is known as Classification, the second is

called Regression. In general, in the first case we have some observations and we

want to assign a label to each of them by choosing one from a well specified set of

classes. In the second case, we have again observations, but now we want to assign

an estimated value that is the result of some kind of aggregation function. Obviously

these problems cannot be solved by the same model. In fact there are models for

classification and models for regression. We will see in the next chapter how the same

idea of model needs to be modified in order to address these two different types of

problem in the case of Trees. That’s why the model proposed by Prof. De Felice and

Prof. Moriconi is composed by two parts: Frequency and Severity. The Frequency

part is composed by the classification model. It is used for the prediction of the event

occurrences. The Severity part is used to solve the regression problems related to

the paid amounts or the case reserves. It is also called conditional severity, because

its predictions are conditioned on the responses of the Frequency model. This means,

for example, that we estimate the amount of payment of type CARD, only if this

type of payment has been predicted by the frequency model. The predictions that

we obtain are called one-period prediction, because given the information available

at time t, the model is able to predict only the responses at time t + 1. However

we will see that it can be used also for multi-period predictions. Before going into

further details, we need to have a basic knowledge of the covariates used and the

general notation.

First of all we have to specify that the covariates can be divided into two classes:

• Static

• Dynamic

The static variables are fixed for all the life of the claims. They are usually used

to identify the claims and some of its fixed features. The dynamic variables can
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change during the life of the claims, depending on the events that can happen. They

are very useful to keep track of the history of a single claim. In fact they are time

dependent, so we have to store the value of the same variable in different moments

because it can vary, and it contains important information that have to be used

for the predictions. A possible drawback of this variation is that the feature vector

increases as time passes. That means that the model has to be able to handle

different input dimensions, and we need a large amount of space to store all these

data. In our particular study case we have these fixed variables for each claim:

• Accident year

The year in which the claim has happened. It is usually indicated with the

letter i, where i = 1, ..., I.

• Reporting delay

Claims can be reported with delay with respect to the accident year. This

delay is indicated with the letter j with j = 0, 1..., J . The reporting date of a

claim with accident year i and reporting delay j is i + j.

• Claims identification (cc)

It is a code used to identify each specific claim.

The dynamic variables are instead:

• CaseRCA/CaseRNC

These are the amounts that the company reserves for the claims with CARD

and NoCARD payments. They are quantitative variables.

• L

This is a categorical variable that can assume only two values: 0 and 1. 1

means that the claims is involved in a lawsuit, 0 the opposite.

• Z

Categorical variable that indicates if a claim is opened (0), or closed (1). A

closed claim can be opened again.
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• PagcumCA/PagcumNC

Sum of the CARD and NoCARD payments in the years for a single claim.

• RCA/RNC

Categorical variable that indicates if claims require a CARD or NoCARD case

reserve. In this case the value is 1, otherwise is 0. A claim is allowed to have

both types of payment.

• TipoDnMax

Categorical variable used to identify the type of damage of a claim. It can be

0 if there is no damage, 1 if it involves only material things, 2 if it involves

people, 3 if it involves both.

• TipoDnRis

Categorical variable that specifies the type of damage that needs a reserve.

• YCA/YNC

Categorical variable that indicates if a payment has been done in the observation

year. It can be 0 if there is no payment, 1 otherwise.

So,in general, the matrix of covariates has a dynamic number of components,

with a specific structure that can be represented using column vectors that are

related to the static variables and to the dynamic ones for each observation year.

We can use the following notation to represent this idea:

x
(ν)
i,j|k = (A(ν)

i,j , B
(ν)
i,j|0, ...., B

(ν)
i,j|k)

where A
(ν)
i,j is the vector of static variables, B

(ν)
i,j|h ,with h = 0, .., k, is the vector

of dynamic variables observed in year i + j + h. The dimension of the B vectors

increases when h increases. In fact the variables that has been predicted for the

current year become covariates for the subsequent year. This is called dynamic

modeling. This is the key idea that allows this model to be used for multi-period

predictions.

Before going into the details of the train and test sets, we have to introduce a

fundamental variable used to define the models. It is the time-lag l. A generic
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random variable X
(ν)
i,j|k, observed at time t = i + j + k, has l = j + k = t − i This

variable allows us to redefine the prediction problem as:

E[Y(ν)
i,j|k+1|Fi+j+k] = µl(x

(ν)
i,j|k)

The prediction function depends only on the time-lag l. This means that it can

be applied to all the features that have the same time lag.

The following organization of data is a direct consequence of the previous statement.

In fact, both for Frequency and Severity we can define the set of lag observations as:

Dl = DC
l ∪ DP

l

with:

• DC
l = {(x(ν)

i,j|l−j , Y
(ν)

i,j|l−j+1); 1 ≤ i ≤ I − l − 1, j1 ≤ j ≤ l, 1 ≤ ν ≤ Ni,j} :

calibration set

• DP
l = {(x(ν)

I−l,j|l−j , ·); j
I−l ≤ j ≤ l, 1 ≤ ν ≤ NI−l,j} : prediction set

We can see from this definition, that the number of claims that we take into

account for each calibration is directly dependent on the lag l. The organization

of claims by lag shows a triangular structure, that is typical in claim reserving

problems.

To fully understand the model and its predictions, the last thing we have to explain

is the form of the response variables, in particular for the frequency model. In fact

Y
(ν)

i,j|k is a multi-event response. This means that multiple variables have to be filled

each time we get a prediction. So, the model should be able to associate multiple

output to the same input. Hence, the response variable should take the following

form:

F
(ν)
i,j|k = (hF

(ν)
i,j|k′ , h = 1, .., d) with hF

(ν)
i,j|k′ ∈ {0, 1}, h = 1, ..., d

This is a vector of categorical variables, that should be filled by the algorithm.

But this is not supported by the R package rpart, so it is necessary to define an

equivalent one-dimensional response. This response is formulated as:

W
(ν)
i,j|k+1 =

∑
2h−1

hF
(ν)
i,j|k+1 ∈ {0, ..., 2d − 1}
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and we can define the conditional distribution of W
(ν)
i,j|k+1 as:

W
(ν)
i,j|k+1|Fi+j+k ∼ Categorical(p(w)

j+k(x(ν)
i,j|k))

where p
(w)
j+k is a probability function. In our specific case we have 16 possible

responses. Each of them corresponds to a specific combination of the output. It is

possible to decompose the one-dimensional response in order to obtain all the single

responses we are interested in. This is what we do in the software.

For the multi-period predictions we follow the simulation approach. Thanks to the

objects calibrated on the calibration sets we are able to develop the path of each

claim, applying subsequently models corresponding to different lags. As previously

mentioned, the key to simulate the claim path is the dynamic modelling. This means

that the one-year responses become the covariates for the subsequent years. The

number of years that can be predicted by the simulation is limited by the maximum

number of lag that we can observe in our initial data, that is I − 2 We will see, in

chapter 3, how each variable is estimated with simulation in practise, and how many

of them are used in the motor insurance case.

Finally we have to say that the claims we talked about until now are called RBNS,

that stands for Reported But Not Settled. These are the claims that have been

reported and that have a development over the years. These are only one portion

of the final estimates. In fact there is also another category of claims that is

called IBNYR. These are the Incurred But Not Yet Reported. These are the claims

that happened during a year but that have not been reported yet, because of the

reporting delay. These claims have to be taken into account in order to provide

correct estimates for aggregate claim reserves. In the software we provide methods

to calculate these claims, but they go beyond the scope of this thesis.
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Chapter 2

Regression trees and Random

Forest

In this chapter we will see some basic theory elements behind CART and Random

Forest, to better understand how they work, their power and their weaknesses. In

both cases we are in the field of supervised learning. That means that we need

samples with associated correct labels or quantity of interest to train them. The

distinction depends on the type of task we want to perform. In fact these methods

are suitable for classification and regression tasks. In our specific case we use CART

and Random Forest both for classification (frequency section) and for regression

(severity section). We will see the properties of CART and the reason why they are

a good algorithm for claim watching and the cases in which Random Forest can

outperform CART, improving the performance of the general model.

As we saw in the previous chapter, we need to find a suitable function, that is able

to fit the training data and to make prediction on new observed data, with a small

error. In our specific case we have a lot of functions that have to be found, that are

related to the frequency and severity parts of each lag. In machine learning literature,

basic algorithms are commonly classified into two macro classes: parametric and

non-parametric. The parametric algorithms return a prediction function by fitting a

set of parameters that minimize some error function on the input dataset. Possible

example could be GLMs. The non-parametric algorithms have not a fixed structural

form for the prediction function, and they fit it to the dataset without any set
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of parameters. Parameters are usually associated with inputs covariates, so the

dimension of the parameters array is dependent on the input features. The lack of

these parameters makes the model more elastic. This is a very helpful property in

the case of the model we defined in chapter 1, because the number of input features

increases as lags increase. CART and Random Forest belong to this second class of

methods.

2.1 Classification And Regression Trees (CART)

The basic idea behind CART is to divide the feature space into regions, that

contain elements of the dataset that are similar among each other and that can

be efficiently represented by some sort of function, that could be, for example, the

sample mean. So when we use tree based models, we end up having the feature

space divided into a set of rectangles. More formally we can say that X (feature

space), is divided into a disjoint subset (Xt)t∈T , where T is a finite set of indexes.

The tree that is able to perform this division is a binary tree. For each parent node

we have two children nodes. The nodes that have not children are called leaves.

The number of leaves corresponds to the number of region (Xt)t∈T , where T now

becomes the index of the corresponding leaf. So when we want to assign a sample

to a specific region, we simply have to look at the leaf the sample belongs to. So,

each sample follows a specific path. This path depends on the nodes of the tree. In

fact each node corresponds to a specific condition. These conditions are boolean

questions that regard a single feature of the sample features vector. The feature can

be both categorical or non-categorical. So we need an algorithm that is able to split

the feature space in a sufficient number of regions and that can also choose what

are the most significant features to split on. How does it know the optimal depth of

the tree and the optimal choice of the conditions?

It needs a goodness of split criterion. What we said until now is valid both to

regression trees and decision trees. The difference in the grow algorithm is the

criterion we choose. Both for regression and classification we have different criteria,

that in R are implemented in the rpart function. They can be chosen thanks to

the parameter method. In the classification case the rpart routines use the impurity
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Figure 2.1. Gini impurity function

measures. Formally we can represent them as a general function:

I(A) =
∑C

i=1 f(piA)

where C is the number of classes, piA is the proportion of elements of class i in the

node A. In our code, the function used to calculate the the impurity is the Gini

index:

f(p) = p(1 − p)

It is a concave function, and f(1) = f(0) = 0. We can observe it in the figure 2.1.

Intuitively a leaf is called pure when all its elements belong to the same class. In

this case the impurity value is 0. The worst possible case is when the classes have a

50-50 splitting. There the function value is 0.5. Gini index is differentiable, that

makes it more feasible for numerical optimization. Moreover it is more sensitive

to changes in the node probabilities. In fact it is able to choose correctly the

best splitting between two, even if they produce the same misclassification rate.

For example we can consider a two-class problem with 400 samples for each class.

Suppose we have to evaluate two splits, one with (300,100) on the first node and

(100,300), and one with (200,400) and (200,0). Even if the misclassification rate is

0.25 for both, the second split produces a pure node, and it is probably better. Gini

index is able to assign a better value to the second split. How this index is actually
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used? Basically we start from a root node and we try to find the best split that

maximize the impurity reduction. In order to do this, the algorithm iterates over all

the features of the feature vector to choose the best to split on, and the value of

splitting in case it is a non-categorical variable. So it produces two new half-planes

defined as

H1(j, s) = {X|Xj ≤ s} and H2(j, s) = {X|Xj > s}

Each of this half-planes becomes a new root node and the same procedure is applied.

This is a recursive and greedy algorithm. The tree dimension is fundamental in

order to make good predictions. In fact a small tree could not be able to capture

possible differences among data, and, on the contrary, a very big tree could result

in overfitting data. Both cases produce bad performances with new observed data.

So we have to choose a good stopping criterion that avoids these problems. In the

R implementation of the algorithm, we have the possibility to control the stopping

criteria by choosing the value of some parameters that the function rpart takes as

input. In particular, the list of control parameters is passed as argument of the

control parameter of the function. Below we can see some examples:

• minsplit

The minimum number of samples in a node that are required by the routine

to try to perform a split on the node. The default value is 20.

• minbucket

The minimum number of observation in a leaf. The default value is minsplit/3

• maxdepth

The maximum number of internal nodes in the tree.

• cp

The threshold complexity parameter.

cp is a regularization parameter that penalizes the tree according to the number of

splits and the risk it has. The complete formula is

Rcp(T ) = R(T ) + cp ∗ |T | ∗ R(T1)
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where Rcp is the total risk, R(T ) is the risk associated to the current tree, T1

is the tree without splits and |T | is the number of splits in the tree. At each new

split, the R function associate a value for Rcp. We can follow this numerical random

example to visualize it.

CP nsplit rel error xerror xstd

1 0.066092 0 1.00000 0.50000 0.046311

2 0.040230 2 0.86782 0.73563 0.065081

3 0.034483 4 0.78736 0.91379 0.075656

4 0.022989 5 0.75287 1.01149 0.080396

5 0.019157 7 0.70690 1.17241 0.086526

6 0.011494 10 0.64943 1.21264 0.087764

7 0.010000 12 0.62644 1.31609 0.090890

As we can see, as the number of splits increase, the CP value decreases. When the

CP value is equal to the cp threshold parameter, the algorithm stops. This means

that a new split could not improve the error of at least cp. So if we assign 1 to the

cp parameter, the algorithm will produce a tree with no splits. On the contrary,

small values of cp correspond to large trees. In the previous example the value of cp

is cp = 0.01. When we call the rpart function for a classification task, the parameter

method allows us to specify all these options. In fact when we set it to the "class"

value, it chooses by default the Gini index as splitting criterion. The resulting tree

has a set of leaves that contains a subset of the original samples. The algorithm

associate to each leaf a probability distribution over all the classes and the most

probable class as predicted label. At prediction time we can choose if we want the

algorithm to return the probability distribution or simply the predicted label. We

can do this thanks to the predict function implemented in R, that allows to choose

the type of output thanks to the parameter type. In particular with the value "prob",

it returns a vector with the probability distribution associated to each new sample.

This is fundamental because allows us to simulate the development of a claim in the

software, and consequentially, to take into account some sort of variability.

In the regression case, the algorithm follows the same steps described above. However

there are some differences that are necessary to adapt it to the regression task. These
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differences are implemented in the rpart function when we specify "anova" as value

for the parameter method. "anova" implements a different splitting criterion, that

maximize the improvement among root and children in term of residual sum of

squares. More formally the quantity to be maximized is:

SST − (SSL + SSR) where SST =
∑

(yi − y)2

The summary statistic that is now used to describe the node is the sample mean

and the error is represented by the variance of y. The prediction error for new

observations is instead (ynew − y).

In both regression and classification, there is still another procedure that is used

to reduce the complexity of the model and to avoid overfitting. This procedure is

called pruning. Intuitively, when a tree is pruned, only a subtree of the original tree

is kept. With this method, we delete all the splits without a sufficient improvement

in the performance that justifies them. In R, this procedure is implemented in the

function prune, that takes as input two parameters: the tree to be pruned and the

cost complexity parameter (cp). This parameter is not the same we passed as input

to rpart. We can call it α, and it represent the cost of adding another node to the

tree. α is used as regularization parameter when we calculate the risk of a tree. The

objective is to find α such as the associated subtree has the minimum risk. The

problem is that we don’t know α a priori, so we need some methods to find it. In

the software we implement three different methods:

• 1-SD

In this case we pick a threshold by summing the minimum xerror (the cross

validation error on the training set), and the xstd associated to that error (its

standard deviation). Then we choose α by looking at the CP value of the first

split with the error below the threshold.

• Cross Validation

With this method we simply take the CP of the split with the minimum cross

validation error.
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• Elbow method

When we look at the sequence of the errors, we can often observe that it drops

at a certain point and then it stays flat. With this method we choose the CP

that makes the error steeply drop.

All the information we need to choose the best α are contained in the rpart object,

because they are automatically calculated.

At this point we have all the notions that are necessary to understand CART and

the code explanation of the chapter 3. The last things we have to talk about are pros

and cons of CART. In fact we said that they are a very powerful model, that are able

to adapt to inputs of different dimensions, thanks to their non-parametric nature.

Results they provide are interpretable and easy to visualize, both in case of regression

and classification. They are able to handle both categorical and non-categorical

covariates, even without normalization, and in a context with a lot of features, they

are able to identify the most relevant in order to create partitions. So why do we

want to upgrade our software with Random Forest? The answer is in one of the most

critical aspects of CART: instability. In fact CART are largely affected by the data

we use in the training set. This means that even a small change in the data could

result in a big change of the tree structure. In claim watching and in individual

claims reserving this could be a serious problem, because we register claims with

very different developments and we don’t want that the minority of particular claims

could affect the predictions of all the other claims.

2.2 Random Forest

Random forest algorithm was introduced by Breiman [1]. It is an ensemble

method. It is based on the combination of multiple predictors (trees), to improve the

general performance of the model. The idea is to use multiple trees and then use the

majority of votes to get the final prediction in the classification case, or to average

all the results in regression case. This is not the only improvement in Random

Forest. In fact, if we build many trees on the same dataset, we would obtain the

same results for all of them. So, to differentiate trees and to reduce the correlation
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among them, two randomization methods have been introduced. The first method

regards the dataset choice. From the original dataset, for each tree in the forest,

we draw bootstrap samples. On these samples we build the tree and we take its

vote. Bootstrap sampling consists in drawing observations with replacement from

the original dataset. This allows us to differentiate the trees. As we said, trees are

sensible to small change in the training data, and this help us to take into account

the effect of the data variability on our predictors. This is also what bagging does.

The problem here is that we still have a great correlation among the trees, and it has

been proved that it influences negatively the performance of the model. That’s why

Random forests make a another step in terms of randomness. In fact, not all the

possible features are considered when a tree is built. So, at training time, each tree

can use only a subset of the original covariates to produce the result. This leads to

an improvement both in term of robustness to outliers and in term of computational

time. The computational time improvement is very important because it makes the

algorithm feasible also for large datasets, as the one we use. At this point, we have

all the information required to formalize the algorithm.

1. Choose B as the number of trees in the forest

2. For b = 1 to B:

(a) Get bootstrap sample of size N

(b) Grow a tree Tb to the bootstrapped data. At each terminal node use a

subset of the original features to choose the best split

3. Output {Tb}B
1

With the ensemble of trees we make predictions as:

• f̂B(x) = 1
B

∑B
b=1 Tb(x) for Regression.

• ĈB(x) = majority vote{Ĉb(x)}B
1 for Classification. Ĉb(x) is the class predicted

by the bth tree.

To understand why this algorithm reduces variability we have to underline that trees

in Random Forest are i.d. (identically distributed). In this case, the variance of the
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average is

σ2
ave = ρσ2 + 1−ρ

B σ2

The second term goes to zero as B increases. The first term depends on ρ, the

pairwise correlation among trees. Reducing ρ results in reducing the variance of the

model. To reduce the correlation among trees is fundamental to choose properly the

number of features to use at each split when the trees are trained.

There are some guidelines about the parameters to choose to optimize the perfor-

mances of Random Forest. For classification, it is suggested to choose the covariates

for the splits from the square root of the total number of features, while for regression,

it is better to use only 1
3 of the total. These are good starting points, even if in

general it is better to tune to optimal number of features according to the problem

we are solving. In R, Random Forests are implemented in many packages, but the

one we use is the RandomForest package, from the CRAN repository. It contains

methods that allow us to tune the parameters we need and to keep track of the

evaluation metrics. In particular we train the forest with the method randomForest,

that is based on the original code proposed by Breiman and Cutler. Among all the

parameters that this method has, we focused our attention on:

• ntree

The number of trees to be trained. It corresponds to the B parameter. The

default value is 500.

• mtry

Percentage of variables that can be chosen as optimal split at each node. The

default values is √
p for classification and p

3 for regression. p is the total number

of features.

This method returns an object that contains many useful information about the

predictors and the results. In particular we have:

• confusion

It contains the confusion matrix in case of classification task.
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• mse

Vector of mean square errors for regression.

• predicted

The predicted values for the input data.

These information are based on the out-of-bag(OOB) samples. Due to the bootstrap

procedure, each observation is used only in a subset of the trees to calibrate them.

So the idea is to use as predictor, for each sample, the average of the trees that

have not that sample in the original bootstrapped dataset. This procedure is similar

to the cross validation method, and it is useful because it is a good indicator of

convergence for the Random Forest error at training time.

We said previously that increasing the value of B is useful to reduce the variance of

the total model. We have to ensure that this operation doesn’t result in overfitting

the data. In fact this could be one risk of a large model. But Random Forests are

robust in this sense. In fact it can be proved that

f̂rf (x) = EΘ|ZT (x; Θ(Z)) = limB→∞ f̂B
rf (x)

where T is the prediction function, conditioned on Θ, that is a vector that contains

the information about all the trees in the forest and that is dependent on the

training data Z. So when B goes to infinity, the estimate approximates the value of

the expectation.

Applying this limit to the previous formula of average variance we obtain :

V arf̂rf (x) = ρ(x)σ2(x)

that is the the variance evaluated at a single point x. The factors that compose this

equation are:

• σ2(x)

The sampling variance of a single tree of the forest.
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Figure 2.2. Boxplots of variance

• ρ(x) = corr[T (x; θ1(Z)), T (x; θ2(Z))]

The sampling correlation between any pairs of trees. It represents the theoretical

correlation between randomly drawn trees evaluated at x.

So, to reduce the variance of the ensemble, the first thing to do is to reduce the

correlation ρ. This can be achieved by reducing the number of variables to use at

each split. We can use m to represent this value. Intuitively, if we force the trees to

choose only from a small subset of variables at each split, it would be less probable

to obtain similar trees in the forest. To show graphically this statement, we can use

the results of a simulation with data coming from Gaussian random variable and

random noise. After training the Random Forest on this model many times and

with different values of m we obtain the boxplots in figure 2.2. The most important

aspect to highlight is that the effect of m is not relevant on the variance of the

single trees in the forest. This is the reason why the variance of the ensemble is

significantly lower than the variance of CART.

One last thing to say regards the depth of the trees in the forest. In fact the
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Figure 2.3. Boxplots of mean square error related to the minimum node size parameter

parameters that regularize the depth of the tree was fundamental in order to avoid

overfitting and to improve performances in case of CART. This is not the case with

Random Forest. As we can see in figure 2.3, the error of the Random Forest is poorly

affected by the minimum node size. In this case we are using as evaluation metric

the mean square error for regression, but it is also valid in classification case.
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Chapter 3

Code overview

At this point, we have all the important information that are necessary to go

through the software structure and to understand the choices we made during the

development of the techniques that we used to improve the performances and the

quality of the results, with particular attention to the individual claims reserve

analysis.

The previous chapter conclusion talks about the improvement in term of variance of

the Random Forest model, with respect to the CART techniques. This is the main

aspect that led us to try to implement the same model proposed in chapter 1 with

Random Forest. The aim of this choice is to find a method that is innovative in the

individual analysis field. In fact there are different methods that are largely used

for the aggregate analysis, that provide good results. CART estimates are quite

good too, but in the individual analysis, they show the drawbacks we talked about

in the previous chapter. This is the reason why they are not completely reliable

for this kind of analysis. When we look at the individual claims reserve estimates,

we analyze many claims that present a lot of differences among them. It usually

happens that the most difficult claims are the ones we are more interested in, but

they are also less probable to observe. So, we want to be accurate on them, but,

at the same time, we don’t want that a small part of data affects dramatically the

predictions of the most common claims. In this sense CART are less reliable. Hence,

with Random Forest, we want to provide another tool for this specific situation.

This chapter aim is to explain the general organization of the software and the way
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it works from a general point of view. Then it goes into the details of each method

in the correspondent paragraph.

3.1 Code structure

The original code structure is composed by four main sections:

• Input

• Calibration

• Simulation

• Report

In the first section, Input, there is the code related to the settings management.

In this part the user can choose from many different options in order to run the

program in the way he prefers. These options regard both data operations and

model specification. The options regarding data are common for all the methods.

They are used to specify static information about the input and to explicit if it needs

to be modified before passing it to the model. At this point the user has to specify

the minimum and the maximum accident years, such that the program can retrieve

the lag number. He can choose if there are specific data he wants to exclude, or if

he wants to use the entire dataset for the subsequent phases. He can also specify if

data regarding payments need to be inflated or not, and what inflation rate has to

be applied. Finally he can explicitly define what are the variables he want to use as

covariates in the model. He can choose both static and dynamic variables. They

are divided according to the part of the model they are used for. In fact variables

for frequency and severity both for claim watching and case reserve are stored in

different lists. At this point, all the options needed by the program are set and the

user can run the calibration.

In the calibration section, the models are actually trained. This process is obviously

dependent on the type of model the user chooses, but there are common actions

that are model independent. As explained in the first chapter, the training phase

is organized by lag. In practise this means that we repeat the same operations l
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times, and for each iteration we store the trained models. The differentiation among

the iterations is due to the data used. In fact, we said that data are different for

each lag and that the quantity of covariates increase as l increases. This is possible

thanks to queries that are defined to dynamically change at each iteration. They

use l to calculate the correct column indices to get in the dataset. In the original

database, data used for training contain all the information about the development

of the claims. But, at training time, we obviously have to distinguish the feature

columns and the response columns. We have to remember that, in dynamic modeling,

response columns become feature columns for the next years. This is the reason why

we have to calculate correctly the indices of the columns to use at each iteration.

There is a fixed number of queries at each iteration. Each query corresponds to a

specific part of the general model (frequency, severity, case reserve). Before using

the samples retrieved by the queries, it is necessary to explicitly define the response

variables. For the severity parts it is sufficient to choose the correct columns from

the dataset. For the frequency case, we have to define the response variable as

explained in the first chapter, by manipulating the correct columns to create a single

numeric label. It is the 16-states response variable explained in the first chapter.

We can observe an example, for one lag, of all the possible states in image 3.1.

The case reserve analysis needs a special mention. In fact it has its own simil-

frequency and simil-severity sections. They are similar to the frequency and severity

sections we discussed before, but for case reserve. They are based on the variables

RCA and RNC and on the case reserve estimates for the CARD and NoCARD

cases. This section is divided into four sub-levels, that come from the combination

of CARD and NoCARD with the states open and closed. This distinction is useful

to make the models more precise and to give them similar data at training time.

The last common part in the calibration is the estimate of the damage associated

to each claim. Machine learning models are not involved in this estimate. In this

case we use a transition probability matrix to define the probabilities of a claim to

change state during its life. This variable estimate is important because it usually

happens that the most complex claims are associated to a higher damage level.

Calibration process can require a lot of time to complete, depending on the quantity
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Figure 3.1. Example of response states for one lag. S1 and S2 refer to CARD and NoCARD

payments.
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Figure 3.2. Training data organized by lag.

of data used and to the model choices. So, the user can save the result of the

calibrations and use them in different simulation scenario.

Simulation is the section of the program that is able to use the calibrations obtained

in the previous step, to simulate the development of the claims and to fill the empty

cells of the matrix of data. We can use as example the figure 3.2. We can see data

organized by lag, observed at time I = 4. The highlighted cells represent the labelled

samples that we use at training time for each lag. The cells with only the x vector of

features are related to the one-year prediction problem. The other ones are related

to the multi-period prediction problem. The simulation section is able to fill both

this kind of cells, by applying subsequently to each single claim, the lag models it

needs to predict its path. The cells without the feature vector will be filled using

the response vector of the previous model as input of the next model. This process

is limited by the number of lags, hence by the number of models we can train.

As in the previous section, some parts of the code are specific for the chosen algorithm.

Anyway, we can look at the fixed operation we do. First of all, it is necessary to have

a calibration loaded in the environment. Thanks to this calibration, it is possible

to retrieve all the settings needed by the simulation to start. Here, the user can
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set other options that are independent from the settings defined in the first section.

One of these is related to the kind of analysis he wants to perform : individual,

aggregate or both. The aggregate analysis is able to produce an overall estimate of

the payments related to all the claims for each year. The individual analysis focus

the attention on the development of the single claim, for all the claims in the dataset

or only for a subset of them, specified by the user. Another option is related to the

estimate of the IBNYR claims. Although they are outside the scope of this thesis,

they have to be taken into consideration in the final cost estimate, in particular for

the aggregate analysis. Finally the user can also choose the number of iterations of

the simulation.

Now it is possible to use a unique query to retrieve all the data and to keep only the

claims at he maximum observation year I. This dataset is used to get subsets of

claims and it is completely rebuilt at each iteration. Each iteration of the simulation

contains another loop. This is a loop over the lags needed to develop the claims paths.

At the beginning of each iteration of this inner cycle, we have to select the claims

that we have to pass as input to the trained models of the current lag. For example,

if we have l = 0, we have to choose only the subset of claims that are happened in

the maximum accident year, because they are the only ones that need the models of

lag 0. At this point the input data are passed to the model of the frequency section

that predicts the 16-states response. The resulting value is then decomposed and it

is used to fill the correspondent columns in the dataset. In particular the predicted

variables are: YCA, YNC, Z and L. When all these categorical variables have been

predicted, we can simulate the severity responses. The interested variables for this

section are : pagCA and pagNC. The model used for the severity is conditioned on

the results obtained in the frequency. In fact we have a severity for the claims with

CARD payments and one for the claims with NoCARD payments. The choice of

the model depends on the values related to the CARD and NoCARD payments that

have been predicted in the frequency section.

In a similar way we can explain the case reserve section. It has indeed its own

simil-frequency and simil-severity sections, and their behavior is analogous to the

classic frequency and severity parts. The difference is in the variables we use now.
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The focus is now on RCA, RNC, caseRCA, caseRNC. Another difference regards the

type of claims we are interested in. In fact, the subset of data we choose is based

also on the variable Z, that has to be equal to 0. So, we model the case reserve only

for open claims. The value of Z has been predicted in the frequency section, hence,

in a sense, the case reserve modeling is conditioned on the main frequency-severity

original model. From the simil-frequency, we obtain another single response value,

that has to be decomposed. The results of this process are stored in RCA and RNC.

Then, before going to the simil-severity part, we need to make a distinction among

the open claims. We want to distinguish the claims with CARD and NoCARD

payments, and in addition we want also to differentiate claims that were previously

closed from the ones that were open. In this way we use four different models for

the simil-severity, that is exactly what happened at calibration time.

For all the severity models, the conditioning process doesn’t happen directly by

looking at the predicted result of the correspondent frequency model. Instead we

use the probability distributions over the classes, returned by the R function predict.

We use these distributions as parameters of the sample function, that use them as

weights vectors for the extraction of the response associated to each claim. In this

way we include another source of randomization in the simulation process.

The last operation in each iteration regards the collection of the results. The

method of collection depends on the type of results we want to observe (individual,

aggregate). When all the iterations are completed we use the stored value to compute

the summary statistics.

Finally in the last section, Report, we simply write an excel file to visualize these

statistics in a readable format.

3.2 CART approach

The original code implemented only the CART approach to the problem with

a limited number of options the user could choose. The possible settings in the

input section regarded the cost complexity parameter, the type of pruning, the

type of severity approach and the building criterion for the regression trees. In

particular, the user could choose between two types of severity: the first one is the
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classic severity, with CARD and NoCARD trees for each lag; the second one is a

more complex approach to the problem. In fact it consists in training regression

trees for each leaf of the frequency decision tree at each lag. Anyway, the complete

explanation of this approach goes outside the scope of the thesis, because we did

not change anything about it. The more interesting part is the one related to the

building criteria of the severity trees. We started from the original likelihood method,

based on the Normal distribution and we added also the LogNormal distribution.

But we will see these methods better in the next sections of this chapter.

We started working on the code with a small subset of the original data, because

the time required by the software to run with a greater quantity of samples was

too large and it did not allow us to make changes in a reasonable time. So, we

excluded from each lag some accident years. Another problem was related to the

type of report we have for the results. In fact, there we find the resulting statistics

of the whole simulation process, that is affected by the aggregation of the errors of

all the models in all the lags. This means that we have to face multiple optimization

problems, because each lag produces its own prediction functions, calibrated on its

own dataset. This create problems to find the errors sources. For example, errors on

the estimate of the case reserves in the last lag, may not be due to bad calibration

in the regression tree that produces them, but they can be originated by an error

produced by the decision tree calibrated in the first lag, and this is something that

actually happened. For this reason we had to run the code piecewise multiple times,

and we had to evaluate manually each part of each single lag. This is also the reason

why we did not perform an automatic process of parameters tuning. It would have

required a lot of time because it should have been performed on each model of

each lag, and it would have been specific for the data that we were using for the

development. So other users should have repeated the same process, but, again, it

is infeasible in terms of time. Hence, we started looking at the models by lag at

calibration time, evaluating the frequency part with the confusion matrices, and

the severity part with some distance functions(mean square error, residuals). One

of the first thing we noticed was the number of the incorrectly predicted samples.

Although it was small in general, it was too large if we looked to the samples by
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class. In fact, some classes were completely misclassified. These classes showed the

lowest number of training samples in the dataset. So, the algorithm maximized

its result by predicting correctly the samples related to the most frequent classes.

In particular the response 4 (claims closed without payments and without lawyer)

is the most present and its not comparable to the number of samples of all the

other classes. This depends on the fact that most of the reported claims are simple,

therefore, they are closed by the company quickly. For our algorithm this represents

a problem, because the dataset results unbalanced, and the most difficult claims are

misclassified because of the simplest ones. To solve this problem we introduced a

two-steps model for the frequency. In the first step we define a binary classification

problem, to distinguish between claims of class 4 and claims of the other classes.

Then, in the second step, we train the classical multi-class algorithm on all the

claims that are not in class 4. This upgrade resulted in a great improvement of the

confusion matrices and, consequently, in an improvement of the final estimates.

Problems with severity regard mainly the lack of smoothness in the predictions.

Sample mean is not always a good predictor for the individual claims reserve, and

its performances are worse when we prune the regression trees. This often result in a

tree that has zero or one splits. This means that the amount of predicted payments

its equal for most of the claims. We are currently working on this problem for CART,

with the Normal and LogNormal distributions for the severity trees. This is still

another reason that makes CART less feasible for individual analysis, even if they

still perform good on the aggregate. But this is due to a compensation effect among

claims.

3.3 Random Forest approach

Most of the considerations of the previous paragraph are valid for Random Forest

too. At first, we created new parts of code that were very similar to the existing ones,

but with the Random Forest algorithm. As for CART, we noticed that Random

Forest suffered the unbalanced classes problem too. So we used the two steps model

also in this case. Random Forest introduce also new parameters that have to be

chosen. Initially, we tried to run the code with the default parameters. First thing
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we had to limit was the number of trees in the forest. The default parameter value

was 500, and it worked with the initial subset of data, but it resulted in a memory

error when we tried to increase gradually the number of samples. So, this parameter

has to be decided taking into account the amount of data used, and so we added to

the Input section, the option to customize the configuration of the algorithm. We

decided also to include the mtry parameter to allow the user to change its value.

In fact, default values are generally suggested, but they are not optimal for every

situation. This is the case when the number of covariates is small. With the default

parameters it is possible to discard the most significant features at each split, and

this could result in a poor performance of the model. We have a similar situation in

the first lags, when the number of covariates is still low. In our case we have to pay

attention to the choice of this parameter, because for the first lags, increasing mtry

could improve the performance, but on the other hand, the same value for the latest

lags increases the correlation value among the trees, and, as we saw in chapter 3,

this reduce dramatically the benefits of using an ensemble method. This parameter

affects also the computational time required by the Calibration section. In general,

with default parameters, the calibration time of Random Forest is not significantly

greater than the time required by CART. This is due to the fact that, even if we are

training many trees, the number of splits that each tree has to try is dependent on

the number of variables we want to use. So, increasing them means increasing the

number of possible splits that the algorithm have to perform to find the best one.

On the other hand, with Random Forest, we have not to worry about the pruning

process anymore, because the depth of the trees has not an important effect on the

quality of the predictions.

Finally we have to say that, for severity, we cannot consider the second approach

explained in the CART section. This approach needs a well defined concept of leaf,

that is not present in Random Forest.

3.4 Normal and LogNormal distributions

Regression trees use, as prediction function, the means of the samples that are

grouped in each leaf. This means that at prediction time, the samples that fall
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into a leaf will receive the same predicted value. Even if this could still be good

in an aggregate analysis scenario, it lacks of precision when we want to perform

individual claim evaluation. Random Forest avoids this problem because average

over all the predictions made by each tree. To solve this problem with regression

trees, we implemented a different method of building the tree. This method is based

on the likelihood of distributions that can be chosen by the user. Until now we have

implemented the Normal and the LogNormal distribution. The main difference is in

the kind of estimate that we perform during the calibration. In fact now the tree

that uses these methods, is able to estimate the parameters of the chose distribution,

such as mean and variance. This is fundamental at simulation time, because now

the value are predicted by applying the estimated parameters to randomly draw

directly from the distribution. This allows us to take into account more variability

among claims of the same leaf.

To add this methods we had to implement new custom splitting criteria and all the

related functions required by the R documentation [5]. In particular in the Input

section we defined:

• Initialization function

• Evaluation function

• Splitting function

The initialization function defines the structure of the parameters needed and the

type of output response that will be returned. It can be also used to customize

the built-in functions such as rpart.plot and summary.rpart, to define new types

of output representations. The evaluation function returns a deviance value for

each node. Finally the splitting function performs the actual splitting process. It is

called for each covariate and it produces two output values: goodness and direction.

Goodness represent a measure of the importance of the split, direction is used to

decide if samples that are lower than the splitting point go to the left child or to the

right child of the node.

Both for Normal and LogNormal distribution, the goodness of split is given by ratio

between the sum of the children negative loglikelihood and the parent negative
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loglikelihood, subtracted from 1.

The estimated parameters for the Normal distribution are µ and σ. This allows

the algorithm to fit a Normal distribution for each node until it reaches the leaves.

Anyway, a normal distribution is not always able to fit the samples distributions,

because they can be very different among them and they can contain some important

values also in the tails. For this reason we implemented the LogNormal distribution,

that has a higher number of parameters. In fact, with µ and σ, that now are

respectively the location and scale parameters, we estimate also the skewness and

threshold β. These parameters allow to change the position and the direction of

the distribution. In particular, the skewness regards the direction of the sample

distribution, hence the position of the longest tail. β instead is used to change

the starting point of the fitted distribution. It is estimated from data and in our

code we do it by solving an optimization problem. To improve these methods we

did different tests, working both on the algorithm and on the input data.The most

relevant drawback is the computational time required at Calibration, that makes

difficult to test the algorithms in a reasonable time. For this reason we are still

working on them, to make them more accurate and more feasible for large quantity

of input data.
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Chapter 4

Results

In this chapter we present the results obtained with both CART and Random

Forest, without showing the actual values of the reserves, but focusing the attention

on the comparison between the algorithms. To perform the evaluation, we based on

a subset of claims that have 2008 as minimum accident year and 2013 as maximum

accident year. With this dataset, we calibrated the models with the CART approach

using the 1-SD pruning, cp = 10−3 and 50 elements in each leaf at mimimum. The

Random Forest was calibrated with ntree = 50 and the default values for mtry.

Both the algorithms use the two-steps model for frequency, the lag approach for the

severity and they performed 1000 iterations at Simulation. No inflation rates have

been applied. We focused our attention on the individual claims reserve analysis,

in case of CARD and NoCARD payments. For each claim we compared the real

reserve value with the predicted one, both for CART and Random Forest. Then, we

took the absolute value of the residuals of the CART predictions and we compared

them to the ones of the Random Forest. In image 4.1 we can observe, in the first pie

chart, the number of times the error of CART is higher than the error of Random

Forest on the same claim, in case of CARD reserve. It is evident the improvement

in term of quality of prediction. It is the same even for NoCARD reserve, as we can

see in figure 4.4.

Another crucial point we wanted to test is the stability of the Random Forest. To

do this, we created three different version of the original dataset: one with all the

claims, as the one we used until now, one with the 95% of the claims and one with
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Figure 4.1. Comparison between the error on CART and Random Forest with all the three

trained models for the CARD reserve.

the 90%. The discarded claims were chosen randomly. Then we calibrated again

both the models on the three datasets. Again we looked at the prediction of the

claims reserve. So, for each claim, we have three different predictions, one for each of

the three calibrated models. To check the stability we used the standard deviation

among these three predictions. Finally we obtained one sd for each claim, both

for CART and Random Forest. At this point we evaluated, claim by claim, the

difference between the standard deviation obtained with the two algorithms. In

figure 4.2 we can observe the number of times the CART standard deviation is higher

than the Random Forest standard deviation for CARD reserve, and in figure 4.3 we

can observe the same for NoCARD reserve. This happened in the majority of the

cases, and this is exactly the result we wanted to obtain. We evaluated also the error

on the results of the other two models, that we trained on the subsets of the original

dataset. We repeated the method that we used before. In the figure 4.1 we can

observe that in all the cases, Random Forest predictions for the CARD reserve are

more precise than the CART ones, even with a smaller number of training samples.

For NoCARD reserve, this result is even more evident (figure 4.4).
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Figure 4.2. Comparison between the sd on CART and Random Forest for CARD reserve

Figure 4.3. Comparison between the sd on CART and Random Forest for NoCARD

reserve
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Figure 4.4. Comparison between the error on CART and Random Forest with all the three

trained models for the NoCARD reserve.
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Chapter 5

Conclusion

As shown in the results, Random Forest algorithm provides good improvements

in the quality of the predictions and in the stability with respect to the data used

at training time. Moreover the computational time required by the algorithm is

still comparable to the training time required by CART. It keeps the same useful

properties of CART in term of elasticity and capability to individuate the most

important features, but at the same time it reduces drastically the risk of overfitting,

that in CART was mainly caused by the depth of the tree and by the parameters

that control it. This allows the user to have more freedom on the choice of the

parameters. In Random Forest, the most important thing to pay attention to is the

number of features used at each split. We noticed that this could create problems in

the aggregate analysis, because final predictions are affected by the errors at first

lags, where the number of covariates is still low, and, consequently, the probability

to not use an important feature for the split is higher. At the same time, increasing

the value of mtry for the first lags could result in increasing the correlation among

the trees in the last lags. For this reason we are planning to implement some ideas

that can solve this problem. For example we will add to the original dataset new

covariates, that are the result of linear combinations among the most important

features. Moreover we will try to introduce an higher customization level for the user.

We will try to let the user choose different parameters for each lag. These are some of

the upgrades we want to apply that go in a well defined direction: improve software

elasticity and usability. In fact, we have to remember that our final objective is not
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to maximize the performance of the model for the dataset we used for this thesis, but

to produce a software that is able to adapt efficiently to all the data the insurance

companies are willing to use it for. In this sense, Random Forest is a very good and

innovative way to follow for the individual claims analysis.
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