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Chapter 1

Introduction

The Fourth Industrial Revolution is fostering the emergence of new scenarios in
which vast volumes of data are shared among independent and potentially disparate
organizations. Often used on a cross-border basis to improve shared services in
several sectors, such as finance and health care. Despite its benefits, technological
advancements are introducing new security and privacy concerns associated with the
use of these data, which include factors such as collection, analysis, usage, storage,
and sharing. Indeed, in the case of personal information, incorrect usage, unsafe
storage, data leakage, or misuse can all compromise a person’s privacy. As a result,
when personal data is subject to federated computation, the availability and proper
use of privacy-preserving and fairness-aware mechanisms are presented as a key
element to be addressed to increase people’s trust and thus achieving the sustainable
and ethical realization of these scenarios.

Digital Health Products (DHP) in the eHealth sector, in particular, present
unique options to provide efficient, effective, cross-border high-quality healthcare
services [36]. Today, cutting-edge AI-based medical data analysis has promise
for early detection, faster diagnosis, better decision-making, and more successful
treatment, according to [1]. The use of AI-based DHP in healthcare operations,
services, and applications has created a significant and pressing need to combine
highly private medical data gathered from a variety of sources. It also includes
millions of parameters that must be learned from sufficiently big, curated datasets
to reach clinical-grade accuracy while remaining safe, fair, and equitable, as well as
generalizing well to previously unseen [58].

Federated learning (FL) is an architecture that aims to solve the problem of
data governance and privacy by collectively training algorithms without transferring
data. It was originally designed for a variety of domains, including mobile and edge
device use cases, but it has recently acquired popularity in healthcare applications
[46]. FL allows for collaborative insights, such as in the form of a consensus model,
without transferring patient data outside of the institutions’ firewalls. Instead, each
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participating institution’s ML process takes place locally, with only model weights
being shared. Models trained by FL can achieve performance levels comparable to
those trained on centrally hosted data sets and superior to models that only see
isolated single-institutional data, according to recent studies [46].

1.1 Document’s outline

The present thesis document is organized into six chapters.

The first chapter (1) introduces the reasons behind the need for a machine learning
solution to classify the 12-leads, encouraging the introduction of Federated Learning
in the architecture. The second chapter (2) describes the essential background to
understand the cardiological basics. It contains the human heart nature and all the
concepts associated with ECG monitoring, including the most common arrhythmia
types.

The third chapter (3) focuses on the state-of-the-art regarding the research topic.
It contains information for both ECG classification and Federated Learning. In
the fourth chapter (4), the analytical methodologies and tools are introduced and
explained in detail.

The fifth chapter (5) it is exposed the results of analyzing the proposed data
under both the Centralized and Federated Learning environment. Finally, the last
chapter (6) is dedicated to the overall conclusions achieved by the research and to
possible future developments.
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Chapter 2

Cardiological fundamentals

[21] "An electrocardiogram (ECG) is a measure of how the electrical activity of
the heart changes over time, as action potentials within each myocyte propagate
throughout the heart as a whole during each cardiac cycle. In other words, the ECG
is the recording of the cumulative signals produced by populations of cells eliciting
changes in their membrane potentials at a given point in time. The ECG provides
specific waveforms of electrical differences when the atria and ventricles depolarize
and repolarize."

2.1 The human heart nature

For the purposes of an ECG, the human body can be thought of as a large
volume conductor. It is made up of tissues and a conductive media in which the
heart is suspended. The heart contracts during the cardiac cycle in response to
coordinated action potentials traveling through the chambers of the heart. One
section of the heart tissue is depolarized, while another is at rest or polarized, as is
usual.

The intensity of the voltages observed is determined by the electrodes’ orientation
in relation to the dipole ends. The signal amplitudes are proportional to the mass
of tissue used to create the dipole at any particular time. Electrodes are typically
placed on the skin’s surface to detect the voltages of these electrical fields, giving
rise to the ECG [21].
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Figure 2.1. After conduction begins at the sinoatrial node, cells in the atria begin to
depolarize. This creates an electrical wavefront that moves down toward the ventricles,
with polarized cells at the front. The separation of charge results in a dipole across the
heart (the large black arrow shows its direction) [21].

2.2 ECG’s history

The discovery of intrinsic electrical activity within the heart dates all the way
back to the 1840s. Carlo Matteucci, an Italian physicist, was the first to discover
that each heartbeat is accompanied by an electrical current in 1842. Emil DuBois-
Reymond, a German scientist, published the first action potential associated with
muscular contraction not long after. In 1856, Rudolph von Koelliker and Heinrich
Miller used a galvanometer to record the first cardiac action potential. Following
that, Augustus D. Waller recorded the first human ECG after Gabriel Lippmann
invented the capillary electrometer in the early 1870s. That first device is shown in
Figure 2.2.

Figure 2.2. Lippmann electrometer
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Willem Einthoven’s creation of the string galvanometer in 1901 was a key
milestone in cardiac electrocardiography. The next year, he published the first
ECG using his string galvanometer. Einthoven’s string galvanometer consisted of
a huge electromagnet with a thin silver-coated string stretched across it; electric
currents passing through the thread caused the string to move from side to side in
the electromagnet’s magnetic field.

Einthoven made yet another significant addition to cardiac electrophysiology in
1912, when he discovered a mathematical link between the direction and size of the
deflections recorded by the three limb leads. Einthoven’s triangle is the name for
this hypothesis. Before Frank Wilson described unipolar leads and the precordial
lead configuration, the typical three-limb leads were used for three decades. The
traditional Einthoven limb leads, as well as the precordial and unipolar limb leads
based on Wilson’s work, make up the 12-lead ECG layout now in use.

This instrument was initially manufactured in 1905 by the Cambridge Scientific
Instrument Company in London. Electrical impulses were sent from a hospital over
a mile away to Einthoven’s laboratory via a telephone cable. Bedside machines, on
the other hand, were not available until the 1920s. The Sanborn Company produced
a smaller version of the unit in 1935 that weighed only about 25 pounds.

Figure 2.3. Holter-Edan ECG device

With Norman Jeff Holter’s invention of the Holter monitor in 1949, the use of
ECG in a nonclinical context became viable. The first iteration of this device was
a 75-pound backpack that could record the ECG continually and send the signals
via radio. The size of subsequent iterations of such devices has been drastically
decreased, and the signal is now recorded digitally. Miniaturized devices now allow
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patients to be monitored for longer periods of time (typically 24 hours) to aid in
the diagnosis of any rhythm or ischemic heart disease concerns. One of the latest
versions of the ECG is the one appearing in Figure 2.3.

2.3 The ECG Waveform

Signals of voltage versus time are created during the recording of an ECG, which
are generally shown in millivolts (mV) vs seconds. Figure 2.4 depicts a typical Lead
II ECG waveform. The negative electrode was placed on the right wrist and the
positive electrode on the left ankle for this Lead II ECG recording. As a result, a
series of peaks and waves can be seen, each of which corresponds to ventricular or
atrial depolarization and repolarization, with each segment of the signal indicating
a separate event in the cardiac cycle.

Figure 2.4. A typical ECG waveform for one cardiac cycle, measured from the Lead II
position [21].

Three principal waveforms are recorded by the ECG (2.4):

• The P-wave

• QRS complex

• T-wave.

The P-wave is created by depolarisation of the atria, the QRS by depolarisation
of the ventricles, and the T-wave by repolarisation of the ventricles. In most people,
these waveforms occur in a repeating rhythm called sinus rhythm, so called because
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it originates in the sinus node. In some people, a fourth waveform (not shown in the
previous image) called a U-wave can be seen. This is usually seen at slower heart
rates. The significance of the U-wave remains uncertain. Some authors think that it
represents the late stages of ventricular repolarisation, while others describe it as
a post-repolarisation phenomenon. U-wave abnormalities have been described in
various disease states including ischaemic heart disease [48].

The depolarization of the sinoatrial node, which is positioned within the right
atrium, starts the typical cardiac cycle. A conventional ECG will not detect this
early firing because the node does not have enough cells to provide a measurable
electrical potential. The right and left ventricles continue to depolarize after the P
wave, resulting in the recordable QRS complex, which lasts about 100 milliseconds.
The Q-wave is the initial negative deflection (if present), the R-wave is the largest
positive deflection, and the S-wave is the smallest positive deflection [49].

The T-wave is usually the last potential in a cardiac cycle, followed by the
P-wave of the next cycle, and so on. The ECG signal returns to baseline near the
conclusion of ventricular contraction, and the ventricles repolarize after contraction.
Atrial contractions have stopped and the atria are repolarizing at the same time as
the QRS complex. Because the effects of this widespread atrial repolarization are
obscured by the much larger volume of tissue engaged in ventricular depolarization,
it is not generally detectable in an ECG [21].

2.4 The 12-leads ECG

An ECG lead is a recording of the heart’s electrical activity as seen from one
side. As a result, when we take a 12-lead ECG, we’re recording cardiac electrical
activity from 12 different angles [49]. Assume you’re visiting a historic structure and
taking images of it. If you snap 12 photos from different angles around the structure,
each one will depict a distinct element, such as the front, sides, and back. They
work together to provide a three-dimensional record of the structure’s shape and
appearance. In a similar way, a 12-lead ECG creates a three-dimensional depiction
of the heart’s electrical activity.



8 2. Cardiological fundamentals

Figure 2.5. 12-leads normal ECG

Multiple images of the heart’s electrical activity can be recorded depending on
the type of machine utilized and the number of electrodes inserted. The usage of
12-lead ECG devices is common among health-care professionals. Twelve separate
electrical images of the heart are measured and recorded via a 12-lead ECG (Figure
2.5). In other words, it records the electrical activity of the heart as observed from
12 various angles. For example, Lead II monitors electrical activity as observed from
the heart’s inferior (diaphragmatic) surface. This lead is frequently used to measure
heart rate [57].

2.5 Arrhythmias Types

Analyzing arrhythmias is a difficult undertaking since every person on the planet
has a unique ECG that differs from everyone else’s, and one person’s ECG can change
dramatically from one second to the next. Memorizing some of the most common
ECG patterns and attempting to recognize them in the future is insufficient. Pattern
identification is a popular yet unintentional way of approaching arrhythmias via
ECG analysis ([16]). Often the Arrhythmias are divided into two global categories:

1. Rhythmic: Determined as a sequence of uneven beats

2. Morphological: Made of abnormal single beat

The work presented in the current thesis is focused on first type of classification.
Those arrhythmias have a categorization provided by SNOMED CT. The latter
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is the world’s most complete and precise terminology package, with widespread
acceptance around the world. It provides a common language for clinical IT systems,
making data exchange between them easier, safer, and more accurate. It covers
everything from processes and symptoms to clinical measurements, diagnosis, and
drugs, and it’s all in one place.

For the Physionet 2020 challenge were only considered around 27 arrhythmias,
which are the most frequently found regarding the ECG analysis. Nevertheless, along
the following paragraphs there is a deep explanation of all the possible arrhythmias.
To see the complete list of categories it is possible to read the GitHub cited in [37].

Arrhythmias are often divided into groups based on where the rhythm is initiated
by the pacemaker. The following are the most prevalent sites, and consequently the
primary arrhythmia categories:

1. Sinus

2. Atrial

3. Junctional

4. Ventricular

5. AV Blocks

2.5.1 Sinus

It is necessary to comprehend the ’benchmark’ rhythm, or hemodynamically
perfect rhythm, which is referred to as Normal Sinus Rhythm and sometimes
abbreviated to NSR, in order to assess cardiac rhythms (Figure 2.6). The following
features must be present in order for a rhythm to be classified as Normal Sinus
Rhythm:

Characteristic Status
Rhythm Regular

Rate 60-100/minute
p waves Present, upright, symmetrical, one before every QRS

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.1. Characteristics of Normal Sinus Rhythm
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Figure 2.6. Normal Sinus Rhythm ([16])

Sinus Bradycardia (SB): When a patient’s heart rate falls below 60 beats
per minute, they are said to be bradycardic. Slow heart rates can be seen in fit
and active people who are usually asymptomatic. When a patient’s heart rate falls
below 60 beats per minute, critical care nurses must be ready to assess for decreasing
cardiac output right away.

Characteristic Status
Rhythm Regular

Rate < 60/minute
p waves Present, upright, symmetrical, one before every QRS

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.2. Characteristics of Sinus Bradycardia

Figure 2.7. Sinus Bradycardia ([16])

Sinus Tachycardia (STach): When a patient’s heart rate exceeds 100 beats
per minute, they are labeled tachycardic, though most people don’t notice symptoms
until their heart rate exceeds 150 beats per minute. At this point, a critical care
nurse should look for signs and symptoms of decreased cardiac output (such as
hypotension or a loss of consciousness).
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Characteristic Status
Rhythm Regular

Rate >100/minute
p waves Present, upright, symmetrical, one before every QRS

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.3. Characteristics of Sinus Tachycardia

Figure 2.8. Sinus Tachycardia ([16])

Sinus Arrhythmia (SA): This arrhythmia is typically benign and do not require
any sort of treatment. It is seen in children and also in mechanically ventilated
patients.

Characteristic Status
Rhythm Regular

Rate 60-100/minute
p waves Present, upright, symmetrical, one before every QRS

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.4. Characteristics of Sinus Arrhythmia

Figure 2.9. Sinus Arrhythmia ([16])
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Wandering Atrial Pacemaker (WAP): It can be a normal aberration associ-
ated to Ischemia. There is no treatment required.

Characteristic Status
Rhythm Regular

Rate 60-100/minute
p waves P waves vary in shape and size

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.5. Characteristics of Wandering Atrial Pacemaker

Figure 2.10. Wandering Atrial Pacemaker ([16])

2.5.2 Atrial

The rhythms that originate in the atrial will be examined in the following section.
Premature atrial contractions, atrial flutter, atrial fibrillation, and supraventricular
tachycardia are examples of these arrhythmias. The key characteristics of cardiac
rhythms will be outlined, as well as nursing consequences and useful advice to help
critical care nurses correctly interpret atrial arrhythmias.

Premature Atrial Contractions (PAC): it can be a normal aberration,
Ischemia, or a signal of atrial irritability. It can lead to more serious atrial rhythms.
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Characteristic Status
Rhythm Early beat (PAC) causes rhythm to be irregular

Rate Underlying rhythm usually 60-100/minute
p waves P waves have different configuration than underlying rhythm

pri .12-.20 seconds in underlying rhythm
QRS .06-.10 seconds in underlying rhythm

Table 2.6. Characteristics of Premature Atrial Contractions

Figure 2.11. Premature Atrial Contractions ([16])

Atrial Flutter (AFL): It is caused by electrolyte imbalance, Hypertension,
Ischaemic heart disease, Congenital heart disease, Rheumatic valve disease. Also
after a cardiac surgery.

Characteristic Status
Rhythm Regular or irregular

Rate 60-100/minute (ventricular rate) 250-400 (atrial rate)
p waves No p waves present. Flutter waves (F waves) or ‘sawtooth’ waves

pri No pri since no p waves
QRS .06-.10 seconds

Table 2.7. Characteristics of Atrial Flutter
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Figure 2.12. Atrial Flutter ([16])

Atrial Fibrillation (AF): It is caused by Electrolyte imbalance, Hypertension,
Ischaemic heart disease, Congenital heart disease, Rheumatic valve disease. Also
following a cardiac surgery.

Characteristic Status
Rhythm Irregular

Rate 60-100/minute (ventricular rate) >400/minute (atrial rate)
p waves No p waves. Fibrillatory waves (f waves)

pri No No pri since no p waves
QRS .06-.10 seconds

Table 2.8. Characteristics of Atrial Fibrillation

Figure 2.13. Atrial Fibrillation ([16])

Supraventricular Tachycardia (SVT): It is caused by Congenital, heart
disease, Emotional stress, Physical stress or exertion, Illegal drugs (i.e. Cocaine or
ecstasy), Alcohol, Caffeine.
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Characteristic Status
Rhythm Regular

Rate 150-250/minute (atrial rate)
p waves P waves may not be seen at higher rates

pri .12-.20 seconds (if seen)
QRS .06-.10 seconds

Table 2.9. Characteristics of Supraventricular Tachycardia

Figure 2.14. Supraventricular Tachycardia ([16])

2.5.3 Junctional

Junctional rhythms are temporary and non-lethal rhythms that originate in the
AV node or junctional region. Inverted p waves are a typical feature of all junctional
rhythms. Premature junctional contractions, junctional rhythm, and paroxysmal
junctional tachycardia are among the rhythms covered in this section ([16]).

Premature Junctional Contraction (JPC): It is caused by Medication
toxicity (i.e. digoxin), Ischemia. There is not treatment required. Continue to
observe for increasing number of JPCs since this indicates increasing AV node
irritability.

Characteristic Status
Rhythm Early beat (PJC) causes the rhythm to be irregular

Rate 60-100/minute (underlying rhythm)
p waves P waves inverted or not seen in JPC

pri Not applicable
QRS .06-.10 seconds (in underlying rhythm)

Table 2.10. Characteristics of Premature Junctional Contraction
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Figure 2.15. Premature Junctional Contraction ([16])

Junctional Rhythm (AVJR): It is caused by Medication toxicity (i.e. digoxin)
or ischemia. It is necessary to treat causes.

Characteristic Status
Rhythm Regular

Rate <60/minute
p waves P waves inverted or absent

pri .12-.20 seconds
QRS .06-.10 seconds

Table 2.11. Characteristics of Junctional Rhythm

Figure 2.16. Junctional Rhythm ([16])

Accelerated Junctional Rhythm (AJR): It is caused by Medication toxicity
(i.e. digoxin) or ischemia. It is necessary to treat causes.

Characteristic Status
Rhythm Regular

Rate 60-100/minute
p waves P waves inverted or absent

pri Not applicable
QRS .06-.10 seconds

Table 2.12. Characteristics of Accelerated Junctional Rhythm
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Figure 2.17. Accelerated Junctional Rhythm ([16])

Paroxysmal Junctional Tachycardia (JT): It is caused by ischemia. Its
treatment is the same than SVT.

Characteristic Status
Rhythm Regular

Rate 150-250/minute
p waves P waves inverted or absent (if seen)

pri Not applicable
QRS .06-.10 seconds

Table 2.13. Characteristics of Paroxysmal Junctional Tachycardia

Figure 2.18. Paroxysmal Junctional Tachycardia ([16])

2.5.4 Ventricular

Premature ventricular contractions, ventricular tachycardia, and ventricular
fibrillation are examples of ventricular rhythms that can be induced by irritability,
as well as those that result from the failure of higher-level pacemakers. Irritability
patients have significantly various treatment options and consequences.

Premature Ventricular Contractions (PVC): It is caused by Ventricular
irritability (i.e.hypoxemia, acid-base imbalance, medications, electrolyte imbalance).
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Characteristic Status
Rhythm Early beat (PVC) causes the rhythm to be irregular

Rate 60-100/minute (underlying rhythm)
p waves None (in PVC)

pri None (in PVC)
QRS > .12 seconds (wide and bizzare)

Table 2.14. Characteristics of Premature Ventricular Contractions

Figure 2.19. Premature Ventricular Contractions ([16])

Ventricular Tachycardia (VTach): It is caused by Ventricular irritability
(i.e.hypoxemia, acid-base imbalance, medications, electrolyte imbalance).

Characteristic Status
Rhythm Regular

Rate 150-250/min
p waves None

pri None
QRS > .12 seconds (wide and bizzare)

Table 2.15. Characteristics of Premature Ventricular Contractions

Figure 2.20. Premature Ventricular Contractions ([16])
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Ventricular Fibrillation (VF): It is caused by Ventricular irritability (i.e.hypoxemia,
acid-base imbalance, medications, electrolyte imbalance).

Characteristic Status
Rhythm Irregular and chaotic

Rate Cannot calculate
p waves None

pri None
QRS None

Table 2.16. Characteristics of Ventricular Fibrillation

Figure 2.21. Ventricular Fibrillation ([16])

Idioventricular Rhythm (IR): It is caused by Ischemia, reperfusion post
thrombolytics.

Characteristic Status
Rhythm Regular

Rate <40/minute
p waves No p waves

pri No pri
QRS > .12 seconds (wide and bizarre)

Table 2.17. Characteristics of Idioventricular Rhythm
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Figure 2.22. Idioventricular Rhythm

2.5.5 AV Blocks

Electrical conduction failure via the myocardium is characterized by atrioventric-
ular (AV) blockages. Because AV blockages are linked to severe risk worsening or
haemodynamic impairment, the critical care nurse must recognize and treat them as
soon as possible. 1st degree heart block, 2nd degree heart block (Mobitz type 1 or
Wenkebach), and 3rd degree heart block are all types of AV block (complete heart
block). ([16])

First Degree AV Block (IAVB): It is caused by AV nodal disease, Enhanced
vagal tone (i.e. athletes), Myocarditis, Following Myocardial Infarction, Electrolyte
disturbances, Medications (i.e. Calcium channel blockers, Beta blockers).

Characteristic Status
Rhythm Regular

Rate 60-100/minute
p waves P waves normal

pri >.20 seconds
QRS .06-.10 seconds

Table 2.18. Characteristics of First Degree AV Block

Figure 2.23. First Degree AV Block ([16])

Second Degree Type I (IIAVB): It is caused by Ischemia. Usually benign,



2.5 Arrhythmias Types 21

with no treatment required. If patient becomes haemodynamically compromised
interventions for bradycardia should be considered.

Characteristic Status
Rhythm Regular or slightly irregular

Rate 60-100/minute
p waves P waves normal

pri Progressively gets longer until a beat is dropped
QRS .06-.10 seconds

Table 2.19. Characteristics of Second Degree Type I

Figure 2.24. Second Degree Type I ([16])
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Chapter 3

Related work

3.1 Bibliographical research methodology

To define the state-of-the-art for ECG classification and Federated learning I
performed a reduced Systematic Review. The latter is defined as [17] a ’process
of critically evaluating, summarizing, and seeking to reconcile the evidence.’ In
other words, it is a complete evaluation of literature that differs from a traditional
review in that it is undertaken in a methodical (or systematic) manner, following
a pre-specified process to avoid bias, with the goal of synthesizing the information
gathered.

Then the first step to perform the systematic review (SR or bibliographical
research) was to decide the reference and citation databases to use. In the table 3.1
are written the academic search engines used to retrieve the related documents.
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Search Engine Definition Link
Google Scholar A free web search engine that indexes the full

text or metadata of scholarly literature from a
variety of publishers and fields.

Link to GS

PubMed.gov Contains almost 34 million citations from
MEDLINE, life science journals, and online
books for biomedical literature.

Link to PM

IEEEXplore A research database that allows users to ac-
cess journal articles, conference proceedings,
technical standards, etc. in computer science,
electrical engineering, and electronics.

Link to IE

Scopus Has a huge collection of Physical Sciences and
Engineering papers, from foundational science
to novel and unique research, and spanning
many disciplines both theoretical and applied.

Link to SCs

Web Of Science It is the most reliable publisher-independent
worldwide citation database in the world.

Link to WoS

Papers with code Their goal is to provide a free and open library
that includes Machine Learning articles, code,
datasets, methodologies, and evaluation tables.

Link to PwC

Table 3.1. Databases (search engines) used to find documents

Each one of the search engines showed in the previous table work based on a
"query" which will contain the information of the topic desired. Besides, to get better
results, it is recommended to use multiple queries that may enrich the matter in
research. Those queries are listed below, grouped by the specific topic to be found
about:

1. Federated learning Generalities: To retrieve the conceptual definition and
approximations of Federated Learning I used the following queries:

• Federated learning arrhythmia
• Federated learning ECG
• Federated learning healthcare arrhythmia
• Federated learning healthcare iot
• Federated learning IoT ecg
• Federated learning healthcare low power mobile
• Federated learning PhysioNet
• Federated learning TensorFlow Lite

2. Options for ECG classification: To get the different methods used along
the history in the ECG classification theme I employed the next queries:

https://scholar.google.com/
https://pubmed.ncbi.nlm.nih.gov/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://paperswithcode.com/
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• Machine Learning ECG arrhythmia

• Deep Learning ECG arrhythmia

• Machine Learning IoT ECG arrhythmia

• Deep Learning IoT ECG arrhythmia

3. Non-IID Methods: To evaluate the different methods to deal with Non Inde-
pendent Nor Identical distributed (Non-IID) data, I search over the following
queries:

• Federated learning non iid

• Federated learning independent identically distributed

4. Imbalanced data: To check the techniques used b other authors regarding
the class (labels, response variable) imbalanced, I used the next queries:

• Imbalanced data ecg

• Imbalanced data federated learning

5. Metrics: To gather the most used metrics in both ECG and Federated
Learning ECG classifications I employed the following queries:

• Federated learning metrics

• ECG classification metric

6. Federated learning types: To understand the possible architectures of
Federated Learning I was based on the next queries:

• Federated learning architecture

• Types federated learning

7. Arrhythmia types: To know the different arrhythmia classifications, I
employed the following query:

• Cardiac Arrhythmia types

To gather in a proper and technical way all the documents and paers found I
employed the PRISMA Flow. As cited in [26], the latter is a flow diagram to depict
the flow of studies through the different phases of the systematic review. That
tool widely used for reporting original systematic reviews. Thus, the PRISMA flow
employed is depicted in Figure 3.1.
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Figure 3.1. Number of papers retrieved by year of publication and database

As shown in figure 3.1, along the phase of Identification, 1,827 articles where
found using the queries mentioned previously. It is important to mention that for
each one of those queries, I downloaded the results retrieved in BibTex and CSV
formats, depending on the search engine used. With the files saved it was possible
to retrieve some generalities from the documents. As an example, in figure 3.2 it is
depicted the number of papers found in each search database divided by publication
year.
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Figure 3.2. PRISMA flow for gathering documents

From the previous graph we can see that most of the papers where published
after 2017. That is because the concept of Federated Learning was introduced by
Google in that year. Nevertheless, ECG classification is a topics that has been
worked back in the 2000s. Moreover, the search engine that produced the highest
number of resources was Web Of Science.

Continuing with the analysis of figure 3.1, during the Screening phase I removed
the duplicated documents keeping 1,600. After a fast screening (only title), I ended
up with 317 possibly useful resources. During the eligibility phase, I screened the
latter (title and abstract), ending up with 209 promising papers. Next, after assessing
the keywords (given in the queries), I reached 176 papers that were not read but
were used to extract those keywords. On the other hand, I read 33 documents , from
where 2 where not useful. That’s the process how I found the 31 most useful papers
after the research.

3.2 ECG classification

After reading the aforementioned documents, I gather some relevant highlights
regarding the classification of ECG signals. Along the following paragraphs I
summarize the most important findings at each topic.
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3.2.1 Techniques to handle imbalanced data

In general, imbalanced data describes datasets in which the target class has an
unequal distribution of observations. For example, when one class label has a large
number of observations while the other has a small number.The authors who have
dealt with this topic followed different paths to tackle this issue. Authors from [9]
introduced a Balanced Accuracy (BACC) and the Matthew’s Correlation Coefficient
(MCC) to correct the fact that the classes don’t share a similar distribution. In the
article [43] it was introduced the Generative Adversarial Network (GAN) which deals
with imbalanced data by generating and using additional fake data for detection
purpose. In addition, [32] used the Synthetic Minority Oversampling Technique
(SMOTE), which is an oversampling technique.

Other approaches also include the so-called Ratio Loss ([59]) where the global
node estimates the composition data each round. When detecting an imbalanced
composition continuously, the system acknowledges the class imbalance and load
the Ratio Loss. One final possibility is the Recall of data in which one randomly
augment the lower class and in each training epoch change the selected individuals.
Then, there are enough possibilities tried in the literature, each of of them with their
pros and cons that can be verified further.

3.2.2 Methods for ECG classification

Along the literature I could find that a huge amount of diverse techniques have
been applied when classifying ECG’ arrhythmias. As an example [51], [56], and [33]
focused their efforts on Using Deep Neural Networks (Artificial Neural Networks and
Multi-layer Perceptron) to get a model that predicts the abnormality given the ECG
signal. In comparison, the author of [50] combined in his paper the use of Naïve
Bayes, Adaboost, Random Forest and Support Vector Machines to get the best
classifier for his paper. Finally, [10], [18] and [5] employed in their research some
Convolutional Neural Network approaches. Among them the highlighted Squeezenet,
Attention mechanism and Resnet as the champion methods to deal with the ECG
detection.
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Figure 3.3. Most used classification methods for ECG

As depicted in figure 3.3, the most used technique is the Convolutional Neural
Network (CNN). That one includes also some self-made Deep Neural Networks
(DNN). On the second place we find Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). An very close to them most of the author also used Long-
Short Term Memory (LSTM) algorithms. On the opposite, a few papers contributed
with techniques like GWOCNN, DFPA, DEEPCETNET, etc, which are also CNN
but that have specific alterations adapted to by the papers’ authors.

3.2.3 Metrics for ECG classification

With respect to ECG arrhythmia classification, there are plenty of measurements
employed in the literature. In figure 3.4 I show the most relevant metrics used in
this aim, gathered from the available articles and papers shown in chapter 3.1.
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Figure 3.4. Most used metrics for ECG

From the previous chart it is evident that the most used measure is the Accuracy.
In the second place, the F1-Score is often used. It is important to clarify that the
latter is preferred when dealing with unbalanced data, since it take into account both
Recall and Precision for its calculation. Some papers that consider the 4 mentioned
measures at the same time can be found in [45], [55] and [25].

3.3 Federated learning for ECG

Once provided materials in [17] were assessed, I’ve compiled a list of key points
about Federated Learning (FL) for ECG classification. I summarize the most
important findings at each issue in the next paragraphs.

3.3.1 Methods for ECG classification using Federated Learning

In the ambit of Federated Learning (FL), most of the authors used Deep Neural
Networks (DNN) and Convolutional Neural Networks (CNN). It has been noticed
that traditional Machine Learning algorithms (like SVM, Random Forest, etc) are
not usually employed for classify ECG signals in a FL context.

As an example, the authors of [45] used explainable artificial intelligence (XAI)
and deep CNN to create a revolutionary end-to-end framework for ECG-based
healthcare in a federated setting. With five-fold cross-validation, the trained classifier
exceeded previous studies, attaining accuracy of up to 94.5 percent and 98.9 percent
for arrhythmia diagnosis using noisy and clean data, respectively. In a federated
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scenario, they also presented a new communication cost reduction strategy that
reduces communication costs while improving the privacy of users’ data. The
reported results can be found on figure 3.5.

Figure 3.5. Comparison with previous studies for ECG classification [45]

To save critical communication bandwidth, the paper [47] adapted their suggested
federated learning architecture for ECG analysis by asynchronously updating the
shallow and deep model parameters of a proprietary CNN-based lightweight AI
model. The results showed that the suggested asynchronous federated learning
(Async-FL) approach can improve classification performance while simultaneously
ensuring privacy, flexibility to new subjects, and reducing network bandwidth usage.
Their proposed focus is in figure 3.6.

Figure 3.6. The main focus was to do asynchronously FL-based ECG method at the
ultra-edge nodes (UENs) to classify ECGs preserving patient-data privacy[47]

In order for Federated Learning to be performed on low-capacity devices in
real-world settings, the authors of [22] did an interesting job. For them, the training
process must focus not only on achieving the highest level of accuracy, but also on
lowering training time and resource consumption. In that study, they described a
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model training method that incorporates a dynamic epoch parameter. In Federated
Learning, they offered the BePOCH (Best Epoch) algorithm to determine the optimal
number of epochs every training round. In studies with medical datasets, they showed
that using the BePOCH recommended number of epochs reduces training time and
resource consumption while maintaining accuracy.

Figure 3.7. FL at various times throughout rounds. More epochs not always imply greater
precision. Model with 8 epochs has a poorer accuracy than model with 4 epochs. [22]

3.3.2 Methods to handle NON-IID data

Along the literature, the researches performed have been focused on tackling
the Non Independent Nor Identical distributed (Non-IID) problem that make the
models in FL under-perform. In the following part I present a summary of the most
relevant techniques used to deal with the mentioned issue.

Over/under-sampling: This is one of the most common techniques used to
balance the data. It consist of randomly creating (or removing) data to equate
distributions. The simplest way to do it is called Random Oversampling (ROS). The
latter is the process of randomly picking and replacing instances from the minority
class in the training dataset. There are other techniques like SMOTE [45]. SMOTE
is a data augmentation algorithm that creates synthetic data points depending on
the original data points. The technique can be thought of as a more advanced
variant of oversampling or as a specific data augmentation process. SMOTE has the
advantage of not creating duplicate data points, but rather synthetic data points
that are somewhat different from the original data points [32].
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Figure 3.8. The distribution of the up-sampled (re-balanced) dataset. [45]

Data sharing strategy: In the paper [65] they showed that for neural networks
trained with highly skewed non-IID data, where each client device trains just on
a single class of data, the accuracy of federated learning drops by up to 55%.
They also showed that the weight divergence, which can be measured by the Earth
mover’s distance (EMD) between the distribution over classes on each device and
the population distribution, can explain the loss in accuracy. As a solution, the
proposal was to establish a limited sample of data that is globally shared across all
edge devices to improve training on non-IID data. Their proposed data sharing is
exposed in the following image:

Figure 3.9. Illustration of the data-sharing strategy. [65]

Fedprox: FedProx uses Federated Average Aggregation (FedAvg) to improve
the local aim. It restricts the size of local updates directly. To limit the distance
between the local model and the global model, it adds an additional L2 regularization
term to the local objective function. This is a simple approach to keep the local
updates under control so that the averaged model stays close to the global optima.
To regulate the weight of the L2 regularization, a hyper-parameter is introduced
[30].
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FedNova: FedAvg is improved during the aggregation stage. Varying parties
may undertake different numbers of local steps (i.e., the number of mini-batches in
the local training) each round, according to the model. When parties have varying
processing power under the same time restriction, or when parties have various local
dataset sizes under the same number of local epochs and batch size, this can happen
[30].

SCAFFOLD: uses the variance reduction technique to model non-IID as in-
troducing variance among the parties. It introduces control variate for the server
and parties, which are used to predict the server model’s update direction and each
client’s update direction. The difference between these two update directions is then
used to approximate the drift of local training. By include the drift in the local
training, SCAFFOLD corrects the local updates [30].

Figure 3.10. Training curves of different approaches on CIFAR-10 with 100 parties and
sample fraction 0.1. [30]

Classifier Calibration with Virtual Representations (CCVR):It uses
virtual representations sampled from an estimated Gaussian mixture model to modify
the classifier. On popular federated learning benchmarks including as CIFAR-10,
CIFAR-100, and CINIC-10, experimental findings show that CCVR achieves state-
of-the-art performance [31].
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Figure 3.11. Accuracy (%) on CIFAR-10 with different degrees of heterogeneity (α ∈ {0.5,
0.1, 0.05}), CIFAR-100 and CINIC-10. [31]

Federated Cloning-and-Deletion (FedCD): It is a learning system that
involves iterative cloning of global models at predetermined milestones, adaptive
updating of a high-scoring subset of global models, and deletion of poor-performing
models to produce a specialized model for each archetype. Devices can self-select
into groups with similar data by maintaining various global models and updating
models that perform well on their local data. This allows for faster convergence as
well as increased accuracy [28].

Figure 3.12. Comparisons of test accuracy for the FedAvg and FedCD (dotted) algorithms.
[28]

Inverse Distance Aggregation (IDA): It is a new robust aggregation method
that reduces inconsistency among updated local parameters caused by the NON-IID
problem. The computation of the coefficients αk, which is based on the inverse
distance of each client parameter to the average model of all clients, lies at the heart
of that method. This enables the poisoned models, i.e. out-of-distribution models,
to be rejected or weighed less heavily [62].
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Figure 3.13. Investigation on unbalanced data distro. among the clients in FL, with 5
random classes per client, and random number of samples per client for HAM10k. [62]

3.3.3 Metrics for Federated Learning

Inside the FL framework the same metrics showed in 3.2.3 are often used. In
the ECG case, metrics like Accuracy, F1-Score, Recall and Precision are usually
employed to measure the overall capacity of the model to detect the diagnoses. In
addition, with the introduction of FL, some new metrics are considered to determine
the behaviour of the training stage while considering the local nodes. Those metrics
are explained in the following sections.

The authors of [11] provided a set of metrics for assessing individualized FL
models in terms of performance and fairness. They computed the following metrics
on the Quantum of Improvement (QoI) to quantify the per-user accuracy gains
acquired in terms of personalization:

Fi = Pi − max(Gi, Li) (3.1)

where P, G, and L relate to the personalized model’s accuracy, FedAvg and local
model of user I while Fi refers to user i’s QoI. In all equations, F will be referred as
the QoI from now on.

The QoI can have unfavorable results. This suggests that the tailored method
reduces the accuracy of a user’s personalized model rather than increasing it as
expected when compared to local or global models. In such instances, using evaluation
measures directly may lead to erroneous results interpretation. As a result, there
was a division of the QoI into two sets, each including the absolute QoI values: a set
of positive QoI users (U+) and a set of negative QoI users (U-). The introduced
measurements are then applied to both sets and interpreted accordingly.

Performance Metrics:

Percentage of User-models Improved (PUI): It is the percentage of users
that see an improvement in their local and global models. A personalized model
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should, in theory, increase the per-user accuracy of a large number of users.

PUI = COUNT (Fi)
COUNT (U) × 100, i ∈ U (U : Users) (3.2)

Median Percentage of Improvement (MPI): Calculated as Median(U+),
where the Median() function returns the input’s median and U+ is the QoI of the
group of users who improved their performance. A tailored model should have a
high median of QoI values among users who improve.

Average Percentage of Improvement (API): Measures the average percent-
age improvement among users who enhanced their performance (U+).

API =
∑

i∈U+ Fi

len(U+) (3.3)

In some cases, a customizing strategy does not improve users’ local and global
accuracy. In such instances, it is critical to disclose the personalized model’s per-user
accuracy decline. There was a definition of two metrics to evaluate the decreasing
accuracy because this drop cannot be obtained from the improvement measurements
(MPI and API).

Median Percentage of Decrease (MPD): Calculated in the same way as
MPI: Median(U-).

Average Percentage of Decrease (APD): It is the average percentage
reduction among users whose performance has reduced (U-).

Fairness Metrics

:

The aforementioned measures were extended to evaluate personalization strategies
that produce better results in terms of fairness. Based on the relation reflected by
the fairness metric, the QoI distribution among K users is more fair (uniform) under
technique t than t’ for two approaches t and t’.

Average Variance (AV): The AV is a measurement of data spread. It is
defined as follows:

AV = 1
K

K∑
i=1

(Fi(t) − F̂ (t))2 (3.4)
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A lower AV indicates that a tailored technique can provides more fairness
(uniformity).

Entropy: A measure that considers the magnitude of the QoI values. It can be
calculated as:

Entropy = −
K∑

i=1

Fi(t)∑K
i=1 Fi(t)

log
(

Fi(t)∑K
i=1 Fi(t)

)
(3.5)

A personalized technique with a bigger Entropy has a higher fairness potential.

Physical Metrics:

Some publications included metrics that deal with the physical part (with the
actual devices). For example, [23] provided the following measurements:

CPU and Memory Consumption: Figure 3.14 shows the CPU and memory
usage of a single worker node after 15 minutes of continuous training operations
(epoch=10). Figure 3.14 shows that practically all four cores of the CPU are utilised
when the client trains the local model for multiple epochs before transferring it to
the server in one communication round (98 percent of CPU). The findings show that
complex models with millions of parameters might be impossible to train on such
devices.

Figure 3.14. CPU and Memory Consumption

Training time and Temperature: When comparing the average training time
for different numbers of workers, the training time increases significantly as the
number of employees increments because the server waits for all clients to report
back their freshly trained model (depicted in Figure 3.15).
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Figure 3.15. Training Time and Device Temperature
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Chapter 4

Analytical techniques and tools

The parts that follow go over the most important analysis and approaches for
studying, modeling, and predicting ECG arrhythmia diagnosis.

4.1 Commonly used techniques and tools

4.1.1 Data Wrangling (DW)

Data wrangling is the act of cleaning and combining chaotic and difficult data
sets for easy access and analysis. With the amount of data and data sources growing
all the time, it’s more vital than ever to arrange massive volumes of data for analysis
[44]. To facilitate data consumption and organization, this method normally requires
manually transforming and mapping data from one raw format to another.

The most relevant Data Wrangling’s objectives are [44]:

• Collect data from a variety of sources in order to uncover "deeper intelligence."

• As soon as feasible, get reliable, actionable data into the hands of business
analysts.

• Reduce the amount of time it takes to collect and organize jumbled data before
it can be used.

• Allow data scientists and analysts to focus on data analysis instead of data
manipulation.

• Encourage senior executives in a company to improve their decision-making
skills.
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Figure 4.1. Main steps in Data Wrangling

The data wrangling approach typically consists of six iterative steps, as seen in
Figure 4.1, as mentioned by [52]:

1. Publishing: Data wranglers prepare data for downstream usage - whether by
a specific user or program - and identify any special actions or logic that were
employed to do so.

2. Discovering: Before delving into the data, it’s important to first have a better
knowledge of what’s there, since this will influence how you examine the data.

3. Validating: These are recurrent programming sequences that verify data
quality, consistency, and security. Validation can include things like ensuring
that qualities that should be distributed on a regular basis are distributed
uniformly.

4. Enrichment: "What more types of data can be obtained from what already
exists?" one can question during the data wrangling stage. or "What further
information could assist me in making better selections based on the current
data?"

5. Structuring: The data must be structured in this step of data wrangling
because raw data arrives in a range of formats and sizes.

6. Cleaning: By altering null values and establishing standard formats, data
wrangling aims to improve data quality.

4.1.2 Feature Engineering (FE)

The act of choosing, altering, and transforming raw data into features that
may be utilized in supervised learning is known as feature engineering. It may be
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necessary to build and train better features in order for machine learning to perform
well on new datasets.

Challenge features

Within the Physionet 2020, the organizers provided a code that calculated 14
features leveraged on the recordings. Those variables where based on the R-Peaks
and the RR interval.

R-Peaks: It refers to the R wave’s highest amplitude (as seen in Figure 2.4).

RR-Interval: On an ECG, it is the period between two consecutive R-waves of
the QRS signal. The former is determined by the sinus node’s inherent features as
well as autonomic factors.

Then, with the previous measures, the competence calculated the mean, median,
standard deviation, variance, skewness and kurtosis ONLY for the first lead. In
addition, the used the age and sex provided with the initial raw data.

Spectral features

Leveraged on the solution developed by [63], I implemented 636 features that
deals with the spectral part of the signals provided in the ECG. Spectral analysis
(where the spectral features were derived) is a frequently utilized tool for exploring
biomedical data. The waveform component forms, their time positions within the
cardiac cycle, and the regularity of the heart period all influence the ECG signal’s
spectrum ([53]).

Usually the Fourier Transform (FT) is used to extract information from signals
like ECG. Nevertheless, the Fourier Transform has the drawback of capturing global
frequency information, or frequencies that are present throughout a whole signal.
This type of signal decomposition may not be appropriate for many applications,
such as electrocardiography (ECG), which involves signals with short periods of
distinctive oscillation. The Wavelet Transform, which decomposes a function into a
set of wavelets, is another option that corrects the FT approach [54].

Figure 4.2. Wavelet representation
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A Wavelet is a time-localized wave-like oscillation; an example is shown in Figure
4.2. Scale and location are the two most basic features of wavelets. The scale (or
dilation) of a wavelet determines how "stretched" or "squished" it is. This attribute
has to do with how waves are characterized in terms of frequency. The wavelet’s
position in time is defined by its location (or space).

Then, the schema of features calculated is as follows. For each lead calculate:

1. Statistics: Percentiles (5, 25, 50, 75, 95), mean, standard deviation and
variance for the complete signals.

2. Calculate coefficients of Discrete Wavelet Transform (DWT). DWT
gets local frequencies for the signals. The Coefficients are calculated using the
function wavedec from the Python’s library pywt.

3. For each coefficient of DWT calculate:

• Statistics: Percentiles (5, 25, 50, 75, 95), mean, standard deviation and
variance.

• Shannon’s entropy (same that entropy): It’s related to the “amount
of information” of a variable. In other words, it measures information of
the distribution.

4.1.3 Exploratory Data Analysis (EDA)

Exploratory Data Analysis refers to the critical process of performing initial
investigations on data to identify patterns, spot anomalies, test hypotheses, and check
assumptions using summary statistics and graphical representations. It’s important
to initially comprehend the data before attempting to get as many insights as
possible. EDA is all about making sense of data before getting their hands dirty
with it. The major steps commonly examined in an EDA are shown in Figure 4.3.



4.1 Commonly used techniques and tools 45

Figure 4.3. Schema of a EDA

4.1.4 Unbalanced classes

One of the most difficult issues when training a model is modeling imbalanced
data [7]. When dealing with classification problems, the intended class balance is
quite important. When a dataset has an uneven distribution of classes, the models
attempt to learn only the dominant class, resulting in biased predictions.

One approach for addressing this issue is random sampling. Random resampling
can be accomplished in two ways, each with its own set of benefits and drawbacks:

• Oversampling: Replicating examples from the minority class.

• Undersampling: Deleting examples from the majority class.

To put it another way, both oversampling and undersampling include creating
bias by selecting more instances from one class than from another. The prior is
used to compensate for an imbalance that is already present in the data or that is
likely to occur if a perfectly random sample is obtained [13]. Because it makes no
assumptions about the data, random sampling is a naive strategy. To minimize the
data’s influence on the Machine Learning algorithm, a fresh adjusted version of the
data with a new class distribution is generated.

Random Oversampling and SMOTE were the two oversampling techniques
chosen for this project. Synthetic Minority Oversampling Technique is a technique
for creating synthetic samples for the minority class. Overcoming the problem of
overfitting produced by random oversampling is easier with this method. It focuses
on the feature space in order to generate new examples by interpolating between
positive occurrences that are near in proximity.
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Figure 4.4. SMOTE process illustration

SMOTE uses the k-nearest neighbor technique to create synthetic data. To make
them, it follows the instructions below. [7]:

1. Find the nearest neighbors of the feature vector.

2. Determine the distance between the two sample sites.

3. At random, the distance is multiplied by an integer between 0 and 1.

4. Find a new point on the line segment at the calculated distance.

5. Rep the procedure for each of the feature vectors that were discovered.

4.1.5 Machine Learning Models

Classifiers are the models provided in the following sections. These tools were
created with the goal of determining which behaviors are more likely to be associated
with various arrhythmia patterns. Each of these methods is widely utilized in various
data-driven systems, and they have demonstrated useful behavior in a variety of
classifying tasks, including ECG classification (3.2.2).

The various versions of the dataset were created using Python Notebooks in
Google Colab. This section will detail the key models that were tested and evaluated.

Model 1 - (XGB) XG-Boost algorithm

The XG-Boost technique, which has proven to be effective in a variety of classifi-
cation and regression problems, is the first attempt to classify the ECG signals. The
aforementioned algorithm has been used to a variety of sectors, including economics,
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credit rating, and health-related difficulties. The preceding are reasons to expect
that such a strategy will be effective in the field of arrhythmia detection today.

XG-Boost is a decision-tree-based ensemble Machine Learning approach that
uses gradient boosting ([8] [3]). When it comes to unstructured data prediction,
Artificial Neural Networks outperform all other algorithms or frameworks (text,
audio, pictures, etc.). However, for small-to-medium tabular data, such as the one
utilized in this challenge, decision tree-based algorithms are now rated best-in-class.

XG-Boost minimizes a loss function to provide an additive expansion of the
objective function, similar to gradient boosting. Because XG-Boost is only interested
in decision trees as base classifiers, the complexity of the trees is controlled using a
variation of the loss function.

L =
n∑

i=1
L(yi, ŷi) +

K∑
k=1

Θ(pk) (4.1)

Θ(w) = γZ + 1
2λ||w||2 (4.2)

The number of leaves on the tree is Z, and the leaf output scores are w ([3]).
This loss function can be included into the split criterion of decision trees, resulting
in a pre-pruning strategy. Trees with a greater γ value are easier to understand. The
amount of loss reduction gain required to separate an internal node is determined
by γ ([8]). Shrinkage is a regularization parameter in XG-Boost that decreases the
step size in the additive expansion. Finally, other techniques such as tree depth can
be utilized to keep the trees from becoming too complex. As a result of lowering
tree complexity, the models are trained faster and need less storage space.

Model 2 - (Catboost) Catboost

The second candidate in predicting the arrhythmia type for ECG is the Catboost
algorithm. The latter is a decision tree gradient boosting technique. It was created
by Yandex (with its final version in 2017) researchers and engineers and is used
by Yandex and other firms such as CERN, Cloudflare, and Careem taxi for search,
recommendation systems, personal assistant, self-driving cars, weather prediction,
and many other activities. Anyone can use it because it is open-source.
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Figure 4.5. Catboost (decision trees) illustration

The implementation of ordered boosting [42], a permutation-driven alternative
to the conventional approach, and a novel technique for processing category charac-
teristics are two key algorithmic innovations offered in CatBoost. Both strategies
were developed in order to combat a prediction shift induced by a specific type of
target leakage found in all current gradient boosting algorithm implementations.

Model 3 - (DNN) Deep Neural Networks

A Deep Neural Network is another method for predicting ECG diagnosis. A
DNN is a set of algorithms that attempts to recognize relationships in a batch of
data by mimicking how the human brain functions.

In this context, deep neural networks refer to organic or artificial systems of
neurons ([2]). Deep neural networks can adapt to changing input and produce the
best possible result without requiring the output criteria to be modified because
they can adapt to changing input. Neural networks, an artificial intelligence-based
concept, are swiftly gaining popularity in the development of trading systems.

Neural networks aid in time-series forecasting, algorithmic trading, securities
classification, credit risk modeling, and the generation of proprietary indicators and
price derivatives in the financial world ([14] [41]). The deep neural network of the
human brain is akin to a neural network. A "neuron" in a deep neural network is a
mathematical function that collects and categorizes data according to a set of rules.
The network closely resembles curve fitting and regression analysis, two statistical
methods.

Perceptrons are grouped in interconnected layers in a multi-layered perceptron
(MLP) [41], as indicated in Figure 4.6 . The input layer is responsible for collecting
input patterns. In the output layer, input patterns can be mapped to classifications
or output signals. Hidden layers fine-tune the input weightings until the neural
network’s margin of error is as little as possible. Hidden layers are supposed to
deduce salient elements from input data that have the ability to predict outcomes.
This is how feature extraction works, and it’s similar to how statistical methods
such as principal component analysis function ([41]).
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Figure 4.6. Deep Neural Network (Multi-layer Perceptron) schema

Model 4 - (LSTM) Long-Short Term Memory

Long short-term memory networks, are a type of Deep Learning network. It’s a
class of recurrent neural networks (RNNs) that can learn long-term dependencies,
which is useful for solving sequence prediction issues. Apart from single data points
like photos, LSTM has feedback connections, which means it can process the complete
sequence of data.

Figure 4.7. LSTM general schema

An LSTM model’s primary role is played by a memory cell called a ’cell state,’
which maintains its state across time. The horizontal line that runs through the top
of the diagram below represents the cell state. It can be compared to a conveyor
belt on which data just passes, unmodified [19].
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4.1.6 Metrics

It is vital to create metrics that will assist in determining whether a model is
better than others in order to determine whether it is better than others. There are
explanations for each of the metrics used in the following sections.

Confusion Matrix

A confusion matrix, like the one shown in table 4.1, demonstrates how well a
classification model works on test data for which the true values are known ([6]). The
confusion matrix is simple in itself, but the related nomenclature can be confusing. In
the following examples, I’ve created a hypothetical target variable called "Diagnose
A" with the values "Yes" (if the recording belongs to that diagnose) and "No" (if the
recording does not belong to that diagnose).

Actual Class
Predicted Class Diagnose A - YES = 1 Diagnose A - NO = 0
Diagnose A - YES = 1 True Positives (TP) False Positives (FP)
Diagnose A - NO = 0 False Negatives (FN) True Negatives (TN)

Table 4.1. Confusion Matrix representation

Here is an explanation for each of the matrix’s elements to understand the
preceding terminology ([6] [20]).

• True negatives (TN): The model predicted they wouldn’t have the diagnose A,
and they don’t.

• True positives (TP): These are examples when the model predicted yes (the
recording has the diagnose A), and they actually don’t.

• False positives (FP): The model projected that they would have the diagnose
A, but they don’t. (This is also referred to as a "Type I error.")

• False negatives (FN): The model anticipated that they would not have diagnose
A, yet they do. (This is often referred to as a "Type II error.")

Accuracy

Accuracy = TP + TN

TP + FP + FN + TN
(4.3)

The most basic performance metric is accuracy, which is defined as the proportion
of correctly predicted observations to all observations. If a model is correct, one
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would assume it is the best. Yes, accuracy is a relevant measure when the datasets
are symmetric and the number of false positives and false negatives is about equal.

Imagining the case when the training set contains 98 percent samples of class A
and 2% samples of class B, for example. The model may thus easily attain a 98%
training accuracy by simply guessing every training sample that belongs to class A.
When the same model is tested on a test set that contains 60% class A samples and
40% class B samples, the test accuracy reduces to 60%. As a result, classification
accuracy is poor, but it gives the image of great accuracy.

Then, when the cost of misclassification of minor class samples becomes significant,
([20]) the true issue appears. The cost of failing to diagnose, for example, a sick
person’s ailment is significantly greater than the expense of submitting a healthy
person to additional tests when dealing with a rare but lethal disorder.

Precision

Precision = TP

TP + FP
(4.4)

Precision [6] is the ratio of accurately predicted positive observations to total
expected positive observations. This measure answers the question of how many of
the drivers who were identified as drowsy actually drove. Precision is linked to a low
false-positive rate.

Precision is a good statistic to employ when the costs of False Positive are high.
Take, for example, the identification of email spam. In email spam detection, a
false positive happens when an email that is not spam (actual negative) is wrongly
identified as spam (predicted spam). If the precision of the spam detection model is
low, the email user may miss important emails.

Recall

Recall = TP

TP + FN
(4.5)

Recall [6] is the ratio of successfully predicted positive observations to all obser-
vations in the actual class. It’s meant to answer the question of how many drivers
who actually slept were labeled as such.

In the case of identifying sick patients, for example, if a sick patient (Actual
Positive) conducts the test and is predicted to be healthy (Predicted Negative). The
cost of False Negative will be quite high if the condition is infectious.
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F1 Score

F1Score = 2 ∗ (Recall ∗ Precision)
(Recall + Precision) (4.6)

The F1-Score is the weighted average of Precision and Recall. As a result, both
false positives and false negatives are taken into account in this score. F1 is often
more valuable than accuracy, despite the fact that it is less intuitive ([20] [6]). This
is especially true if the class distribution is unequal. When the costs of false positives
and false negatives are equal, accuracy works well. If the cost of false positives and
false negatives differs significantly, it is best to evaluate both Precision and Recall.

4.2 Federated learning (FL) fundamentals

4.2.1 Definition

Federated learning (FL) is a machine learning technique for training machine
learning models cooperatively on several devices or local servers in a decentralized
way, preserving data privacy and data ownership for the device/server owner [12].
FL is extremely advantageous for highly decentralized healthcare data, especially
with the growing prevalence of IoT devices for continuously capturing data and
monitoring health.

Figure 4.8. FL framework Overview

Figure 4.8 depicts a high-level view of the framework and how the technologies
will interact together. The IoT devices will collect data from users and train a local
deep learning model that is a copy of a global model that was previously received.
Following the completion of the local training phase, the models will collaborate
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to train a global model utilizing their updates rather than the raw data provided
by the users. These model updates indicate changes in the weights of the models
during the training process and do not reflect any private or personal information
about the users.

All participating models will send updates to a cloud server, where they will be
compiled and used to train the global model [47] [64]. Each device will receive a
new copy of the updated global model once the global model training procedure
is completed. As a result, the models will be trained and updated on a regular
basis without sharing any personal information. As a result, the framework will
support an IoT-based decentralized architecture in which models are spread among
IoT devices without the need for a centralized server to operate the model and serve
users. It will also protect users’ privacy by processing and analyzing their data on
IoT devices without disclosing it.

4.2.2 FL types

FL is divided into five categories [27] based on data partitioning, machine
learning models (ML Models), privacy mechanisms, communication architecture,
and federation scale.

Data Partitioning

The datasets of various clients share the same properties in Horizontal data
partitioning [61], however there is limited sample space intersection. All FL
architectures use horizontal partitioning the most. Aggregation at the server is
made easier by the fact that a standard model can be used for all clients; FedAvg is
typically used for aggregation. A dataset containing ONLY breast cancer patients
from a specific hospital would be a simple to comprehend example.

Figure 4.9. Data partition-based FL types
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When clients are exposed to distinct feature spaces but the same or similar
sample space, Vertical Data Partitioning comes into play. Entity alignment
algorithms are utilized to find overlapping samples among the client data, and this
overlapped data is used for training [27]. A dataset of students’ GPAs obtained from
institutions across the globe is a nice example. The feature space, which includes
the grading scale and evaluation measure, is distinct.

Horizontal and vertical data partitioning are combined in Hybrid Data Parti-
tioning. A set of universities intending to develop a FL System to assess student
achievement across branches is an easy to comprehend case for hybrid partitioning.

ML models

The issue statement and dataset are frequently used to determine the machine
learning models to use [27]. One of the most widely used models is neural networks
(NN). Apart from NNs, decision trees are also used, as they are highly efficient and
simple to understand. Models can be homogeneous or heterogeneous in a FL
system.

Figure 4.10. ML models-based FL types

In the case of the former, all clients use the same model, while the server uses
gradient aggregation. In the latter instance, however, there is no possibility of
aggregating because each client has a unique model. Aggregation methods are
substituted with ensemble methods like max voting at the server in the case of
heterogeneous models [27].

Privacy Mechanisms

The most controversial part of FL is how it deals with privacy. The main concept
is to prevent client information from leaking out. The server may decipher the
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data of clients without encryption by applying learning gradients. As a result, it’s
critical to hide the gradients. Differential privacy and cryptographic approaches are
commonly used to address privacy concerns in FL systems.

Figure 4.11. Privacy Mechanisms-based FL types

Differential privacy is a technique for hiding gradients by adding random noise
to data or model parameters. Due to the extra noise, this strategy has a considerable
negative in terms of model accuracy.

In FL systems, cryptographic approaches such as homomorphic encryption
and safe multi-party computation are commonly used. The process is straightforward:
clients send encrypted data to the server, the server processes the data, and then the
encrypted output is decrypted to obtain the final result. Despite the fact that these
methods provide protection against a wide range of threats, they are computationally
intensive.

Architecture

There are two types of FL system architecture: centralized and decentralized.
Both types of architecture work in the same way; the only difference is in client-server
communication. We have a second model that acts as a server in a centralized
architecture, and all parameter updates are done in this global model.
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Figure 4.12. Architecture-based FL types

In a decentralized design, on the other hand, clients take turns acting as
servers. Every epoch, a client is chosen at random to make global model changes
and send the global model to other clients.

Scale of Federation

The scale of federation can be divided into two types: cross-silo and cross-device.
To grasp the distinction between the two, relate cross-silo with organizations and
cross-devices with mobiles. When using cross-silo, the number of clients is usually
minimal, but they have a lot of computing power.

Figure 4.13. Scale of federation-based FL types

Regarding cross-device, the number of clients is enormous, but their computing
power is limited. Another consideration is reliability: while we can rely on organiza-
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tions (cross-silo) to be ready to train at all times, this is not the case with mobile
phones (cross-devices). There’s a chance that a bad network will make the gadget
unavailable.

4.2.3 Advantages and disadvantages

FL has a lot of advantages over traditional, centralized systems [4]. Some of the
most remarkable The upper hands of FL are:

• Data security: Keeping the training dataset on the devices eliminates the
need for a data pool for the model.

• Data diversity: Companies may be unable to merge datasets from diverse
sources due to challenges other than data security, such as network unavail-
ability in edge devices. Federated learning makes it easier to access diverse
data, even when data sources can only interact at particular periods.

• Continuous learning in real time: Models are continuously enhanced utiliz-
ing client input, eliminating the requirement to aggregate data for continuous
learning.

• Technology efficiency: Because federated learning models do not require
a single complex central server to evaluate data, this technique requires less
complex hardware.

On the other hand, FL need to deal with some relevant challenges. The most
common are:

• Investment requirements: FL models may necessitate frequent communica-
tion between nodes, which may necessitate an investment. This means that
high bandwidth and storage capacity are among the system requirements.

• Data Privacy: In FL, data is not collected on a single entity/server; instead,
numerous devices are used to collect and analyze data. Even though only
models, not raw data, are transferred to the central server, models can be
reverse engineered to identify client data, thereby increasing the attack sur-
face. Differential privacy, secure multiparty computation, and homomorphic
encryption are examples of privacy-enhancing technologies that can be utilized
to improve the data privacy capabilities of federated learning.

• Performance limitations: In FL, models from several devices are combined
to create a superior model. Device-specific factors may hinder the generalization
of models from some devices, lowering the accuracy of the model’s next
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generation. Researchers investigated scenarios in which one of the federation’s
members could use secret backdoors in the joint global model to intentionally
attack others.

4.2.4 Proposed approaches

In this study, I assume a group of healthcare organizations that wish to collectively
train an arrhythmia classification AI-based module without sharing their medical
records. For each organization, I envision a single, local module that coordinates all
the activities related to the collection, storage and analysis of the medical records.
Moreover, I assume that each organization has access to a set of high-definition
electrocardiogram monitoring devices which are used to record the heart activity of
the patients. Each monitoring session produces a short 12-channel ECG recording,
i.e., about 10 seconds, that is transferred from the device to the local, private,
database of the organization1. One or more healthcare experts examine the ECG
recordings and provide a diagnosis that is also stored in the local database.

I assume that the group of healthcare organization have agreed upon a single,
global, trusted server. The role of the global server is to coordinate all the activities
of the local modules. The global server does not maintain any database with medical
records. The only information stored is related to the common AI model and the
operating parameters of the system. I also assume that all organizations have
agreed on a common length for the ECG recordings, e.g., 10 seconds, and a common
sampling frequency, e.g., 500KHz2,3.

Periodically, the global server starts a global training session by notifying all the
local servers of the organizations that participate in the federation. Upon receiving
this notification, each organization independently goes through a local training
session. During a local training session, all the records available in the local, private,
database are analyzed using local computing resources based on a a processing
pipeline made up of four steps. First, each recordings is analyzed independently and
key information connected to the heartbeats that will help the training of the AI
model is extracted. Second, a feature normalization step follows where statistics are
used to scale the features to improve the robustness of the data. In coordination
with the global server, the local servers compute the necessary robust measures over
the federated dataset without however revealing any sensitive information. Third, all

1Remark that several different interconnection architectures are used in ECG technologies
available in the market and studied in the relevant literature, such as for example, wireless
technologies like WI-FI or BLE, or wire technologies such as USB, or non-volatile memory formats.
Such interconnections aspects are beyond the scope of this paper.

2Note that in case the recording have a different sampling frequency various algorithms exist in
the relevant literature to change the sampling frequency to a lower or a higher one without affecting
the accuracy.

3Note that ECG recordings that are longer than the agreed length can be split into multiple
ones without loss of generality.
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Figure 4.14. High-level overview of the proposed federated learning methodology and
software and hardware components.

the original records along with the normalized features are examined and a feature
selection is carried out with the goal to remove redundant features that may hinder
the performance of the trained model and reduce the computational cost, due to the
fact that they use a smaller number of features to train the local model. The fourth
and final data balancing step examines the diagnosis attached to all the records
in the local database to identify and remove any imbalances found between the
representation of arrhythmia classes thus increase the generalization power of the
model.

When all the local servers have completed the processing pipelines, under the
coordination of the global server, they start training their local models. When the
training is concluded, the weights of the resulting model are transmitted to the
global server. The global server examines all the individual weights using a weight
aggregation method and transmits the resulting model to all organizations. This
process is repeated until either the distributed optimization converges or a certain
number of steps is reached.

A high-level overview of the above methodology and the interconnection of the
software and hardware elements that make up the federated architecture are depicted
in figure 4.14.

After understanding the theory and characteristics behind the FL techniques I
decided to test two different approaches using the PhysioNet 2020 datasets.

The first approach can be visualized in Figure 4.15. It is going to be called the
Independent and Identically distributed (IID) approach.
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Figure 4.15. Approach 1: IDD approach

In the IID approach, I took the 6 databases (more information here 5.1) and
appended them all in a single dataset with 43,101 recordings. After, using the
analysis explained in figure 4.15, I ended up with 41,894 (filtering out the non-
representative classes). Afterwords, I randomly split the data to get train, validation
and test datasets. Afterwords, to get the IID splits I performed a Stratified random
split, dividing the whole train data in 4 parts. In that way, the distribution of the
labels (diagnoses) is the same for each partition.

The second (and more real) approach was called the (Non-IID) approach. It’s
structure is explained in figure 4.16.

Figure 4.16. Approach 2: Non-IID approach

In the Non-IID approach, I combined all six datasets (additional information here
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5.1) into a single dataset including 43,101 recordings. I came up with 41,894 after
utilizing the methodology described in figure 4.16 (filtering out the non-representative
classes). After that, I divided the data into train, validation, and test datasets at
random. Later, I used an Unstratified random sampling (with replacement) method
to acquire four separate samples from the original data. As a result, each sample
has a varied distribution of labels (diagnoses).
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Chapter 5

ECG Arrhythmias classification

5.1 Dataset employed

PhysioNet presents an annual series of biomedical ’Challenges’ that focus on
unsolved clinical and basic science challenges in collaboration with the annual
Computing in Cardiology (CinC) conferences. The National Institutes of Health
(NIH), Google, MathWorks, and the Gordon and Betty Moore Foundation have
all lent their support to these challenges. George Moody, of the Laboratory for
Computational Physiology (LCP), directed these Challenges for the first 15 years
(from 2000 to 2014), before retiring due to ill health. Gari Clifford of Emory
University and the Georgia Institute of Technology has been leading the Challenges
since 2015. In 2021, the ‘PhysioNet/Computing in Cardiology Challenges’ were
renamed the ‘George B. Moody PhysioNet Challenges’ to honor George’s lifetime
contributions to the discipline, particularly his seminal work on the Challenges [40].

The 2020 Challenge’s purpose is to use 12-lead ECG records to detect clinical
diagnosis. Starting from the clinical data provided, the participants must implement
an open-source algorithm that can automatically classify the cardiac abnormality or
abnormalities present in each 12-lead ECG recording and provide a probability or
confidence score for each of them, with an emphasis on 27 diagnoses 5.1 To determine
the winner, the trained models of the participants are run on hidden validation and
test sets and their performance is evaluated using a novel, expert-based evaluation
metric designed specifically for the 2020 Challenge. The team whose algorithm
achieves the highest score is the winner of the Challenge.
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Diagnosis Code Abbreviation
1st degree AV block 270492004 IAVB

Atrial fibrillation 164889003 AF
Atrial flutter 164890007 AFL
Bradycardia 426627000 Brady

Complete right bundle branch block 713427006 CRBBB
Incomplete right bundle branch block 713426002 IRBBB

Left anterior fascicular block 445118002 LAnFB
Left axis deviation 39732003 LAD

Left bundle branch block 164909002 LBBB
Low QRS voltages 251146004 LQRSV

Nonspecific intraventricular conduction disorder 698252002 NSIVCB
Pacing rhythm 10370003 PR

Premature atrial contraction 284470004 PAC
Premature ventricular contractions 427172004 PVC

Prolonged PR interval 164947007 LPR
Prolonged QT interval 111975006 LQT

Q wave abnormal 164917005 QAb
Right axis deviation 47665007 RAD

Right bundle branch block 59118001 RBBB
Sinus arrhythmia 427393009 SA
Sinus bradycardia 426177001 SB

Sinus rhythm 426783006 NSR
Sinus tachycardia 427084000 STach

Supraventricular premature beats 63593006 SVPB
T wave abnormal 164934002 Tab
T wave inversion 59931005 TInv

Ventricular premature beats 17338001 VPB

Table 5.1. Diagnoses, SNOMED CT codes and abbreviations for the 27 diagnoses that
were scored for the Challenge.

The data are from five different sources:

1. CPSC Database and CPSC-Extra Database

2. INCART Database

3. PTB and PTB-XL Database

4. The Georgia 12-lead ECG Challenge (G12EC) Database

5. Undisclosed Database

The first source consists of three databases from the China Physiological Signal
Challenge 2018 (CPSC2018), which took place in Nanjing, China at the 7th Interna-
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tional Conference on Biomedical Engineering and Biotechnology [38]: the original
public training dataset (CPSC), an unused dataset (CPSC-Extra), and the test
dataset (the hidden CPSC set). The first two were shared as training sets, while the
last one was split into validation and test set for the 2020 Challenge. This training
set consists of two sets of 6,877 (male: 3,699; female: 3,178) and 3,453 (male: 1,843;
female: 1,610) of 12-15 ECG recordings lasting from 6 seconds to 60 seconds. Each
recording was sampled at 500 Hz.

The second source is the public dataset from the St. Petersburg Institute of
Cardiological Technics (INCART) 12-lead Arrhythmia Database [15 V. Tihonenko,
A. Khaustov, S. Ivanov, A. Rivin, and E. Yakushenko, “St Petersburg INCART
12-lead arrhythmia database”, PhysioBank, PhysioToolkit, and PhysioNet, 2008,
doi: 10.13026/C2V88N.]. The dataset was shared as a training set. This database
consists of 74 annotated recordings extracted from 32 Holter records. Each record is
30 minutes long and contains 12 standard leads, each sampled at 257 Hz.

The third source from the Physikalisch Technische Bundesanstalt (PTB) includes
two public databases which were shared as training sets: the PTB Diagnostic
ECG Database and the PTB-XL, a large publicly available electrocardiography
dataset. The first PTB database contains 516 records (male: 377, female: 139).
Each recording was sampled at 1000 Hz. The PTB-XL contains 21,837 clinical
12-lead ECGs (male: 11,379 and female: 10,458) of 10 second length with a sampling
frequency of 500 Hz.

The fourth source is the Georgia 12-lead ECG Challenge (G12EC) Database.
This is a new database, representing a large population from the Southeastern United
States, and is split between the training, validation, and test sets. The validation
and test set comprised the hidden G12EC set. This training set contains 10,344
12-lead ECGs (male: 5,551, female: 4,793) of 10 second length with a sampling
frequency of 500 Hz.

The fifth source is a dataset from an undisclosed American institution that is
geographically distinct from the other dataset sources. This dataset has never been
posted publicly and contains 10,000 ECGs all retained as test data [38]. As the
mentioned dataset was not disclosed, I didn’t use that one in my experiments.

The actual count of all the diagnoses by each database can be found in Figure
5.1. That was obtained by taking the first arrtyhmia reported by each recording
since each patient could contain more than one diagnose based on its ECG.
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Figure 5.1. Number of recordings for each diagnosis by database

All data is provided in WFDB format. Each ECG recording has a binary
MATLAB v4 file for the ECG signal data and a text file in WFDB header format
describing the recording and patient attributes, including the diagnosis [39] [38] [15].
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5.2 Centralized Learning

To get an understanding of the best performances achievable with the mentioned
dataset I implemented a Centralized (or traditional) Learning. The latter means
that I applied the analytical tools mentioned in 4 over the complete dataset, without
dividing it into clients. Then the main processes and results are summarized in the
following literals.

5.2.1 Data wrangling

As mentioned in 4.1.1, the data wrangling process is usually the first step when
dealing with a data-oriented problem. In this case, I placed the data in a Google Drive
folder after downloading it from the official competition’s website [39]. Afterwords,
using Google Colaboratory I extracted and organized the information in Python.
The representation of the ECG along the 12-leads can be examined in Figure 5.2.

Figure 5.2. 12-lead ECG for recording S0033 of PTB database

Then, the whole data (all the databases) and the features mentioned in 4.1.2
where calculated. That process took almost 1 hour to run in an using the default
configuration of Google Colab. Besides, for each recording I selected the first diagnose
(arrhythmia) that appeared as the label to be predicted. The latter process ran in
about 2 minutes.

5.2.2 EDA

Once the big dataset was loaded, it contained a total of 43,101 recordings and
about 764 variables. From the latter, 650 where the features created and the
remaining 3 corresponded to the id of the recording, the database that it belongs to
and the label (response variable to be predicted). Then, the first analysis need was
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to examine if the features contained any missing value. Using the function bar from
the missingno library, I managed to explore the missing values. In figure 5.3 are
depicted only the 50 first features’ missing counts and percentage.

Figure 5.3. Missing counts and percentage for 50 features of the complete dataset

As shown in the previous chart, the missing percentage is considerably small
(less than 0.1%). For that reason, I decided to impute those missing values by using
the mean (average) of each attribute.

The second crucial aspect to investigate was the distribution of the response
variable. Then, within the plot 5.4 it is shown the absolute count of each diagnose
in the dataset.
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Figure 5.4. Label distribution for the complete dataset

As evidenced in the previous chart, there are too many arrhythmias that don’t
have a big participation. That can lead to problems when trying to infer the predicted
class of a recording, since there were not enough cases to learn the classifiers properly.
That why those diagnoses with a participation smaller than 150 records where
discarded from the analysis. With the previous filter, the selected data to work with
got a size of 41,894 recordings distributed as shown in figure 5.5.
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Figure 5.5. Number of recordings for each diagnosis by database for the filtered data

Besides, the final distribution of the labels ended up as shown in figure 5.6. As
expected, the most common diagnose was Normal Sinus Rhythm (NSR), which is
the normal status for a ECG. In addition. the arrhythmia with one of the smallest
participation turned out to be Sinus Arrhythmia (SA).

Figure 5.6. Label distribution for the filtered dataset

5.2.3 Feature Selection and normalization

In an analytical context, having a huge amount is a double-edged sword. On the
one hand, the more information existing to predict a phenomena, the better. On
the other hand, the computational time required to process to much information
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may lead to training times that are not affordable. Regarding the latter I decided to
perform a feature selection step in order to determine the most important features
to predict the arrhythmias.

features = l(leadi)_c_(coefficientj)_(operationk) (5.1)

Each 636 spectral feature is based on lead as l, their coefficient as c and operation
applied on it for example: mean, coefficient percentiles, standard deviation etc. Also,
leadi represents ECG lead number from 00-11, coefficientj represents a coefficient
number from Discrete Wavelet Transform(there are 5 coefficients in total 1-5) and
operationk represents the operation name like mean as average, standard deviation
as std, variance as var, percentiles represents as n5(percentile 5), n25(percentile
25), n50(percentile 50), n75(percentile 75), n95(percentile 95) and entropy applied
on coefficient get represented as c1-c5. At the end from each ECG lead, we get 53
features and in 53x12 we get 636 spectral features in total. Below in figure [5.7]
names of features are represented by above represented [5.1] morphology.

Figure 5.7. Feature importance from XG-Boost algorithm (only the 50 best)

The bar-plot in figure 5.7 depicted the most important features to predict the
classes obtained by means of the XG-Boost method. The latter provides an automatic
raking of the most relevant features to classifier the ECGs. I decided to take the
best 120 variables since they managed to get a good enough accuracy, compared
to the one obtained using all the features. The best features turned out to be the
Entropy for leads: 9, 11, 10; the percentile 5% for lead 6; and the Median for leads
1, 2.

As an additional tool to enhance the performance of the models there was
an implementation of features normalization. In this case I tried three different
techniques to transform the features to the same scale. The approaches tried
were provided by the sklearn library in Python. Those are: StandardScaler,
MaxMinScaler and RobustScaler. In the end, the scenario that provided the best
results was using RobustScaler. The latter uses statistics that are resistant to
outliers to scale features. The median is removed, and the data is scaled according
to the quantile range (defaults to IQR: Interquartile Range). The interquartile range
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(IQR) is the distance between the first and third quartiles (25th and 3rd quantiles)
(75th quantile).

5.2.4 Balancing classes (arrhythmias)

As depicted in 5.6, the diagnoses have a imbalanced characteristic. The latter
means that each category has a different participation over the data. That could
represent a problem in the performance of the classifiers that will be proposed.

Figure 5.8. Number of recordings for each diagnosis by database for the ROS oversampled
data

Then, two oversampling methods were proposed to deal with the imbalance
issue. The first one is called Random Oversampling (ROS). In the latter the
minority classes are replicated together with its features. Besides, a down-sampling
was applied to have a number of recording similar to the filtered dataset. In the
end, the ROS dataset had 43,200 recordings. And as depicted in figure 5.8, the
distribution of the labels is much more similar among the arrhythmia categories.
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Figure 5.9. Number of recordings for each diagnosis by database for the SMOTE oversam-
pled data

The second oversampling technique used was SMOTE (SMT) 4.1.4. In the end,
the SMOTE dataset had also 43,200 recordings. And as shown in figure 5.9, the
distribution of the labels is also similar among the arrhythmia categories.

5.2.5 Fitted models and results

With the previous pre-processing applied over the data, the following step was to
adjust some Machine Learning models to the ECG’s arrhythmias. During this step
also other scenarios and considerations were employed [35]. A detailed explanation
of the outlines is discussed in table 5.2.



74 5. ECG Arrhythmias classification

Characteristic Scenarios Best approach
Data Split %Train-%Validation-%Test:

Option 1: 60%-20%-20%
Option 2: 70%-10%-10%
Option 3: 80%-10%-10%
Option 4: 90%-5%-5%

Option 4: 90%-5%-5%

Features normal-
ization

Option 1: MinMaxScaler
Option 2: StandardScaler
Option 3: RobustScaler

Option 3: RobustScaler

Sampling rate Option 1: 257Hz Op-
tion 2: 500Hz

Option 1: 257Hz

Features em-
ployed

Option 1: Baseline features
Option 2: Baseline features +
Spectral features

Option 2: Baseline fea-
tures + Spectral fea-
tures

Table 5.2. Scenarios tried during modelling phase

Within the results in 5.10 it is highlighted that the best model is the one applied
by team 2 of the Physionet competence, which obtained an F1-score close to 0.63.
Nevertheless, the Deep Neural Network (DNN) over the ROS data had similar
behaviour, having the mentioned metric in 0.61. Finally, LSTM does not perform
that well compared to the other models since the metrics are between 0.39 and 0.47
for all the scenarios.

Figure 5.10. F1-Score for methods employed in Centralized Learning (CL) on the test set

A similar analysis derives from table 5.3, which shows the metrics employed in
the study. Regards accuracy, TEAM2 got 0.64 and DNN attained 0.61, the latter
applied over the ROS dataset. It is significant to clarify that using Accuracy is not
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the best metric in this dataset since the labels are heavily unbalanced, which is why
we use F1-score as a proper choice to compare the model’s behaviour.

Figure 5.11. Execution times for the methods used in CL

Finally, we included a metric of the time to preprocess and train each model. As
shown in figure 5.11, the TEAM2 approach took almost 122 minutes to run. On
the other hand, DNN and LSTM took lower execution times (close to 89 minutes
on average). Thus, TEAM2 is the slowest method, although it generates the best
results. On the contrary, DNN is a fast method, and the performance is NOT quite
different from TEAM2.

5.3 Federated Learning

Leveraged on the Centralized Learning method mentioned, it is time to immerse
in the Federated Learning (FL) approach executed for this ECG dataset. With
the CL it was possible to get an overall performance with the best techniques and
scenarios to be applied. To deal with the FL proposed, there were two possible
ways to work with the database in a Federated context. Those possibilities will be
explained in the following chapters.

5.3.1 IID approach

This approach was based on the idea of using the whole dataset containing 41,894
registers and divide it in 4 different datasets (local nodes). As a parenthesis, the
decision of the number of local nodes was based on selecting at least 30 diagnoses
for the rarest arrhythmia. Due to the stratified random splitting, the mentioned
data in each local node (or client) will be Independent and Identically Distributed
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(IID) 4.2.4. This scenario is not completely realistic since usually the ECGs shared
in multiple devices are Non-IID. Nevertheless, it is worth to try and see how the FL
approach will perform over the data.

Figure 5.12. Label distribution for the filtered dataset by each local node

As depicted in figure 5.12, the distribution among the 4 local nodes seems IID.
The later means that the diagnoses along the devices will be the same. Besides, each
local node contains 9,426 recordings. The same occurs for the ROS and SMOTE
datasets when dividing them in 4 clients, as is shown inf figures 5.13. Of course,
in this case all the diagnoses have almost the same participation across the nodes,
making them IID and balanced.

Figure 5.13. Label distribution for the ROS and SMOTE datasets by each local node

Once the four datasets were settled, the modelling part can be performed. As a
reminder, in the FL technique, each local node will train a model and later it will
send the weights to a global node where the weights are averaged and updated back
in each client. Then, the DNN, LSTM and TEAM2 methodologies were used to
classify the ECG’s arrhythmias.

As depicted in figure 5.14, the best results arise using the TEAM2 method.
The latter got an F1-score of 0.63 in the test set. On the other hand, DNN got
an F1-score of 0.54, placing it as the second best option. In addition, the best
performance for LSTM was obtained with the original data, although it is worst



5.3 Federated Learning 77

Figure 5.14. F1-score for methods employed in Federated Learning (FL) on the test set

than the TEAM2 and DNN ROS models. The last-mentioned means that applying
oversampling techniques does not improve the result of the models in the LSTM
approach. But, when using ROS over the augmented information, the performance
of the FL model increases.

Considering the figure 5.15 results, the TEAM2 approach still generates the
slowest procedure with a time of 78 minutes. In addition, the second less time-
consuming approach ended up being the DNN ROS with 32 minutes, where using
oversampling techniques makes the execution time increase [24]. Compared to the CL
approach, the TEAM2 FL method has a faster execution with similar performance.
On the opposite, DNN ROS and SMOTE ran slower but with a worse performance
than their CL versions.

With FL, it is possible to control the model’s performance in each local node. The
latter is relevant to understanding whether some node is underperforming compared
to others.

Figure 5.16 depicts the behaviour of each local node concerning the accuracy for
both the training and validation datasets. In general, the models among the clients
have similar behaviour, getting stable along the epochs. It is essential to clarify that
the accuracy for train and validation seems close to each other, meaning that the
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Figure 5.15. Execution times for the methods used in FL IID approach

models are getting robust results regarding overfitting.

In a a FL environment there is a concept called communication round (comm
round). The latter begins when a model is trained inside each one of the local nodes.
Later the weights of the models are passed to the global node to be aggregated there.
And finally, the communication round finishes when each local model is updated
with the new weights. Then, it is expected that in each comm round the performance
of the model increases. Moreover, it should get stable after some trials.

Figure 5.17 establishes the behaviour of each metric for each communication round.
As depicted, the performance gets stable after the 8th comm round approximately.
Notice that, in the first comm round, all the metrics start low, but after some
updates, the measurements get steady.

Table 5.3 depicts the metrics obtained over the test dataset and the execution time
of the training phase. The latter also includes the performance of the second team of
the 2020 Physionet competence and the DNN/LSTM models used as inspiration to
construct all the approaches exposed in this work. The centralized TEAM2 model
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Figure 5.16. Train and Validation accuracy among local nodes for TEAM2 (the best
model)

Figure 5.17. Metrics along communication rounds for TEAM2 (the best model) on the
test set

outperforms all the proposals by at least two percentage points. Concerning the
FL architecture, the TEAM2 FL is close enough to the centralized TEAM2 model,
showing that the FL applied over an IID set has good behaviour.

5.3.2 Non-IID approach

This method was based on the idea of taking four random samples with repetition
from the entire dataset of 41,894 registrations (local nodes). The given data in each
local node (or client) will be Non-IID 4.2.4 approaches because to the unstratified
random sampling. Because most ECGs shared across several devices are Non-IID,
this scenario is far more plausible.

Figure 5.18. Label distribution for the filtered dataset by each local node for the Non-IID
case
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CL FL IID
Method Accuracy Precision Recall F1-Score Time Accuracy Precision Recall F1-Score Time
Competence Team #2 [66] 0.64 0.64 0.64 0.63 122 0.63 0.64 0.63 0.58 78
Inspirational DNN [34] 0.50 0.46 0.50 0.47 88 - - - - -
Inspirational LSTM [34] 0.50 0.45 0.50 0.46 89 - - - - -
DNN 0.50 0.47 0.50 0.47 89 0.46 0.53 0.45 0.49 22
DNN ROS 0.61 0.66 0.61 0.61 90 0.55 0.59 0.54 0.55 32
DNN SMOTE 0.60 0.64 0.60 0.60 91 0.52 0.58 0.52 0.51 31
LSTM 0.51 0.47 0.51 0.39 91 0.48 0.58 0.48 0.52 22
LSTM ROS 0.38 0.51 0.38 0.39 91 0.39 0.48 0.38 0.38 25
LSTM SMOTE 0.39 0.49 0.39 0.39 89 0.39 0.47 0.39 0.38 25

Table 5.3. Metrics for Centralized (CL) and IID Federated Learning (FL -IID) in the test
data set. Also included execution time for preprocessing and training in minutes.

The distribution among the four local nodes appears Non-IID, as shown in figure
5.18. The latter implies that diagnosis along the devices will differ. Furthermore,
each local node has around 9,426 records. The ROS and SMOTE datasets behave
similarly when divided into four clients, as demonstrated in figure 5.13 Naturally,
all of the diagnoses in this scenario have nearly equal participation throughout the
nodes, making them IID and balanced.

The modelling phase was done again with the four NON-IID datasets extracted.
The 12-channel ECG arrhythmias were then classified using the TEAM2, DNN and
LSTM techniques following an FL paradigm.

Figure 5.19. F1-score for methods employed in Federated Learning (FL) Non-IID case on
the test set

We employed a centralized learning strategy (CL) to compare the NON-IID FL
and CL implementations. The CL method implied appending the four created local
nodes and utilizing that data to train a model. Then, ideally, the other algorithms
should be as near to the CL approach as possible. The best results emerged when
using the TEAM2 with the original datasets, as shown in figure 5.19, while the DNN
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ROS and DNN LSTM techniques also performed well in this scenario, receiving an
F1-score of 0.61 on the test set. On the other hand, the highest performance for
LSTM was with the original data (LSTM), yet it was worse than the DNN ROS
model. The previous suggests that using oversampling approaches does not improve
the results of the models in the LSTM approach in this circumstance. However,
using the TEAM2 solution made the FL model’s performance the most useful of
all the strategies and DNN on the ROS dataset is a good alternative due to its
performance.

Figure 5.20. Execution times for the methods used in FL Non-IID approach

It is possible to obtain the execution times for the algorithms by analyzing picture
5.20. The TEAM2 method was the slowest, clocking in at 74 minutes. Compared to
the CL method, the TEAM2 methodology with FL is faster and produces equivalent
results. The same thing happens with DNN ROS and SMOTE. However, while
LSTM performs worse than TEAM2 and DNN, it is significantly quicker in producing
the results.

Along with the experimentation, we implemented a performance evaluation of the
models by changing the number of local nodes diverse to 4. Then, there were some
simulated scenarios by changing the number of clients from 2 to 10. Per each client,
we trained a centralized model (CL) to determine how well the FL training was
fitting regarding that CL reference point. It is relevant to clarify that the experiment
was conducted for the IID and Non-IID approaches. Nevertheless, for the sake of
the extension of this document, only the Non-IID result is reported because the
performances of both methods were quite similar.

Figure 5.21 represents the F1-score measured in the test dataset for all the
methods used by changing the number of local nodes. TEAM2 CL, DNN CL and
LSTM CL are the reference model trained with all the data appended to a single
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Figure 5.21. F1-score changing number of local nodes with FedAvg sing test set

dataset (centralized or standard learning). Then, we can see that when considering
two local nodes, the best solution is DNN ROS since it is close enough to its reference
model. On the other hand, when using four or more clients best solution is TEAM2,
keeping more or less constant when increasing the number of clients. Nevertheless,
when considering six or more nodes, LSTM on the original data is a good option
since it is close to its CL performance and similar to the TEAM2 metric.

The execution time comparison changing the number of local nodes is demon-
strated in figure 5.22. Typically, the higher the local nodes quantity, the faster the
algorithms run. Moreover, all the techniques drastically decreased the running time
when increasing the number of clients, but the performance also decreased. In the
case of LSTM, it had one of the highest metrics with the fastest running time when
using more clients.
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Figure 5.22. Running time changing number of local nodes with FedAvg
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Chapter 6

Conclusions

6.1 Summary

In the end, the categorization of 12-channel ECG arrhythmias was implemented
by using oversampling (and undersampling) approaches. Random Oversampling
(ROS), in particular, performed well. The latter showed a considerable increment
compared to the model trained with the original data. Although SMOTE performed
well in a variety of cases, TEAM2 was chosen as the best strategy due to its prediction
power.

Along with the experimentation, the solution from the second competence team
provided remarkable results. Moreover, using deep neural networks over augmented
datasets (ROS) also produced similar results. TEAM2 and DNN ROS attained
equivalent behaviours compared to their respective CL approaches using few clients.
Finally, using LSTM for larger clients demonstrated steady and analogous behaviour
to the obtained in a CL, comparable to that obtained by the TEAM2.

6.2 Future Developments

Regarding future work, the FL architecture could use a different partition for
the data. For example, each database can be employed as a local node. Thus,
the six nodes will have a Non-IID distribution of arrhythmias. Another aspect
to check is an alternative method to deal with the Non-IID property of the data.
Fedprox, SCAFFOLD or FedNova [30] are proper candidates that could be carried
out. Another venue for future investigations may include using Catboost and XG-
Boost in a federated learning architecture [29, 60] to check if they perform better
for the 12-leads ECG arrhythmia classification.
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