SAPTENZA

UNTVERSITA DT ROMA

Machine Learning Techniques for Intrusion

Detection in Internet of Things Networks

Facolta di Ingegneria dell' Informazione, Informatica e Statistica

Corso di Laurea Magistrale in Engineering in Computer Science

Candidate
Federico Bacci
ID Number 1609616

Thesis Advisor

Prof. loannis Chatzigiannakis

Academic Year 2018 /2019

Machine Learning Techniques for Intrusion Detection in Internet of Things Networks

Sapienza - University of Rome © 2019 Federico Bacci.

Version: May 18, 2019 Author's email: fedeb703@gmail.com

mailto:fedeb703@gmail.com

Contents

Contents
Abstract

Introduction
Document Structure
Chapter 1: Internet of Things and Security Challenges
Chapter 2: Use Cases and Data Creation
Chapter 3: Data analysis
Chapter 4: Conclusions and Future Work

Chapter 1: Internet of Things and Security Challenges
Internet of Things
Consumer Applications
Commercial Applications
Infrastructure Applications
Industry Applications
Industry 4.0
Impact of Industry 4.0
Challenges of Industry 4.0
Security Issues
Threats Types
Wireless Threats
Routing Threats
Denial of Service (DoS)
Security Solutions
Machine Learning Techniques
Supervised Learning
Unsupervised Learning
Main Concept of this Thesis

Chapter 2: Use Cases and Data Creation
Real Use Case: IOT-LAB
Simulated Use Case: Cooja Simulator
Contiki Features
Data Types

Chapter 3: Data analysis
Tools
Libraries

0 N Noooo unow

A NO OO NNNOOO UL W WN = 0

W NN NN
00N OO

w W w
O VO Vv

System

Github Repository

Phase 1: Data Analysis per Node

Phase 2: Generating per Node Statistics
Phase 3: Machine Learning Techniques
Phase 4: Accuracy of the method

Chapter 4: Conclusions and Future Work
Conclusions
Future work

References

39
40
40
43
51
55

57
58
58

60

Abstract

More and more embedded processor are activated everyday, most of them to industrial
equipment to create the fourth industrial revolution.

These embedded processor sense and process data to create insights enabling smart
factories that can operate without physical intervention opening the way to new possibilities
and new challenges, one of all is the security of the data and of the networks of these
industries.

Despite the compelling features of Industrial Internet of Things, the security of such network
is impeding their rapid deployment.

In this thesis we try to use machine learning to analyze the Intrusion detection in such
networks (IPv6 based) using data from both simulated and real world deployment of Internet
of Things Networks.

We propose a data-driven anomaly detection that operates at transport layer of 6LoWPAN
deployments and exploring the possibilities of different tools.

Introduction

Document Structure

Chapter 1: Internet of Things and Security challenges
Chapter 2: Use case and definition for creation of data
Chapter 3: Data Analysis

Chapter 4: Conclusion and future work

Chapter 1: Internet of Things and Security Challenges

To create and work on this thesis was necessary an introduction on the topic and on all of
component used.

Here it is presented the research done to approach and better understand the methods and
the solution proposed.

Internet of Things

Industry 4.0

Security Issues & vulnerabilities
Intrusion types

Machine Learning Techniques

Going through all the problem faced while talking about Internet of Things and Security of the
network.

Chapter 2: Use Cases and Data Creation

To find a solution and validate our first hypothesis a Use Case is needed, here is described the
different approaches used to create both use cases and data to better understand how
Internet of things works on the Transport layer.

Chapter 3: Data analysis

After the creation of the data is needed to analyze them in order to extrapolate important
information on the different behaviour of the nodes and the network in both Normal Case
and Malicious Case using different Machine Learning Techniques.

Chapter 4: Conclusions and Future Work

In this chapter will be elaborated the conclusions on the proposed system, suggesting the
implementation and continue the work of the thesis to create a real and usable product.

Chapter 1: Internet of Things and
Security Challenges

\

Internet of Things

The Internet of Things (loT) is an extension of internet connectivity into physical devices and
everyday objects. These devices can be embedded into any forms of hardware and can
communicate and interact over internet other than being monitored and controlled.
[16](17]1[18][19][20]

In 1994, Reza Raji described the concept of 10T as “moving small packets of data to a large set
of nodes so as to integrate and automate everything from home appliance to entire
factories”[23].

The term loT was born in 1999 [24] with (RFID) as essential to Internet of things to allow
computers to manage all individual things.

In 2010 there were already 1.84 connected devices per person and by 2020 there will be 50

billion devices.

But which are the major components of Internet of Things?

Major Components of loT

Thing
or Device Cloud User Interface
#—-‘. ’,--H #“'-‘-'h

»

o

Gateway Analytics

Smart devices and sensors

These are sensors capable of collect data from the environment and transmit the
informations to the next layer.

These sensors are connected through Low power and lossy network like:
o WiFi
e ZigBee
e Dbluetooth
e /-wave

Developments in the low power, low cost wireless transmitting devices are promising in the
area of loT due to its long battery life and efficiency.[21]

The latest protocol like 6LowPAN-IPv6 [30] (Internet Protocol v6 over Low Power Wireless
Personal Area Networks) has defined encapsulation to enable the packets to be sent and
received over |IEEE 802.15.4

6LoWPAN T click

/i PWR
® V' B E@R[&H Ta
SLoWPAN.d[ck 4

The specific of 6LowPAN proposed by the working group are an adaptation of IPv6 packets
over IEEE 802.15.4 as data-link and physical layer protocol.
6LOoWPAN uses only UDP as TCP is considered to be too resource-demanding.

The IPv6 Routing PRotocol for Low-Power and Lossy Networks (RPL) [32] is a standardized
routing protocol primarily used in a 6LOWPAN network. RPL creates a destination-oriented
directed acyclic graph (DODAG) between the nodes in a 6LoWPAN.

RPL supports traffic towards a DODAG root and bidirectional traffic between 6LoWPAN
devices and between devices and the DODAG root.

There may exists multiple global RPL instances for a single 6LOWPAN network and a local RPL
DODAG can be created among a set of nodes inside a global DODAG:

Each node in a DODAG has a rank that indicates the position of a node relative to other nodes
and with respect to the DODAG root. Ranks strictly decrease in the up direction towards the
DODAG root and strictly increase from the DODAG root towards nodes.

The RPL protocol provides new ICMPv6 control messages [39] to exchange routing graph
information.

Gateway

loT Gateway manages the bidirectional data traffic between different networks and
protocols. Another function of gateway is to translate different network protocols and make
sure interoperability of the connected devices and sensors.

Gateways can be configured to perform pre-processing of the collected data from thousands
of sensors locally before transmitting it to the next stage. In some scenarios, it would be
necessary due to compatibility of TCP/IP protocol.

loT gateway offers certain level of security for the network and transmitted data with higher

order encryption techniques. It acts as a middle layer between devices and cloud to protect
the system from malicious attacks and unauthorized access.

Cloud

10

Internet of things creates massive data from devices, applications and users which has to be
managed in an efficient way. |oT cloud offers tools to collect, process, manage and store huge
amount of data in real time. Industries and services can easily access these data remotely and
make critical decisions when necessary.

Basically, 10T cloud is a sophisticated high performance network of servers optimized to
perform high speed data processing of billions of devices, traffic management and deliver
accurate analytics. Distributed database management systems are one of the most important
components of loT cloud.

Cloud system integrates billions of devices, sensors, gateways, protocols, data storage and
provides predictive analytics. Companies use these analytics data for improvement of
products and services, preventive measures for certain steps and build their new business
model accurately.

Analytics

One of the major Advantages of an efficient 1oT System is real time smart analytics which
helps engineers to find out irregularities in the collected data and act fast to prevent and
undesired scenario.

Service providers can prepare for further steps if the information is collected accurately at the
right time.

Information is very significant in any business model and predictive analysis ensures success
in concerned area of business line.

User Interface

User Interfaces are the visible, tangible part of the I0T system which can be accessed by users.
Modern technology offers much interactive design to ease complex tasks into simple touch
panels control. These panels have replaced hard switches in appliances and the trend is
increasing.

Having more and more set of application they can be divided them into 4 groups
e Consumer
e Commercial
e Infrastructure Spaces
e Industrial

Consumer Applications

In this group there are all the IoT devices for consumer use such as home automation,
wearable technology, connected health and so on.[40][41]

11

A lot of focus is in the last 5 years and in the last one to smart home hub to control smart
home devices such as

Heating, ventilation and air conditioning
Lighting control system

Smart grid and control meter

Home robots

Leak, smoke and CO detector

Indoor positioning system

Air control

Smart Kitchen

These hubs are used to control all 10T devices in the home and
usually are voice or touch controlled such as Google Home or
Amazon Echo .

Commercial Applications

In this group there are loT devices intended for Medical and Healthcare, Transportation and
Building Purposes such as Smart Heart monitors for hospitals [15] or Smart Traffic control and
Smart Parking devices [3] and Smart buildings[2] for example schools ones[13]

This is still a new field and is expected to grow in the next years .

12

Infrastructure Applications

STAYING BIG OR GETTING SMALLER
Expeclecl structural changes in the energy system made possible by the increased use of digital tools

 tomorrow

_'H - I\ "' “
few large power plants many sma1| pawer producers

:gé‘ % :
centralized. mostly national decentralized, ignoring boundaries

QOND) m JH.

ONEES) L

based on large power lines and pipedines including small-scale transmission and regional

supply compensation

W ==

top to bottom both directions

2 §it = fii fal 0

passive, only paying active, participating in the system

SIOCNNEST

YATLAS HI15

& R

Monitoring and controlling operation of sustainable urban and rural infrastructures like
bridges, railway tracks and wind-farms is a key application for IoT [6][7].

The use of l0oT in this case benefits with cost saving, time reduction and increase productivity
with Real-Time Data Analytics.

Using 10T devices for monitoring and operating infrastructure will improve also incident
management and the quality of service even in areas such as waste management.

With loT devices Smart grids [26] can be created where both consumer and producer benefits

from the data gathered by loT devices implemented for example in the case of the smart grid
created by Tesla in Australia.

Industry Applications

Industrial Internet of Things (110T) refers to interconnected sensors, instruments and other
devices networked together with computers’ industrial applications. [42]

13

This is kind of application is very important because highly integrated smart cyber physical
space opens door to create a whole new business and market opportunities for
manufacturing.

The key goal of 11OT is to extend traditional Service-Oriented Architectures (SOA) that are
predominantly used within industrial computing and networking infrastructures, into the
embedded world, where digital representations of real world services with traditional services
and data.

loT intelligent systems enables:

e rapid manufacturing of new products
dynamic response to product demands
real time optimization of manufacturing
Predictive maintenance
Statistical evaluation
Maximize the reliability

The term Industrial Internet of Things (I1OT) is often encountered in manufacturing industries.

Industrial Internet of Things

Processing
Tools e Analytics

— =(m)=

f\.
==V g ”“‘“| -
Machines I
Ii |1|~11

110
ﬁ||,.||

Connectivity

& Sensors

Industry 4.0

The Industrial Internet of things could generate so much business value that it will lead to the
Fourth Industrial Revolution also called Industry 4.0. [43]

14

L~
()
=
| DD
" —

EDIDEDID

Mechanization, Mass prod uFtlun. Computer and Cyber Physical
water power, steam assembly line, :
o automation Systems
power electricity

The term Industry 4.0 (14) originates from a project in the high-tech strategy of the German
Government, revived then in 2011, during 2013 at the Hannover Fair the final report of the
Working Group Industry 4.0 was presented.

There are four design principles in Industry 4.0:

e Interconnection: The ability of machines, devices, sensors and people to connect and
communicate via loT

¢ Information Transparency: the technology should provide transparency, Inter
connectivity allow operator to collect immense amount of data and information from
all points, aiding the functionality to identify areas that can benefit from improvement

e Technical assistance: The ability of assistance system to aggregating and visualising
information comprehensively for making decision. Also the ability of cyber physical
system to support humans conducting task unsafe, exhausting and unpleasant.

e Decentralized decision: ability to make decision autonomously directly by the
systems.

Impact of Industry 4.0

The fourth Industrial revolution has a huge impact on:

Services and business models
Reliability and continuous productivity
IT Security

Machine Safety

Manufacturing Sales

Product lifecycle

Industry value chain

Workers education and skills
Socio-economic factors

15

Challenges of Industry 4.0

Along with impacts there are challenges to be faced the challenges of this revolution

Integrity of production

Need for skills

IT Security issues

Data Security

Protection of industrial secrets

Security Issues

As enlightened from the previous section one of the main challenges both in Internet of
Things and in the Industry 4.0 is the Security and Vulnerabilities.

In fact as more loT infrastructures are deployed and smart city services become integral part
of our lives, these issues need to be addressed.[28][7]

Security issues can be summarized in different categories:

e Security
e Privacy
e Trust

The high number of interconnected devices arises also scalability issues, so a flexible
infrastructure is needed to be able to deal with security threat in such a dynamic
environment.[1]

The vision of the 10T has led to a competitive market for stakeholders that, in the absence of
common standards, maket proprietary and application-specific solutions, including a variety
of hardware platform, operating systems, communication protocols and data management
schemes.

Now the deployment of IIOT are closed source and privately runned, these application-specific
deployments have limited scope in data while information and knowledge sharing is achieved
through custom internet gateways. These solution are non-scalable, with low cost efficiency
and non adaptive.

Different bodies are trying to standardise but no standard till now has managed to attract the
vast majority of the stakeholders.

lIOT systems are characterized by energy constraints, irregular configurations, time-varying
topology, large scale and changing applications. thus the solutions need to be differently
implemented respect the ad-hoc networking.

In sensors networks:
e The number of interacting devices is extremely large and dense
The resources are very limited
There is no fixed infrastructure
Network topology is unknown before deployment
High risk of physical attacks

16

While in traditional wired and wireless networks these are standard security requirements in
low cost wireless sensors are more vulnerable.

For that reason an adversary can easily capture the devices, read the content of the memory
learning the cyptographic secret.

In addition the high node-to-human ratio make impossible to consider the presence of an
online server that maintains individual nodes constantly, making impossible techniques of pre
distribution of keys.

Adding to that nodes are battery operated, so security systems must reduce the energy
consumption. I0T devices have also limited computing and storage capability, so
cryptographic algorithms and protocols that require intensive computation, communication
or storage are not applicable.

An 10T node is defined a normal node or node with normal behaviour if it operates following
the systems specifications. Otherwise it is catalogued it as malicious node or adversary.

Threats Types

Wireless Threats

The most basic threats are due to communication that takes places over a wireless channel.
Wireless communication suffers from a number of vulnerabilities:[44]

e Eavesdropping The most easy way is to overhear the information that the node
transmits or receives and then analyze the data and extract sensitive information
without interacting with the network. This is part of Passive attacks.

e Data alteration An adversary can cause collisions of wireless transmissions and then
try to modify the message exchanged between wireless parties. This is part of Active
attacks.

o Identity Theft The attacker can impersonate a legitimate user and when the original
user is inactive, transmit messages without being noticed.

Routing Threats

As many routing protocol for wireless sensor are simple they can be an easy target for
attacks.
Attacks of this type can be classified in:

e Spoofed, altered, or replayed routing information while sending the data the

information in transit could be altered, spoofed, replayed or destroyed. Since the
nodes have a short range transmission, an attacker with high processing power and

17

large communication range could attack several sensors simultaneously and modify
the transmitted informations.

e Selective forwarding The malicious node may refuse to forward every message it
gets, acting as black hole or just forwarding part of them acting as a Gray Hole

e Sinkhole Attacks In this case the goal of the attacker is to attract all of the traffic
especially in the case of a flooding based protocol. Then the malicious node can listen,
to request for routes and then reply to the requesting node with messages containing
a bogus route with the shortest path to the requested destination

e Sybil Attacks In Sybil attack the compromised node presents itself as multiple nodes,
as a effect the usage and the efficiency of the distributed algorithms are degraded.
Sybil attack can be made against distributed storage, routing, fair resource allocation
and misbehavior detection

e Wormholes The malicious node tunnels messages from one part of the network over
a link that doesn't exist normally to other art o the network. The simplest form of the
wormhole attack is to convince two nodes that are neighbors. This can be used in
combination with selective forwarding and eavesdropping

e HELLO flood attacks this attack is based on the use by mani protocol of broadcast
Hello messages to announce themselves to the network. An attacker with greater
transmission may send hello messages to a large number of nodes, convincing them
that the attacker is near. This leaves the network in a confusion state

e Acknowledgement Some network of IIOT require link layer acknowledgements. A
compromised node may exploit this by spoofing these acknowledgements, convincing
the sender that a weak link is strong or a dead sensor is alive

Denial of Service (DoS)

This class of attack does not concern the information on the network, rather the goal of the
attacker is to exhaust the resource of the network until it does not function properly.

In physical layer these could be jamming and tampering. Jamming is done by interfering with
the radio frequencies used by the node. Tampering refers to damaging and altering the
nodes.

An attacker can damage and replace a node stealing or replacing information and
cryptographic keys.

Security Solutions

Some solution proposed till now focus on the validation of the integrity of message exchanges
in order to securely route information across the network, other try to solve the problem
proposing a secure group of communication primitives on top of the networking layer.[45]

18

Machine Learning Techniques

“The real value that the Internet of Things creates is at the intersection of
gathering data and leveraging it. All the information gathered by all the
sensors in the world isn’t worth very much if there isn’t an infrastructure in

place to analyze it in real time.”
Wired Magazine, April 18, 2016

Machine Learning and Industrial Internet of things are linked by the fact that the increasing
number of devices produces a multitude of information, it is needed algorithm that can learn
and find useful information in these data.

Machine Learning (ML) is the scientific study of algorithms and statistical models that
computer systems use to effectively perform a specific task, relying on patterns and inference
instead.[46]

Due to the fact that the network itself produces a lot of data on the transport layer, one use of
the data produced that proposed is to help network owners and participants to find out if the
network has been attacked or tampered.

In this thesis it is explored the use of Machine Learning applied to transport layer data to find
out security threats, in particular intrusion detection.

MACHINE
LEARNING

The machine Learning techniques used in this thesis of two types:
e Supervised Learning
e Unsupervised Learning

19

Supervised Learning

These algorithm make use of a training set of input and output data. The algorithm learns the
relationship between the input and the output in the training set and then uses the
relationship to predict the output of new data.

Classification learning can predict the membership of a certain class.

To solve a problem with supervised learning one has to follow these steps:
1. Determine the type of the training example
2. Gather a training set, this training set needs to be representative of the real world use
case
3. Determine the input feature representation of the training set. Typically the object is
transformed into a feature vector containing all the features that are used
Determine the algorithm used
Run the algorithm to determine control parameter and adjusting them to optimizing
the performance on a subset of the training set
6. Evaluate the accuracy of the learned function, testing it on a separate set from the
training set

v A

During this work different supervised learning algorithms are explored
e Random Forest
e KNN
e SVM

Random Forest

This algorithm operates by constructing a multitude of decision trees at training time and
outputting the class or mean of prediction of the individual trees.

Random forest can be used also to rank importance of variable in a regression or
classification.

This algorithm is useful when we want quick results without worrying too much about the
dataset.

X

/\

/

A //

®
|
v

Fig 1 Example of Random Forest

20

K-Nearest Neighbors (KNN)

is @ nonparametric method used for classification and regression, the output could be a class
membership or a property value for the objet.

KNN is one of the most easy algorithms for machine learning.[47]

The training examples in this case are vector in a multidimensional feature sace each with a
class label, k, defined by the user, is classified by assigning the label which is most frequent
among the k training examples nearest to that query point.

L asTTT A
- "h
- (9
- ™
e 21
e L1
£ LY
3 %
4 3
! 5
J 1
I 1
I 1
! [
! i
' i
i
\ I
; i
i
"]
" -
'-.‘ -
. Fl
-
- -

Fig 2 Example of KNN

Support Vector Machines (SVM)

Given a set of training examples SVM training algorithms build a model that assign new
example to one category or the others making it non probabilistic binary linear classifier.
Classifying data is a common task in machine learning, and in the case of SVM the point is
viewed as p dimensional vector that can be separated with a (p-1) hyperplane.

One of the issue of this algorithm is that it requires full labelling of the data and it is directly
applicable for two-class tasks, requiring for more complex task a multi class SVM algorithm.

21

Fig 3 Example of SVM

Unsupervised Learning

The unsupervised learning algorithm aims to make observations in data where there is no
known outcome or results, deducin underlying pattern and structure in the data. Association
learning is one of the most common forms, the algorithm search association between input
data.

K-Means is a method of vector quantization very popular for cluster analysis.
K-Means aims to partition n observations in k clusters in which each observation belongs to
the cluster with the nearest mean as prototype for the cluster

22

» »
. »
s *
» »
»
.'.-'.n
» '. »
» »
» » » l..
» » » . g
» »
»
" » ’. » »
% "
» » ',"
» »
. »
» s n @
»
2 T
»
». »
.,
& »
»
»"
»
» » !
» »
» » ®

Fig 4 Example of K means Algorithm

There are 4 steps to apply K Means [48][38]

1.

2.

Initialization The k number of data point is chosen randomly in the dataset (4 green
points) as initial centroids, these will be the center of the cluster

Cluster Assignment All the data point that are the closest to a centroid will create a
cluster, if the algorithm is using Euclidean distance, a straight line divides the two
clusters, perpendicular to the line between two centroids.

Move to centroid after having the new clusters, a centroid is a new value that is the
mean of all examples of the cluster

Repeat The steps 2 and 3 are repeated until the centroid don't change anymore

23

randomly chose k examples as initial centroids
while true:
create k clusters by assigning each
example to closest centroid
compute k new centroids by averaging
examples in each cluster
if centroids don’t change:
break

Fig 5 pseudocode for K means

K means is very fast and efficient because the complexity of one iteration is

KxNXD

(K= number of clusters, N=number of samples, D=time to compute the distance between two
points)

As the main concept of this thesis is experimental, makes sense to use unsupervised learning
to find path and structure in the data.

Main Concept of this Thesis

The main idea is to look as intrusion detection as a second line of defence to protect IOT once
an intrusion is detected by activating countermeasures to minimize damages and launch
counter-attacks.

In this work is explored an Anomaly based intrusion detection system that operates at the
transport-layer level on top of 6LoOWPAN network.

The system that proposed does not require any particular implementation of 6LoWPAN or
RPL as it uses ICMPv6 control messages defined by 6LoWPAN standard.
The high-level information logged passively for the state of the network are

e Round trip Time

e Hop Distance

e Packet Loss

In this thesis mainly 2 problems are addressed:

Problem 1: Characterize if the network includes at least 1 malicious
node

Problem 1.1: Given a set of traces collected from the network, we want to characterize if the whole
network includes at least 1 malicious node.

Problem 1.2: Given a set of traces collected from the network, we want to characterize if the whole
network includes at least 1 malicious node and also identify the type of attack.

24

Problem 2: Characterize if one node in a network is a malicious node

Problem 2.1: Given a set of traces collected from the network, we want to characterize each node in
the network if it is a malicious node.

Problem 2.2: Given a set of traces collected from the network, we want to characterize each node in
the network if it is affected by a malicious node.

Problem 2.3: Given a set of traces collected from the network, we want to characterize each node in
the network is a malicious node and also identify the type of attack.

Problem 2.4: Given a set of traces collected from the network, we want to characterize each node in
the network if it is affected by a malicious node and also identify the type of attack.

25

Chapter 2: Use Cases and Data Creation

In this chapter we analyze how we have created a use case to see if we can use Machine
Learning Techniques to find out if there is an intrusion in the Internet of Things Network.

Real Use Case: IOT-LAB

To create the first attempt the platform EIT IOT-LAB lab was used.
loT-LAB provides a very large scale infrastructure suitable for testing small wireless sensor
devices and heterogeneous communicating objects.

FIT
I0T-LAB

This was used to emulate a large scale network with wireless sensors node, really deployed in
France, logging the communication between the real nodes.

Thanks to this use case we could work on real firmware and try real nodes and infrastructure.
Although this experiment has limitations due to the fact that we don't have neither physical
access to the nodes or the router neither that we have administrator privileges over the
network.

loT-LAB provides full control of network nodes and direct access to the gateways to which
nodes are connected, allowing researchers to monitor nodes energy consumption and
network-related metrics, e.g. end-to-end delay, throughput or overhead. The facility offers
quick experiments deployment, along with easy evaluation, results collection and analysis.
Defining complementary testbeds with different node types, topologies and environments
allows for coverage of a wide range of real-life use-cases.

26

https://www.iot-lab.info/

loT-LAB testbeds are located at six different sites across France which gives forward access to
1786 wireless sensors nodes: Inria Grenoble (640), Inria Lille (293), Inria Saclay (264), ICube
Strasbourg (400), Institut Mines-Télécom Paris (160) and CITI Lab Lyon (29).

27

Simulated Use Case: Cooja Simulator

s iy thulation - Cooje: The Contihl Hetwaik Sknulste:

L
Term | Hole | Hasnsgs |
137 1052 HAC o

I 1 |

Fig 6 Example of Cooja Simulator running on Contiki Os

The second attempt was made using a platform that simulate a network of Wireless sensors.
The name of the tool is Cooja Simulator, part of Contiki OS.

Contiki OS is the Open Source Operating System for the Internet of Things. Contiki connects
low-cost, low-power microcontrollers to the internet, making it a powerful toolbox for building
a complex wireless System.

Contiki OS is can correctly simulate the behavior of a network of Internet of Things, we can
use it to create different network topologies and in less time compared with the real use case,
giving us the permission to create node with malicious behaviour.

This tool is also developed by a world-wide team of developers with contributions from Atmel,
Cisco, ETH, Redwire LLC, SAP, Thingsquare, and many others, led by Adam Dunkels of
Thingsquare.

Contiki Features

Memory Allocation: Contiki is designed for tiny systems, having only a few kilobytes of
memory available. Contiki is therefore highly memory efficient and provides a set of
mechanisms for memory allocation: memory block allocation memb, a managed memory
allocator mmem, as well as the standard C memory allocator malloc.

Full IP Networking: Contiki provides a full IP network stack, with standard IP protocols such
as UDP, TCP, and HTTP, in addition to the new low-power standards like 6lowpan, RPL, and
CoAP. The Contiki IPv6 stack, developed by and contributed to Contiki by Cisco, is fully
certified under the IPv6 Ready Logo program.

28

http://anrg.usc.edu/contiki/index.php/Cooja_Simulator

Power Awareness: Contiki is designed to operate in extremely low-power systems: systems
that may need to run for years on a pair of AA batteries. To assist the development of
low-power systems, Contiki provides mechanisms for estimating the system power
consumption and for understanding where the power was spent.

6lowpan, RPL, CoAP: Contiki supports the recently standardized IETF protocols for low-power
IPv6 networking, including the 6lowpan adaptation layer, the RPL IPv6 multi-hop routing
protocol, and the CoAP RESTful application-layer protocol.

To use Cooja Simulator you need to download Instant Contiki from contiki-os.org with Instant
Contiki, a tool of 3.0 GB that is a virtual Machine created with all the necessary toolchains and
software for development.

After unzipping the downloaded file, Virtual machine Manager is needed, such as Virtualbox
and VMWare, for this example | decided to use Virtualbox.

In Virtualbox you need to create a new virtual Machine with the following specifications
Type: Linux

Version: Ubuntu 32-bit

Memory: default

Existing Virtual Hard Disk: Instant_Contiki_Ubuntu_12.04_32-bit.vmdk

Create Virtual Machine

Name and operating system

Name:

Machine Folder: | 1 thome/fedebyes/VirtualBox VMs

Type: | Linux
Version: | Ubuntu (32-bit)

Memory size

Hard disk

Instant_Contiki_Ubuntu_12.04_32-bit.vmdk (Normal, 10.00 GB)

Guided Mode

Fig 7 Settings for the virtual Machine

After that we are presented with the basic system environment

29

http://contiki-os.org/

@ Applications Places

[

Terminal
Vagrantiile

Wireshark (as root),

shared_folder

(& [user@instant-contik... = [traces] &) [Grid 3x3 Normal-C...

= [shared folder]

[Node routes.txt (sh...

Fig 8 Environment of Instant Contiki 3.0

Here can run the Cooja Simulator opening a terminal and digiting

cd contiki/tools/cooja
ant run

@ Applications Places ty Bl & (97%) 4) 9:24PM 3
Cooja: The Contiki Network Simulator y
File | ® - o user@instant-contiki: ~/contikiftools/cooja ‘
File Edit View Search Terminal Help
w.jar
[mkdir] Created dir:

ollect-view/di
tools/collect

[mkdir] cr dir: fhom
[javac] Compiling 1 sourc
r/build

cker /build
/power

e-0] (Cooja.java:2865) -
fi

[&| Cooia: The Contiki N...

Fig 9 Contiki Simulator log

@ Applications Places LY
@ - = Cooja: The Contiki Network Simulator
File Simulation Motes Tools Settings Help

(97%) @) 9:25PM 4

instant-conti

Fig 10 Contiki Simulator

Where the first simulation is created with these parameters

e Radio Medium (UDGM)

30

e Mote startup delay (1000)
e Random seed: 123456

® Applications Places 1y (97%) 4)) 9:29PM it
x - .o Cooja: The Contiki Network Simulator
Eile Simulation Motes Tools Settings Help

& Create new simulation

Simulation name |S\m1|

Advanced settings

Radio medium | Unit Disk Graph Medium (UDGM): Distance Loss |vJ

Mote startup delay (ms) 1,000

Random seed 123,456

New random seed on reload |

Cancel

B & user@instant-contiki...] i

Fig 11 Simulation Settings

After that the network should be created, adding firstly the router (Sky Mote) with the

firmware of the router.

& - o Sim1-Cooja: The Contiki Network Simulator
File simulation [EEIEER Tools Settings Help
(=) dd mo Sky Mote Type #skyl [simulation control (JJ@)x][(n... (SJO)x]

\ Mote types...
| View Zoom ote types... Mormal ed limit] H Enter notes he
™1 1 1 | Remove all motes

' Disturber mote..,
Impart Java mote...

Time: 00 Cooja mote..,
Speed: - MicaZ mote...

Eth1120.. f—=""|
B Trxebl120... g@@

| Trxeb2520..,
|| File ESf p2020 mote (MsPa3oFsass)..
| Time | M Exp1101 mote (MSP430FS438)...
Expl120 mote (MSP430F5438)...
CC430 mote...
EXP430F5438 mote...
Wismote mote..,
Z1 mote...

1liime Sky mote... @@@

ESE mote. .,

L

Fig 12 Adding Motes

31

LS E =

Eile Simulation Motes Tools Settings Help

=] Network 8 =3 (52] simulation control [—J(O)(x]| &3 P
View Zoom . Run Speed limit J [E-nter Hotes Bare
Start Pause Step Reload
" @ select contiki process source
Description: Look In: | [firmware |* [ﬁ | o & (= ‘| 8]
Contiki process f Firr . 1 1 [Browse
& | i borderrouter. sky ;J
[sky-websense-BH, sky ampile Create
[sky-websense-GH-30. sky
Compile commands | || sky-websense-GH-70. sky
T | sky-websense-GH.sky
] sky-websense-wH.sky
File Name; border-router, sky
Files of Type: | All Files v]
Open Cancel 7
(=] Timeline

Fig 13 Selecting Firmware

There are different types of firmware:
e border-router.sky
sky-websense-BH.sky
sky-websense-GH.sky
sky-websense-GH30.sky
sky-websense-GH70.sky
sky-websense-WH.sky

border-router is the firmware for the router, while the others represent the firmware for a
Sky motes with different behaviour.

WH White Hole is the firmware for a normal behaving node.

BH Black Hole represent the firmware for a node that is behaving like a Black Hole, where
the incoming or outgoing traffic is silently discarded or dropped, without informing that the
data did not reach its intended recipient.

GH Gray Hole is a firmware where the node drop 50% of the packets incoming and outgoing,
similar to Black Holes, there are 3 types, GH30, GH and GH70 that respectively drop 30, 50 and
70 percent of the traffic.

To obtain the network 9 more nodes are created with the firmware of the normal behaving
node (sky-websense-WH.sky) and positioning them until getting a network similar to this one.

32

T —
% - o Simulation 1 - Cooja: The Contiki Network Simulator

File Simulation Motes Tools Settings Help

(¥ Network EEa| simulation control [-j(0)(x]|(~] |
View Zoom __Run_Speed limit_ |
T] 6 T ERRRERRRENARNER] | Maote Information {Sky 2} =)3lx]

(W Mote type Mormal

! ! sky2
o = i | Mote type information |
RS o 3) 4 . _
al T Mote interfaces 15 interfaces |
i T | Mote interface viewer | |
: '_.—5\ ,—5-; ! ',,-];\ CPU frequency 2687880 Hz o
H e A S |
T W] I Remove mote A Remove o |=
&8 0
|
\Filter:

[*] Timeline showing 10 motes

Fig 14 Network of Nodes

After that the node 1 is selected to be accessible from the network to collect data in Mote
tools for Sky 1> Serial Socket (SERVER) and clicking on Start

Now the router is listening on command from the ip 127.0.0.1:60001
To connect to the router

~/contiki/examples/ipv6/rpl-border-router$ make connect-router-cooja

33

e Mote output

| | | i 9 00 | i

| | | o W rie o v

| 1 | 1 | | A
EEE e 0 agipig FGIRTY
@ — 0 user@instant-contiki: ~/contikifexamples/fipv6/rpl-border-router

File Edit View Search Terminal Tabs Help
user@instant-contiki: ~/con... X | user@instant-contiki: ~/con... x user@instant-contiki: ~/con... X

Setting prefix aaaa::
Server IPv6 addresses:
daaa:r:212:7401:1:101
fesl 212:7401:1:101
tunslip6: serial_to_tun: read: Interrupted system call
ifconfig tun@ down
netstat -nr | awk '{ if (%2 "tun®") print "route delete -net "S$1; }' | sh
make: *** [connect-router-cooja] Error 1
user@instant-contiki:~/contiki/examples/ipv6/rpl-border-router$ make connect-rou
ter-cooja
TARGET not defined, using target 'native'
sudo ../../../tools/tunslip6 -a 127.0.0.1 aaaa::1/64
[sudo] password for user:
slip connected to " "127.0.0.1:60001'
opened tun device "' /dev/tund®''
ifconfig tun@ inet “hostname® up
ifconfig tun® add aaaa::1/64
ifconfig tun® add fes 0:0:1/64
ifconfig tun®

tunod Link encap:UNSPEC HWaddr ©0-00-00-80-00-00-00-00-00-00-00-00-00-00-00f
-00

inet addr:127.0.1.1 P-t-P:127.8.1.1 Mask:255.255.255.255

inet6 addr: feB@::1/64 Scope:Link

File Edit View Zoom Events Motes

Fig 15 Terminal with the commands for router listening

If clicking on “Start” will start the simulation and the nodes communicate while the program is
showing which ipv6 packets are transmitted.

34

® Applications Places

1y B

(97%)) 12:37 AM ‘I:L

® - = Simulation 1 - Cooja: The Contiki Network Simulator

Eile Simulation Motes Tools Settings Help

E2] Metwork Lox| & simulation control S)EE | () Notes Q@@
| View Zoom || Run Speed limit H Enter notes here

Step Reload .

ial Socket (SERVER) (Sky 13 (=)@)¢)

en port: 0001

Stop

Time: 00:34.716

EEs.
|78

42 0 O T
4 I I ST
EER S

ket ->= mote: 307 bvies

'y Speed: - e -= socket: 485 bytes
o 127.0.0.1:34798 connectad.
.I EJ Mote output Q@

File Edit “iew

Time

| Mote | Message

0o

y o8:
- 00:
00:
00:
[c[cH
[c[cH
0a:

01.
01.
01.
01.
01.
o1.
01.
01.

169
130
159
203
206
696
702
708

ID:
1D
1D
1D
1D:
ID:
ID:
ID:

3

3
3
3
3
1
1
1

Rime started with address 0.18.116.3.0.3.3.3

MAC 00:;12;74:03:00:03:03:03 Contiki-2.6-900-gaG227el, ..
radio chan. ..
Tentative link-local IPv6 address fe80:0000:0000:000, ..

CSMA ContikiMAC, channel check rate 8 Hz,

Starting 'Sense Web Demo' 'Web server’
Server IPvG addresses:
aaaa::212:7401:1:161
feB0::212:7401:1:101

s

Filter:

2]

Timeline showing 10 motas

File Edit “iew Zoom Events Motes

np Wk =

-t

B & user@instant-contiki...

Fig 16 Network interaction

To create the use case a shell file is used to to log the information of every packet of every

node of the network.

35

| geb-trace0.2.sh x

#! fbin/bash

type=25-normal

total=200

delay=>5

date=_S(date +%F_%H:%M)
logfile=S5typeSdate

declare -a nodes=("aaaa::212:7402:2:202"

"gaaa::212:7463:3:3603"
"aaaa::212:7404:4:404"
"aaaa::212:7405:5:585"
"83aa::212:7406:6:606"
"aaaa::212:7407:7:707"
"aaaa::212:7408:8:80608"
"aaaa::212:7409:9:9609"
"aaaa::212:740a:a:aba")

dir="./traces/Stype"
mkdir Sdir
echo "creating case $typeﬂ
for i in "S{nodes[@]}"
do
echo "Ping 5i"

log="5&dir/Slogfile$i.log"
resp="ping6é -c Stotal -i Sdelay 5i = Slog &°
echo Sresp
sleep 1
done

log="5%dir/5logfile""routes.log"

resp="lynx -dump http://[aaaa::212:7401:1:101] > Slog &
echo Sresp

msg="I1'm done"

#echo Smsg

Fig 17 Bash script for logging

This file is written in bash and define:
type: type of the experiment
total: total number of pings
delay: delay between

date: date of the experiment
logfile: name of the logfile

This program declares the nodes, then creates the directory if not exists and start to ping all
different nodes, every 5 seconds for 200 times, for a total of 1000 seconds or 16.6 minutes.
The command ping 6 is then logged directly in a different file for each node.

So in the end of this procedure there are as many files as nodes in the network.
A ping is sent to every node and three main informations are gathered:
e |CMP sequence Number (icmp_seq)

e Time to Live (ttl)
e Round trip Time (time)

36

These information are represented in plain text files

from
from
from
from ¢
from
from
from :
from a

from
from

from
from &
from
from &
from &
s from as

Data Types

The dataset that faced were made of two types:
e 9 Nodes
e 16 Nodes

25 nodes type could not be efficiently studied as a lot of wireless interferences takes place
and also as the simulator need more power some of the packets are not received.
For every Dataset there were different implementation both in Random order Grid order.

Random Grid

In this positioning the nodes are created in random position in the Network in a way that
there is a path between all the nodes, so the nodes ar not farer than the maximum range.

37

1 View Zoom

Fig 19 Example of Random Grid

Square grid
The nodes are created in a way that they create a square grid with on the top the Router.
In this way it is more ordered and the traffic can be measured efficiently.

38

Fig 20 Example of Square Grid

9 Nodes

e Random Grid
o Normal 2 Traces
o Gray Hole 3 Traces
o Black Hole 4 Traces

e Square Grid
o Normal 3 Traces
o Gray Hole 5 Traces
o Black Hole 10 Traces

16 Nodes
e Square Grid
o Normal 5 Traces
o Gray Hole 6 Traces
o Black Hole 2 Traces

39

Chapter 3: Data analysis

Tools

To have a comprehensive analysis of the data used:
e Python3.7.3
e https://jupyter.org/ 5.7.7
e PyCharm 2018.3.5

Focusing on usability and ease to use the tools that choosed are well implemented, stable and
well documented.

Python was used mostly for calculation and the easy implementation of the Machine
Learning Tools.

Jupyter Notebook on the other hand despite his young age, is useful due to its simplicity in
running code with the interactive Python Implementation.

Having both Interactive and normal Python implementation was easier to manage using
PyCharm and IDE for large Python Projects.

Libraries

e matplotlib (3.0.2) Used to create plots during the analysis phase

e json (2.0.6) Used during the reading and editing of Json files for both Cooja and loT
labs

os Integrated with the system, used to access to files and directory

pandas (0.23.4) Use to manage and create DataFrame object types

numpy (1.16.2) to store numbers and arrays

sklearn (0.20.2) is the library with implemented all the machine learning techniques
used in this thesis

System

All the work presented in this thesis is conducted on a machine running
e Arch Linux x86_64
e Kernel 5.0.8-arch1
e (CPU Intel i7-7500U
e GPU NVidia GeForce GTX 950M

40

https://www.python.org/
https://jupyter.org/

o+
1++0000+:
/L
[

fedebyes@arch-laptop: ~ §

Fig 21 Host System Specifications

Github Repository

All the code is present in the github repository https://github.com/fedebyes/iot-netprofiler

Phase 1: Data Analysis per Node

As there are have different cases for the datas there was a need to create a unique way to
store them.

For that reason there is a function that read all .log files from the network in every folder and
put them as data easily accessible for every Case (Network disposition ei. 9 Nodes with a Black
Hole in node 3 in Square grid).

So for every node there is a file .log containing the output of the command ping6 to the
respective node, for every case the .log file is stored it in a different directory.

41

https://github.com/fedebyes/iot-netprofiler

B 1bh-3
B2 1bh-5
&1 1bh-6

grid9_1bh-...

Fig 22 Content of the Log folder

For this first step was stored for every case a list of nodes that contains a custom object Node
that has 3 properties:
e [P=The D (or IP of the node)
e Hop = distance from the root
e Pkts = Data Frame Object (From the Pandas Library in Python) containing all the
information of the packets in 3 columns
o Seq =Number of sequence of the packet
o RTT =Round Trip Time

This is done thanks to the function i import_nodes_Cooja_2 present in the project called for every
group of traces from the function import_Cooja2

def import_nodes_Cooja_2(directory,tracemask,node_defaults): This function reads the files in

the directory and extract the

files =[] informations
load all files and extract IPs of nodes
for file in os.listdir(directory):
try:
if file.startswith(tracemask) and file.index("routes"):
continue
except:
files.append(file)

42

nodes = pd.DataFrame(columns=['node_id’, 'rank'])
packets_node = {}

Load the ICMP traces
for file in files:
packets = pd.read_csv(directory + /' + file,

sep="|icmp_seq=|ttl=|time=',
na_filter=True,
header=None,
skiprows=1,
skipfooter=4,
usecols=[3, 5, 7, 9],
names=['node_id’, 'seq’, 'hop’, 'rtt'],
engine="python’').dropna().drop_duplicates()

if len(packets) < 1:
Nodes affected by a black hole did not receive any packet
node_id = file[-24:-4]
if(node_id=="aa::212:7411:11:1111"):
node_id="aaaa::212:7411:11:1111"
packets = pd.DataFrame(columns=['node_id’, 'seq’, 'hop’, 'rtt'],
data=[[node_id, 1, node_defaults[node_id], 1]1)

nodes.loc[len(nodes)] = [file[-24:-4], node_defaults[node_id]]
packets_node[file[-24:-4]] = packets

else:

#print("qui")

packets['node_id'] = packets.apply(lambda row:
row['node_id"][:-1], axis=1)

#print(packets["hop"].head())

#print(nodes)

#nodes.loc[len(nodes)-1] = [packets['node_id'][0], 64-packets['hop'][0]]

#print("ciao"+ str(64-packets['hop'][0]))

#print(nodes.loc[7])

packets = packets.sort_values(by=['node_id’, 'seq'],
ascending=True, na_position="first')

packets = packets[packets['rtt'] > 1]

packets["hop"]= 64-packets['hop']

packets_node[packets['node_id'][0]] = packets

nodes=nodes.sort_values(by=['rank’, 'node_id'])

#tranformation in node
nodelList=[]

for n in packets_node.keys():
#print((packets_node[n]).head())
pkts=packets_node[n].drop(["node_id","hop"],axis=1)
#print(pkts)
hop=int(packets_node[n]["hop"][0])
ip=packets_node[n]["node_id"][0]
#print(hop)
n=node(ip,hop,pkts)
nodelList.append(n)

return nodelist

Here the ICMP traces are
loaded

If there are nodes that are
affected by a malicious node
the log file will be almost
empty

All the values of RTT, Hop,
node_id and Seq are extracted
and put in a list of packets

This list is then transformed to
the common interface of
nodes

43

datal[o][@e].pkts

seq

1 233
2 277
7 304
16 227
13 204
19 204
23 432
25 303

e =1 @ ¢ & W N = O

28 258

Fig 23 Example of Dataframe containing the data of every node

After this step was necessary to apply Machine Learning techniques to have a unique Data
Frame of Data for every case, so the decision was to use some statistics of every node of the
case as entry for this input DataFrame.

Phase 2: Generating per Node Statistics

Before generating per node statistic is necessary to introduce the concept of windows.

The test conducted on Cooja consist in 200 pings answer, done every 5 seconds for a total of
1000 seconds (16 minutes) of test.

As the duration of the test is long and trying to emulate the aspect of a real network that is
active most of the time, it is better to train the algorithm directly with a little part of the data.

It is certain that with a big amount of data some anomalies can be discovered, it is not certain
if anomalies could be discovered in a small extract of these data.

An example to better understand this concept we can take as example the RTT Graph of the

node aaaa:212:7404:4:404 in the case of the Square grid of 9 nodes with a Black Hole in the
node 5.

44

Node aaaa:;:212:7403:3:303

|
—— grid9_1bh-6_2019-02-13 12:59

2500 -

Time {ms)
H
L
o
(o]

U_M&WM

0 50 100 150 200
Packet Number

Fig 24 5 RTT Graph for node 3 in case of 1 Black Hole in node 6

We can see that we have the packet number between 0 and 200, so we can imagine to divide
itin 2 windows of 100 packets or 4 windows of 50 packets.

Another idea could be to divide it of windows that partly complement each other to have
virtually more data (El Window 1: packets 0 to 50, Window 2: packets 25 to 75, Window 3:
packets from 50 to 100, etc).

For now the statistics are created with 4 different sizes of windows:

200 packets (1 window)

100 packets (2 windows)
50 packets (4 windows)
25 packets (8 windows)

Plotting all graph in a big table give us the possibility to understand how the malicious node
affect the other nodes.

45

View Zoom

Fig 25 Example of 9 nodes network

In the case of figure 25, where node 6 is a Black Hole, watching the graph it is clear that affect
just the node 9.

Node aaaa::212:7408:8:808
~ grid9 1bh-6 2019-02-13 19:15

Time (ms)
=
(9]
o
o

500 A A ! ﬂ

0 50 100 150 200
Packet Number

Fig 26 RTT Graph for node 8 in case of 1 Black Hole in node 6

In fact the RTT graph, with time on y axis and the sequence number on X axis show a normal
behaviour with just little packet loss (seq 100-120).

46

Node aaaa::212:7409:9:909

0.0 0.2 0.4 0.6 0.8 1.0
Packet Number

Fig 27 RTT Graph for node 9 in case of 1 Black Hole in node 6

In the RTT graph of Node number 9 (directly one hop after the Black Hole in node 6) we can
see that there is total packet loss and no packet is received.

MNode aaaa;;212;7407:7.707 Node aaan:;212;7402:2:202 Mode paan;;212; 7406 6,606 Node aasa;;212:7405:5:505 Mode aaan:;212;7409:9:509
geid%_1bh-6_2015.07-13_19:15_ gebdd_1bho6_201%-02-13_1015_ grid_1bh6 20190213 19:15_
£ £ g £] £
¥4 ¥ ¥ b & g
[= &

= ¥ ¥ r ¥

1 1

| | PRSI O 0 PRSP Y 1 | PR TP O] LS NI U T R
a0 02 o4 08 o8 10 o 30 100 150 200 o 30 100 150 200] 30 100 150 200 a0 .2 | LR o8

Packit Nurmlbar Poc ket Nurribers Phckal Nusribad Packat Musrbar Pock et Muarbed

Mode aana::212:7408:8:808 Mode aasa::212:7404:4:404 Node aaaa:;212:7403:3:303 Node aasa:;212:740a:0:a0a

oridd_1bh-6_2015-02.13_195_ 9.03.13_19:15_

7300 4 |
T 2000 { 1 1 =
¥ 1500 ¥ ¥ 24
3] i
10600 L i .
= MLy N | 1
] P ~oaled] bt | AT PR G P S | 7 TN SR G I
. L ki e —] Ty T Y
& SB 100 150 200] 6 1 150 200 ¢ S0 100 150 200 or 03 04 06 08 10
Packet Husrber Packet Numbar Pt Huerar Packet Humber

Fig 28 RTT Graph of the case grid9_1bh6

A better overview of the figure 27 is given by all the RTT graphs in figure 28, showing that the
Black Hole is receiving all the packets but not transmitting to node 9, 7 or 10.

47

View Zoom

Fig 29 Links in the case of 9 nodes Square Grid

The example is clearer in the figure 37, where the Black hole is the node 6. Links between
nodes are represented from a line, black in normal case, red in the case of the link is affected
from the malicious node 6.

As we can see the nodes 7, 9 and 10, in this particular case node 5 and 8 are not affected
because the RPL algorithm detect a different path (1->3->5->8).

In the repository is possible to find the complete pdf and study all the cases.

Other statistics analyze were the density of packets,

48

https://github.com/fedebyes/iot-netprofiler/blob/master/cooja3-9nodes/figures/RTT%20Graph.pdf

Wl A 212 E0T TR0

i

i,

-

B

Fig 30 Density of packets for every node in the case grid9_1bh6é

This plot, made for every node in every case represent the Kernel density Estimation of the

RTT of every packet.
The X axis is time in ms, while on the y axis is the density.
As expected the nodes that are far from the router have a more distributed curve, due to the

different latency of every hop.

On the other hand nodes that are affected from the Black Hole don't have any packet and so
no Kernel Density Estimation is possible.

49

In figure 30 is represented also an histogram to see how many packets have the same RTT
time, expressed in milliseconds.

Another study done is the Density of delay by case

Node aaaal21Z: 7404 :4:404

—— grid9_lbhe-3_2019.02-13 22:05_
gridd_loh-5 2019.02-13 15:31_
grdd_lonh5_2019-02.13_21:44_
—— gridd_loh-6_2019.02-13_12:59_
—— grdd_lohe6_2019.02-13 19:15_
a0 | gridd_lah7_2019-02-13 15:08_
grdd_lah7_2019.02-13_20:02_
—— gmdd_lohe9_2019.02-13_15:57_
— grdd_loned 2019.02-13 19:35_
— grdd_nonmal 201903 13_17:05_
—— ardd_normal 291902 13_18:51_
gridd_normal_2019-02.13_22:23
anzs | = = = =
a0z 4
i
g
a
a.015 4 1
a.01a 4 | .
a.0as |
|
/Jl!l
a.a08 S
-500 a 504 1303 1530 2000 2500
Teme {ms]

Fig 35 An extract of density of delay by case fo the node number 4

The analysis of the density of delay is done for every node as part of research process.

50

Nade aaaa:212: 7408 B:B0R

— gridd 1bn§ 20190213 1315 _

204 4

LEER

Density

adz 4

Q01 4

Q00 4 T T T T T T T T
32T 0 3TE 200 423 450 475 =00 SEE

Fig 36 Analysis of density of outliers for node 8

Another research done was the density of outliers described in figure 36, this plot is
generated for every node for every case. The presence of outliers is connected with the fact
that a node received the packets, as if there are no packets there are not outliers, for that
reason the number of outliers is included.

Thanks to the function create_stats this is possible and the statistics for windows are saved in
a csv file to avoid recalculate every time the statistic.

def create_stats(directory, df, pings, window): This function creates the
cases =] .) statistic for every node in the
casesAccuracy = df["case_accuracy"].values .
casesAccuracy? = df["case_accuracy2"].values window

cases = df["case"].values
folder = df["directory"].values + directory

data = import_Cooja2(df, directory)

int("P ing..."
grln{.fexg;?;f;%“: [%, The features of the dataframe

"node_id": [], that we want to create are

"label™: [], defined in the dictionary d
"label_2":[],

"loss": [],

"count": [],

"std": [1,

"mean": [],

"var": [],

"hop": [I,

"min™[],

"max":[],

"outliers": [],

51

"window": []

}

count=[]

labels =[]

var =]
n = pings

for i in range(len(data)): With 3 for loops we check the
window=pings[i] type of traces, then we extract

. . the node statistic and with the
for j in range(len(datali])): third the statistic is generated
for zin range(0, n, int(window)): per window

node = datali][j].pkts
name = str(j) + " " + casesli]
nodeWindow = node[(node["seq"] < z + window) &
(node["seq"] >= 2)]
nodeWindowP = nodeWindow["rtt"]
d["count"].append(nodeWindowP.count())
Case without outliers
Case with outliers
std=0
if (nodeWindowP.std() > 10):
std =1
std = nodeWindowP.std()

Generation of sequence value

d["std"].append(std) Generation of std value
mean=0

if(nodeWindowP.mean()>mean): mean=nodeWindowP.mean()

iftmean<1):print(mean) Generation of mean value
d["mean"].append(mean)

var=0

if (nodeWindowP.var() > var): var = nodeWindowP.var() . .
d["var"].append(var) Generation of var, experiment
d["experiment"].append(casesli]) and hop value

d["hop"].append(datalil[jl.hop)

if(casesAccuracy[i]J=="normal"):
d["label"].append("Normal") The label is given here from
the name of the network
else:
d["label"].append("Attacked")

if (casesAccuracy[i] == "normal"):
d["label_2"].append("Normal")
elif(casesAccuracyli] == "BH"):
d["label_2"].append("BH")
else:
d["label_2"].append("GH")
d["outliers"].append(getOutliers(nodeWindow)["rtt"].count()) . .
missing = window - nodeWindow.count() Gener.atlon. of outliers,
d["node_id"].append(datali][j].ip) node_id, min, max, loss and
mP = getPercentageMissingPackets(nodeWindow, window) window value.
d["min"].append(datali][j].pkts["rtt"].min())
d["max"].append(datal[il[j].pkts["rtt"].max())
d["loss"].append(mP)
d["window"].append(window)

stats = pd.DataFrame(d)
stats.to_csv(directory + "stats.csv", sep=",", encoding="utf-8')
return stats

52

The statistics created are of course different for every window and for this experiment we
choose to calculate the following statistics:

loss: Packet loss for the window

count: Number of packets received per window

std: Standard deviation of the RTT time of the packets
mean: Mean of the RTT time of the packets

var: Variance of the RTT time of the packets

hop: hop of the node when the packet was received
min: minimum RTT time of the packets

max: maximum RTT time of the packets

outliers: number of packets that have a value of RTT very far from the average RTT

time
window: amplitude of the window

So after running the function create_stats we have as output a Data Frame containing all the
information as well as other extra information such as the name of the node and if the node
was a Normal behaving Node, a Black Hole behaving Node or a Grey Hole behaving node and
if the node was attacked or not.

The main problem that was faced was the mislabeling of the nodes:

the nodes were labeled following the network, so if the network contained a malicious node
all the nodes of the network were labeled as malicious, but some of the nodes not affected or
not malicious would be then mislabeled.

53

Mew Zoom

Fig 31 Example of 9 nodes network

For example in the figure 31, if the node 5 is a Black Hole, it doesn't affect nodes 10, 4, 3 and

2, so they should be labeled as normal.
To do so was necessary manual labeling after checking every case we created.

This is very important for the next chapter talking about labels and accuracy.

54

Phase 3: Machine Learning Techniques

The most common Machine Learning method for Anomaly Detection is K-Means, as it is very
easy to use it for any type of grouping. [48]

Kmeans is an Unsupervised learning Algorithm, that means that the computer is trained with
unlabeled data and the output is not categorizable.

This is very useful to detect patterns and get meaningful insights when the human expert
doesn’t know what to look in the data.

At first we divide the input stats for window

directory="../cooja3-9nodes/"
df = pd.read_csv(directory + "stats_per_node.csv", sep=",", encoding="utf-8").drop(columns="Unnamed: 0")

win_25_stats = df[df["window"] == 25]
win_50_stats = df[df["window"] == 50]
win_100_stats= df[df["window"] == 100]
win_200_stats = df[df["window"] == 200]
trace_stats = {
25: win_25_stats.drop(columns=["label_2"]),
50: win_50_stats.drop(columns=["label_2"]),
100: win_100_stats.drop(columns=["label_2"]),
200: win_200_stats.drop(columns=["label_2"]),
}

In this way we have 4 different dataset, every dataset has different data, as the statistic are
calculated by window.

features_to_drop = [
'node_id’, 'experiment’, 'label’, "window",
“mean”,
#'loss’,
‘count’,
'‘outliers’,
"std",
#"var”,
"hop",
#"min",
"max"

]

For the experiment we saw that in the case of K-Means the best feature that we wanted to use
where the packet loss, the variance and the minimum.

That is logically explained by the fact that as construction behavior the malicious node are
having an effect of dropping a lot of packets, having the packet loss near 100%.

The core of the algorithm is in the following code

55

figsize= figsize=(10,30)
fig, axs= plt.subplots(len(trace_stats),1,
figsize=figsize,sharey=True,)
count=-1
for trace_size in trace_stats:
count+=1

trace = trace_stats[trace_size]
target = trace["label"].values

correction =]
for i in range(len(target)):
if (i=="Normal"):
correction.append(0)
else:
correction.append(1)
#dropping features
features = trace.drop(columns=features_to_drop)
kmeans = KMeans(n_clusters=2)
kmeans.fit(features)
labels = kmeans.predict(features)

#labels = f.accuracy_score_corrected(correction, labels)

trace["KmeansLabels"]=labels

centroids = kmeans.cluster_centers_
#print(trace)

#print(centroids)

#End of algorithm

#Try to draw them

X=features

pca = PCA(n_components=2)

pca.fit(X)

X_ = pca.transform(X)

dfPCA = pd.DataFrame({"x1": X_[:,0], 'x2": X_[:,11})
dfPCA["labels"]=labels

labels = trace['KmeansLabels'].unique().tolist()
#plt.figure(figsize=(7,5))

for lab in labels:
#print(lab)

#print(dfPCA[dfPCA['labels'] == lab])

axs[count].scatter(dfPCA.loc[dfPCA['labels'] == lab, "x1'],

dfPCA.loc[dfPCA['labels'] == lab, 'x2'], label=lab)
axs[count].legend()

Empty plots are created

Every experiment (trace) is evaluated

The correction array is created

Features are dropped

K means algorithm from skitlearn is
called with 2 clusters

The prediction is assigned to the label
array

the centroids of the cluster are saved

PCA algorithm is called to reduce the
number of dimension to 2 to plot the
results and understand better how
kmeans clusterized the results

The results are plotted in the plots and
colored by cluster of pertinency

At first we can use just 2 cluster to identify if a node is malicious or not, then we can try to use
3 to identify if also a node is a Gray Hole behaving.

56

200

150

100

200

150

100

-100

=150

=200

Fig 32 Cluster division (after PCA) of the nodes label with windows of 25 and 50

200

150

100

=50

=100

-150

-200

200

150

100

50

o

=50

-100

=150

-200

Fig 33 Cluster division (after PCA) of the nodes label with windows of 100 and 200

e 1
G e 0
.
.
. I
]
.
.
-
o 100000 200000 300000 400000
e 0
S e s 1
.
. ® .
. .
L] L]
.
.
T T
o 50000 100000 150000 200000 250000

& 0
. e 1
. (]
.
e ®
. *s
. L]
. .
* @
[
. []
o 20000 40000 60000 80000 100000 120000
e 0
e 1
L
.
:‘n- .,
. .
] e ‘.n ‘3
.
WP« . .
oﬁ .
* L]
LRV L N .
* .
- .
(] .
.
o 20000 40000 0000 80000 100000

57

In this case we can easily see how K-Means divide in two different clusters the example with 9
nodes, in all different cases pointing out in orange all the misbehaving nodes.
The 4 graphs are the 4 different sizes of windows (25, 50, 100 and 200).

In this case the code is runned using PCA (from sklearn) a way to reduce the dimensions of
the cluster to better understand how the Algorithm divided the results using just 3
parameters (loss, var and min)

This result because we can easily see that there are more normal behaving nodes and the
number of misbehaving nodes match the number of nodes inserted in the differents
experiments.

In this case we saw that for example we can easily detect nodes that are not receiving packets
but we cannot detect the node that is producing the problems. In other words we can detect
the effect of the problem but not necessarily the problem.

200

150

100

50

-50

-100 .

-150

=200

o 100000 200000 300000 400000 500000

Figure 28 Cluster division (after PCA) of the nodes label using 3 clusters

In the same way we can use the algorithm to create more cluster and check the effect of
different types of attacks (Black Holes and Gray Holes)

In the figure 28 we have the same example of the previous image (9 Nodes with windows of

25) and the same parameters with just one change: the output of the K-Means algorithm is 3
Cluster and not 2.

Here there is an extract of the code that runs the experiment with K-Means and the 3 clusters,
thanks to skitlearn the implementation of K-Means is very easy and intuitive.

58

Phase 4: Accuracy of the method

This accuracy is for predicting with K-Means if a node was Malicious or not is high (76.8%) for

every type of window (25, 50, 100, 200).

Due to the limitation of unsupervised learning it is not possible to calculate the accuracy for
the prediction of the three cases attack, as the cluster are assigned randomly from the

machine.

| strongly suggest to use Supervised Learning in this case study.

In a more production wise tool probably the best Idea would be to use Unsupervised learning

In a big industry is impossible to create entry and labels for attacks to train the machine

learning algorithm.

Other solution elaborated implement the use of supervised learning algorithm such as KNN,

Random Forest and SVM, these solution are very powerful and give us pretty good results in

this experiment even with the separate labeling in 3 classes.

The separate labeling requires a lot of time because the expert need to check every layout of

the network checking every node statistics.

Model Window Size Mean Accuracy

Random Forest
Random Forest
Random Forest
Random Forest
KNN
KNM
KNMN
KMNMN
SVM
SVM
SVM
SVM

Fig 34 Results of different Algorithm saved in a dataframe

25
50
100
200
25
50
100
200
25
50
100
200

0.843773
0.922656
0.990122
0.848522
0.823385
0.842962
0.816435
0.816435
0.847797
0.879224
0.845389
0.845389

The solution of using supervised learning, as previously stated, has the big limits to being

linked to the fact that a human expert need to manually label the data, like in this case.

This method peaked the 99% percent of right prediction, but this kind of methods is very

difficult to implement in a real Internet of Things Network such and Industry.

59

Chapter 4: Conclusions and Future Work

As stated in the previous chapter this method is very efficient and useful to understand if
there is an Intrusion in the network.

Let's see in conclusion the solution to the different problems proposed in the first Chapter

Problem 1.1: Given a set of traces collected from the network, we want to characterize if the
whole network includes at least 1 malicious node.

Solution 1.1: This problem is solved using the Machine Learning technique, with both supervised
and unsupervised types we can easily spot misbehaving nodes, so if in a network there is more
than one misbehaving node, we can safely assume that the whole network is malicious.

Problem 1.2: Given a set of traces collected from the network, we want to characterize if the
whole network includes at least 1 malicious node and also identify the type of attack.

Solution 1.2: As the previous problem we can consider it solved and with very high accuracy we
can also spot the type of the attack

Problem 2.1: Given a set of traces collected from the network, we want to characterize each node
in the network if it is a malicious node.

Solution 2.1: This problem is not possible to solve just observing the traces of the network, by
definition a node that is malicious (a Black Hole) is correctly answering to pings but is not
forwarding messages, that means for the traces we can collect there is not packet loss nor a big
variance

Problem 2.2: Given a set of traces collected from the network, we want to characterize each node
in the network if it is affected by a malicious node.

Solution 2.2: The solution of this problem is found thanks to the per node analysis method
developed in this thesis.

Problem 2.3: Given a set of traces collected from the network, we want to characterize each node
in the network is a malicious node and also identify the type of attack.

Solution 2.4: as the problem 2.1, just using the traces is not possible to divide a malicious node by
a normal one because both are correctly answering to the pings

60

Problem 2.4: Given a set of traces collected from the network, we want to characterize each node
in the network if it is affected by a malicious node and also identify the type of attack.

Solution 2.3: We saw not only that we can identify if the node is malicious, just using two cluster
but even the type of attack, using three clusters.

Conclusions

The method explored in this thesis can be easily implemented in a production environment,
using a PC connected to the network where all the nodes are, or simply and more security
wise running a script continuously from the router itself.

The Python function can produce datas and results more and more precise while data are
gathering, so we can just let a file open for writing from one side (the stats_per_node.csv file)
and reading from the other side.

This methods does not take into account possible fail of the network, possibility that simply
the nodes are not connected anymore and limitation of the IIOT network implementation.
Using ICMP messages can give us insight about the state of the node itself but in my opinion
can't give us an idea of the fact that a network is attacked, due to the limitation itself of the
environment, while we can actually implement ways that are more intrusive and requires
direct connection to the router to check the messages transmitted in the network.

This anomaly detection Systems is a second line of defence towards intrusion detection, when
the attack already has been successful, so for that reason is a suggested system to implement
but just if paired with other system to prevent the attack in the first place.

Future work

Although the Anomaly Detection System demonstrated to resolve the problems towards
some attack such as Black Holes and Grey Holes Attacks, we need to create more experiment
to see if it will detect even more types of attacks. Other than that probably a more intrusive
way to have insight and use the data is way more efficient, but to do so we will need to have
administrator privileges to the network.

To conclude the future of the idea behind this thesis is promising and can solve one of the

most important challenges that we are facing right now in the Industrial Internet of Things
using tools such as Machine Learning.

61

62

References

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.

20.
21.

22.
23.
24,

loannis Chatzigiannakis, Vasiliki Liagkou, Paul G. Spirakis: Brief Announcement: Providing
End-to-End Secure Communication in Low-Power Wide Area Networks. CSCML 2018: 101-104
Dimitrios Amaxilatis, Orestis Akrivopoulos, Georgios Mylonas, loannis Chatzigiannakis: An
loT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy
Efficiency. Sensors 17(10): 2296 (2017)
loannis Chatzigiannakis, Andrea Vitaletti, Apostolos Pyrgelis: A privacy-preserving smart parking
system using an loT elliptic curve based security platform. Computer Communications 89-90:
165-177 (2016)
Khalil Massri, Andrea Vitaletti, Alessandro Vernata, loannis Chatzigiannakis: Routing Protocols
for Delay Tolerant Networks: A Reference Architecture and a Thorough Quantitative Evaluation.
J. Sensor and Actuator Networks 5(2): 6 (2016)
Geoff Coulson, Barry Porter, loannis Chatzigiannakis, Christos Koninis, Stefan Fischer, Dennis
Pfisterer, Daniel Bimschas, Torsten Braun, Philipp Hurni, Markus Anwander, Gerald
Wagenknecht, Sandor P. Fekete, Alexander Kroller, Tobias Baumgartner: Flexible
experimentation in wireless sensor networks. Commun. ACM 55(1): 82-90 (2012)
loannis Chatzigiannakis, Georgios Mylonas, Andrea Vitaletti: Urban pervasive applications:
Challenges, scenarios and case studies. Computer Science Review 5(1): 103-118 (2011)
loannis Chatzigiannakis, Georgios Mylonas, Sotiris E. Nikoletseas: The Design of an Environment
for Monitoring and Controlling Remote Sensor Networks. |JDSN 5(3): 262-282 (2009)
loannis Chatzigiannakis, Elisavet Konstantinou, Vasiliki Liagkou, Paul G. Spirakis: Design,
Analysis and Performance Evaluation of Group Key Establishment in Wireless Sensor Networks.
Electr. Notes Theor. Comput. Sci. 171(1): 17-31 (2007)
loannis Chatzigiannakis, Andreas Strikos: A decentralized intrusion detection system for
increasing security of wireless sensor networks. ETFA 2007: 1408-1411
loannis Chatzigiannakis, Georgios Mylonas, Sotiris E. Nikoletseas: jWebDust : A Java-Based
Generic Application Environment for Wireless Sensor Networks. DCOSS 2005: 376-386
Virtualizing testbeds to support large-scale reconfigurable experimental facilities T
Baumgartner, | Chatzigiannakis, M Danckwardt, C Koninis, A Kroller, European Conference on
Wireless Sensor Networks, 210-223, 2010
A web services-oriented architecture for integrating small programmable objects in the web of
things O Akribopoulos, | Chatzigiannakis, C Koninis, E Theodoridis2010 Developments in
E-systems Engineering, 70-75, 2010
Open source IoT meter devices for smart and energy-efficient school buildings L Pocero, D
Amaxilatis, G Mylonas, | ChatzigiannakisHardwareX 1, 54-67, 2017
Elliptic curve based zero knowledge proofs and their applicability on resource constrained
devices | Chatzigiannakis, A Pyrgelis, PG Spirakis, YC Stamatiou 2011 IEEE Eighth International
Conference on Mobile Ad-Hoc and Sensor ..., 2011
On the deployment of healthcare applications over fog computing infrastructure O
Akrivopoulos, | Chatzigiannakis, C Tselios, A Antoniou 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC ..., 2017
Brown, Eric (13 September 2016). "Who Needs the Internet of Things? . Linux.com
Brown, Eric (20 September 2016). 21 Open Source Projects for loT . Linux.com

Internet of Things Global Standards Initiative . ITU.
Hendricks, Drew. The Trouble with the Internet of Things . London Datastore. Greater London
Authority.
Wigmore, I. (June 2014). Internet of Things (loT) . TechTarget.
Developments in the low power, low cost wireless transmitting devices are promising in the
area of loT due to its long battery life and efficiency.
Eric Brow Who need internet of Things? (2016)
Raji, Reza S. Smart networks for control. IEEE spectrum 31.6 (1994): 49-55
Ashton, K. (22 June 2009). That 'Internet of Things' Thing . Retrieved 9 May 2017

63

25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.

40.

41.

42,
43.

44,

45,

46.

47.

48.

Gubbi, Jayavardhana, et al. Internet of Things (loT): A vision, architectural elements, and future
directions. Future generation computer systems 29.7 (2013): 1645-1660.

Siano, Pierluigi. "Demand response and smart grids—A survey." Renewable and sustainable
energy reviews 30 (2014): 461-478.

David B Gray Tesla switches on giant battery to shore up Australia’s Grid

Sadeghi, Ahmad-Reza, Christian Wachsmann, and Michael Waidner. "Security and privacy
challenges in industrial internet of things." 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2015.

RF Page, Applications of industrial Internet of things (2019)

Kushalnagar, Nandakishore, Gabriel Montenegro, and Christian Schumacher. IPv6 over
low-power wireless personal area networks (6LOWPANS): overview, assumptions, problem
statement, and goals. No. RFC 4919. 2007.

Perera, Charith, et al. "A survey on internet of things from industrial market perspective." IEEE
Access 2 (2014): 1660-1679.

Boyes, Hugh, et al. "The industrial internet of things (IloT): An analysis framework." Computers
in Industry 101 (2018): 1-12.

N. Kushalnagar, G. Montenegro, C. Schumacher IPv6 over Low-Power Wireless Personal Area
Networks (6LOWPANS): Overview, Assumptions, Problem Statement, and Goals (2007)

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, JP. Vasseur,and R.
Alexander. IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), 2012.

Mario Hermann , Tobias Pentek , Boris Otto, Design Principles for Industrie 4.0 Scenarios (2016)
Alma Oracevic, Selma Dilek, suat Ozdemir Security in Internet of Things: A Survey (2017)
Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." Journal of machine learning
research 12.0ct (2011): 2825-2830.

Firdaouss Doukkali Clustering K-Means Algorithm (2017)

Conta, Alex, Stephen Deering, and Mukesh Gupta. Internet control message protocol (icmpv6)
for the internet protocol version 6 (ipv6) specification. No. RFC 4443. 2006.

Shakeel, P. Mohamed, et al. "Maintaining security and privacy in health care system using
learning based deep-Q-networks." Journal of medical systems 42.10 (2018): 186.

"The Enterprise Internet of Things Market". Business Insider. 25 February 2015. Retrieved 26
June 2015.

Gilchrist, Alasdair. Industry 4.0: the industrial internet of things. Apress, 2016.

Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems architecture for industry
4.0-based manufacturing systems." Manufacturing letters 3 (2015): 18-23.

Weber, Rolf H. "Internet of Things-New security and privacy challenges." Computer law &
security review 26.1 (2010): 23-30.

Jing, Qi, et al. "Security of the Internet of Things: perspectives and challenges." Wireless
Networks 20.8 (2014): 2481-2501.

Michie, Donald, David]J. Spiegelhalter, and C. C. Taylor. "Machine learning." Neural and
Statistical Classification 13 (1994).

Cover, Thomas M., and Peter E. Hart. "Nearest neighbor pattern classification." IEEE
transactions on information theory 13.1 (1967): 21-27.

Kanungo, Tapas, et al. "An efficient k-means clustering algorithm: Analysis and
implementation." IEEE Transactions on Pattern Analysis & Machine Intelligence 7 (2002):
881-892.

64

to my family, for making this journey possible,
to all my friends for supporting me,
to BEST for making it wonderful.

“It always seems impossible until it's done.”

- Nelson Mandela

65

