
Arrhythmia classification from ECG signals

Dipartimento di Informatica, Automazione e Gestionale

Corso di Laurea Magistrale in Engineering in Computer Science

Candidate

Angelo Catalani
ID number 1582230

Thesis Advisor

Prof. Aris Anagnostopoulos

Co-Advisor

Prof. Ioannis Chatzigiannakis

Academic Year 2018/2019

Thesis defended on 22 July 2019
in front of a Board of Examiners composed by:

Prof. Fiora Pirri (chairman)
Prof. Aris Anagnostopoulos
Prof. Febo Cincotti
Prof. Pierangelo Di Sanzo
Prof. Umberto Nanni
Prof. Alessandro Pellegrini
Prof. Aurelio Uncini

Arrhythmia classification from ECG signals
Master thesis. Sapienza – University of Rome

© 2013 Angelo Catalani. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: July 8, 2019

Author’s email: catalaniangelo@gmail.com

mailto:catalaniangelo@gmail.com

Dedicated to
my parents

v

Abstract

A programmer is a problem solver and its activity requires a high level of creativity,
as well as multidisciplinary knowledge. This project, allowed me to implement
innovative algorithms for medical purposes: we strongly believe in technological
advancement as the key to improve the quality of life and the world around us.

vii

Acknowledgments

we would like to express my special thanks of gratitude to my professors (Aris Anag-
nostopoulos and Ioannis Chatzigiannakis) who gave me the golden opportunity to do
this wonderful project.

Secondly, we would also like to thank my parents and relatives who sustained me a
lot over my studies.

ix

Contents

1 Introduction 1
1.1 Document Structure . 3

2 Principles of ECG Evaluation 5
2.1 Heart’s Anatomy . 5

2.1.1 Electrical Cell . 5
2.1.2 Heartbeat Cycle . 6

2.2 ECG tracing . 7
2.2.1 Heartbeat Shape . 8
2.2.2 Type of Arrhythmias . 9

3 Pre-Processing 11
3.1 De-Noise . 11

3.1.1 Median Filter . 12
3.1.2 Discrete Wavelet Transform 12

3.2 Data Augmentation . 14
3.2.1 Smote and Adasyn . 15

4 Classification Algorithms 17
4.1 Support Vector Machine . 17
4.2 Large Margin Principle . 17

4.2.1 Kernel Trick . 19
4.3 Feedforward Neural Network . 20

4.3.1 Weighted Loss Function . 21
4.4 Convolutional Neural Network . 22

4.4.1 Convolutional Layer . 23
4.4.2 Pooling Layer . 24
4.4.3 Mathematical Interpretation 25

4.5 Recurrent Neural Network . 26
4.5.1 Vanilla RNN . 27
4.5.2 Long Short Term Memory . 29

4.6 Attention . 31
4.6.1 Encoder-Decoder model . 31
4.6.2 Attention in Encoder-Decoder 32
4.6.3 Multiplicative and Addititive Attention 33

4.7 Transformer . 34

x Contents

4.7.1 Transformer’s Attention . 34
4.8 Neural Ordinary Differential Equations 35

4.8.1 Residual Neural Network . 35
4.8.2 NODE . 37

5 Experiment 41
5.1 Dataset . 41

5.1.1 Training and Test Set . 42
5.2 Performance Measures . 43
5.3 Random Forest [17] . 44

5.3.1 Custom Variation . 45
5.4 Support Vector Machine [15] . 45
5.5 Convolutional Neural Network [24] 49
5.6 Neural Ordinary Differential Equations 50

5.6.1 Test 1 . 51
5.6.2 Test 2 . 52
5.6.3 Test 3 . 54

5.7 LSTM . 54
5.7.1 Test 1 . 55
5.7.2 Test 2 . 55
5.7.3 Test 3 . 56

5.8 LSTM/NODE with Attention . 57
5.9 Transformers . 60
5.10 Results . 60
5.11 Per Patient Dataset . 62

5.11.1 Test 1 . 62
5.11.2 Test 2 . 64

6 Conclusions 69

1

Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the first cause of death worldwide: 18 mil-
lion people died from CVDs in 2016, representing 31% of all global deaths ([29]).
This project is focused on the cardiovascular diseases related to complications with
the electrical system that regulates the steady heartbeat and generates abnormal
heartbeats called arrhythmias. Many people, during life, can experience irregular
heartbeats and generally, they are harmless and happen in healthy people free of
heart disease. However, some abnormal heart rhythms can be even deadly.

A standard tool to diagnose arrhythmias is the electrocardiogram (ECG): mea-
surement of the heart’s electrical activity. Since it is a non-invasive and painless
test for the patients, it can be employed to collect massive volumes of data, and
subsequently analyze them, to automatically detect arrhythmias. The equipment to
produce electrocardiograms is principally present in hospitals, where cardiologists
use their knowledge and experience to carefully evaluate the ECG. However, this
activity is time-consuming and prone to error: an automatic approach can support
them during their decision.

In addition to this, accurate and low-cost diagnosis of arrhythmic heartbeats is
highly desirable since it can detect early heart problems and prevent dangerous
consequences. This is the reason it is not surprising recent literature is focused on
this topic. In general, the ECG’s analysis is constituted of two phases:

1. beat detection: extrapolate the temporal segment of the ECG related to the
contraction of the heart

2. arrhythmia classification: detection of arrhythmic beats

This work is concentrated only on the latter, that is more challenging because
until now, there is not any perfect solution to the problem. We propose a series of
algorithms able to automatically detect arrhythmias, with the aim for the future,
to implement them on wearable devices. In detail, several works have proposed a
complete infrastructure to integrate that device in a fog-computing organization.
Specifically, [32] and [10], describe an environment with:

1. Wearable Device. It collects data from the ECG sensor and detects arrhythmias
with suitable algorithms

2 1. Introduction

2. Edge Device. It is the patient’s device with software to communicate with the
wearable device and perform more complex computation

3. Cloud Services. They offer all the necessary features to facilitate authentication,
notifications, data integration and other services relying on privacy-preserving
data integration

The described fog computing approach extends the cloud computing paradigm
by migrating data-processing closer to the production site, thus accelerating the
system’s responsiveness to events ([4],[3],[32]). This prototype will allow patients to
share information to their physicians, monitor their health status independently and
notify the authorities rapidly in emergencies. Historical data will also be available
for further analysis, towards identifying patterns that may improve medical diag-
noses in the foreseeable future ([5]). The performance of the system is evaluated
concerning the accuracy of detecting abnormal events and the power consumption
of the wearable device. Results indicate that a very high percentage of success can
be achieved in terms of event detection ratio and the device being operative up to
several days without the need for a recharge ([2], [11]).

We use the MIT-BIH Arrhythmia Database dataset: it is open source and con-
sists of 47 patient’s ECG recording. Initially, we have investigated the literature
about the pre-processing techniques to remove noise from the ECG and deal with
unbalanced classes in the dataset: Discrete Wavelet Transform and Median Filter
for de-noise; Smote, Adasyn for weighted loss (data augmentation). Secondly, we
have tried a simple model based on Random Forest, and subsequently more complex.
In particular, we have re-implemented some of the best algorithms in the literature
based on Support Vector Machine and Convolutional Neural Network.

The latter has an excellent accuracy we have attempted to improve with my neural
network models. Specifically, we have adopted:

1. Neural-ODE. It is a novel approach presented in NeurIPS 2018, where the
dynamic of a neural network is modeled using a first-order differential equation

2. Long Short Term Memory (LSTM). Since the ECG is a time series, LSTM is
acknowledged to have good result since can capture long term dependencies
without the vanishing gradient problem

3. Attention Layer. It is a layer widely used in Natural Language Processing
(NLP) to explicitly force the networks to learn the portion of the input to pay
attention.

4. Transformer. It is a model introduced by Google for NLP. we have re-adapted
it for our task.

In the models above, the training and test set are obtained considering all the 37
patients in the dataset: this is a common practice in the literature. The described
models reach the state of the art accuracy for arrhythmia detection.

1.1 Document Structure 3

Finally, we have removed from training data three patient and considered them
as test set. In particular, we have first trained the LSTM model and then built a
different classifier for each of the three patients in several ways:

1. Removing the last layer of the trained LSTM to get some features for each
beat and then applied SVM

2. Retraining the LSTM completely

3. Retraining the last four layers of the LSTM

In this case, the performance is still good and this means our models can be employed
in wearable devices and achieve high accuracy after a short period of personalized
fine-tuning on the specific users.

1.1 Document Structure
In Chapter 2, we will discuss the heart’s anatomy and the shape of beats and
arrhythmias in an ECG.

Then in Chapter 3 and Chapter 4, we will cover pre-processing and feature
extraction techniques applied to the ECG, to improve:

1. information’s quality: signal filters and discrete wavelet transform

2. classification performance: data augmentation

In Chapter 5 we will describe the implemented algorithms, with the corresponding
results, mainly based on Random Forest, Support Vector Machine and Neural Net-
work.

Finally, in Chapter 6, we will compare some of the best models found in the
literature with my approaches: the latter take advantage of the last advancement in
Machine Learning and reach the state of art’s performance.

5

Chapter 2

Principles of ECG Evaluation

This chapter explains the underlying mechanism behind the heart beating and how
this process is visible on the ECG. The importance of this argument relies on the
consequent ability to define ECG’s key features for arrhythmias detection.

2.1 Heart’s Anatomy

The human heart pumps blood to the body, as the result of electrical impulses and
mechanical response, due to conductive and mechanical cells. The contraction is
possible only in the presence of an electrical stimulus but in some pathological cases,
the inverse is said to be true. This is the reason why to determine the health state
of this muscle, it is of paramount importance to asses both the mechanical and
electrical functions. The first, one can be monitored with blood pressure, pulses
while the latter with the ECG. The latter gives a graphic display of the electrical
activity in the heart so that it is possible to identify arrhythmias as recognizable
patterns. For example, it is straightforward to presume the ECG of Fig. 2.1 contains
5 beats.

2.1.1 Electrical Cell

Electrical cells have the exclusive capability to discharge electrical current without the
necessity of external stimuli: this property is called automaticity, and the underlying
mechanism is the sodium pump. In a resting cardiac cell the electrical charges are
equally balanced and there is no electrical flow: the cell is said to be polarized or in
the ready state. The automaticity property, allows this cell to modify the membrane
and pull sodium inside and potassium outside, so that the resulting difference of
potential causes an electrical flow: this is the basic sodium pump functionality

Figure 2.1. Example of ECG trace

6 2. Principles of ECG Evaluation

Figure 2.2. Electrical cell transactions: [37]

that makes the cell in a state called depolarized or discharge state. Finally, after
this step, the reverse process to turn the depolarized state in the original restring
one, is called repolarization and it consists of pulling out of the cell’s membrane
the sodium and inside the potassium, bringing, in the end, the cell to the original
resting state. The whole process is described in Fig. 2.2. The heart is made of 4
chambers: two atriums in the upper part and two ventricles downside. The electrical
cells conduct the current flow through a set of connections that overall constitute
the conductive system and completely cover the heart’s surface: this allows the
consequent contraction of atriums and ventricles.

2.1.2 Heartbeat Cycle

Normally, the electrical impulse is produced in the sinoatrial (SA) node positioned
in the upper part of the right atrium. Then, it propagates down to the right atrium
with the internodal pathways to reach the atrioventricular node (AV) and left with
the interatrial pathways to reach the left atrium. The entrance to the left and right
ventricles is provided by the Bundle of His, through the left and right bundle branch,
that terminates with Purkinje fibers who are in charge to contract the ventricles. It
is interesting to note not all the portion of the heart have the same beat rhythm
(beats per minute):

2.2 ECG tracing 7

Figure 2.3. Electrical tissue of heart: [37]

1. SA node: 60-100

2. AV node: 40-60

3. Ventricles: 20-40

The discussed structure is depicted in Fig. 2.3. In the ECG, in normal condition, the
visible beat rate is due to SA node because it has the highest frequency and overrides
all the other: this is the reason why it is defined as the pacemaker. The above values
are called inherent rates and can help us to infer the heart’s dysfunctions visible in
the ECG as a different SA rhythm. In a pathological context, for example, if the SA
node fails, the pacemaker becomes the AV node and a slower rhythm is visible on
the ECG: this callback safety mechanism is named escape.

2.2 ECG tracing

The acquired knowledge in the previous subsection is essential to investigate how
the electrical activity is transferred to graph paper to be analyzed for our task. The
ECG is obtained placing some electrodes on the patient skin and connecting it, to a
machine that will display the electrical activity. The location of the electrodes is
crucial for the final output and it is possible to obtain multiple views (or lead) of
the same heart, just by varying their position. In particular, some arrhythmias are
more visible on a given view, and in general, an effective diagnosis interpolates more
leads. For example, in the dataset we consider, each ECG has two leads:

1. modified limb lead II (MLII) where the electrodes are on the chest.

2. modified chest lead V1 (MCL1) where the negative electrode is placed close to
the left shoulder and the positive electrode to the right of the sternum

8 2. Principles of ECG Evaluation

Figure 2.4. Lead II basic principles: [37]

For a long time, the most adopted lead has been the Lead II, and in the following, we
will take into consideration this configuration. However, there are different leads with
better effectiveness. In Lead II the negative electrode is placed to the right, above
the heart, while the positive to the left, behind the heart. In this way, when the
electrical impulse propagates from the atrium to the ventricle, the ECG device will
display an upright wave, while the upside-down shape is generated in the opposite
case (Fig. 2.4). Finally, the ECG is written on a conventional graph paper (Fig.
2.1) where the voltage levels are measured comparing the horizontal lines, and the
time interval, considering the vertical lines: two consecutive vertical splits cover 0.04
seconds.

2.2.1 Heartbeat Shape

During a normal beat, the heart first enters in the atria and then into the ventricles:
this requires a synchronized mechanism so that while the atria fill, the ventricles
contract and vice-versa. During each phase of the cardiac cycle, a distinct pattern
is produced on the ECG graph paper. This pattern describes instantly what is
happening in the heart and it has the shape depicted in Fig. 2.5. The beat shape
starts with a deflection: the P wave and it is generated by the SA node. Subsequently,
the impulse leaves the atria to reach the AV node and it encounters a slight delay
because the encountered electrical tissues are slower. This is translated into a short
period of electrical inactivity called the PR segment. The subsequent wave is the

2.2 ECG tracing 9

Figure 2.5. Heartbeat in the ECG

QRS complex, due to ventricular depolarization and it is significantly larger than the
P wave because to ventricles are greater than atria, so that more potential energy
is required. The Q wave is defined as the first negative deflection following the P
wave but before the R wave. This wave flows immediately into the R wave, which is
the first positive deflection following the P wave. Next comes the S wave, which is
defined as the second negative deflection following the P wave, or the first negative
deflection following the R wave.

After the ventricles depolarize, they begin their repolarization phase, which results
in another wave in the ECG. The T wave is indicative of ventricular repolarization.
The atria also repolarize, but this event is not significant enough to show up in
the ECG. Between the S and the T wave is a section called the ST segment. The
ST-segment is the flat, isoelectric section of the ECG between the end of the S wave
and the beginning of the T wave. It represents the interval between ventricular
depolarization and repolarization, and anomalies in this segment are a symptom of
infarction.

2.2.2 Type of Arrhythmias

Arrhythmia analysis is a complex task due to the high variability of the heart’s
mechanism inside each patient. Arrhythmias are classified into two classes:

1. rhythmic: constituted of a series of irregular beats

2. morphological: single abnormal beat

This work is concentrated on the latter. Morphological arrhythmias are classified into
4 macro classes by the Association for the Advancement of Medical Instrumentation
(AAMI) standard, with respect to the location where the anomaly starts:

10 2. Principles of ECG Evaluation

Figure 2.6. Examples of Arrhytmias

Figure 2.7. Detailed classification of arrhythmias

1. N-class. It happens when the beat regularly starts at the SA node but can
be blocked in the left or right bundle branch. It includes a regular beat. For
example, the left bundle branch block happens when the impulse does not reach
the left ventricle because the left bundle is compromised: in this situation,
first, the right ventricle will depolarize and then also the left one. This results
in a QRS complex longer than 120 ms.

2. S-class. It happens when the impulse starts below the SA node: in this
situation the impulse will begin at the bottom and subsequently will reach the
upper part, resulting in an upside-down P wave.

3. V-class. It happens when the impulse originates in the ventricles and it shows
up in the ECG as a tall and wide QRS

4. F-class. It happens when there are multiple sources of depolarization: for
example in Fig. 2.6 the P wave is modified by an additional source of
depolarization

A more detailed arrangement of the above classes are depicted in the figure below.

11

Chapter 3

Pre-Processing

As we have previously, discussed, the ECG tracing is an empirical process prone to
noise measurements whose removal is of high importance to guarantee the detection
of the relevant features without incurring into overfitting issues. The principal
methods to remove noise are based on frequencies domain analysis : in the following
we will describe Median Filter and Discrete Wavelet Transform. In addition to
this, the dataset we are taking into consideration is highly overbalanced: one class
constitutes more than 80% of all the elements: this can lead to inconsistencies
because an algorithm could reach high accuracy, merely predicting only that class
without any generalization competence. For the purpose of handling the latter,
we have used several approaches based on data augmentation and weighted loss
function.

3.1 De-Noise

The ECG can be affected by several sources of noise during the recording, attributable
to :

1. Baseline wanders caused by the patient’s movements.It is visible in the signal
with frequencies below 0.5 Hz (Fig. 3.1.a).

2. Power line interference caused by electromagnetic external devices. It appears
in the signal as 50/60 Hz sinusoids (Fig. 3.1.b).

3. Muscle artifact caused by muscle activity near the electrode for the contraction
of the heart’s patient. It is difficult to be removed since it is strictly related
to the electrical impulse of the ventricles that determines the QRS complex
on the ECG. Its removal can result in unwanted distortion of the signal (Fig.
3.1.c).

It is crucial to note the role of de-noise algorithms is to clean the signals without
losing relevant information: after the processing, the filtered signal must contain the
original key features of a beat in terms of P, Q, R, S, T wave. In this project we
have considered 2 different ways of noise removal: median filter and discrete wavelet
transform (DWT).

12 3. Pre-Processing

Figure 3.1. Example of noise in ECG recordings. (a) Baseline wander, (b) Power line
interference, and (c) Muscle artifact. [9]

3.1.1 Median Filter

A median filter takes as input a signal S = [x1, . . . , xn] and a window of size: w.
It returns a converted signal where for every sample : xi ∈ S, it is computed the
median of the elements : [xi, xi+1, . . . , x(we+w) mod n]. The the intuition behind a
median filter is that noisy samples tend to have too high or too low values, with
respect to the neighbor samples: replacing them with the median in a given range
can be a good approach. This the technique is used in [18] to mitigate the noise due
to baseline wander.

3.1.2 Discrete Wavelet Transform

The ECG signal is non-stationary because beats are generated by the heart under
influences of physiological factors that depend on the brain and change continuously
over time. In order to characterize it, a simple approach could consist of a time-
domain analysis, taking into consideration factors like the duration of QRS complex
or ST segment. This approach does not fit with the subtle changes in the amplitude
and duration in the ECG that are specific for any patient.Another the approach is to
perform a frequency domain analysis with Fourier Transform. However, the latter is
not perfectly applicable because it is not accurate to assume that a given frequency
is equally distributed in the signal: this is only true for a periodic, stationary signal.
In particular, to represent the ECG signal we are interested not only in the frequency
contained but also in the portion of the signal exhibits a given frequency.

With the aim of having a better resolution in time, it is possible to study the
frequencies of the signal present in a temporal window of the signal: for example we
can study the frequencies of the signal from t = 0 to t = 0.1, so that we can infer

3.1 De-Noise 13

Figure 3.2. Wavelet named Meyer

the frequencies localized in the interval.

However, the drawback of this approach is that it is not possible to detect all
the frequencies because in that window we can only find the frequencies greater than
1

0.1 = 10Hz, since for frequencies greater than 10Hz we need to consider a window
larger than 0.1s. The explained tradeoff between frequency and time resolution is
the application of the Heisenberg’s Uncertainty Principle. In order to mitigate this
issues: the optimum approach is to consider a small window for high frequencies
and large window for low frequencies. In fact, when a signal component is rapidly
changing it is essential to detect the instant when this happens. On the contrary,
when a component repeats slowly it is necessarily a larger window to detect it.

The Discrete Wavelet Transform (DWT) takes advantage of this latter consid-
eration. DWT considers as basis function a wavelet instead of sinusoid employed
by Fourier Transform. A wavelet is a function with a limited duration: it has an
amplitude that begins at zero, increases, and then decreases back to zero. A wavelet
is more localized in time than a sinusoid because it exists only in a restricted interval
(Fig. 3.2). The main parameters of a wavelet are:

1. scaling.The scale of a wavelet is a measure of how it is expanded, so that the
higher the scale the more it is spread and the less it is localized in time (Fig.
3.3).

2. shifting.The wavelet is shifted across the input signal to align it with the
features we are interested in, for example the QRS complex.

In general, the idea of DWT is to analyze the correlation between the signal and a
given wavelet shifted over the signal with increasing scale: initially it is analyzed
high-frequency behavior and at each successive step the scale is doubled and the
signal downsampled for the Nyquist criterion. In conclusion, DWT outputs the
signal at different bandwidth, such that at each level of analysis, the output is high,
if there is a strong correlation of the signal at that frequency with the wavelet at

14 3. Pre-Processing

Figure 3.3. Wavelet with scaling factor of 1,2,4: [27]

that scale.

There are several families of wavelet, and the choice of the correct one, relies
on the similarity of shape with the portion of ECG we are interested (Fig. 3.4)
. For example, a common choice is the Meyer wavelet (Fig. 3.2) because it is
comparable to the QRS complex. DWT is mainly used as :

1. a filter ignoring the coefficients at a given frequency level while reconstructing
the signal ([16]).

2. feature selection considering the coefficients with high value, or with high
correlation with the original signal ([18],[16]).

3.2 Data Augmentation
The dataset’s details will be discussed later: so far it is important to note it is
overbalanced. In particular, the N class is more than 80% of the whole dataset.
Models trained on imbalanced dataset do not acquire any generalization power: they
are biased toward the most populated class and fail to detect the distinguishing
features of the others. For example in our case, a model could reach a high accuracy
during the train just by learning to always predict the same class.

Class imbalance is typical of biological dataset, where the interest is towards minor-
ity samples that are linked to rare events ([21]). We have tried to solve this issue
using the following methods: Smote, Adasyn and weighted loss function for neural
networks. In the following, we will use the following notation:

3.2 Data Augmentation 15

Figure 3.4. Wavelet families: [35]

1. Dataset: D, with n samples: D = {(x1, y1), . . . , (xn, yn)}

2. Classes: Y = {1,−1} such that |yi ∈ Y . For now we consider only two classes,
but the same considerations can be generalize to N classes

3. ms and ml is the number of samples belonging respectively to the under-
balanced and over-balanced class: ms ≤ ml and ms +ml = m

3.2.1 Smote and Adasyn

To build a consistent dataset, it is possible to add new elements to the less populated
class (over-sampling) or to remove existing samples of the most populated class
(undersampling). We have adopted the first one, to take advantage of all the infor-
mation contained in the dataset even for unbalanced classes. The main oversampling
algorithms are Smote ([8]) and Adasyn ([21]). The latter is an improved version of
the first one. In general, Smote takes into consideration a given class and generates
N additional synthetic examples for each original element. For example, if N is 1,
the size of the class is doubled. Specifically, this algorithm performs the following
steps:

1. take a sample: xi, and consider the difference vectors z1, . . . , zn between xi
and the K closest neighbors of the same class: xj , . . . , xj+K . In the end,
zj = xi − xj where 1 ≤ j, we ≤ n

2. for every N ≤ K, randomly chosen, difference vectors: zj , returns a new
sample: sj = xi + r · dj where r ∈ [0, 1] is a random value.

In the end, a new point is randomly positioned in the segment whose extremities are
the original sample and its neighbor. This approach effectively forces the decision
region of the minority class to become more general ([8]). However, Smote does not
create representative samples when the under-balanced class has extreme values:
in this case, the created element will be centered in the dataset space even if the
under-balanced samples will probably lie on the boundary.

Adasyn is an advanced version of Smote: the main difference is the first auto-
matically detect the number of samples to generate: gi, with respect to the element

16 3. Pre-Processing

Figure 3.5. The blue class is underbalanced: Smote generates a new sample: s1 between
x0 and x1

considered in the under-balanced class: xi.In general, more samples will be created
for samples whose neighbors belong to another class. The idea is that missing points
should concentrate in the dataset space where a given element is under-represented.
Specifically, it performs the following steps:

1. d = ms
ml
∈ [0, 1] is a measurement of class imbalance. We define a threshold

value: dth as limit to the maximum class unbalance: if di ≤ dth the algorithm
terminates.

2. G = (ml −ms) · β, where β ∈ [0, 1]. G is the total number of new samples
to generate. β is user defined, for example if β = 1, the resulting dataset is
completely balanced.

3. ri = ∆i
K we ∈ {1, . . . ,ms}, where:

(a) ∆i is the number of the K closest neighbors to xi, belonging to the other
class: this is different from Smote where we consider only the samples of
the same class as neighbors

(b) ri ∈ [0, 1] and it indicates how xi is isolated from the rest of points
belonging to the same class

4. 0 ≤ r̂i = ri∑ms
i=0 ri

≤ 1. In this way, ri is normalized:
∑ms
i=0 r̂i = 1

5. gi = r̂i ·G. It is the number of samples to generate for each minority sample:∑ms
i=0 gi = G

6. for each minority sample creates gi samples sj , in the same way of Smote:
sj = xi + r · dj

The idea is that r̂i measures how difficult it is, to learn the features of xi: greater
values of ri are indicative that xi is an outlier and hard to generalize it: the more a
sample is difficult to learn, the more Adasyn will generate new elements related to
it. Finally, it is possible to generalize Adasyn to the multi-class case just by varying
the value of ∆i: it can be computed as the number the samples belonging to the
most populated class or to any different class.

17

Chapter 4

Classification Algorithms

4.1 Support Vector Machine
Support vector machines (SVMs) belongs to the class of supervised learning algo-
rithms and can be used both for classification and regression. We will discuss SVM
for classification task because arrhythmia detection belongs to the latter class. The
goal in classification is to take an input vector x and to assign it to one of K discrete
classes: Ck where k = {1, . . . ,K}: a discriminant is a function that performs this
classification.In the following we will assume for simplicity K = 2 and in the end we
will show how to generalize this approach.

In SVM, the discriminant function is linear in the weights and it has the form:
y(x) = wTφ(x) + w0 where w is called a weight vector, and w0 is a bias. In the
simple case where φ is the identity function, if x is D-dimensional, the discriminant
function is in the form of: wTx+ w0 and it defines hyperplanes in the D − 1 space.
Specifically, the input vector x is assigned to class C1 if y(x) ≤ 0 and to class C2
otherwise. In the general case where φ can be any function, the same consideration
holds, except that the input space is not D but it depends on the specific input
transformation performed by φ.

4.2 Large Margin Principle
In this section, we will describe how SVM determines the surface boundary: in order
to simplify the discussion we will assume there are only two classes: yi = {1,−1}
and φ is the identity function. Given a generic point: xi in a set of size: N , and a
discriminant function: y(x) = wTx+ w0, we have that:

1. y(x) = 0 is the decision boundary

2. r = f(x0)
||w|| is the distance between x0 and the decision boundary

The goal of SVM is to maximize the distance between the closest point to the
decision boundary and the latter, while ensuring all points are correctly classified.
Specifically, we define the following optimization problem:

1. maxw,w0min
N
i=0

yi(wT xi+w0)
||w||

18 4. Classification Algorithms

Figure 4.1. Soft Margin principle: left has a wider margin than right [7]

2. s.t yi · f(xi) > 0
The same problem can be rescaled so that the minimum distance is set to one and it
becomes:

1. minw 1
2 · ||w||

2

2. s.t yi · f(xi) ≥ 1 ∀we ∈ {1, . . . , N}
The second constraint says that we want all points to be on the correct side of the
decision boundary with a margin of at least 1. For this reason, we say that an SVM
is an example of a large margin classifier.

If the data is not linearly separable, there will be no feasible solution in which
yi · f(xi) > 0. We can introduce slack variables ξi ≥ 0 such that ξi = 0 if the point
is on or inside the correct margin boundary, and ξi = |yi − f(xi)| otherwise. If
0 ≤ ξi ≤ 1 the point lies inside the margin, but on the correct side of the decision
boundary. If ξi > 1, the point lies on the wrong side of the decision boundary
(Fig. 4.1). We replace the hard constraints that yi · f(xi) ≥ 1 with the soft margin
constraints that yi · f(xi) ≥ 1− ξi. The new objective becomes:

1. minw 1
2 · ||w||

2 + C
∑N
i=0 ξi

2. s.t ξi ≥ 0

3. s.t yi · f(xi) ≥ 1− ξi ∀we ∈ {1, . . . , N}
The parameter C is a regularization parameter that controls the number of errors
we are willing to tolerate on the training set: the higher the C, the less we tolerate.
The term

∑N
i=0 ξi can be interpreted as an upper bound to the total number of

misclassified samples because when ξi > 1 the sample is misclassified. The given
optimization problem is quadratic program in N +D + 1 variables:

1. N for the ξi

2. D for the parameters of w

3. 1 for C
It is possible to show that the solution has the form: ŵ =

∑
i αixi where αi are

always zero, except for some values xi called support vector. The latter are the
points which are either incorrectly classified, or are classified correctly but are on or
inside the margin.

4.2 Large Margin Principle 19

Figure 4.2. The original point in 2D are not linearly separable (left). After the kernel
transformation they are reported in a 3D space and becomes linearly separable (right)

4.2.1 Kernel Trick

A kernel function is a function: k takes two arguments (points):x, x′ and returns
a positive value: k(x, x′) ≥ 0 that can be interpreted as a similarity score. An
important type of kernel that we will use is the radius basis function (RBF kernel):
k(x, x′) = exp−γ||x−x

′ ||2 . A kernel is said to be positive definitive when the relative
Gram matrix is positive definite. The important thing is the RBF kernel has such
property.

It can be shown, the latter requirement is sufficient to write the kernel function
as: k(x, x′) = φ(x)Tφ(x′) where φ is a mapping from the original dimension of x to
an arbitrary space of size: D. For example given: x, x′ are bi-dimensional points
and a mercer kernel: k(x, x′) = (1 + x1x

′
1 + x2x

′
2)2, we can rewrite the latter as

a dot product between the same points translated to the six dimensional feature
space: φ(x) = [1,

√
2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2]T . The utility to represent points in
higher dimensional space is represented by the Cover’s theorem: A complex pattern-
classification problem, cast in a high-dimensional space nonlinearly, is more likely to
be linearly separable than in a low-dimensional space, provided that the space is not
densely populated. (Fig. 4.2).

In detail, if we consider the solution to the SVM: ŵ =
∑
i αixi, we have that

the prediction is computed as: f̂(x) =
∑
i αix

T
i x and we can plug in the kernel

so that we obtain: f̂(x) =
∑
i αiφ(x, xi). In this way we have executed the same

algorithm of SVM but on a higher dimensional space making the points represented
in a higher dimensional space where they are more linearly separable. As we said
before, αi are zero except for same xi that are called support vector. This means,
φ(x, xi) is computed only for the latter.

In RBF the γ parameter measures how strong is the influence of a support vector
on a given point. The greater is γ and less is the influence of support vector and
no amount of regularization with C will be able to prevent overfitting. When γ is
small, the model tends to be too simple and have a high bias.

20 4. Classification Algorithms

Figure 4.3. A neural network with 3 neurons in input, 4 in the fully connected layer, and
2 in the output [19]

4.3 Feedforward Neural Network

A Feedforward Neural Network (FNN) defines a mapping f(x; θ) and it adaptively
learns the parameters: θ to best approximate a target function: f∗ with respect
a loss measure. It has a network structure because its internal operations can be
represented through a direct acyclic graph. It is called neural because it is inspired
by the human brain. In detail, a neural networks is constituted of stacked layers,
each of them made of multiple neurons. The first one is called input layer; the last
one is the output layer; in the middle there are hidden layers.

For regular neural networks, the most common layer type is the fully-connected
layer in which neurons between two adjacent layers are fully pairwise connected,
but neurons within a single layer share no connections (Fig. 4.3). If we take into
consideration a single neuron in the hidden layer of Fig. 4.3, and we define:

1. x: the neuron’s output

2. wi: the weights associated to its connections with the previous layer

3. σ: the activation function

we have that x = σ(
∑
iwi · xi).

Neural Networks with at least one hidden layer are demonstrated to be univer-
sal approximators: the can can approximate any continuous function. This is a
powerful results but it does not tell how to build that hidden layer neither how to
train the network and this is why in general we need to stack multiple layers.

As mentioned before the output of a neuron depends on the activation function.
The latter is a non linear function that gives the model the ability to approximate
functions that are not linear or to classify non linearly separable data. The main
types of activation functions are:

4.3 Feedforward Neural Network 21

Figure 4.4. Activation function

1. Sigmoid(x) = 1
1+e−x . It squashes the input to the range: [0, 1] and since it

can be interpreted as a probability measure it is often used in the output layer.
The first drawback is that the gradient of points near to 0 or 1, is close to zero
causing the vanishing gradient problem. Secondly, the output is always positive
and this results in gradients that are always positive or negative for the weights
of the layer. For example if at some layer we have a 2-dimensional output:
x1, x2 that is positive because it is the result of a sigmoid and a loss function:
L, that depends on f = w1x1 + w2x2, we have that ∂L

∂wi
= ∂L

∂f
∂f
∂wi

= ∂L
∂f xi that

has the same sign of ∂L∂f . This means wi needs to be both updated of the same
positive of negative values, determining a slower convergence and the zig-zag
update dynamics.

2. Tanh(x). It suffers from the vanishing gradient but since it is zero centered
the convergence is faster.

3. ReLU(x) = max(0, x). It does not suffer from vanishing gradient since its
derivative does not saturate. It is quicker to compute because it does not
require exponential functions. However it suffers from the dying neurons: when
a weight is updated after a great gradient and becomes a big negative number,
it will outputs only zero values since that weight will difficult be updated for a
large positive value.

4.3.1 Weighted Loss Function

In this section we will talk about weighted loss function. This technique can be used
by all machine learning algorithms, but we have presented in this section because
for our project, we have adopted it only with neural networks. Neural networks cast
the task of learning as an optimization problem and solve it through the application
of specific algorithms. In particular we define distinctively a loss function that
measure the error and the optimizer to minimize it. The latter can be: Stochastic
Gradient Descent (SGD), Adaptive Moment Estimation (Adam) and others, but in
the following we will only talk about the loss function.

22 4. Classification Algorithms

Formally, the objective function measure the deviation between the predicted value:
ŷ and the true label: y. If we have a dataset: D = {xi, yi}N , the loss function:
L is defined as: L(θ) = 1

N

∑N
i L(yi, f(xi, θ)), where θ are the model’s learnable

parameters and f is the neural network. The term L depends on the specific task
and for example it can be:

1. Mean Squared Error (MSE): L = 1
N

∑N
i (yi − ŷi)2. It is used for regression.

2. Cross Entropy : 1
n

∑N
i (yi · log(ŷi) + (1− yi) · log(1− ŷi)). It is used for binary

classification

The above loss formulas consider each element equally: the error due to a given
sample: L(yi, f(xi, θ) accounts the same of all the others. When we have overbalanced
dataset, we could leverage the possibility to give greater weights to low represented
classes so that we implicitly assign them more importance. In this way the loss
function becomes: L(θ) = 1

N

∑N
i wi ·L(yi, f(xi, θ)) where wi is the weight associated

to xi. If we set a high value of wi, the neural networks will train its parameters to
profoundly capture the features of xi. There are several ways to set that weights
and the best approach we have found is basically trial and error. We have initially
assigned to all the samples of class: Cj , a weight calculated as: |xi∈Cmax|

|xi∈Cj | , and then
increased it. In the end the best configuration was:

1. Class N: 1. Initial value: 1 (most populated class)

2. Class S: 40. Initial value: 32

3. Class V: 20. Initial value: 12

4. Class F: 100. Initial value: 112

4.4 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a deep model that performs well with
a variety of tasks such as image classification, natural language processing, and
signal processing. CNNs are explicitly designed to deal with multi-dimensional
input and overcome the high number of parameters that are requested by standard
FNN. For example, a single RGB image of size 64x64, in an FNN would require:
64 · 64 · 3 = 12288 neurons as input. The issues that arise when the FNN is over
parametrized are the following:

1. a huge number of input neurons will require more layers at a high computation
cost and time required for training

2. over-parametrization is a symptom of overfitting: in the specific case of an
image, the FNN would behave too meticulous since it will take into account
each single pixel

4.4 Convolutional Neural Network 23

Figure 4.5. Comparison of FNN versus CNN. In CNN each layer has 3 dimension: depth,
height, length.[19]

In order to take into account the multidimensional input, CNN’s neurons are
organized in three dimensions and to reduce the overall complexity, the neurons in
each layer are connected only to a portion of the previous one. This is the opposite
of what happens in fully connected neural networks. The main types of layers used
in CNN are:

1. convolutional: consists of groups of neurons apply a scalar product with the
connecting portions of the input.

2. pooling: downsampling to reduce the dimensionally

3. fully connected: produces the final predictions. Generally, it is preceded by a
flattening operation since the convolutional outputs are always 3-dimensional

4.4.1 Convolutional Layer

The convolutional layer is the building block of CNNs. It consists of a set of filters
(or kernel), whose parameters are learned during the training. A a single filter is a
multidimensional matrix with height, length and the same width of the input layer.
For example, if we have an RGB image of size: 64 · 64 · 3 and filer of size: 6x6x3, the
total number of learnable parameters of the latter are: 6 · 6 · 3 = 108. It is immediate
to note the crucial reduction of parameters with respect to a classical feed-forward
neural network, that would have required 64 ·64 ·3 = 12288 weights in the input layer.

During forward pass, each filter is shifted through the input and performs a convo-
lution that in practice is a simple dot product. The filter can be interpreted as a
particular feature and the convolution asses how much that feature is present in the
portion of the input. During the training, CNN learns the weights of such filters, so
that they can extract the actual features to discriminate the final prediction. In the
end, each filter outputs a 2-dimensional matrix that for what we said before it is
called feature map.

As we said before, each filter has a limited area called receptive field that is connected
only to a small portion of the input to reduce the number of parameters. This
technique as the name suggests is called parameter sharing and is based on the fact
the same feature is present in multiple regions of the input: for example if we want
to detect the border of an image, we could use a filter that properly activates when

24 4. Classification Algorithms

Figure 4.6. 2 different filters are applied to the input image, resulting in 2 different feature
maps [34]

it is convoluted with them. In any case, the filter is applied to all the input and at
the end of any convolutional layer is always present an activation function that is
generally a ReLU. The parameters of a convolutional layer are:

1. spatial extent of the filter (F)

2. depth (K): the number of filters that determines the depth of the output

3. stride (S): the number of pixels to skip every time the filter is convoluted

4. zero-padding: consists of adding some zeros to the image border to have control
on the output dimension. Specifically if P = 1 each border has one zero and
so on.

With the notation above, we can deduct the output dimension of a convolutional
layer. Given an image of size: W1 ·H1 ·D1, the output is:

1. W2 = 1 + (W1 − F − 2P)/S

2. H2 = 1 + (H1 − F − 2P)/S

3. D2 = K

The number of parameters for a single filter are: F ·F ·D1 and globally: F ·F ·D1 ·K

4.4.2 Pooling Layer

The pooling layer is used to reduce the dimensionality of the given output’s layer and
consequently to obtain a reduced number of parameters at a less computational cost.
Generally, it has a local extension of 2x2 (F = 2) and it outputs the maximum in the
region it is applied (max pooling) with a given stride: S. It performs a downsampling
only through the width and height: the original depth is left unchanged. Also in
this case it is possible to define the output dimension as:

1. W2 = 1 + (W1 − F)/S

2. H2 = 1 + (H1 − F)/S

3. D2 = D1

4.4 Convolutional Neural Network 25

Figure 4.7. Max pool with stride 2.(Left: original input, Right: pooling output) [19]

Figure 4.8. An input vector x with three anchor vectors: a1, a2, a3, in the sphere S: [25]

4.4.3 Mathematical Interpretation

In this section, we will describe CNNs from a geometric point of view, so that it is
possible to understand the necessity of an activation function at the end of each layer
and the advantages of multiple stacked convolutional layers. In [25], the CNN is
interpreted as a RECOS model: set of operation that performs Rectified Operation
On a Spere. Specifically, each filter is interpreted as an anchor vector in a sphere,
because they serve as reference signals. Each convolution between a local region and
filter is translated as a similarity score between the anchor vector and the vector
representation of that region.

In the RECOS model, a negative correlation is set to zero, and the reason will
be described later. Given a image’s region in a vectorial form: x = (x1, . . . , xN)T ,
and a sphere centered in the origin of unitary size: S = {x | ||x|| = 1}, we analyze
the geodesic distance between x and an anchor vector: a1.

In particular, the geodesic similarity: d is the output of the convolutional step
between a filter and the portion of input it is applied, that is a simple dot product.
Specifically, d = a1

Tx = cos(θ) where θ is the angle between the two vectors (Fig.
4.8). The longer the correlation, the shorter the distance. The problems with this
similarity score, happen when θ > 90, because cos(θ) < 0. Even if we could state

26 4. Classification Algorithms

a negative value correctly indicates high distances, issues arise when an additional
anchor vector is negatively convoluted on the previous output producing a positive
outcome. In this case, low correlated anchor vectors have outputted a positive score.
Similarly, the model is not able to distinguish with two anchor vectors, between pos-
itive/negative response and vice-versa. To solve this problem, we apply a Rectified
Linear Unit (ReLU) so that negative correlation is set unambiguously to zero.

The paper ([25]), further discuss the need to multiple convolutional layers. The point
is that each layer operates at different pattern level detection: from more general to
more specific patterns. For example, the paper tested on MNIST dataset that by
changing the background’s images, the first layer’s filters change while the second
layer is unaltered. This is due to the first layer is more general and capture the
general picture so also the background, while the following ones tend to concentrate
on more specific invariant features.

Finally, we will conclude with the role of the fully connected layers. Generally,
the convolutional layers perform feature selection, while the last dense layers are
used to detect the surface boundary required for the final classification. In details,
the latter need to cluster the input vector to the specified dimension. For example
with an FC layer of size 100 and 4, the features are first clustered to 100 clusters
and then to 4.

4.5 Recurrent Neural Network

Recurrent Neural Networks (RNN) have been introduced in the ’80s for modeling
time series because traditional approaches based on FNN were not appropriate. The
latter operates under the assumption each element of the input data is independent
of the others. Since the information only flows in the forward direction in every
layer of the network, it does not take into account the information contained in the
order of the input.

The latter is crucial for tasks such as time series regression, word sense disam-
biguation and in general any problem where the input is an ordered sequence. For
example, if we want to predict the Amazon’s stock price in August 2019, we need
to take into consideration the sequence of stock prices in July, June and so on:
temporal dependency (Fig. 4.9). If we need to disambiguate the sense of a word, it
is necessary to evaluate the position of that word in the phrase: spatial dependency.
In the specific case of arrhythmia detection, it is required to capture the spatial
dependency among samples, to detect features like the QRS complex, ST segment.

The same dependencies the RNN aims to capture, characterize also the human
learning process. As a human being, we learn the sequence not the symbols alone:
for us, it is immediate to say the alphabet from A to Z, but in the opposite direction
is not straight forward. The same is true for our telephone’s number. To model
dependencies, RNN has an internal memory that is continuously updated through
the input sequence. In the following, we will first describe Vanilla RNN, the vanishing

4.5 Recurrent Neural Network 27

Figure 4.9. Amazon stock price in 6 months. To predict its value in August, the RNN
could consider the fact in June has a positive and the same could happen in August

Figure 4.10. RNN general structure [38]

gradient problem and how LSTM solves the latter.

4.5.1 Vanilla RNN

The intuition to make explicit the sequence dependency in an RNN is to feed each
layer with the previous one through a retroactive loop (Fig. 4.10). In this way, a
sample xt ∈ S = [x1, . . . , xT], is fed into the RNN to produce the output o and a
hidden state: st that will be taken into consideration by the network for the next
sample: xt+1. This structure can be unrolled in multiple blocks so that the loop is
deleted, as shown in Fig. 4.11: in this way it is clear how the output ot depends on
the current input: xt and previous state: st−1 Formally, we have:

1. xt is the tth input of a sequence

2. st is the hidden state of the network, continuously updated in this way:
st = φ (Uxt +Wst−1) where φ is a generic activation function(ReLU, softmax,
tanh). Note the dependency with the previous state st−1: this is where the
sequence dependency is made explicit.

3. ŷt = ot is the final output computed as: ŷt = ot = φ(V st)

It is important to note the matrixes: U, V,W are the same for every unrolled block.
It is different from classical FNN, where each layer has its own parameters. This

28 4. Classification Algorithms

Figure 4.11. RNN unrolled [38]

results in less parameters for the network but also, some issues with the gradient
computation.

Vanishing Gradient Problem

In order to asses the quality of a Vanilla RNN, we define a loss function: L, so that
for a given sequence of size: T , the total error is: E =

∑T
t=0 L(ŷt) that is the sum of

the errors over all the predictions in the sequence.

The gradient of the error with respect to any of the matrix parameters such as W is:
∂E
∂W =

∑T
t=0

∂L(ŷt)
∂W .

If we concentrate on ∂L(ŷt)
∂W , we have that ŷt = f(st) and st = g(W, st−1), we

conclude that ∂L(ŷt)
∂W =

∑t
k=0

∂L(ŷt)
∂ŷt

∂ŷt

∂st

∂st
∂sk

∂sk
∂W .

In the following, we will assume sj ∈ D1 and W ∈ D1 namely the RNN is 1
dimensional, so that it is easier to proceed. However, the same consideration can be
taken in multi dimensional case.

Given that, sj = φ(Wsj−1 + Uxt) we have: ∂sj

∂sj−1
= ∂(Wsj−1+Uxt)

∂sj−1

∂(φ(Wsj−1+Uxt)
∂(Wsj−1+Uxt) =

Wφ
′(Wsj−1 + Uxt).

The term ∂st
∂sk

, can be written using the chain rule as: ∂st
∂sk

=
∏t
j=k+1

∂sj

∂sj−1
=

W t−k∏t
j=k+1 φ

′ (Wsj−1 + Uxt), and this is where the vanishing problem is ([30]).
With respect to the fact |W | > 1 or |W | < 1, W t−k will explode or vanish exponen-
tially. Equally,

∣∣∣φ′(Wsj−1 + Uxt)
∣∣∣ ≤ 1 as it is the case of ReLU, tanh, softmax.

These last two considerations, allows us to conclude the more two states are distant
the higher will be t− k and ∂st

∂sk
will become extremely great (exploding gradient)

or small (vanishing gradient). In the first case the weights will become so large as
to overflow and result in NaN values, the model will be unstable and not able to
generalize anything from the data. In the second case the contribute of a previous
state to the current will be irrelevant: the model can not learn long term dependency.

4.5 Recurrent Neural Network 29

Figure 4.12. Forget layer in LSTM [14]

Figure 4.13. Input layer in LSTM [14]

4.5.2 Long Short Term Memory

LSTMs are a type of RNN, introduce in 1997 ([23]), to solve the vanishing gradient
problem. They are constituted of a cell state: Ct that is updated through structures
called gates. The latter consists of a sigmoid that decides the amount of information
to pass to the cell: zero values means nothing and one everything. Overall, an LSTM
contains three gates in this order: forget, input and output gate. In addition to this,
each unrolled LSTM cell takes as input the actual sample: xt,the previous cell state:
ct−1 and hidden state: ht−1.

Initially, the forget gates decides what portion of xt and ht−1 we need to dis-
card for updating the cell state. Specifically, it computes ft = σ (Wf [ht−1;xt] + bf)
so that ft is a vector of values in the range: [0,1], that indicates the amount of
information, related to the previous hidden state and current input, not to consider
(Fig. 4.12). In a symmetric way, the input gate defines the values of the same
concatenated vector to keep: it = σ (Wi[ht−1;xt] + bi).

Secondly, always at this level, a candidate cell state is built: C̃t = tanh (Wc[ht−1;xt] + bc)
(Fig. 4.13). It is clear now how to update the cell state: Ct = ft ·Ct−1 + it · C̃t (Fig.
4.12). Finally, the output gate will produce the output: ot = σ(Wo[ht−1;xt] + bo)
and the hidden state: ht = ot · tanh(Ct) (Fig. 4.15). The discussed structure is a

30 4. Classification Algorithms

Figure 4.14. Cell update in LSTM [14]

Figure 4.15. Hidden state and output in LSTM [14]

4.6 Attention 31

valid solution to overcome the vanishing gradient problem. In fact, if we compute
the recursive gradient in this case we have: ∂Ct

∂Ct−1
= ft +K, where K is the result of

the other partial derivatives, that for our concern are not of interest.

The crucial point here, is that even in case of long term dependency where we
multiply the derivative previously computed several times, the term: ft can always
assume any values in the range [0,1] and it does not exponentially converge to zero.

In addition to this the presence of gates with internal parameters, instead of simple
activation functions, allows the model to adaptively set the corresponding parameters
with respect to the current input and hidden state. In this way the gates can actively
update their state when the gradient is too low or too high.

Finally, it is worth to note there are several variation on the described archi-
tectures. In 2002, it has been proposed a LSTM model ([20]) where all the
three gates:G1, G2, G3 are conditioned by the cell state as well as hidden state:
Gi = σ(Wi[Ct−1;ht−1;xt] + bi). Another variation that recently gained popularity is
the Gated Recurrent Unit (GRU) ([13]). In the latter, the input gate is also used as
forget gate: ft = 1− it. In addition to this, the cell and hidden states are merged
together. Overall, we have:

1. it = σ(Wf [ht−1;xt]): what to remember about the previous hidden state and
input

2. rt = σ(Wr[ht−1;xt]): what to keep from the previous hidden state

3. C̃t = tanh(W [rt·ht−1;xt]): candidate hidden state (different from the candidate
cell state in regular LSTM)

4. ht = (1 − it) · ht−1 + it · C̃t: the hidden state is built by forgetting about
the previous hidden state and adding what to remember about the candidate
hidden state

4.6 Attention

Attention in neural networks aims to replicate the same human cognitive process.
The latter is defined in [31], as the behavioral process of concentrating on a portion
of the total information while ignoring the rest: it is the allocation of limited
cognitive resources. In the context of neural networks and predictions, attention
allows detecting significant features during the training. Namely, it learns the filter
to distinguish between irrelevant, noisy inputs and a remarkable one. Generally,
attention is applied to Encoder-Decoder neural networks, to make explicitly the
decoder knows where to look for the final prediction.

4.6.1 Encoder-Decoder model

Encoder-Decoder model is a general architecture constituted of two sequential blocks:

32 4. Classification Algorithms

1. encoder that converts the input into a context vector. Basically, the encoder
performs feature extraction.

2. decoder that takes the context vector and the previous output, to produce a
final prediction. This is why it is autoregressive.

Specifically, the layers in the encoder and decoder can be of any nature: for ex-
ample, image auto-encoders have Convolutional Neural Network (CNN) in the
encoder and the analogous deconvolution in the decoder. Sequence to sequence tasks
such as translation can have an encoder and decoder RNN or LSTM. It is essential
to note the encoder turns the raw input into a suitable representation for the decoder.

However, as the input’s size increases the more difficult it is for the encoder to
correctly summarize it into a fixed-length vector. In addition to this, as it is the case
of sequence to sequence task such as translation, the output should be conditioned
not to the whole input sequence but only to a smaller useful portion.

With attention the encoder does not need to produce a fixed-length vector, but it
encodes the input into a sequence of vectors and adaptively chooses which of them
are essential. Formally, the encoder-decoder model can be formulated as ([6]):

1. input sequence: x = (x1, . . . , xTx), where T is the length of the xth input
sequence

2. hidden states at time t: ht = f(xt, ht−1) where f can be for example an LSTM
or CNN

3. context vector: c = q(h1, . . . , hT) where for LSTM q = hT . In fact, with a
recurrent encoder-decoder the context vector for the decoder input is the last
encoder’s hidden state

4. decoder’s prediction at time: t′ is: yt′ and it is conditioned to the previous
output: yt′−1 and context vector: c.

It is important to note that t′ is the output sequence length that is not necessarily
equal to the input length: T . Practically, the decoder defines the prediction as:
p (yt′ |(yt′−1, c, st′) = g (yt′−1, c, st′) where g is the function implements the decoder
block and st is its internal state.

Finally, the encoder part, before producing the context vector for the decoder
can traverse the sequence in both ways (left/right and right/left) so that now each
annotation is the concatenation of both hidden states : hj =

[−→
hj ,
←−
hj
]
: Bidirectional

RNN. In this way, the context vectors model the relationship of a given word with
the previous and following positions.

4.6.2 Attention in Encoder-Decoder

The previously discussed formulation can be extended to attention, by condition-
ing the output at time t′: yt′ not to a global context vector: c, but to a con-
text vector that is specific for the given instant: ct′ . In particular we have that:

4.6 Attention 33

Figure 4.16. Graphic representation of attention in RNN ecoder-decoder: [31]

p(yt′ |(yt′−1, ct′ , st′) = g(yt′−1, ct′ , st′).

Generally, ci is a weighted sum over all the hidden states of the encoder for a
given sequence: ci =

∑Tx
j=1 αijhj , where αij = exp(eij)∑Tx

k=1 exp(eik)
. Finally, the crucial step

is how the alignment scores are computed: different attention algorithms mainly
differs for this computation: eij = a(si−1, hj). The latter measures how the previous
hidden state of the decoder: si−1 is relevant to the encoder’s hidden state: hj .

Basically, the context vector is a weighted sum over all the encoder’s hidden states:
ci and αij is a probability measure of how much hj is relevant for the previous
decoder’s internal state: si−1 for the following state and final prediction: si and yi
(4.16).

At the beginning of each sequence, the decoder state is initialized with the last
hidden state of the encoder. In this way, the decoder select which part of the input
hidden states to pay attention to. The encoder-decoder models performs this type
of filtering also without attention but with a latent mechanism: on the opposite
attention explicitly forces the decoder to focalize on relevant features. The attention
vector that is the final output is obtained applying a dense layer to the concatenation
of ct and ht: ai = tanh(W [ci;hi])

4.6.3 Multiplicative and Addititive Attention

There are two main mechanism to computer the attention scores:

1. Luong’s multiplicative ([26]): eij = hTi Whj

2. Bahdanau’s additive style ([31]): eij = vTa · tanh(Wasi−1 + Uahj)

In the above definitions, W,U, va are matrixes to be learned during the training:
practically they are fully connected layers. The two methods have the same compu-
tational complexity but the first one is more efficient since it only requires matrix
multiplications for which the GPU hardware is highly specialized.

34 4. Classification Algorithms

4.7 Transformer

Transformer ([36]) is a neural network architecture introduced in 2017 by Google
research, for Natural Language Processing (NLP). A series of experiments in NLP
task have shown Transformer is better than classical approaches based on Recurrent
Neural Networks (RNN), in terms of accuracy and computational efficiency. We
have adopted this structure for arrhythmia detection since like NLP tasks, the input
data is a collection of sequences (heartbeats) and the information about the output
is concentrated in the relationships between the single sequence’s components (
millivolts sample).

The main issue for NLP tasks such as translation is word sense disambiguation,
namely the semantics of a term given its context in a phrase. RNN approaches
this problem considering for each word, the previous hidden state. However, this
sequential characteristic precludes parallelization within training samples because
before predicting the actual hidden state we need to know the previous one. In
addition to this, RNN has difficulties to learn dependencies between distant words.

The Transformer solves these problems using nonrecurrent layers and self-attention.
It has an encoder-decoder structure. Specifically, the encoder is made of 6 identical
layers. Each of them consists of two consecutive residual blocks where the first one
is the self-attention layer, while the second one is a fully connected layer: they are
both followed by a normalization layer. The decoder is equal to the encoder, except
for the presence of an additional self-attention layer (4.18).

4.7.1 Transformer’s Attention

The essential transformer’s layer is multi-head attention. we will first describe the
low dimensional case and secondly the multi-head approach. As we said before, the
input is a sequence where each component has in total: dk features because as it is
the case of NLP, the input is followed by an Embedding Layer. Initially, it applies to
each component three different dense layers to obtain respectively: Query (Q), Key
(K), Value (V) vectors. Secondly, for each position in the sequence, it compares the
associated component against each other to obtain a score of how much a given input
is expressed in that position: A = softmax

(
QKT√

(dk)

)
. Finally, all the value vectors

are weighted summed considering the latter score, to obtain the output vector in
that position: Attention(Q,K, V) = AV .

This type of attention is dot-product attention and it is faster than additive attention
because the described multiplications can be computed with the optimized vectorial
operation. The role of dk is required to avoid the vanishing gradient, caused by high
values in the softmax argument: without dk, the longer input sequences the higher
is: QKT , and the lower will be the gradient of the softmax. The drawback of this
approach is related to the fact that when computing the scores of a component with
all the others, the higher score will be presumably related to the actual input itself.

4.8 Neural Ordinary Differential Equations 35

Figure 4.17. Multi Head Attention: [36]

To overcame this issue, the paper introduces the multi-head attention, where basi-
cally the attention vectors are computed h times (or head) with a different triple of
matrixes WQ

i ,W
K
i ,W

V
i ∀0 ≤ i ≤ h. In this way, the model learns the importance

of a given component from different representation subspaces at different positions,
because each head can learn different relationships. Specifically, it performs the
following operation: MultiHead(Q,K, V) = Concat (head1, . . . , headh)WO where
headi = Attention

(
QWQ

i ,KW
K
i , V W

V
i

)
(Fig. 4.17). The above operations are

independent of the sequence length so that the computational cost is constant while
RNN needs to iterate over all the sequence’s components. It can be parallelized
since each single attention vector can be computed independently. Finally, the scores
between sequence’s components does not depend on the distance while RNN fails to
model relationships between distant input.

4.8 Neural Ordinary Differential Equations
Neural Ordinary Differential Equations (NODE) ([12]) have been awarded as best
paper in NeurIPS 2018 . In the following, we will describe first the Residual Neural
Networks (ResNet), since NODE are the direct successor.

4.8.1 Residual Neural Network

ResNets ([22]) have been introduced after verifying the consequences on neural
network performance when more layers are added. The interest in this argument
is justified by the presence of very deep neural networks that perform well on chal-
lenging datasets such as the ImageNet dataset ([33]). Basically, the argument is if
increasing the depth of a neural network, always the optimal choice to improve its
performance. Vanishing gradient is an issue related to deep models, but it can be

36 4. Classification Algorithms

Figure 4.18. Transformer model: [36]

solved using normalization techniques. The paper’s response to the above problem
is negative.

The authors made a series of experiments and verified deep neural networks expe-
rience the degradation problem: with the depth increasing, accuracy on the test
set does not improve and the culprit is not overfitting. The degradation problem
shows not all systems are similarly easy to optimize ([22]): deeper model can lead to
higher error both on training and test set. An example of the above issue is visible
if we add identity layers to a neural network. We should except no loss in accuracy
than the shallower counterpart, but in practice the opposite is true. ResNets are
introduced to solve the degradation problem.

A single residual block turns the input: x into the output: Y : through the formula:
Y = x + F (x): F is a generic function implemented as multiple stacked neural
network layers (4.19). In this context, a ResNet with N residual blocks can be
modeled as : Yi+1 = Yi + F (Yi, θi), ∀i ∈ [1, .., N], where θi are the weights of the
ith layer to be learned. ResNet are different from Feed Forward Network (FNN)
because: FNN maps the input: x, to the output Y , with multiple stacked hidden
layers: h1, . . . , hn, so that the objective of the learning is a direct mapping from
input to the output : Y = hn (. . . (h1(x)). On the opposite a single residual layer
maps the input to the output specifying a function F that instead of learning a
direct maps between input and output, models the difference between them because

4.8 Neural Ordinary Differential Equations 37

Figure 4.19. Graphic representation of a residual block

Figure 4.20. Comparison of plain and residual neural networks ([22])

the hypothesis is that it is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping ([22]).

The reason why ResNet solves this problem has been verified in [22]. and the
explanation is that for the model it would be easier to set to zero the residual
function, rather than learning the identity mapping through nonlinear activation
functions. In practice, the identity mapping is not the optimal one. However, it
should be more feasible for the solver to find the perturbations with reference to
an identity mapping, than to learn the function like a new one ([22]). This last
consideration is a crucial similarity between ResNet and NODE: David Duvenaud
(author of [12]), explains in a forum that the idea behind NODE is the intuition it is
easier to model a small change to an almost-correct answer than the whole improved
answer at once.

In Fig. 4.20, thin and bold curves denote respectively the training and valida-
tion error on ImageNet dataset. It is visible how on a plain neural network (on the
left), more layers cause higher training/validation error, while deeper ResNet (on
the right) have better performances.

4.8.2 NODE

The connection between ResNet and NODE is the interpretation of ResNet as a
differential equation. In particular, from the definition of ResNet previously discussed,
we can relax the constraint that i is a discrete value, by gradually reducing the step
size: [i, i+ 1]. For example we could take half of the original step and rewrite the

38 4. Classification Algorithms

relationship as: Yi+0.5 = Yi + F (Yi, θi, so that: Yi+1 = Yi+0.5 + F (Yi+0.5, θi+0.5) =
Yi + F (Yi, θi + F (Yi+0.5, θi+0.5). The latter equation shows reducing the step-size to
the half is equivalent to double the number of residual layers in the discrete case. In
the limit, if we take smaller steps and add more layers, it is possible to describe the
dynamic of the ResNet as an initial value problem where:

1. F (Y (t), θt, t) = ∂Y (t)
∂t is an ordinary differential equation

2. Y (0) = Y0 is the input data, namely the initial condition

3. T is the evaluation time

In particular, the NODE output at time T is obtained using an ODE-solver, where
it is possible to specify the maximum approximation in terms of a scalar: e. To
summarize, in a NODE block we specify the respective output as the solution of
an ODE problem. The main difficulty to train this structure is that performing
back-propagation through the ODE solver requires high memory cost and introduces
additional numerical error ([12]). To solve this issue the authors propose the Adjoint
method that scales linearly with problem size, has low memory cost, and explicitly
controls numerical error, whose implementation is written in PyTorch and available
on GitHub.

It is important to note that the depth of a NODE is not a clear concept because t
is now real value, not an integer as it is the case of ResNet.However, the number
of function evaluations to solve the differential equation during the forward pass of
the NODE can be considered as an estimation of the complexity of the model. The
benefits of NODE are the following :

1. Memory efficiency because to train the model it is not required to store the
intermediate forward output at every layer, that normally it is used by the
back-propagation algorithm to compute the gradients of the weights of each
layer.

2. Adaptive computation because the time complexity of the ODE solver depends
on the error accuracy specified and the ODE solver can adapt their strategy
on the fly on the basis of that accuracy. In addition to this after the model has
been trained with a given tolerance, it can be tested and used in production
with a lower error tolerance so that it is faster and less intensive (useful for
embedded device)

3. Parameter efficiency because parameters of nearby layers are automatically
tied together ([12])

We will conclude this section describing the connection between NODE and ResNet
in terms of ODE approximation. The characteristic equation of a residual block is:
Yi+1 = Yi+F (Yi) and it can be interpreted as the Euler approximation of ∂Y∂i = F (i)
at time i with unitary step size. NODE instead approximate the same function
using more accurate ODE solver than the Euler method (Fig. 4.22).

4.8 Neural Ordinary Differential Equations 39

Figure 4.21. Comparison of FNN, ResNet, NODE

Figure 4.22. Comparison of Euler method (orange), NODE solver (red) to approximate
∂Y
∂i = F (i). The latter coincides with the NODE solution

41

Chapter 5

Experiment

5.1 Dataset
The database considered in this study is a collection of annotated ECG recordings
obtained by the Arrhythmia Laboratory of Boston’s Beth Israel Hospital, known
as the MIT-BIH Arrhythmia Database ([28]). It contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47 subjects studied by the
BIH Arrhythmia Laboratory between 1975 and 1979. The recordings are obtained
with a frequency of 360 Hz: this means each recording approximately consists of
30 · 360 = 10800 samples. Two or more cardiologists independently annotated each
record for a total of 110,000 annotations included with the database: it is is worth
to mention, each annotation is placed in correspondence to the R peak of a single
beat so that we have implicitly solved for this specific case the beat detection problem.

According to the Association for the Advancement of Medical Instrumentation
(AAMI) standard ([1]) for testing and reporting performance results of cardiac
rhythm and segment measurement algorithms, the evaluation of an arrhythmia
detector algorithm should be made on the classification performance on five major
categories of heartbeats:

1. N: includes beats originating in the sinus node (normal and bundle branch
block beat types)

2. S: includes supraventricular ectopic beats (SVEBs);

3. V: includes ventricular ectopic beats (VEBs);

4. F: includes beats that result from fusing normal and VEBs;

5. Q: includes any heartbeat not in the N, S, V or F categories, essentially the
undefined heartbeats as well as beats resulting from the use of a pacemaker.

The last category includes beats that are a result of a pacemaker operating under
the skin of the patient. These beats are regulated and it is not meaningful to use
them for arrhythmia classification: this is why we excluded all these beats from our
study. Please note also that this is a common practice followed by other studies
in the state-of-the-art([32]). Therefore, we are left with four-beat categories. A

42 5. Experiment

Figure 5.1. AAMI 5 categories of heartbeats ([1])

more detailed topology of the dataset is depicted in Fig. 5.1. It is clear how the N
class is more populated than the others: it constitutes the 89% of the whole dataset.
This overbalancing can lead to inconsistent training and poor quality algorithms. In
order to mitigate the latter, we have adopted data augmentation techniques such
as ADASYN and SMOTE and a weighted loss function. The latter is intended to
give higher weight and consequently penalize more the misclassification error due to
underrepresented samples.

5.1.1 Training and Test Set

We have considered two dataset configuration. In the first one, we have built the
test set, by randomly choosing from the dataset the following samples:

1. N: 900

2. S: 900

3. V: 900

4. F: 250

In a second configuration, we wanted to test the robustness of our algorithms: we
decided to create personalized classifiers for the patients: 222,223,233. In detail,
we first trained a model on the whole dataset without the latter three patients.
Secondly, for every single patient, we have built the test set in the following way.
Patient 222:

1. N: 50 from 2273

2. S: 20 from 209

3. V: 0 (this patient does not have beats labeled as V)

4. F: 0 (this patient does not have beats labeled as F)

Patient 223:

1. N: 50 from 2045

2. S: 20 from 73

3. V: 100 from 473

4. F: 5 from 14

5.2 Performance Measures 43

Patient 233:

1. N: 500 from 2229

2. S: 2 from 7

3. V: 250 from 830

4. F: 2 from 11

5.2 Performance Measures

In a classification problem with N classes: C1, . . . , Cn, it is possible to determine
the quality of the classifier, in terms of Ci,j , that is the number of dataset’s samples
belonging to Ci , but predicted as Cj , where 1 ≤ i, j ≤ n. In particular given a
generic class: Ci, we define:

1. True Positive (TP): Ci,i

2. False Positive (FP):
∑
j 6=iCj,i

3. False Negative (FN):
∑
j 6=iCi,j

The performance metrics we have used are:

1. Precision: TP
TP+FP

2. Recall: TP
TP+FN

3. F-score: 2 · Precision·RecallPrecision+Recall

As global measure for a given algorithm we have considered:

1. Accuracy: Correct Predictions
All Predictions

2. Average Recall:
∑n

i
Recalli
n

It is significant to note the trade-off between precision and recall: if the model
predicts all the samples as belonging to a given class it will reach a recall of 100%
because no sample will be classified with a different label. Consequently, the false
negative will be zero. On the other hand in this situation, the number of wrongly
classified samples (FP) will be high and consequently the precision low. In order to
plot precision and recall for all the classes, it is possible to use the confusion matrix:
M : it is n · n and Mi,j = Ci,j

44 5. Experiment

Figure 5.2. A fragment of ECG before and after the median filter

5.3 Random Forest [17]

The paper ([17]) performs a different classification task since it does not predict the
5 classes specified by the (AAMI) standard, but the following different labels: N, L,
R, V, P, described in the MIT-BIH annotations (Fig. 2.7). Even if this is a different
task, we have decided to replicate it, because the approach is straightforward and
performs well. In this way, we were able to concentrate on dataset building and fix
some bug in the beat extraction. In addition to this, we could immediately re-adapt
it to the original problem and infer the main issues of our dataset, and find more
appropriate solutions. The algorithm consists of three steps:

1. pre-processing: remove noise from the ECG signal

2. processing: heartbeat detection and feature extraction with DWT

3. classification: this is the first approach in literature to use Random Forest for
arrhythmia classification

The ECG signal is first de-noised with a median filter, to remove baseline wandering.
Recall that the latter is noise due to patient movement during the ECG recording.
In Fig. 5.2, there is the application of the median filter: it is visible how the filtered
signal is translated along a common axis. Each beat is defined as a sequence of
256 samples in the RR interval. To extract relevant features, they applied DWT
and precisely Daubechies db2 wavelet because it gives better accuracy than other
wavelets such as Symmlet sym6 and Symmlet sym10. Specifically, for each beat, the
DWT is applied considering the first 4 levels of details coefficients (129+66+34+18
coefficients) and the fourth level of approximation coefficients (18 coefficients), for a
total of 265 features per beat.

The training set is made of 240 samples for each class and the test set of 120
for each. The algorithm as said before is Random Forest. In Fig. 5.3, the confusion
matrix plots the performance of this approach: it is almost perfect and this justified

5.4 Support Vector Machine [15] 45

Figure 5.3. Confusion Matrix : random forest for the N,L,R,V,P classification

our attempt to use this approach for the original task: discussed in the following
section

5.3.1 Custom Variation

Initially, we have applied the same technique to the original problem with N,S,V,F
classes. In Fig. 5.4, it is possible to see the accuracy metrics. It is clear how this
modification in the dataset, determined a consistent drop in accuracy with respect to
the previous problem. Primarily, this is due to the fact, our dataset is overbalanced
and this is why we applied SMOTE and ADASYN (Fig. 5.5) to make it more uniform.
The benefits of SMOTE and ADASYN for the model are completely the same and
in general the overall performance are still low.

This is caused by the fact the N, S,V, F classes are macro-categories that con-
sist of multiple single beat types: in the original paper the classes were single type
so that it was easier for Random Forest to detect the relevant features. In order
to solve the latter, we have opted for more complex algorithms, described in the
following sections.

5.4 Support Vector Machine [15]

This paper ([15]) describes a valid solution to our classification problem with the
four AAMI classes. As it is the case of the previous algorithm ([17]), from a high-
level perspective it is divided into pre-processing, processing and classification. In
this case, the paper performs an initial phase of QRS-complex detection using the
Pan-Tompkins algorithm. However, we have not implemented this step, because as
we said in the introduction, we will directly consider the R peak annotation already
present in the dataset.

46 5. Experiment

Figure 5.4. Confusion Matrix : random forest without data augmentation for the N,S,V,F
classification

Figure 5.5. Confusion Matrix : random forest after data augmentation for the N,S,V,F
classification

5.4 Support Vector Machine [15] 47

Figure 5.6. A fragment of ECG before and after the DWT

During the pre-processing phase, the de-noise is realized using the DWT: Daubechies
db6 with nine levels: the signal is reconstructed considering only the details coeffi-
cients from level three to nine. In this way, the frequency ranges from 0 to 0.351 Hz
and 45-180 Hz are not considered because the first one is linked to baseline wander
and the latter does not contain useful information for arrhythmia detection.

Each the beat is a sequence of 200 samples centered in the R peak location. In
Fig. 5.6, it is visible how the DWT makes the original ECG signal more smooth and
less affected by noise. During the processing step, DWT, PCA, HOS and ICA are
used.

Initially, the DWT: Mayer with 4 levels is applied on every single beat to ob-
tain the approximation coefficients in the range: 0 to 11.25 Hz. From that values, it
considers only the third and fourth sub-bands for all the beats and consequently
it creates respectively two matrices. Secondly, we apply PCA on each of the two
matrices with 6 components so that now we have 12 features per beat.

Next, from each original beat of 200 samples, it applies 4th and 5th moment to every
single beat to obtain two more features per beat. Finally, ICA with 14 components
is applied to the matrix of beats, for a total of 28 features per beat. For the
classification, it is used Support Vector Machine with the following parameters:

1. C: 70

2. Gamma: 0.7

3. Kernel: radial basis function

The results, we have obtained are described in Fig. 5.7: we have comparable
performances with respect to the previous algorithm based on Random Forest.
We have tested the same approach applying data augmentation with ADASYN,
obtaining slightly better results (Fig. 5.8).

48 5. Experiment

Figure 5.7. Confusion Matrix : svm for the N,S,V,F classification

Figure 5.8. Confusion Matrix : SVM with Adasyn for the N,S,V,F classification

5.5 Convolutional Neural Network [24] 49

Figure 5.9. Architecture of the model in [24]

5.5 Convolutional Neural Network [24]

This paper ([24]) describes an effective approach to solve two problems: arrhythmia
classification and myocardial infarction. In particular, the idea is to use a neural
network to solve the first task and then apply transfer learning for the latter. Since
we are only interested in arrhythmia detection, we will discuss only the first part.
The main difference of this solution with respect to the previous two is that it does
require a simple pre-processing phase without any de-noise procedure. Specifically,
the latter consists of a first resample of the signal from 360Hz to 125Hz. Then, in
order to find the R-peaks, it considers a temporal window of 10 seconds, normalizes
it and finally detects the R peaks as local maximum points above a threshold of
0.9. Secondly, it considers T as the median of the RR peak distances in time for a
given signal. Finally, each beat consists of R peak and the samples in the temporal
segment of 1.2 · T . Since T is specific for a given signal, to make all beats of the
same size, shorter beats are padded with zeros.

The the whole pre-processed dataset is available on Kaggle by the same author’s
paper, so we have not directly implemented this pre-processing. The algorithm
for the classification is a neural network with one-dimensional convolutional layers
each with 32 kernels of size 5. In addition to this, it has max polling layers of
size: 5 and stride: 2. The latter layers are arranged in a residual block the is
repeated five times. In the end, there are two fully connected layers followed by a
softmax (Fig. 5.7).(Fig. 5.9). As loss function, it is used cross entropy with logits
since the network’s output is obtained with a softmax and it can be interpreted

50 5. Experiment

Figure 5.10. Confusion Matrix : cnn for the N,S,V,F classification

as a probability distribution. The optimization method is Adam with the following
parameters:

1. learning rate: 0.001

2. beta-1: 0.9

3. beta-2: 0.999

It is employed an exponential learning rate decay, where the learning rate is decayed
of 0.75 every 10000 iterations. We have implemented it in TensorFlow with Colab
and trained it for 70 epochs. In Fig. 5.10, we have plotted my results: they are not
as good as the one described in the paper: we think this is due to the fact the latter
does not describe the data augmentation technique used. We have tested the same
approach using ADASYN as data augmentation (Fig. 5.11) This approach has the
benefit of having a simple pre-processing phase and it is conventional in the use of a
neural network model that can be deployed in an embedded device with the support
of libraries such as Tensorflow-Lite and sensor. Finally, it has a better performance
than the approach with Random Forest and Supports Vector Machine.

5.6 Neural Ordinary Differential Equations
In this section we will demonstrate the application of NODE ([12]) for arrhythmia
detection: this is an innovative approach never used before in the literature. In order
to implement it, we have adopted the PyTorch library provided by the same authors.
The latter not only provides (ODE) solvers but also the optimized back-propagation
using the adjoint method. In addition to this, it has fully GPU support. We have
conducted several tests, but all of them have in common the following choice:

1. the ODE solver has a tolerance of 0.001

2. loss function: categorical cross-entropy

5.6 Neural Ordinary Differential Equations 51

Figure 5.11. Confusion Matrix : CNN with Adasyn for the N,S,V,F classification

3. learning rate: 0.001

4. training epochs: 100

5. Adam optimizer

We have tested both data augmentation and weighted loss function to mitigate the
class imbalance. It is worth to note that we will describe only ADASYN because
it gives better results than SMOTE. When we adopt the weighted loss function,
we have used the following weights: 1,40,20,100, respectively for N, S, V, F classes.
This choice is justified by the single class size proportion and after several trial and
error tests. The input: x is a sequence of 200 samples. Finally, the models below
have in common a general structure in this order: downsampling layer, feature layer,
and fully connected layers. The NODE block is present in the second block.

5.6.1 Test 1

The downsampling layer consists of a residual block with these layers:

1. P1: pooling layer of size 5 and stride 2

2. C1,C2: two 1-dimensional convolutional layers with 32 filters, each with padding
5 and stride 2

3. ReLU as activation function

4. the output is: y1 = P1 (x+ z), where z = ReLU (C2 (ReLU (C1 (x))))

The feature layer is constituted of:

1. C3 and C4 are two convolutional layers with the same parameters of C2

2. the output is the ODE function: y2 = ReLU (C4 (ReLU (C3 (y1))))

52 5. Experiment

Figure 5.12. Confusion Matrix : first Node model with weighted loss function

The fully connected block is made of:

1. F : flattening layer:

2. D2 and D1: two convolutional layers with respectively 32 and 4 neurons

3. the output is: y3 = F (D2(ReLU(D1(y2))))

In Fig. 5.12 there is the confusion matrix related to this approach using the weighted
loss function to mitigate class imbalance. In Fig. 5.13 the same model is tested
without loss function but using Adasyn. It is clear that the weighted loss function
performs better than Adasyn: this is due to the first does not create any new samples
that may be unrepresentative of the given class.

5.6.2 Test 2

In this model, we have tried to reduce the number of parameters to take full advan-
tage of the parameter efficiency offered by NODE. In the previous one, the high
number of parameters: 116000, is due to the last fully connected layer that has 32
neurons with an input of size: 3136, for a total of 3136 · 32 = 100352 parameters.
In order to reduce the size of the input to this layer that is the output of the ODE
block, we have applied a pooling layer in between.

Specifically, it has a size of 10 and as stride: 5. In this case, we have used the
weighted loss function since it generally gives better results than Adasyn. The
number of total parameters is reduced to 34244 which is also less than the CNN of
[24] that has 50000 parameters. The results are depicted in fig. 5.14 This model has
the best accuracy so far and it is indicative of how a less complex neural network
can have better performance.

5.6 Neural Ordinary Differential Equations 53

Figure 5.13. Confusion Matrix: first Node model with Adasyn

Figure 5.14. Confusion Matrix: second Node model with less parameter

54 5. Experiment

Figure 5.15. Confusion Matrix: third model with DWT denoise

5.6.3 Test 3

In this case, we wanted to check the effect of a de-noise procedure before training
the neural network. Specifically, we have used the same filtering described in [15],
which consists of the application of DWT to first decompose and later reconstruct
the signal. In this case, we have used the same model as the first test. The results
are depicted in Fig. 5.15 and there is an improvement in the accuracy concerning
the latter (Fig. 5.12)

5.7 LSTM

In this section, we will describe the application of LSTM for arrhythmia detection.
The intuition behind this approach is to leverage the sequential temporal structure
of each beat. In fact, the LSTMs have shown great performance for time series, since
they can model long term dependency. Specifically, for our case, we have that the
sequential nature of each beat is crucial for the arrhythmia prediction because it
captures the P wave, QRS complex, ST segment that are essential for the diagnosis.
We have conducted two main tests, that differ with the type of dataset:

1. sequences of 200 samples (single beat).

2. sequences of 3/4 beats.

We have tested several models, and in all the circumstances the first configuration
had superior performances, and the second one did not reach comparable results
either with the initial algorithm: Random Forest and SVM. This is why in the
following we will describe only the first case. We have implemented all the test below
in Keras/TensorFlow, with the following common parameters:

1. loss function: categorical cross-entropy

5.7 LSTM 55

2. learning rate: 0.001 with exponential decay

3. training epochs: 100

4. Adam optimizer

Finally, the LSTM’s implementation in all the main Python frameworks (Keras,
Tensorflow, PyTorch), allows obtaining not only the final hidden state but also
the intermediate ones that are crucial if we want to apply attention techniques.
Specifically, in Keras it is possible to specify an LSTM layer with the following
parameters:

1. cell: each LSTM layer can have multiple cells and each of them outputs
a hidden state, for every single element in the input sequence. If no other
parameters are specified, the final output of this layer is the last sequence of
cell hidden state.

2. return_sequences: if set to True allows to obtain all the hidden states for
each input in the sequence. It is mainly used for applying attention.

The input needs to be three-dimensional with this structure: (batch_size, timesteps,
input_dim). The timesteps is always set to 200, while the input_dim is 1 or 2
concerning the number of channels we are considering in the original dataset: the
ECG signals are recorded with 2 channels. In Test 1 and Test 2 we have considered
only one channel, while in all the other cases both.

5.7.1 Test 1

The neural network has the following structure:

1. LSTM layer with 32 cells and return_sequences set to True: the output’s
shape is (batch_size, timesteps, 32)

2. LSTM layer with 32 cells but return_sequences set to False: the output’s
shape is (batch_size, 32)

3. Dense layer with 4 neurons followed by softmax for the final classification

In Fig. 5.16, there is the confusion matrix associated with this model. In the
following, we will describe more complex approaches.

5.7.2 Test 2

In this case we wanted to build a more elaborated model, with the aim to get better
results. We succeed in the latter. However, the drawback is that it has an enormous
number of parameters: 1.913.284 The model is the following:

1. LSTM layer with 256 cells and return_sequences set to True: the output’s
shape is (batch_size, timesteps, 256)

2. LSTM layer with 512 cells but return_sequences set to False: the output’s
shape is (batch_size, 512)

56 5. Experiment

Figure 5.16. Confusion Matrix: simple model with LSTM

Figure 5.17. Confusion Matrix: complex model with LSTM

3. Dense layer with 128 neurons followed by ReLU

4. Dense layer with 64 neurons followed by ReLU

5. Dense layer with 4 neurons followed by softmax

In Fig. 5.17, it is visible the quality of this model in terms of accuracy with respect
the previous one, at the expense of a greta number of parameters.

5.7.3 Test 3

In this case we used both channels so that the input to the model has the shape:
texttt(batch_size, timesteps, 2). We have simplified the structure so that it has
822.916 parameter. The model is:

5.8 LSTM/NODE with Attention 57

Figure 5.18. Confusion Matrix: third model with LSTM and 2-D input data

1. LSTM layer with 256 cells and return_sequences set to True: the output’s
shape is (batch_size, timesteps, 256)

2. LSTM layer with 256 cells but return_sequences set to False: the output’s
shape is (batch_size, 512)

3. Dense layer with 128 neurons followed by ReLU

4. Dense layer with 4 neurons followed by softmax

In Fig. 5.18 we have plotted the results that are better than all the models tried so
far.

5.8 LSTM/NODE with Attention
In this section, we will describe how powerful is the application of Attention on the
previous models. Since our task is a classification problem, namely sequence to one,
the decoder state is not present. To compute the attention score we have taken
into consideration the hidden states of the LSTM and as decoder state the last of
one, that generally is the value which the decoder state is initialized. Finally, in the
following test, we have considered 2 channels for the ECG recording. Initially, we
have adopted Bahdanau’s attention on LSTM. The neural network is the following:

1. LSTM layer with 256 cells and return_sequences set to True: the output’s
shape is (batch_size, timesteps, 256)

2. Bahdanau attention: the output’s shape is (batch_size, 256)

3. Dense layer with 4 neurons followed by softmax

The number of parameters is 462.597. The results are depicted in Fig. 5.19 Secondly,
we have used Luong’s attention instead of Bahdanau’s.

The results are depicted in Fig. 5.20. Next, we have tested the latter model
on the dataset with the pre-processing of [24], with the result in Fig. 5.21. It is

58 5. Experiment

Figure 5.19. Confusion Matrix: Bahdanau’s attention with LSTM

Figure 5.20. Confusion Matrix: Luong’s attention with LSTM

5.8 LSTM/NODE with Attention 59

Figure 5.21. Confusion Matrix: Luong’s attention with LSTM on the pre-processed dataset
of [24]

interesting to note the pre-processing does not help our models. Finally, we have
adopted Luong’s attention to the following model that has both a NODE block and
LSTM layer. The latter is composed of four principal components: downsampling
layers, feature layers, attention layers and fully connected layers.The first one is
implemented as:

1. P1: pooling layer of size 5 and stride 2

2. C1,C2: two 1-dimensional convolutional layers with 32 filters, each with padding
5 and stride 2

3. ReLU as activation function

4. the output is: y1 = P1(z), where z = ReLU(C2(ReLU(C1(x)))) where x is the
original input with 2 channels

The second one is and ODE block with the following parameters:

1. C3 and C4 are two convolutional layers with the same parameters of C2

2. the output is the ODE function: y2 = ReLU(C4(ReLU(C3(y1))))

The third one is where the Luong’s attention is applied:

1. LSTM layer with 128 cells and return_sequences set to True

2. Luong’s attention: the output’s shape is (batch_size, 128)

Finally the last block is dense layer with 4 neurons followed by softmax. The results
are shown below (Fig. 5.22).

60 5. Experiment

Figure 5.22. Confusion Matrix: Luong’s attention with NODE model

5.9 Transformers

We have adopted only the encoder part of the Transformers without the decoder
because our task is a sequence to one while the latter is used for the sequence to
many problems. The first block is made of:

1. LSTM layer with 128 cells and return_sequences set to True

2. Dropout layer with rate: 0.1

Then 4 identical layers implement Multi-Head Attention with 4 heads and constitute
the Transformer’s Encoder. Finally, it is applied, in order:

1. Dropout layer with rate: 0.1

2. Dense layer with 512 neurons

3. Flatten layer

4. 2 Dense layers with respectively 256 neurons and 4 neurons

It is worth to mention the LSTM layer is necessary to replace the Embedding layer
that is originally present in the Transformer. However, in our case, we could not use
the latter because it requires a dictionary of possible values for the input as it is the
case of a word in input. We have also used CNN and the results are the same. The
results are shown below (Fig. 5.23).

5.10 Results

In tables: 5.1, 5.2, 5.3, 5.4 we describe the performance of the best models we have
implemented in terms of precision, recall and F-score:

5.10 Results 61

Figure 5.23. Confusion Matrix: Transfomers based model

1. CNN (5.5)

2. NODEA (5.8): Neural ODE with Luong’s attention

3. LSTMA (5.8): LSTM with Luong’s attention

4. TB (5.9): Transformer based model

CNN NODE LSTMA NODEA TB
N 83.23 91.64 95.53 89.85 88.87
S 99.16 93.93 97.46 98.91 95.53
V 94.38 92.29 97.65 97.02 97.26
F 97.75 88.49 94.19 97.28 87.54

Table 5.1. Precision with all the dataset

CNN NODE LSTMA NODEA TB
N 99.23 93.88 98.11 99.44 95.00
S 83.36 92.88 94.11 90.88 90.44
V 98.18 95.77 97.22 97.66 95.00
F 72.42 89.20 90.80 86.00 90.00

Table 5.2. Recall with all the dataset

62 5. Experiment

CNN NODE LSTMA NODEA TB
N 90.23 92.74 95.76 94.40 91.83
S 90.36 93.30 95.75 94.72 92.91
V 95.18 96.52 97.43 97.33 96.11
F 82.42 88.44 92.46 91.29 88.75

Table 5.3. F score with all the dataset

CNN NODE LSTMA NODEA TB
Accuracy 91.66 93.76 96.00 95.15 93.18
Avg Recall 88.29 92.93 95.06 93.49 92.61
Table 5.4. Overall precision and accuracy of the best models

5.11 Per Patient Dataset
In this part, we wanted to check the robustness of the previous models in a more
arduous scenario. As we explained in the section about the Dataset Configuration, we
have removed from the whole dataset: D the following patient’s data: D222,D223,D233.
We have re-trained the LSTM with Loung’s attention: M on the remaining data:
Dtrain, because it is one the best model we have implemented. Then we have built a
personalized classifier for each of them using two different ways of transfer learning
described respectively in Test 1 and Test 2

5.11.1 Test 1

This approach consists of removing the last layer of M so that the latter model can
be used as feature extractor. In particular, now the output is a 128 feature vector.
We have obtained for each patient’s dataset (Di) the corresponding features to train
Support Vector Machine with the following parameters:

1. gamma: ‘scale’

2. decision_function_shape: ‘ovo’

We have used a weighted loss function, but with different weights because the dataset
topology, in this case, is completely different from the previous one. In details we
have tested several configuration and the best one is provided by sklearn, with
the function: compute_class_weight and parameters: ‘balanced’. Basically, the
weight for each class is assigned in this way: wi = N

C·fi
where:

1. N : number of samples

2. C: number of classes (4)

3. fi: number of beats belong to the ith class

Fig. 5.24, Fig. 5.25, Fig. 5.26 , describe respectively the confusion matrix associated
to the patients 222,223 and 233.

5.11 Per Patient Dataset 63

Figure 5.24. Confusion Matrix for Test 1: Patient 222

Figure 5.25. Confusion Matrix for Test 1: Patient 223

64 5. Experiment

Figure 5.26. Confusion Matrix for Test 1: Patient 233

5.11.2 Test 2

In this part we have fine tuned the original model on each single patient. Initially,
we have fine tuned all the network’s layer. Fig. 5.27, Fig. 5.28, Fig. 5.29 , describe
the results. Finally, we have fine-tuned only the last four layers because the idea
is the the initial layers capture general feature about the beat nature. Fig. 5.30,
Fig. 5.31, Fig. 5.32 , describe the results.

5.11 Per Patient Dataset 65

Figure 5.27. Confusion Matrix for Test 2 with complete training: Patient 222

Figure 5.28. Confusion Matrix for Test 2 with complete training: Patient 223

66 5. Experiment

Figure 5.29. Confusion Matrix for Test 2 with complete training: Patient 233

Figure 5.30. Confusion Matrix for Test 2 with partial training: Patient 222

5.11 Per Patient Dataset 67

Figure 5.31. Confusion Matrix for Test 2 with partial training: Patient 223

Figure 5.32. Confusion Matrix for Test 2 with partial training: Patient 233

69

Chapter 6

Conclusions

When we started working on this project, we considered the problem of arrhythmia
detection as a simple classification task with only four classes. This is why at the
beginning, we have approached it with elementary algorithms such as Random
Forest. Secondly, we realized the results were not good and we thought the problem
was due to the noise in the signal and a more accurate feature selection, would
have provided better accuracy. In fact, we experimented with Discrete Wavelet
Transform since it was a popular choice in the literature. However, we did not get a
satisfactory outcome and decided to move to more complex models while keeping
the pre-processing step. The reasons for this failure are due to the fact Random
Forest applies the begging technique: it trains multiple decision trees on random
partitions of the dataset and it computes the most probable outcome on the basis of
each single decision tree’s output. In our case, we have an overbalancing problem so
that without any form of data augmentation, the various decision’s trees will fail
to learn the relevant features of rare classes. When we perform data augmentation,
the synthetic samples fail to perfectly represent the low represented classes making
weak classifiers for such labels. Even if we perform a pre-processing step to remove
noise, the Random Forest can not generalize from synthetic samples.

At this point, we searched in the literature and the model described in [15] was
exactly what we intended to implement: Support Vector Machine with a complex
pre-processing. The results were slightly better than the first model but still, there
was a lot to improve. The reasons for such low performance are probably the same
as random forest since data augmentation is not able to create new authentic samples.

At this moment we realized the difficulties of the arrhythmia detection since it
was challenging to implement an algorithm able to generalize the relevant features
of each beat even for low represented class. We decided to use Neural Networks that
are acknowledged to outperform the previous algorithms for complex tasks. The
best model we found in the literature was [24] and it effectively provided accept-
able results. The results were good both with data augmentation and better with
weighted loss. In general, the generalization power of Neural Networks together with
the use of a weighted loss function was the key for outstanding models. In fact, a
weighted loss function does not have the problem to create synthetic data that may

70 6. Conclusions

not represent the original class. Moreover, a deep neural network approach does
not require any pre-processing so that it exempts us from performing a complex
operation such as DWT or PCA, which is exhausting for an embedded device with
low computational power and autonomy. The main reason for this advantage is due
to the neural networks’ ability to autonomous learn distinctive features through
the various layers, from the most general to the most specific. For example, we
would expect the initial layers of that CNN to capture a beat as a simple smooth
curve, and as we consider deeper layers, they capture more peculiarities such as the
QRS complex, ST segment and so on. In this way, an optimal choice of the neural
network’s depth with its related operations can build a classifier able to detect only
the relevant features without incurring into overfitting.

Secondly, we have used the NODE and LSTM. The first one was a novel structure
with comparable results to [24]. The second model born by the idea that the ECG
signal could be considered as temporal time series with sequences made of single
samples rather than multiple beats. The significance of this intuition was justified
by the respectable outcome. Then, we added to the previous models an attention
mechanism following the trend in Natural Language Processing. Here we wanted
to capture the fact that with respect to a particular arrhythmia, the model should
pay more attention to some portion of the beat than others and in general, there
are samples with low information content that must be ignored and others to give
more weight. For example, we would expect samples in the QRS complex to have a
higher attention weight than samples in the beat’s prologue. In the end, the best
model we have implemented was LSTM with Luong’s Attention.

Finally, we used a patient-centric approach. In particular, we wanted to imple-
ment a model personalized for the end user, since our final goal was to implement
an arrhythmia detection module on a wearable device. The approach we used
was Transfer Learning and the outcome was good but there is a large margin of
improvement. Initially, we used a pre-trained neural network as a feature extractor
for the single and then SVM. The idea here is that the layers of a neural network
learn features from the most general to the most specific, and in this way, the one
before the last layer can be a good generalization.

As a second experiment, we first tuned all the model on a single patient and
then only the last layers. Generally, the second technique is more popular because
as we said before the initial layers of a neural network capture general features and
only the final layers are focused on the peculiarities of the single patient. This is
why also for our case, the latter approach tends to have a better score. However, for
the evaluation we need to take into consideration some classes in the test data are
low populated and statistically insignificant.

Better results can be obtained with more irregular beats for each patient, but
this is not a good practice to solve the issue because in practice a user will experience
for a long time regular beats, and the module still needs to find arrhythmias. In
general, the confusion matrices in this case, show worse results than the previous
situations with all the dataset. This means the latter model suffers from some sort

71

of overfitting because it does not learn to generalize arrhythmias for completely new
patients. However, the only solution to solve this issue is to acquire more data.

This work could be further developed by implementing the provided algorithms
on embedded devices. The models we have presented can be applied in a medical
context to support cardiologists or for personal use. In addition to this, with the
advent of smart cars the proposed algorithms with small variations, can be used to
monitor the state of the driver and detect dangerous situations such as tiredness or
altered states.

73

Bibliography

[1] Testing and reporting performance results of cardiac rhythm and st segment
measurement algorithms. AAMI EC57.

[2] Akrivopoulos, O., Amaxilatis, D., Antoniou, A., and Chatzigian-
nakis, I. Design and evaluation of a person-centric heart monitoring system
over fog computing infrastructure. In Proceedings of the First International
Workshop on Human-centered Sensing, Networking, and Systems, Human-
Sys’17, pp. 25–30. ACM, New York, NY, USA (2017). ISBN 978-1-4503-
5480-6. Available from: http://doi.acm.org/10.1145/3144730.3144736,
doi:10.1145/3144730.3144736.

[3] Akrivopoulos, O., Amaxilatis, D., Mavrommati, I., and Chatzigian-
nakis, I. Utilising fog computing for developing a person-centric heart moni-
toring system. Intelligent Environments, (2018), 9.

[4] Akrivopoulos, O., Amaxilatis, D., Mavrommati, I., and Chatzigian-
nakis, I. Utilising fog computing for developing a person-centric heart moni-
toring system. JAISE, 11 (2019), 237. Available from: https://doi.org/10.
3233/AIS-190523, doi:10.3233/AIS-190523.

[5] Akrivopoulos, O., Chatzigiannakis, I., Tselios, C., and Antoniou, A.
On the deployment of healthcare applications over fog computing infrastructure.
In 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, pp. 288–293 (2017). doi:10.1109/COMPSAC.2017.178.

[6] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation
by jointly learning to align and translate. (2016). Available from: http:
//arxiv.org/abs/1409.0473, arXiv:1409.0473v7.

[7] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg (2006). ISBN 0387310738.

[8] Bowyer, K. W., Chawla, N. V., Hall, L. O., and Kegelmeyer, W. P.
SMOTE: synthetic minority over-sampling technique. CoRR, abs/1106.1813
(2011). Available from: http://arxiv.org/abs/1106.1813, arXiv:1106.
1813.

[9] Cecilia Vinzio Maggio, A., Bonomini, M., Laciar, E., and Arini, P.
Quantification of Ventricular Repolarization Dispersion Using Digital Processing
of the Surface ECG (2012). ISBN 978-953-307-923-3. doi:10.5772/23050.

http://doi.acm.org/10.1145/3144730.3144736
http://dx.doi.org/10.1145/3144730.3144736
https://doi.org/10.3233/AIS-190523
https://doi.org/10.3233/AIS-190523
http://dx.doi.org/10.3233/AIS-190523
http://dx.doi.org/10.1109/COMPSAC.2017.178
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473v7
http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
http://dx.doi.org/10.5772/23050

74 Bibliography

[10] Chatzigiannakis, I. Computing in the fog: Recent technological advances and
development techniques. In Intelligent Environments 2018 - Workshop Proceed-
ings of the 14th International Conference on Intelligent Environments, Rome,
Italy, 25-28 June 2018, pp. 14–17 (2018). Available from: https://doi.org/
10.3233/978-1-61499-874-7-14, doi:10.3233/978-1-61499-874-7-14.

[11] Chatzigiannakis, I., Valchinov, E. S., Antoniou, A., Kalogeras, A. P.,
Alexakos, C. E., and Konstantinopoulos, P. Advanced observation and
telemetry heart system utilizing wearable ECG device and a cloud platform.
In 2015 IEEE Symposium on Computers and Communication, ISCC 2015,
Larnaca, Cyprus, July 6-9, 2015, pp. 25–30 (2015). Available from: https://
doi.org/10.1109/ISCC.2015.7405449, doi:10.1109/ISCC.2015.7405449.

[12] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K.
Neural ordinary differential equations. CoRR, abs/1806.07366 (2018). Avail-
able from: http://arxiv.org/abs/1806.07366, arXiv:1806.07366.

[13] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk,
H., and Bengio, Y. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR, abs/1406.1078 (2014).
Available from: http://arxiv.org/abs/1406.1078, arXiv:1406.1078.

[14] colah’s blog. Understanding lstm networks. Available from: https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

[15] Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., and Ahmed, T.
Arrhythmia recognition and classification using combined linear and nonlin-
ear features of ecg signals. Computer Methods and Programs in Biomedicine,
127 (2016), 52 . Available from: http://www.sciencedirect.com/science/
article/pii/S0169260715301097, doi:https://doi.org/10.1016/j.cmpb.
2015.12.024.

[16] Elhaj, F. A., Salim, N., Harris, A. R., Swee, T. T., and Ahmed, T.
Arrhythmia recognition and classification using combined linear and nonlin-
ear features of ecg signals. Computer Methods and Programs in Biomedicine,
127 (2016), 52 . Available from: http://www.sciencedirect.com/science/
article/pii/S0169260715301097, doi:https://doi.org/10.1016/j.cmpb.
2015.12.024.

[17] Emanet, N. Ecg beat classification by using discrete wavelet transform
and random forest algorithm. In 2009 Fifth International Conference on
Soft Computing, Computing with Words and Perceptions in System Analysis,
Decision and Control, pp. 1–4 (2009). doi:10.1109/ICSCCW.2009.5379457.

[18] Emanet, N. Ecg beat classification by using discrete wavelet transform
and random forest algorithm. In 2009 Fifth International Conference on
Soft Computing, Computing with Words and Perceptions in System Analysis,
Decision and Control, pp. 1–4 (2009). doi:10.1109/ICSCCW.2009.5379457.

https://doi.org/10.3233/978-1-61499-874-7-14
https://doi.org/10.3233/978-1-61499-874-7-14
http://dx.doi.org/10.3233/978-1-61499-874-7-14
https://doi.org/10.1109/ISCC.2015.7405449
https://doi.org/10.1109/ISCC.2015.7405449
http://dx.doi.org/10.1109/ISCC.2015.7405449
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.sciencedirect.com/science/article/pii/S0169260715301097
http://www.sciencedirect.com/science/article/pii/S0169260715301097
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2015.12.024
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2015.12.024
http://www.sciencedirect.com/science/article/pii/S0169260715301097
http://www.sciencedirect.com/science/article/pii/S0169260715301097
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2015.12.024
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2015.12.024
http://dx.doi.org/10.1109/ICSCCW.2009.5379457
http://dx.doi.org/10.1109/ICSCCW.2009.5379457

Bibliography 75

[19] for Visual Recognition, C. C. N. N. Convolutional neural net-
works (cnns / convnets). Available from: http://cs231n.github.io/
convolutional-networks/.

[20] Gers, F. A. and Schmidhuber, J. Recurrent nets that time and count. In
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, vol. 3, pp. 189–194 vol.3 (2000). doi:10.1109/IJCNN.
2000.861302.

[21] He, H., Bai, Y., Garcia, E. A., and Li, S. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In IJCNN, pp. 1322–1328. IEEE
(2008). ISBN 978-1-4244-1821-3. Available from: http://dblp.uni-trier.de/
db/conf/ijcnn/ijcnn2008.html#HeBGL08.

[22] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. CoRR, abs/1512.03385 (2015). Available from: http:
//arxiv.org/abs/1512.03385, arXiv:1512.03385.

[23] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
Comput., 9 (1997), 1735. Available from: http://dx.doi.org/10.1162/neco.
1997.9.8.1735, doi:10.1162/neco.1997.9.8.1735.

[24] Kachuee, M., Fazeli, S., and Sarrafzadeh, M. ECG heartbeat classifi-
cation: A deep transferable representation. CoRR, abs/1805.00794 (2018).
Available from: http://arxiv.org/abs/1805.00794, arXiv:1805.00794.

[25] Kuo, C. J. Understanding convolutional neural networks with A mathematical
model. CoRR, abs/1609.04112 (2016). Available from: http://arxiv.org/
abs/1609.04112, arXiv:1609.04112.

[26] Luong, T., Pham, H., and Manning, C. D. Effective approaches to
attention-based neural machine translation. Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, (2015). Available from:
http://dx.doi.org/10.18653/v1/D15-1166, doi:10.18653/v1/d15-1166.

[27] MathWorks. Continuous wavelet transform and scale-based anal-
ysis. Available from: https://it.mathworks.com/help/wavelet/gs/
continuous-wavelet-transform-and-scale-based-analysis.html.

[28] Moody GB, M. R. The impact of the mit-bih arrhythmia database. IEEE
Eng in Med and Biol, 10 (2001), 45 .

[29] Organization, W. H. Cardiovascular diseases (cvds). Avail-
able from: https://www.who.int/news-room/fact-sheets/detail/
cardiovascular-diseases-(cvds).

[30] Pascanu, R., Mikolov, T., and Bengio, Y. Understanding the exploding
gradient problem. CoRR, abs/1211.5063 (2012). Available from: http:
//arxiv.org/abs/1211.5063, arXiv:1211.5063.

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2008.html#HeBGL08
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2008.html#HeBGL08
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1805.00794
http://arxiv.org/abs/1805.00794
http://arxiv.org/abs/1609.04112
http://arxiv.org/abs/1609.04112
http://arxiv.org/abs/1609.04112
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.18653/v1/d15-1166
https://it.mathworks.com/help/wavelet/gs/continuous-wavelet-transform-and-scale-based-analysis.html
https://it.mathworks.com/help/wavelet/gs/continuous-wavelet-transform-and-scale-based-analysis.html
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063

76 Bibliography

[31] R. Anderson, J. Cognitive Psychology and Its Implications (2005).

[32] Scire, A., Tropeano, F., Anagnostopoulos, A., and Chatzigiannakis,
I. Fog-computing-based heartbeat detection and arrhythmia classification using
machine learning. Algorithms, 12 (2019). Available from: http://www.mdpi.
com/1999-4893/12/2/32.

[33] Simonyan, K. and Zisserman, A. Very deep convolutional networks for
large-scale image recognition (2014).

[34] stackoverflow. What is the number of filter in cnn? Avail-
able from: https://stackoverflow.com/questions/36243536/
what-is-the-number-of-filter-in-cnn.

[35] Taspinar, A. A guide for using the wavelet transform in ma-
chine learning. Available from: http://ataspinar.com/2018/12/21/
a-guide-for-using-the-wavelet-transform-in-machine-learning/.

[36] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. u., and Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems 30 (edited by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett), pp. 5998–6008. Curran Associates, Inc. (2017). Available from:
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

[37] Walraven, G. Basic Arrhythmias. Pearson (2019).

[38] WILDML, D. L., Artificial Intelligence and NLP, D. B. Recurrent
neural networks tutorial. Available from: http://www.wildml.com/2015/09/
recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/.

http://www.mdpi.com/1999-4893/12/2/32
http://www.mdpi.com/1999-4893/12/2/32
https://stackoverflow.com/questions/36243536/what-is-the-number-of-filter-in-cnn
https://stackoverflow.com/questions/36243536/what-is-the-number-of-filter-in-cnn
http://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
http://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

	Introduction
	Document Structure

	Principles of ECG Evaluation
	Heart's Anatomy
	Electrical Cell
	Heartbeat Cycle

	ECG tracing
	Heartbeat Shape
	Type of Arrhythmias

	Pre-Processing
	De-Noise
	Median Filter
	Discrete Wavelet Transform

	Data Augmentation
	Smote and Adasyn

	Classification Algorithms
	Support Vector Machine
	Large Margin Principle
	Kernel Trick

	Feedforward Neural Network
	Weighted Loss Function

	Convolutional Neural Network
	Convolutional Layer
	Pooling Layer
	Mathematical Interpretation

	Recurrent Neural Network
	Vanilla RNN
	Long Short Term Memory

	Attention
	Encoder-Decoder model
	Attention in Encoder-Decoder
	Multiplicative and Addititive Attention

	Transformer
	Transformer's Attention

	Neural Ordinary Differential Equations
	Residual Neural Network
	NODE

	Experiment
	Dataset
	Training and Test Set

	Performance Measures
	Random Forest forest
	Custom Variation

	Support Vector Machine svmnl
	Convolutional Neural Network cnnfazeli
	Neural Ordinary Differential Equations
	Test 1
	Test 2
	Test 3

	LSTM
	Test 1
	Test 2
	Test 3

	LSTM/NODE with Attention
	Transformers
	Results
	Per Patient Dataset
	Test 1
	Test 2

	Conclusions

