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Abstract

Billions of embedded processors are being attached to industrial equipment to
enhance business processes and enable smart manufacturing. These embedded
processors have enough processing capabilities to process sensor data to produce
smart insights, and are designed to operate for months without the need of physical
interventions. Despite the compelling features of Industrial Internet of Things (IIoT),
applied at several industry-related open issues (e.g., integrated enterprise systems,
optimized decision making, real-time business analytics), due to the lack of a physical
flow of information (e.g., absence of switches and cable-based gateways), the security
of such networks is impeding their rapid deployment. In this work we look into IPv6
based IIoT deployments, since it is the leading standard for interconnecting the
wireless devices with the Internet and we propose a data-driven anomaly detection
system that operates at the transport-layer of 6LoWPAN deployments. We present
a comprehensive experimental evaluation carried out using both simulated and
real-world experimentation facilities that demonstrates the accuracy of our system
against well-known network attacks against 6LoWPAN networks.
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Chapter 1

Introduction

We live in a connected world, constantly surrounded by an incredible information
flow that is changing the way we explore and perceive the world, enabling the
development of new and incredible technologies. The European Union Agency for
Cybersecurity (ENISA) defines the Internet of Things (IoT) as a cyber-physical
ecosystem of interconnected sensors and actuators, which enable intelligent decision
making [15]. IoT offers us the opportunity to be more efficient in how we do things,
saving us time, money and helping us defining new processes. IoT is tightly bound
to cyber-physical systems and in this respect is an enabler of smart infrastructures,
such as Industry 4.0 allowing for applications like smart grid, energy and transport
[9]. Connectivity is a key component of industry 4.0, enabling manufacturers to
create an integrated ecosystem designed to optimize manufacturing, distribution
and the product-consumption lifecycle. With the development of 5G networks, IoT
devices will be able to connect discrete point solutions and sensors to monitor entire
processes, from R&D to the very end of the product lifecycle.

1.1 Challenges
As IoT infrastructures and services become integral parts of the industry landscape,
a number of issues related to privacy and trust need to be addressed. Data confiden-
tiality, authentication, access control within the Industrial Internet of Things (IIoT)
network, privacy and trust among users and devices, and the enforcement of security
and privacy policies are among these issues. However, the different standards and
communication stacks involved in combination with the wide variety of embedded
hardware components make traditional security countermeasures difficult to be
directly applied in the IIoT domain. Moreover, the high number of interconnected
devices arises scalability issues [41].

The vision of the IoT has led to a competitive market for stakeholders that, in the
absence of common standards, marketed proprietary and application-specific solu-
tions, including a variety of hardware platforms, operating systems, communications
protocols and data management schemes. Current IoT deployments are, more often
than not, privately run to serve a specific application, enforcing a tight association
between the application, the network used by the application and the sensors that
constitute that network [27, 22, 4]. These application-specific deployments have
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limited scope in data, while information and knowledge sharing is achieved through
custom tailored internet gateways. Clearly, such attempts are inherently non-scalable,
exhibit low cost-efficiency, are non-adaptive and usually require tremendous efforts
to integrate them with existing and well-established services.

In parallel, substantial standardization progress has been made by different bodies
(e.g., IETF CoAP, RPL, 6LowPAN, 6TSCH, IEEE 802.15.4e, ETSI M2M, 3GPP
MTC, oneM2M), providing technical solutions tailored to the resource-constrained
embedded nodes, ranging from the lower to the upper OSI layers. Nevertheless, until
now, no standard has managed to attract the vast majority of the stakeholders and
dominate the domain. This comes as no surprise as in most cases embedded systems
are indeed application-specific and mission-oriented and no single protocol stack can
address all possible functional and non-functional requirements and specifications [13].

In particular, the key observation of IIoT is that the connectivity of business pro-
cesses with external users has opened the Internet to the greater public by providing
open standards, resulting in a usable and interoperable software infrastructure and
well-understood methodologies for design, implementation, and evaluation. With
this trend to continue, the IIoT network provides online, real-time access to and
control over the state of real world objects and places. However, the development of
applications exploiting this combined infrastructure is currently cumbersome and
difficult since application-level protocols, software and development environments, as
well as design and validation methodologies and interoperability among proprietary
solutions are vastly different and lack integration. The developer currently has to
bridge this gap manually and has to be an expert in both worlds.

However, these IIoT networks do not face security issues found in traditional
wired or wireless networks and one of the biggest challenges is to satisfy security
requirements under the special operating conditions of sensor networks. Wireless
sensor networks are comprised of vast numbers of cheap devices that are deployed
in an ad-hoc manner. The devices are more vulnerable to various attacks as their
location is not known at design time and protection against tampering is very
difficult due to their low cost. Therefore, it is easy to assume that the adversary can
easily capture the devices and easily read the content of their memory, thus learning
the cryptographic secrets and possibly modifying their behavior. In addition, the
high node-to-human ratio makes it infeasible to even consider the presence of an
online trusted server that monitors and maintains individual nodes constantly. Thus
techniques of pre-distribution of keys are much less effective than in traditional
networks. Furthermore, as sensor nodes are battery operated, security systems must
reduce the energy consumption. Also, since sensor nodes have limited computing
and storage capability, cryptographic algorithms and protocols that require intensive
computation, communication, or storage are simply not applicable in sensor networks.
It is too costly (in terms of computation) to authenticate using a public key and too
costly (in terms of memory and computation) to store one-way chains of keys.

These constraints significantly increase the difficulty of securing IIoT networks
and make them more vulnerable to security threats. Still, since building secure IIoT
networks, the only viable solution is to combine different techniques for securing
the system, i.e., develop secure routing schemes, secure aggregation, provide group
key establishment methods, cryptographically encrypt messages, etc.; although each
single level defense mechanism is highly vulnerable, the combination of multiple
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attacking corners increases the overall achieved security.

1.2 Research Questions
In this study, we focus on the use of intrusion detection systems as an additional
mechanism to further improve the security of IIoT networks. In contrast to the other
approaches, intrusion detection can protect from both inside and outside adversaries.
Compared to existing systems for IIoT networks, our approach is more plentiful
in the sense that it addresses all the levels of the node stack and is more energy
efficient. Specifically, given a set of traces collected from the network, we want to
answer the following questions.

1. Does the whole network include at least one malicious node?

2. Does the whole network include at least one malicious node and also identify
the type of attack?

In order to answer the questions above, we need to face the following problems
too.

1. We want to characterize each node in the network if it is a malicious node.

2. We want to characterize each node in the network if it is affected by a malicious
node.

3. We want to characterize each node in the network is a malicious node and also
identify the type of attack.

4. We want to characterize each node in the network if it is affected by a malicious
node and also identify the type of attack.

1.3 Outline
In the next chapters, the author will guide the reader through the methodological
approach and theory that led to the development of this research project. Chapter 2
introduces background knowledge of IIoT security and communication solutions for
intrusion detection systems through a detailed description of the actual state of the
art. Chapter 3 describes the methodological approach adopted in this work. Here we
describe all the processes that led us from data collection to the entire data cleaning
and transformation phase that preceded the analysis. This section also explains the
algorithms and evaluation metrics that we have used. Chapter 4 discusses the results
obtained in our experiments. Finally, Chapter 5 draws conclusions and defines future
works.
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Chapter 2

Background and Theory

2.1 Communication in Industrial Internet of Things
As already explained, IIoT is integrating general purpose computing and its net-
working backbone, the Internet, with embedded computing and low-power, lossy
wireless networks. The key goal of IIoT is to extend traditional Service-Oriented
Architectures (SOA) that are predominantly used within industrial computing and
networking infrastructures, into the embedded world, where digital representations
of real-world entities offer services to access their physical state and to mash up these
real-world services with traditional services and data to create novel applications.
Yet, IIoT networks that are based on resource-constrained devices are exempted
from these powerful abstractions due to the heavyweight nature of SOA technologies
such as SOAP Web Services, TCP/IP, HTTP, and XML.

2.1.1 IP-based Communication

IIoT provides alternative lightweight services to integrate sensor data into existing
service networks and their interaction with services running on servers or in clouds
through the use of Internet standards. This allows the composition of higher and more
complex industrial processes which directly incorporate services provided by resource-
constrained devices. In particular, the 6LoWPAN working group [24] proposed a
light-weight IPv6 adaptation layer for IIoT which allows efficient transmission and
adaptation of IPv6 packets over IEEE 802.15.4 as a data-link and physical layer
protocol. By communicating natively with IP, 6LoWPAN networks are connected to
other networks simply using IP routers. The 6LoWPAN uses only UDP as TCP is
considered to be too resource-demanding. IPv6LowPAN networks usually operate
on the board by acting as stub networks, meaning that data entering the network is
destined for one of the devices on the IPv6LowPAN network. There are two types
of devices within a typical IPv6LowPAN network: routers that route data destined
for another node on the network and hosts that represent the receiver devices of
messages.

Routing is the ability to transfer a data packet from one device to another one,
sometimes over multiple hops. Depending on what layer the routing mechanism
is placed, two categories of routing are defined: mesh-under or route-over. In a
mesh-under system, routing of data happens transparently, consequently, mesh-under



2.1 Communication in Industrial Internet of Things 5

Figure 2.1. The OSI model, a Wi-Fi stack example and the 6LoWPAN stack [37].

networks are considered to be one IP subnet. In route-over networks the routing
takes place at the IP level, thus each hop in such networks represents an IP router.
The usage of IP routing provides the foundation to larger and more powerful and
scalable networks since every router must implement all features supported by a
normal IP router.

The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [51] is a
standardized routing protocol primarily used in a route-over 6LoWPAN network.
RPL creates a destination-oriented directed acyclic graph (DODAG) between the
nodes in a 6LoWPAN. It supports unidirectional traffic towards a DODAG root
and bidirectional traffic between 6LoWPAN devices and between devices and the
DODAG root (typically the border router - 6BR). There may exist multiple global
RPL instances for a single 6LoWPAN network, and a local RPL DODAG can be
created among a set of nodes inside a global DODAG. Each node in a DODAG has a
rank that indicates the position of a node relative to other nodes and with respect to
the DODAG root. Ranks strictly decrease in the up direction towards the DODAG
root and strictly increase from the DODAG root towards nodes. The RPL protocol
provides new ICMPv6 control messages to exchange routing graph information.
RPL supports two different routing modes; storing mode and non-storing mode. In
storing mode, all devices in the 6LoWPAN network configured as routers maintain
a routing table and a neighbor table. The routing table is used to look up routes to
devices, and the neighbor table is used to keep track of a node’s direct neighbors. In
non-storing mode, the only device with a routing table is the edge router; hence,
source routing is used. Source routing indicates that the packet includes the whole
set of hops it needs to travel to reach the destination. Storing mode needs higher
requirements on the devices acting as routers while using non-storing mode the
overhead increases with the number of hops a packet needs to traverse to reach the
destination.

Building upon 6LoWPAN, the IETF CoRE working group [23] follows the
REST (REpresentational State Transfer) principles to define CoAP, the Constrained
Application Protocol [19], which is a generic application-level protocol for information
exchange. CoAP provides exactly the subset of HTTP methods (GET, PUT,
POST, and DELETE) which is necessary to offer RESTful web services in an
IIoT-compatible manner. In addition, CoAP provides optional transport reliability,
normally a core functionality of TCP which is due to the resource constraints by
nature not available in IIoT. At the same time, OASIS [36] proposes the MQTT
protocol, the Message Queuing Telemetry Transport [18], which is a client-server,
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publish/subscribe messaging transport protocol specifically designed for IIoT contexts
where a small code footprint is required and/or network bandwidth is at a premium.

Figure 2.2. An example of an IPv6 network with a 6LoWPAN mesh network [37].

2.1.2 Security Threats

Unlike in typical stand-alone wireless network deployments, due to the global IP
connectivity, the constrained devices in the 6LoWPAN networks are accessible from
anywhere. Hence, they are exposed to threats both from the Internet and from
within the wireless network. Morever, existing wireless networks are in most cases
operated over a local or personal area, that is, the system is operated by humans
that communicate with other humans or with some of the fixed components of the
system. IIoT have a different purpose, in the sense that communications will not
involve human interaction. This differentiates the challenges for securing the system
and therefore the approaches for offering protection need to be reconsidered. There
are many publications [34, 47, 26, 5, 8] that consider some of the most significant
security problems. In this work we try to summarize all the existing threats and
point out the major attacks against IIoT. We call an IIoT node a normal node if it
operates based on the system specifications. Otherwise, it is a malicious node or an
adversary.

Wireless Threats

The most basic threats are due to the nature of communication that takes place over
a wireless channel. Wireless communication suffer from a number of vulnerabilities:

1. Eavesdropping. The most easy way is to overhear the information that a
node transmits or receives and then analyze the captured data and extract
sensitive information without interacting with the network. These attacks are
also known as passive attacks.
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2. Data alteration. An adversary can cause collisions of wireless transmissions
and then try to modify the message exchanged between wireless parties. These
attacks are also known as active attacks.

3. Identity theft. Untethered in nature, the adversary can impersonate a
legitimate user and when the original user is inactive, transmit messages
without being noticed.

Routing Threats

The simplicity of many routing protocols for IIoT networks makes them an easy
target for attacks. Karlof and Wagner in [28] classify the routing attacks into the
following categories:

1. Spoofed, altered, or replayed routing information. While sending the
data, the information in transit may be altered, spoofed, replayed, or destroyed.
Since sensor nodes usually have only short range transmission, an attacker with
high processing power and larger communication range could attack several
sensors simultaneously and modify the transmitted information.

2. Selective forwarding. In this kind of attack a malicious node may refuse to
forward every messages it gets, acting as black hole or it can forward some
messages to the wrong receiver and simply drop others.

3. Sinkhole attacks. In the Sinkhole attack, the goal of the attacker is to attract
all the traffic. Especially, in the case of a flooding based protocol the malicious
node may listen to requests for routes, and then reply to the requesting node
with messages containing a bogus route with the shortest path to the requested
destination.

4. Sybil attacks. In Sybil attack the compromised node presents itself with
multiple nodes identity. This type of attack tries to degrade the usage and
the efficiency of the distributed algorithms that are used. Sybil attack can be
performed against distributed storage, routing, data aggregation, voting, fair
resource allocation, and misbehavior detection [35].

5. Wormholes. Wormhole attack [12] is an attack in which the malicious node
tunnels messages from one part of the network over a link, that doesn’t exist
normally, to another part of the network. The simplest form of the wormhole
attack is to convince two nodes that they are neighbors. This attack would
likely be used in combination with selective forwarding or eavesdropping.

6. HELLO flood attacks. This attack is based on the use by many protocols
of broadcast Hello messages to announce themselves in the network. So, an
attacker with greater range of transmission may send many Hello messages to
a large number of nodes in a wide area of the network. These nodes are then
convinced that the attacker is their neighbor. Consequently the network is left
in a state of confusion.
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7. Acknowledgment. Some IIoT network routing algorithms require link layer
acknowledgments. A compromised node may exploit this by spoofing these
acknowledgments, thus convincing the sender that a weak link is strong or a
dead sensor is alive.

Denial of Service (DoS)

This class of attacks is not concerned with the information that is transmitted.
Rather, the goal of the attacker is to exhaust the resources of the network and cause
it not to function properly. Wood and Stankovic [52, 53] classify several forms of
DoS attacks based on the layer that the attack uses. Some of these were already
mentioned so we will not repeat them. At the physical layer the attacks take the
form of jamming and tampering [34]. Jamming is done by interfering with the radio
frequencies nodes are using. Tampering refers to the the physical altering or even
damaging of the nodes. An attacker can damage and replace a node, for example,
by stealing or replacing information or cryptographic keys. At the link layer the
attacker can generate collisions and exhaustion may be caused by protocols that
attempt retransmission repeatedly, even when triggered by an unusual and suspicious
collision.

2.1.3 Security Solutions

Several attempts have been made in the past years towards preventing intrusions
over IIoT networks based on alternative encryption and authentication techniques.
Some solutions focus on the validation of the integrity of message exchanges in order
to securely route information across the wireless medium [56, 46]. Others propose
lightweight, distributed secure group communication primitives that operate on-top
of the networking layer to protect data and to cope with potential compromises [14, 7],
while others work at the application layer and propose energy-efficient encryption
methods to guarantee the confidantiality of the information exchanged [10]. However,
these approaches cannot completely prevent malicious users from intruding the
network and tamper with the operation of the network [11]. For example, the above
techniques may not be fully protected against compromised nodes which participate
in the network and already have the shared cryptographic keys [55].

In the context of the IP-based IIoT solutions, consideration of TCP/IP security
protocols is important as these protocols are designed to fit the IP network concept
and technology. While a wide range of specialized as well as general-purpose key
exchange and security solutions exist for the Internet domain, the 6LoWPAN and
CoRE IETF working groups look into IKEv2/IPsec [30], TLS/SSL [40], DTLS [38],
HIP [33], PANA [17], and EAP [1] as candidate solutions of IIoT, we focus on the
discussion of in this study. Application layer solutions such as SSH [54] also exist,
however, these are currently not considered.

2.2 Anomaly Detection for Industrial Internet of Things
In an attempt to improve the overall security of networks, a number of Intrusion
detection systems (IDS) have been proposed [10]. Such IDS architectures are
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classified into two basic categories depending on the data collection mechanism:

• Host-based. The IDS consults several type of log files (kernel, system,
application, etc.) and compares the logs against an internal database of
common signatures for known attacks.

• Network-based. The IDS is scanning network packets, auditing packet
information, and logging any suspicious packets.

IDS architectures can be further classified based on the detection technique:

• Signature-based. IDS centers on finding an occurrence of predefined signa-
tures or behavior that matches a previously known malicious action or indicates
an intrusion.

• Anomaly-based. IDS checks for any behaviors that fall outside the predefined
or accepted model of behavior.

• Specification-based. IDS defines a set of constrains that are indicative of a
program’s or protocol’s correct operation.

Furthermore, IDS architectures specific to wireless ad-hoc networks are further
divided into three categories:

• Stand-alone. Each node operates as a independent IDS and is responsible for
detecting attacks only for itself. Such an IDS does not share any information
or cooperate with other systems. This architecture implies that all the nodes
of the network are capable of running an IDS.

• Distributed and Cooperative. All nodes are running their own IDS, but
they also cooperate in order to create a global intrusion detection mechanism.

• Hierarchical. The network is divided into clusters with cluster-head nodes.
These nodes are responsible for routing within the cluster and accept all the
accusation messages from the other cluster-members indicating something
malicious. Additionally, the cluster-head nodes may also detect attacks against
the other cluster-head nodes of the network, as they constitute the backbone
of the routing infrastructure.

Based on the above classifications of available methods, we continue by describing
the basic philosophy of some characteristic IDS that are specifically designed for
wireless sensor networks. Each IDS combines different methods in order to define
the resulting architecture.

2.2.1 Anomaly-based Intrusion Detection Systems

Anomaly detection is a critical data analysis task that detects anomalous or inconsis-
tent data from a given dataset. Researchers proposed several definitions of what an
anomaly is, but a widely accepted definition is that of Hawkins: "An anomaly is an
observation which deviates so much from other observations as to arouse suspicions
that is was generated by a different mechanism" [25]. Notwithstanding the many
techniques available, the following are the research challenges [2].
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Figure 2.3. Taxonomy of network anomaly detection techniques [2].

1. A lack of universally applicable anomaly detection techniques.

2. Data contains noise, which tends to be an actual anomaly and, therefore, is
difficult to segregate.

3. As normal behaviors are continually evolving and may not be normal forever,
current intrusion detection techniques may not be useful in the future.

An essential aspect of anomaly detection is the nature of the anomaly. We can
identify the following types of anomalies.

1. Point anomaly. A particular data instance deviates from the normal pattern
of the dataset.

2. Contextual anomaly. When a data instance behaves anomalously in a
particular context, it is termed a contextual or conditional anomaly.

3. Collective anomaly. A collection of similar data instances behave anoma-
lously for the entire dataset, the group of data instances is termed a collective
anomaly.

Designing an anomaly detection system, a fundamental aspect to decide is how
anomalies are represented as output, which is usually one of the two following ways.

1. Scoring-based. This technique assigns an anomaly score to each data point.
The scores are ranked and filtered according to some threshold.

2. Binary/label-based. Outputs are considered in a binary or multi-labeled
fashion.

The comprehensive nature of anomaly detection problems led to the development
of several techniques. Focusing on network attacks, a number of different approaches
can be employed to detect irregularities.
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Statistical Anomaly Detection

Exploits statistical laws to detect anomal behavior in networks.

• Mixture Models. Each element falls into one of the following two classes:
(i) having a small probability of λ; or (ii) the majority of elements having
the probability 1 − λ. From a mixture model point of view, the two prob-
ability distributions which generate the data are called the majority (M)
and anomalous (A) distributions, with an element xi generated from either.
When the generative distribution for the data is D, it can be represented as
D = (1− λ)M + λA.

• Principal Component Analysis (PCA). PCA is used to analyze high
dimensional data. It uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. This transformation is
defined in such a way that the first principal component has the largest
possible variance, and each succeeding component, in turn, has the highest
variance possible under the constraint that it is orthogonal to the preceding
components. The resulting vectors (each being a linear combination of the
variables and containing n observations) are an uncorrelated orthogonal basis
set [49]. A PCA-based anomaly detector has the benefits of (i) being free from
any assumption of statistical distribution, and (ii) being capable to reduce
the dimension of the data without missing important information; therefore
having minimal computational complexity and allowing support to real-time
detections.

Information Theory

Information theory investigates the quantification, storage, and transmission of
information. Supervised anomaly detection techniques require a training dataset
followed by a test set to evaluate the performance of a model. In such cases,
information-theoretic measures are used to determine whether a model is suitable
for testing the new dataset. Applications involving information theory usually rely
on the following knowledge [31].

• Entropy. Measures the uncertainty of a collection of data items. For a dataset
D, in which each data item belongs to a class (x ∈ CD), the entropy of D
relative to the |CD| classification is defined as H(D) =

∑
X∈CD

P (X)log 1
P (X) .

• Conditional Entropy. This is the entropy of D given that Y is the entropy
probability distribution, i.e. P (x|y).

• Relative Entropy. The entropy between two probability distributions p(x)
and q(x) defined over the same x ∈ CD.

• Relative Conditional Entropy. The entropy between two probability dis-
tributions p(x|y) and q(x|y) defined over the same x ∈ CD and y ∈ CY .

• Information Gain. The measure of the information gain of an attribute or
feature A in a dataset D and is Gain(D,A) = H(D)−

∑
v∈values(A)

|Dv |
|D| H(DV ).
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Classification-based

This technique relies on experts’ extensive understanding of the properties of network
attacks. This methodology is based on the analysis of normal traffic activity, which
builds the knowledge base and recognizes activities that deviate from the baseline
profile as anomalous. In this way, it is possible to detect intrusions that are completely
new, assuming that they manifest extensive deviations from the normal outline.

Clustering-based

Clustering refers to unsupervised algorithms that do not require pre-labeled data to
extract rules for grouping similar data examples. This type of anomaly detection,
together with the classification-based approach, will be better explained in the next
section.

2.2.2 Machine Learning for Intelligent Intrusion Detection

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that provides
systems with the ability to learn from data identifying patterns and making de-
cisions with minimal human intervention. Machine learning algorithms build a
mathematical model based on sample data (also known as training data) in order to
make predictions or decisions without being explicitly programmed to perform some
specific task. It is intensively applied in situations where a solution to some specific
problem changes in time, like routing in a computer network or finding anomalies in
a specific data observation.

Machine learning algorithms can be classified into four categories:

• Supervised Learning. Those kinds of algorithms learn features from labeled
training data. The algorithms iteratively construct a model that learns how to
provide the right output given a set of features.

• Unsupervised Learning. Some types of problems only provide inputs with-
out desired targets. Unsupervised learning does not require labeled data and
can investigate similarity among unlabeled data, and from there, it can learn
to group, cluster, or organize the data in a way such that a human (or other
intelligent algorithms) can come in and make sense of the newly organized
data.

• Semi-Supervised Learning. This class of algorithms falls in between Super-
vised and Unsupervised methods. In many practical situations, the cost to label
data is too high, since it requires skilled human experts to do that. Therefore,
semi-supervised algorithms are explicitly designed to work in applications c
characterized by the absence of labels in the majority of the observations but
present in few.

• Reinforcement Learning. Inspired by the learning behaviors of human
beings, in Reinforcement Learning, no specific outcomes are defined, and the
agent learns from feedback after interacting with the environment. The agent
performs some actions and makes decisions on the basis of the reward obtained.
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Figure 2.4. Types of Machine Learning Algorithms [16].

An agent can be rewarded for performing good actions or punishment for bad
actions and use feedback criteria to maximize the long term rewards.

Deep Learning algorithms can further extend the classification above. Artificial
Neural Networks (ANN) are composed of neurons connected through weighted
connections. Deep Neural Networks make use of complex and wide layers of neurons
to produce effective solutions that typically outperform classical Machine Learning
algorithms. The strength of Deep Learning models is that they can extract additional
features themselves based on the initial set of features provided to the algorithms,
which enables the learning process to be more accurate.

Figure 2.5. Classification of deep learning methods for Intrusion Detection [6].

Machine Learning Techniques for IIoT Security

The rise of machine learning applications has led to the vast adoption of several
AI-based solutions. A number of techniques have been employed to detect anomalies
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in IIoT environments:

• Naive Bayes. This is a probabilistic based on the Bayes theorem and is used
for classification tasks. It uses conditional independence to approximate the
solutions.

• K-Nearest Neighbour. The KNN algorithm assumes that similar things
exist nearby. An object is classified through a mechanism of voting of the k
nearest objects and is assigned to the most voted class. In KNN regression,
the output is the average of the values of k nearest neighbors.

• K-Means. It aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, serving as a prototype
of the cluster. Starting from an initial group of randomly selected centroids, it
performs an iterative optimization of the centroids adding new data points.

• Random Forests and Decision Trees. Decision trees use a tree data
structure to navigate from observations about an item to conclusions about the
item’s target value. Tree models where the target variable can take a discrete
set of values are called classification trees. Decision trees where the target
variable can take continuous values are called regression trees.

• Support Vector Machines. An SVM training algorithm builds a model
that, learning from training examples, assigns new examples to one class. The
objective of the support vector machine algorithm is to find a hyperplane in
an n-dimensional space that distinctly classifies the data points.

• Recurrent Neural Networks. Unlike feedforward neural networks, RNNs
can use their internal state (memory) to process sequences of inputs. Long
Short-Term Memory (LSTM) is the most widely used RNN in IIoT anomaly
detection applications.

• Deep Learning. As explained in the previous section, deep learning is
extensively adopted to solve anomaly detection problems.

Limitations in Applying Machine Learning in IIoT Networks

Intelligent algorithms usually require large data sets to learn effectively, making
it difficult to apply efficient and scalable solutions for low-power IIoT devices [16].
Two main challenges limit the spread of practical solutions.

1. Processing power and energy: direct employment of traditional machine learn-
ing solutions is not suitable in resource-constrained settings. Even more,
efficient IIoT IDS require real-time data processing to detect attacks actively,
while conventional ML methods are not designed to handle constant streams
of data in real-time.

2. Data management and analytics: in an IIoT environment, data is constantly
generated from different sources. Heterogeneous data coming from different
devices also leads to problems in terms of efficient and unified generalization,
requiring pre-processing and data cleaning steps.
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2.3 Time Series Analysis for Industrial Internet of Things
Observing an IIoT device over time, we learn how to distinguish between its attacked
and normal behavior. A time series is simply a sequence of data points ordered in
time. In a time series, time is often the independent variable, and the goal is usually
to make a forecast for the future. However, dealing with time observations, it is
useful to analyze the forecast to locate stationarity or seasonability. Time series
analysis involves generating models that best capture or describe an observed time
series in order to understand the underlying features. This often means making
assumptions about the form of the data and decomposing the time series into base
components.

2.3.1 Seasonability and Stationarity

Seaonability implies periodic fluctuations in data observations over time. This
behavior is typical of electricity consumption, which is usually high during the
day and low during the night. Seasonability can be derived from examining the
autocorrelation, i.e., the similarity between observations as a function of the time
lag between them.

Figure 2.6. An example of time series analysis plot [42].

Stationarity refers to the presence of statistical properties that do not change
over time The time series has constant mean and variance, allowing for periodical
fluctuations. Stationarity is an important feature of a time series because it makes
it easier to make predictions if we assume that the future statistical properties will
not be different from the currently observed.

Dickey-Fuller is a statistical test that determines if a time series is stationary
or not. It tests the null hypothesis that a unit root is present in an autoregressive
model. If p > 0 then the process is non-stationary. If p = 0, the process is considered
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to be stationary.
Transformations are used to stabilize the non-constant variance of a series.

Common transformation methods include power transform, square root, and log
transform. Most of the time, log transformation is used to flatten out non-stationary
nodes back to a linear relationship.

(a) Mean increases over time. (b) Variance varying spread of values over
time.

Figure 2.7. Example of stationary vs non-stationary time series [42].

2.3.2 Modelling Time Series

Modeling a time series can be useful in making predictions or searching for trends.
In this respect, a number of techniques have been developed:

• Moving Average. This model asserts that the subsequent observation is the
mean of all past observations. A window can be applied to smooth the time
series. The moving average can be used to identify interesting trends in the
data. The longer the window, the smoother the trend will be.

• Exponential Smoothing. This model works similarly to moving average,
but a different decreasing weight is assigned to each observation. This less
importance is given to observations as we move further from the present. Each
measurement is represented in the form y = αxt + (1− α)yt−1, where t > 0,
0 ≤ α ≤ 1 and α represent the smoothing factor.

• Double Exponential Smoothing. Used when there is a trend in the time
series. In that case, we can use this technique to smooth the trend factor of
the observations. Similarly to exponential smoothing, observations can be
represented as y = αxt +(1−α)(yt−1 + bt−1) and b = β(yt−yt−1)+ (1−β)bt−1
where t > 0, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. and β represent the trend smoothing
factor.
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Chapter 3

Materials and Method

Existing security solutions cannot completely prevent malicious users from intruding
the network and tamper with the operation of the network. In this work, we look
into intrusion detection as a second line of defence to protect IoT once an intrusion
is detected by activating certain actions to minimize damages, gather evidence for
the prosecution, and even launch counter-attacks. We propose an Anomaly-based
intrusion detection system (IDS) that operates at the transport-layer level on top
of 6LoWPAN networks. Assuming an IPv6 enabled IoT, a solution that operates
at transport-layer is generic enough to be applied also in combination with closed
systems that implement proprietary hardware and custom network protocols. Our
solution does not require any particular implementation of 6LoWPAN or RPL, or
any additional encryption primitive.

Our IDS uses the ICMPv6 control messages defined within 6LoWPAN to passively
collect high-level information for the state of the network, such as the round-trip-time,
hop distance and packet loss. The IDS periodically transmits a sequence of ICMPv6
control messages to each node of the network based on the public IP addresses.
Then it checks for any behaviours that fall outside the predefined, accepted model
of behaviour.

In contrast to existing general purpose security systems, in IoT, it is simply
infeasible to expect a network administrator to be aware of the full range of potentially
relevant possibilities and be able to pull them together manually. For this reason,
we completely avoid defining a series of hard-coded alarm limits associated with
assumed “steady states” for the network, known to send a large number of false
alarms. Instead, we use a combination of machine-learning and statistical analysis
to address the specific problem of anomaly detection.

We assume that there is an initial period of time where the network administrator
can collect sufficient data regarding the operation of the network. Then periodically
we examine the operation of the network by collecting additional statistics and try
to identify observations which differ significantly from the majority of the initial
data.

Given a set of traces collected: a network-level anomaly detector characterizes if
the network is affected by at least 1 malicious node; a class-sensitive network-level
anomaly detector characterizes if the network is affected by at least 1 malicious
node of a specific attack class; a node-level anomaly detector characterizes each
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node of the network if it is a malicious node or not; and a class-sensitive node-level
anomaly detector characterizes each node of the network if it is a malicious node
of a specific attack class. The performance of an anomaly detector is characterized
by the precision, that is the ability of the detector not to label as positive a sample
that is negative and is measured by the ratio of correctly labelled as L to all items
actually labelled as L; the accuracy, representing the set of labels detected that
exactly match the corresponding set of actual labels; the sensitivity, the ability of
the detector to find all the positive samples and is measured by the ratio of items
correctly labelled as L to all items that belong to label L; and the overhead, the
number of packets that constitute the trace.

3.1 System Architecture
The system that we propose is structured in three main components. Figure 3.1
depicts our system architecture.

First, we collect heterogeneous data about industrial networks. This process
generates log files that contain information of each RPL DODAG and ICMP packets
for each node of the network. Log files are manipulated in order to extract relevant
information and pre-processed for subsequent analysis. This module includes data
exploration and visualization components that are useful for the analysis tasks.

Analysis components get in charge of feature selection for attack detection and
classification. Both components implement the algorithms that will be described in
Section 3.3.

Results obtained by classification and detection modules are finally exported in
a CSV format for further analysis and checks.

Figure 3.1. Final system architecture.

3.2 Experimental Scenario
The target of our experiments aim at providing an automated way of recognizing
intrusions in a network. Given an RPL DODAG, we generate ICMP packets for
each node of the network. Figure 3.2 depicts our proposed methodology.



3.2 Experimental Scenario 19

Figure 3.2. Methodology Flow Diagram.

The experiments are based on simulated networks generated by the Cooja tool,
the standard Contiki network simulator. We conducted several experiments on
different grid schemes (i.e., 3x3, 4x4 and 5x5 grids) as well as random topologies
(of 9, 16, 25 nodes). For each node, we collected 200 ICMP packets (sending ping
messages from the root node to each other node of the network in every 5 sec),
the round trip time (RTT) of each of these messages and the distance of the node
from the RPL DODAG root. We parse raw data collected from each experiment to
extract relevant features in a table structure. This is helpful to gather statistical
information from the dataset. From the analysis of this set of data, we expected to
retrieve enough information to learn the usual behaviour of the network.

Given the generated network topologies, we substitute some of the nodes of the
network with malicious nodes realizing either Black Hole or Grey Hole attacks. The
number of malicious nodes is significantly fewer than the number of benign nodes.
This is typical in anomaly-detection problems. Since all nodes in the experiment
run RPL protocol, we expect that an attacked node will affect the transmissions
of its neighbours. Even more, we realized that the malicious nodes usually have
more or less important effects on the entire network. Thus all nodes belonging to an
attacked network have been labelled as attacked.

After this first exploratory analysis of the data, we select a set of features based
on the statistics of the ICMP packets collected over a non-overlapping window of
ICMP packets, to train and evaluate the learning algorithms. IMCP packets window
is a subset obtained dividing the 200 ICMP messages received by a node by a fixed
number in the interval [12, 24, 48, 100, 200] and extract features on that number of
ICMP packets. Finally, we run the learning algorithms on the selected dataset and
collect results.
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3.3 Methods for Anomaly Detection

3.3.1 K-Nearest Neighbors (KNN)

KNN algorithm is a non-parametric method used for classification and regression [3].
The input consists of the k closest training examples in the feature space. An object
is classified by a plurality vote of its neighbours, with the object being assigned
to the class that is most common among its k nearest neighbours (k is a positive
integer, typically small).

(a) Example dataset. (b) Example 5NN classification map.

Figure 3.3. Example KNN visualization [48].

3.3.2 Random Forest (RF)

Random Forest (RF) algorithms employ a technique known as bagging, whereby
data instances are resampled multiple times to produce multiple training subsets
from the training data. Decision trees are then created from each training subset
until ensembles of trees have been created. Each tree then casts a unit vote for the
outcome of an incoming data instance class label. RF is flexible, with constrained
computational resources required.

3.3.3 Deep Neural Network (DNN)

Artificial neural networks (ANN) are computing systems that are inspired by the
biological neural networks that constitute human brains. Each neuron performs
some calculation and outputs a value that is then spread through all its outgoing
connections as input into other units . Connections are characterized by weights that
correspond to the importance of the link between two neurons. The computation
performed by a unit is separated into two stages: the aggregation and the activation
functions. The aggregation function calculates the sum of the inputs received by
the unit through all its incoming connections. The resulting value is then fed into
the activation function. Neurons are organized in levels. Layers between input and
output layers are called the hidden layers. When a new input is given, information
passes across layers until the output, where classification happens.
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Figure 3.4. Random Forests example visualization [43].

Figure 3.5. 3-layer Neural Network example [29].

3.3.4 Support Vector machines (SVM)

The basic idea of SVM for time-series approximation is mapping the data into
a high-dimensional feature space by a nonlinear mapping and then performing a
linear regression in the feature space [45]. The nonlinear mapping can be efficiently
computed through a kernel function, without iterating over all the corresponding
data points. Given the kernel function, the SVM learner tries to find a hyperplane
that separates positive from negative data points and at the same time maximizes
the separation (margin) between them. This method is known to be resilient to
overfitting and to have good generalization performance, due to the max-margin
criterion used during optimization. Furthermore, the SVM is guaranteed to converge
to a global optimum due to the corresponding convex optimization formulation.

3.3.5 K-Means

K-means is an unsupervised algorithm used to compute (K) clusters in data. A
point is considered to be in a particular cluster if it is closer to that cluster’s centroid
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Figure 3.6. SVM example visualization [50].

than any other centroid. K-Means finds the best centroids by repeating over the
following phases: (i) assign data points to clusters based on the current centroids;
(ii) choose centroids based on the current assignment of data points to clusters [39].

Figure 3.7. K-Means 3-classes clustering visualization from the dataset.

Formally, given a set of n unlabeled training examples x1, ..., xn, we want to
group the data points into k clusters. Our aim is to predict k centroids and a label ci

indicating the cluster to which each data point belongs to. The k-means clustering
algorithm iterates as follows:

1. Initialize cluster centroids µ1, ..., µk ∈ Rn

2. Repeat until convergence:

(a) For every i:
ci = argminj ||x1 − µj ||2
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(b) For every j

µj =
∑

1{ci = j}xi∑
1{ci = j}

.

3.4 Prediction Performance Measure
The performance of the classifiers is based on calculating the precision, accuracy,
recall and F1 Score for each class and then computing their unweighted mean. This
approach does not take label imbalance into account, e.g., when 95% of items are
labelled Normal and 5% are labelled Under-Attack, if all the items are labelled as
Normal, the accuracy would be 95% but all items from label Under-Attack would
be misclassified. For this reason we made sure that there is a good balance across
the different labels considered during both training and validation. The four metrics
used are defined as follows:

Precision (or Positive Predictive Value (PPV)) – represents the ratio of items
correctly labelled as L to all items actually labelled as L, that is, the ratio

T P
(T P +F P ) , where TP is the number of true positives and FP is the number of
false positives. The precision is intuitively the ability of the classifier not to
label as positive a sample that is negative.

Accuracy (or Proportion Correct) – represents the set of labels predicted that
exactly match the corresponding set of actual labels.

Recall (or Sensitivity or True Positive Rate or Probability of Detection (PD) or
Detection Rate) – represents the ratio of items correctly labelled as L to all
items that belong to label L, that is, the ratio T P

(T P +F N) , where TP is the
number of true positives and FN is the number of false negatives. The recall
is intuitively the ability of the classifier to find all the positive samples.

F1 score, or balanced F-score or F-measure represents a weighted average of
the precision and recall, where 1 is the best score and 0 the worst score. The
relative contribution of precision and recall to the F1 score are equal. The
formula for the F1 score is: 2×(precision×recall)

(precision+recall) .

AUC (or Area Under the ROC curve) – ROC is a probability curve and AUC
represents degree or measure of separability. It tells how much model is capable
of distinguishing between classes.

3.5 Implementation Details
The learning algorithms are implemented using Python 3.7.1 in combination with
Keras 2.2.4, Pandas 0.24.1, Scikit 0.20.3 and Numpy 1.15.4. All the experiments
have been performed on a Macbook Pro 2017 - 2,3 GHz Intel Core i5, 8 GB 2133
MHz LPDDR3. We release all the dataset and the code used for the experiments on
a Github repository
(https://github.com/ichatz/iot-netprofiler).

https://github.com/ichatz/iot-netprofiler
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All mentioned algorithms have been extensively used by the state of the art
solutions in order to solve anomaly-detection problems. We used the following
operating parameters:

1. K-Nearest Neighbor (KNN) - using K = 3.

2. Random Forests Classifier - building 100 estimators.

3. Support Vector Machines (SVM) - using a linear kernel.

4. Deep Neural Network Classifier - using 5 hidden layers of 32, 64, 96, 64,
32 neurons respectively. Dropout and L2 regularization are applied to reduce
overfitting. We use the cross-entropy loss function to evaluate training and
validation losses.

5. K-Means - with K equal to the number of classes. In this case, data are
pre-processed using a PCA.
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Chapter 4

Results

4.1 Exploratory Analysis
A first exploratory analysis has been conducted in order to have a better under-
standing of the parameters available. Notice that the RPL DODAG could have a
different configuration each time that you run an RPL instance on the network, thus,
even with the same topology, the network could have a different structure. Even
the maximum distance of a node from the root could vary. The distribution of RTT
at each node is more or less the same. Even more, by observing the distribution
of a node at certain hop-distance from the root, we can usually understand if the
node (or one of its neighbours) has been attacked. In fact, depending on which kind
of attack has been performed, it’s easy to notice that the distribution of a certain
number of nodes is affected. In particular, we can distinguish between the following
cases:

• if the network has been attacked with a Black Hole attack, then we can observe
that at least a node becomes unavailable. Most of the times, if this node N
was not a leaf of the DODAG, this attack could also affect child nodes of N .
In such cases, other nodes could remain unavailable for the entire experiment,
or could start again to communicate with the root though an alternative path;

• if a Gray Hole attack has been performed, we can still observe an effect on
variance and latencies of some nodes.

RTTs can vary over time; thus, it could be useful to study them to find:

1. Autocorrelation that highlights the similarity between observations as a
function of the time lag between them.

2. Seasonability, i.e. periodic fluctuations.

3. Trends.

4. Stationarity that describes variations of statistical properties over time. That
information could help us to study trends in data.
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(a) Grid 3x3 topology. (b) Random 9-nodes topology.

(c) Random 16-nodes topology.

(d) Grid 4x4 topology.

Figure 4.1. Network topologies used for our experiments. Red and orange nodes represent
Black Hole and Grey Hole attacks respectively.



4.1 Exploratory Analysis 27

(a) Normal behaviour.

(b) Grey Hole Attack.

(c) Black Hole Attack.

Figure 4.2. RTT distribution of a 3x3 grid experiment.
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Let us start discussing the autocorrelation that is also helpful to derive sea-
sonability. Assuming that the distribution of each variable fits a Gaussian (bell
curve) distribution, we can use the Pearson’s correlation coefficient to summarize
the correlation between the variables. Pearson’s correlation coefficient is a number
between −1 and 1 that describes a negative or positive correlation, respectively. A
value of zero indicates no correlation. We can calculate the correlation for time-series
observations with previous time steps, called lags. Because the correlation of the
time series observations is calculated with values of the same series at previous times,
this is called a serial correlation, or an autocorrelation. A plot of the autocorrelation
of a time series by lag is called the AutoCorrelation Function, or the acronym ACF.

Figure 4.3. Autocorrelation of a 3x3 grid experiment.

The results obtained above do not show particular trends, suggesting that the
RTT time series are stationary. In order to make strong assumptions about our data,
we computed Advanced Dickey-Fuller test[20]. This is a statistical test called a unit
root test. The intuition behind a unit root test is that it determines how strongly
a time series is defined by a trend. It uses an autoregressive model and optimizes
an information criterion across multiple different lag values. The null hypothesis
of the test is that the time series can be represented by a unit root, that it is not
stationary (has some time-dependent structure). The alternate hypothesis (rejecting
the null hypothesis) is that the time series is stationary.

1. Null Hypothesis (H0): If failed to be rejected, it suggests the time series has a
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unit root, meaning it is non-stationary. It has some time-dependent structure.

2. Alternate Hypothesis (H1): The null hypothesis is rejected; it suggests the
time series does not have a unit root, meaning it is stationary. It does not
have a time-dependent structure.

Results from Advanced Dickey-Fuller test confirms that the hypothesis that
RTTs time series is stationary, at least for more than 79% of nodes. Starting from
these results, a log transform has been used to flatten out non-stationary nodes back
to a linear relationship. This could help learning algorithms; in fact, stationary time
series can be easier to model.

4.2 Features Extraction and Selection
From the results stated above, we consider the following features:

1. the id of the experiment;

2. node id;

3. tr_time, i.e. the sum of RTTs of a node during the experiment in a fixed
window of packets;

4. pckt_count number of packets that have been received in a fixed window of
packets;

5. mean of the RTT;

6. var of the RTT;

7. hop of the node during the experiment;

8. min value of the RTT;

9. the max value of the RTT;

10. loss, i.e. the number of lost packets in a fixed window;

11. the number of outliers in a fixed window.

12. the label indicating if a node belongs to an attacked network or not.

Data resulting from different networks could have different mean and variance
due to their different network topologies. This could reduce the learning rate of
machine learning and deep learning algorithms. Thus we apply feature normalization.

Some features could be more important than others, so if we select the right set
of features, this could help to improve the results given by a learning classifier. In
order to select the best set of features, we calculate the correlation matrix of features.
We use the Pearson Coefficient that assigns a value within 1 (i.e. positive correlation)
and −1 (negative correlation). Following the approach proposed by Furkan Yusuf
Yavuz, Devrim ÃĲnal and Ensar Gul in [21], we use Random Forest Classifier to
iteratively select the most relevant features. In fact, as they suggest, if feature
importance is high, it dilutes the effect of the others and may cause overfitting, while
less important could slow down (or even deviate) the learning process.
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(a) Correlation Matrix.

(b) Random Forest Classifier Features Importance.

Figure 4.4. Features correlation and importance.
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Figure 4.5. Neural Network Model used for attacks detection and classification.

4.3 Experimental Scenarios
We apply learning algorithms with the aim of detect attacks in an IoT network
as accurately as possible. Particularly, we focus on supervised and unsupervised
algorithms. With this analysis, we want to compare the effectiveness of the following
algorithms:

1. K-Nearest Neighbor (KNN) - using K = 3.

2. Random Forests Classifier - building 100 estimators.

3. Support Vector Machines (SVM) - using a linear kernel.

4. Deep Neural Network Classifier - using 5 hidden layers of 32, 64, 96, 64,
32 neurons respectively. Dropout and L2 regularization are applied to reduce
overfitting. We use the cross-entropy loss function to evaluate training and
validation losses.

5. K-Means - with K equal to the number of classes. In this case, data are
pre-processed using a PCA.
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All mentioned algorithms have been extensively used by the state of the art
solutions in order to solve anomaly-detection problems [16].

We take into consideration two different experimental scenarios. In the first one,
we want to detect if a network has been attacked or not. In the second scenario, we
try to recognize what kind of attack has been performed if any. In each scenario, we
train the learning algorithms with the following approach:

1. Select a window of N ICMP packets for each node (N ∈ [12, 24, 48, 100, 200]).

2. Select a subset of features.

3. Split the dataset using 80% of the data for training and 20% for testing.

4. Train the algorithm using 5-fold cross-validation. Therefore, split the training
set and iteratively evaluate the results on 20% of this set.

5. Finally, we test the algorithm on the test set.

The dataset that we generated comes from 43 independent experiments (i.e.
networks) that we performed on Cooja. Therefore, we have data coming from 442
different nodes.

Figure 4.6. 5-fold partitioning of dataset for model training, validation and testing.

4.4 Experimental Results
Results suggest that we can accurately detect if an attack has been performed.
Attacks are accurately detected by KNN, Random Forests and Deep Neural Network
that achieve accuracy of 80%. Even more, thanks to the stationary property of
the time series, we noticed that varying the size of the windows, the results remain
almost the same. Therefore, we can detect an attack observing packets in a window
of size 12 (corresponding to 1 minute). Results became more accurate, increasing
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the size of the windows. Experiments suggest that selecting the entire set of features
gives better results.

The most surprising result was given by a dataset containing features coming
from experiments with any windows sizes. The dataset was obtained extracting the
features of every single network with a window of randomly selected value from
[12, 24, 48, 100, 200]. This variety of window sizes helps models to generalize. The
figure below shows the results of this experiment for attack detection.

Figure 4.7. Attack Detection Results.

Finally, the attack classification obtained decent results from the randomly
selected windows sizes dataset. KNN and Random Forests obtain 70% accuracy.
If we fix the window size to a value in the interval defined before, performances
decrease, suggesting that more data are needed in order to train suitable models.

Figure 4.8. Attack Recognition Results.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions
Our study presents an approach that can detect routing attacks based on a simple
analysis of ICMP packets. We introduce an Anomaly-based intrusion detection
system that works at the transport-layer level on top of 6LoWPAN networks.
Operating at transport-layer, our solution is generic enough to be also applied in
combination with closed systems that implement proprietary hardware or custom
network protocols and does not require any particular implementation of 6LoWPAN
or RPL, or any additional encryption primitive. Our proposed attack detection model
successfully detect packet-drop attacks (black-hole attack and grey-hole attack). Our
methodology offers a simple and efficient solution to detect if such attacks have been
performed. Experimental results suggest that even kind of attack could be detected
with high accuracy if learning models are trained with a sufficiently wide range of
data samples. The lack of open-source datasets and the difficulty in collecting this
type of data surely makes it difficult to train learning algorithms efficiently.

5.2 Future Work
As future work, we intend to extend the dataset with additional attack types and
scenarios, introducing a different rate of malicious and normal nodes as well as a
larger number of nodes. Data extension can surely allow for the development of a
stronger and more robust solution. We also plan to test more sophisticated Recurrent
Neural Network architectures like LSTM, which could help to achieve better results
on a larger dataset. LSTM has been successfully applied for both time series analysis
and attack detection tasks [32]. Unlike standard feedforward neural networks, LSTM
has feedback connections, making these networks particularly suited for classification
and prediction tasks based on time series data, since there can be lags of unknown
duration between important events in a time series.
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Appendix A

Sample of the Final Dataset

The dataset used in this project is available on the GitHub repository. This appendix
illustrates the structure of the dataset and shows some examples. We collect data
using Cooja network simulator [44]. For each node in an experiment, we collect 200
ICMP messages. We simulate examples of normal-behavioral nodes and malicious
nodes. The firmware used to simulate attacked nodes is available in the open-source
GitHub repository of this project. We include both gray hole examples and black
hole examples.

Figure A.1. An example of collected ICMP messages.

Section 4.2 discusses the process that we adopted for feature extraction and
selection.
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Appendix B

Project Code and Repository

The code of this research project is completely open-source. This section describes the
content of the GitHub repository (https://github.com/ichatz/iot-netprofiler).
First, we describe the logical structure of the API; then, we conclude explaining how
to execute the code.

Figure B.1 illustrate the logical structure of the project API.

• 1_Data_Exploration.ipynb is a Jupyter notebook that performs the first data
exploration analysis explained in Section 4.1

• 2_Attack_Detection.ipynb is a notebook performing the attack detection
analysis explained in Section 4.3

• data folder stores all input and output data.

– The input data should be added in the experiments subfolder.

• The lib folder contains the API functions used to implement all data manipu-
lation, analysis, and visualization steps.

The code can be executed running Jupiter notebooks with the following command
on terminal: jupyter-lab. Numpy, Pandas, Sklearn, Keras, and Matplotlib libraries
are required. Refer to Section 3.5 for more details.

https://github.com/ichatz/iot-netprofiler
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Figure B.1. Project API structure.



38

Bibliography

[1] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and Levkowetz,
H. Extensible authentication protocol (EAP) (2005). Available from: https:
//tools.ietf.org/html/rfc4017.

[2] Ahmed, M., Mahmood, A., and Hu, J. A survey of network anomaly
detection techniques. Journal of Network and Computer Applications, 60
(2015), 19. doi:10.1016/j.jnca.2015.11.016.

[3] Altman, N. S. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46 (1992), 175âĂŞ185. Avail-
able from: https://www.tandfonline.com/doi/abs/10.1080/00031305.
1992.10475879, arXiv:https://www.tandfonline.com/doi/abs/10.1080/
00031305.1992.10475879, doi:doi:10.1080/00031305.1992.10475879.

[4] Baumgartner, T., Chatzigiannakis, I., Fekete, S. P., Fischer, S.,
Koninis, C., KrÃűller, A., KrÃĳger, D., Mylonas, G., and Pfisterer,
D. Distributed algorithm engineering for networks of tiny artifacts. Computer
Science Review, 5 (2011), 85 . Available from: http://www.sciencedirect.
com/science/article/pii/S1574013710000535, doi:https://doi.org/10.
1016/j.cosrev.2010.09.006.

[5] Butun, I., Morgera, S. D., and Sankar, R. A survey of intrusion detection
systems in wireless sensor networks. IEEE communications surveys & tutorials,
16 (2014), 266.

[6] Chalapathy, R. and Chawla, S. Deep learning for anomaly detection: A
survey. (2019).

[7] Chatzigiannakis, I., Konstantinou, E., Liagkou, V., and Spirakis,
P. Design, analysis and performance evaluation of group key establishment in
wireless sensor networks. Electronic Notes in Theoretical Computer Science,
171 (2007), 17 . Proceedings of the Second Workshop on Cryptography for
Ad-hoc Networks (WCAN 2006). Available from: http://www.sciencedirect.
com/science/article/pii/S1571066107000655, doi:https://doi.org/10.
1016/j.entcs.2006.11.007.

[8] Chatzigiannakis, I., Liagkou, V., and Spirakis, P. G. Brief announce-
ment: Providing end-to-end secure communication in low-power wide area
networks. In International Symposium on Cyber Security Cryptography and
Machine Learning, pp. 101–104. Springer (2018).

https://tools.ietf.org/html/rfc4017
https://tools.ietf.org/html/rfc4017
http://dx.doi.org/10.1016/j.jnca.2015.11.016
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://arxiv.org/abs/https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://arxiv.org/abs/https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://dx.doi.org/doi:10.1080/00031305.1992.10475879
http://www.sciencedirect.com/science/article/pii/S1574013710000535
http://www.sciencedirect.com/science/article/pii/S1574013710000535
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2010.09.006
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2010.09.006
http://www.sciencedirect.com/science/article/pii/S1571066107000655
http://www.sciencedirect.com/science/article/pii/S1571066107000655
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.11.007
http://dx.doi.org/https://doi.org/10.1016/j.entcs.2006.11.007


Bibliography 39

[9] Chatzigiannakis, I., Mylonas, G., and Vitaletti, A. Urban perva-
sive applications: Challenges, scenarios and case studies. Computer Sci-
ence Review, 5 (2011), 103 . Available from: http://www.sciencedirect.
com/science/article/pii/S1574013710000444, doi:https://doi.org/10.
1016/j.cosrev.2010.09.003.

[10] Chatzigiannakis, I., Pyrgelis, A., Spirakis, P. G., and Stamatiou,
Y. C. Elliptic curve based zero knowledge proofs and their applicability on
resource constrained devices. In 2011 IEEE Eighth International Conference on
Mobile Ad-Hoc and Sensor Systems, pp. 715–720 (2011). doi:10.1109/MASS.
2011.77.

[11] Chatzigiannakis, I. and Strikos, A. A decentralized intrusion detection
system for increasing security of wireless sensor networks. In 2007 IEEE
Conference on Emerging Technologies and Factory Automation (EFTA 2007),
pp. 1408–1411 (2007). doi:10.1109/EFTA.2007.4416949.

[12] chun Hu, Y., Perrig, A., and Johnson, D. B. Wormhole detection in
wireless ad hoc networks. In Ninth International Conference on Network protocol
(ICNP), vol. 1 (2002).

[13] Dimitrios, V. G. D. G., A. and Ioannis, C. Employing internet of things
technologies for building automation. In In Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies & Factory Automation
(ETFA 2012), pp. 1–8. IEEE (2012).

[14] Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., and Khalili,
A. A pairwise key predistribution scheme for wireless sensor networks. ACM
Transactions on Information and System Security (TISSEC), 8 (2005), 228.

[15] ENISA. Iot and smart infrastructures (2019). Available from: https://www.
enisa.europa.eu/topics/iot-and-smart-infrastructures/iot.

[16] Fatima Hussain, S. A. H., Rasheed Hussain and Hossain,
E. Machine learning in iot security: Current solutions and fu-
ture challenges. arXiv:1904.05735v1, (2019). Available from:
https://www.researchgate.net/publication/332368962_Machine_
Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges,
arXiv:https://www.researchgate.net/profile/Rasheed_Hussain3/
publication/332368962_Machine_Learning_in_IoT_Security_Current_
Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/
Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.
pdf.

[17] Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and Yegin, A.
Protocol for carrying authentication for network access (PANA) (2008). Available
from: https://tools.ietf.org/html/rfc5191.

[18] Frank, B., Shelby, Z., Hartke, K., and Bormann, C. Message Queu-
ing Telemetry Transport (MQTT) (2015). Available from: http://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

http://www.sciencedirect.com/science/article/pii/S1574013710000444
http://www.sciencedirect.com/science/article/pii/S1574013710000444
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2010.09.003
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2010.09.003
http://dx.doi.org/10.1109/MASS.2011.77
http://dx.doi.org/10.1109/MASS.2011.77
http://dx.doi.org/10.1109/EFTA.2007.4416949
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot
https://www.researchgate.net/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges
https://www.researchgate.net/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges
http://arxiv.org/abs/https://www.researchgate.net/profile/Rasheed_Hussain3/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Rasheed_Hussain3/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Rasheed_Hussain3/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Rasheed_Hussain3/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Rasheed_Hussain3/publication/332368962_Machine_Learning_in_IoT_Security_Current_Solutions_and_Future_Challenges/links/5cfe04bfa6fdccd1308f889a/Machine-Learning-in-IoT-Security-Current-Solutions-and-Future-Challenges.pdf
https://tools.ietf.org/html/rfc5191
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html


Bibliography 40

[19] Frank, B., Shelby, Z., Hartke, K., and Bormann, C. Constrained
Application Protocol (CoAP) (2016). Available from: https://tools.ietf.
org/html/rfc7252.

[20] Fuller, W. A. Introduction to statistical time series, 2nd edition. (1995). Avail-
able from: https://www.wiley.com/en-us/Introduction+to+Statistical+
Time+Series%2C+2nd+Edition-p-9780471552390.

[21] Furkan Yusuf YAVUZ, D. Ã. G. Deep learning for detection of
routing attacks in the internet of things. International Journal of
Computational Intelligence Systems, 12 (2018), 39. Available from:
https://www.researchgate.net/publication/328782359_Deep_Learning_
for_Detection_of_Routing_Attacks_in_the_Internet_of_Things,
arXiv:https://www.researchgate.net/profile/Devrim_Uenal/
publication/328782359_Deep_Learning_for_Detection_of_Routing_
Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/
Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.
pdf, doi:10.2991/ijcis.2018.25905181.

[22] Georgitzikis, V., Akribopoulos, O., and Chatzigiannakis, I. Control-
ling physical objects via the internet using the arduino platform over 802.15. 4
networks. IEEE Latin America Transactions, 10 (2012), 1686.

[23] Group, I. C. W. Constrained restful environments (2019). Available from:
https://tools.ietf.org/wg/core/.

[24] Group, I. L. W. Ipv6 over low power wpan (2013). Available from: http:
//tools.ietf.org/wg/6lowpan/.

[25] Hawkins. Identification of outliers (1980). doi:doi:10.1007/
978-94-015-3994-4.

[26] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S. L., Kumar,
S. S., and Wehrle, K. Security challenges in the ip-based internet of things.
Wireless Personal Communications, 61 (2011), 527.

[27] Karkazis, P., Trakadas, P., Zahariadis, T. B., Chatzigiannakis, I.,
Dohler, M., Vitaletti, A., Antoniou, A., Leligou, H., and Sarakis,
L. Resource and service virtualisation in M2M and iot platforms. IJIEI, 3
(2015), 205. Available from: https://doi.org/10.1504/IJIEI.2015.069897,
doi:10.1504/IJIEI.2015.069897.

[28] Karlof, C. and Wagner, D. Secure routing in wireless sensor networks:
Attacks and countermeasures. In Proceedings of the First IEEE International
Workshop on Sensor Network Protocols and Applications, 2003., pp. 113–127.
IEEE (2003).

[29] Karpathy, A. Convolutional neural networks (cnns / convnets) (2019). Avail-
able from: https://cs231n.github.io/convolutional-networks/.

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://www.wiley.com/en-us/Introduction+to+Statistical+Time+Series%2C+2nd+Edition-p-9780471552390
https://www.wiley.com/en-us/Introduction+to+Statistical+Time+Series%2C+2nd+Edition-p-9780471552390
https://www.researchgate.net/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things
https://www.researchgate.net/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things
http://arxiv.org/abs/https://www.researchgate.net/profile/Devrim_Uenal/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Devrim_Uenal/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Devrim_Uenal/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Devrim_Uenal/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.pdf
http://arxiv.org/abs/https://www.researchgate.net/profile/Devrim_Uenal/publication/328782359_Deep_Learning_for_Detection_of_Routing_Attacks_in_the_Internet_of_Things/links/5be27bce4585150b2ba45f6c/Deep-Learning-for-Detection-of-Routing-Attacks-in-the-Internet-of-Things.pdf
http://dx.doi.org/10.2991/ijcis.2018.25905181
https://tools.ietf.org/wg/core/
http://tools.ietf.org/wg/6lowpan/
http://tools.ietf.org/wg/6lowpan/
http://dx.doi.org/doi: 10.1007/978-94-015-3994-4
http://dx.doi.org/doi: 10.1007/978-94-015-3994-4
https://doi.org/10.1504/IJIEI.2015.069897
http://dx.doi.org/10.1504/IJIEI.2015.069897
https://cs231n.github.io/convolutional-networks/


Bibliography 41

[30] Kaufman, C. Internet key exchange (IKEv2) protocol (2005). Available from:
https://tools.ietf.org/html/rfc4306.

[31] Lee, W. and Xiang, D. Information-theoretic measures for anomaly detection.
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, (2001),
130. doi:doi:10.1109/SECPRI.2001.924294.

[32] Malhotra, L. S. G. A. P., Pankaj; Vig. Long short term memory networks
for anomaly detection in time series. European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning âĂŤ ESANN,
(2015). Available from: https://www.elen.ucl.ac.be/Proceedings/esann/
esannpdf/es2015-56.pdf.

[33] Moskowitz, R., Nikander, P., Jokela, P., and Henderson, T. Host
identity protocol Version 2(HIPv2) (2015). Available from: https://tools.
ietf.org/html/rfc7401.

[34] Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., and Pantziou,
G. A survey on jamming attacks and countermeasures in wsns. IEEE Commu-
nications Surveys & Tutorials, 11 (2009), 42.

[35] Newsome, J., Shi, E., Song, D., and Perrig, A. The sybil attack in
sensor networks: analysis & defenses. In Third international symposium on
information processing in sensor networks, 2004. IPSN 2004, pp. 259–268. IEEE
(2004).

[36] OASIS. Iot/m2m committee (2019). Available from: https://www.
oasis-open.org/committees/tc_cat.php?cat=iot.

[37] Olsson, J. 6lowpan demystified. (2014). Available from: https://www.ti.
com/lit/wp/swry013/swry013.pdf.

[38] Phelan, T. Datagram transport layer security (DTLS) over the datagram
congestion control protocol (DCCP) (2008). Available from: https://tools.
ietf.org/html/draft-ietf-dccp-dtls-06.

[39] Piech, C. K means (2013). Available from: http://stanford.edu/~cpiech/
cs221/handouts/kmeans.html.

[40] Rescorla, E. The transport layer security (TLS) protocol version 1.3 (2018).
Available from: https://tools.ietf.org/html/rfc8446.

[41] Sadeghi, A.-R., Wachsmann, C., and Waidner, M. Security and privacy
challenges in industrial internet of things. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2015).

[42] Sergeev, D. Open machine learning course (2018). Available from: https:
//link.medium.com/aNxXU5I9L0.

[43] Shagufta Tahsildar. Random forest algorithm in trading us-
ing python (2019). Available from: https://blog.quantinsti.com/
random-forest-algorithm-in-python/.

https://tools.ietf.org/html/rfc4306
http://dx.doi.org/doi:10.1109/SECPRI.2001.924294
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://tools.ietf.org/html/rfc7401
https://tools.ietf.org/html/rfc7401
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
https://www.oasis-open.org/committees/tc_cat.php?cat=iot
https://www.ti.com/lit/wp/swry013/swry013.pdf
https://www.ti.com/lit/wp/swry013/swry013.pdf
https://tools.ietf.org/html/draft-ietf-dccp-dtls-06
https://tools.ietf.org/html/draft-ietf-dccp-dtls-06
http://stanford.edu/~cpiech/cs221/handouts/kmeans.html
http://stanford.edu/~cpiech/cs221/handouts/kmeans.html
https://tools.ietf.org/html/rfc8446
https://link.medium.com/aNxXU5I9L0
https://link.medium.com/aNxXU5I9L0
https://blog.quantinsti.com/random-forest-algorithm-in-python/
https://blog.quantinsti.com/random-forest-algorithm-in-python/


Bibliography 42

[44] ThÃľbaudeau, B. An introduction to cooja (2019). Available from: https:
//github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja.

[45] Vapnik, V. The nature of statistical learning theory (2013).

[46] Velivasaki, T.-H. N., Karkazis, P., Zahariadis, T. V., Trakadas,
P. T., and Capsalis, C. N. Trust-aware and link-reliable routing met-
ric composition for wireless sensor networks. Transactions on Emerging
Telecommunications Technologies, 25 (2014), 539. Available from: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/ett.2592, arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1002/ett.2592, doi:10.1002/ett.
2592.

[47] Wallgren, L., Raza, S., and Voigt, T. Routing attacks and countermea-
sures in the rpl-based internet of things. International Journal of Distributed
Sensor Networks, 9 (2013), 794326.

[48] Wikipedia contributors. K-nearest neighbors algorithm — Wikipedia,
the free encyclopedia (2019). [Online; accessed 13-October-2019]. Avail-
able from: https://en.wikipedia.org/w/index.php?title=K-nearest_
neighbors_algorithm&oldid=920309707.

[49] Wikipedia contributors. Principal component analysis — Wikipedia,
the free encyclopedia (2019). [Online; accessed 15-October-2019]. Avail-
able from: https://en.wikipedia.org/w/index.php?title=Principal_
component_analysis&oldid=920334148.

[50] Wikipedia contributors. Support-vector machine — Wikipedia, the
free encyclopedia (2019). [Online; accessed 13-October-2019]. Available
from: https://en.wikipedia.org/w/index.php?title=Support-vector_
machine&oldid=920756090.

[51] Winter, T., et al. IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) (2012). Available from: https://tools.ietf.org/html/rfc6550.

[52] Wood, A. D. and Stankovic, J. A. Denial of service in sensor networks.
computer, 35 (2002), 54.

[53] Wood, A. D. and Stankovic, J. A. A taxonomy for denial-of-service attacks
in wireless sensor networks. Handbook of sensor networks: compact wireless
and wired sensing systems, (2004), 739.

[54] Ylonen, T. and Lonvick, C. The secure shell (SSH) protocol architecture
(2006). Available from: https://tools.ietf.org/html/rfc4251.

[55] Zhang, Y., Lee, W., and Huang, Y.-A. Intrusion detection techniques for
mobile wireless networks. Wireless Networks, 9 (2003), 545.

[56] Zhou, L. and Haas, Z. J. Securing ad hoc networks. IEEE network, 13
(1999), 24.

https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://github.com/contiki-os/contiki/wiki/An-Introduction-to-Cooja
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.2592
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.2592
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.2592
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.2592
http://dx.doi.org/10.1002/ett.2592
http://dx.doi.org/10.1002/ett.2592
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=920309707
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=920309707
https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=920334148
https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=920334148
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=920756090
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=920756090
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc4251

	Introduction
	Challenges
	Research Questions
	Outline

	Background and Theory
	Communication in Industrial Internet of Things
	IP-based Communication
	Security Threats
	Security Solutions

	Anomaly Detection for Industrial Internet of Things
	Anomaly-based Intrusion Detection Systems
	Machine Learning for Intelligent Intrusion Detection

	Time Series Analysis for Industrial Internet of Things
	Seasonability and Stationarity
	Modelling Time Series


	Materials and Method
	System Architecture
	Experimental Scenario
	Methods for Anomaly Detection
	K-Nearest Neighbors (KNN)
	Random Forest (RF)
	Deep Neural Network (DNN)
	Support Vector machines (SVM)
	K-Means

	Prediction Performance Measure
	Implementation Details

	Results
	Exploratory Analysis
	Features Extraction and Selection
	Experimental Scenarios
	Experimental Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Sample of the Final Dataset
	Project Code and Repository

