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Abstract

Nowadays, many large organizations operate data centers that produce huge amounts
of data at different locations around the globe. Analyzing such geographically
distributed data as a whole is essential to derive valuable insights. Typically, Geo-
distributed data analysis is carried out either by first communicating all data to
a central location where processing is performed or by a distributed execution
strategy that minimizes data communication. However, a whole new dimension
of constraints arising from regulations pertaining to data sovereignty and data
movement is increasingly receiving more attention and posing serious limitations to
the above mentioned ways of processing Geo-distributed data.

In this work, we provide a new formalism for data movement constraints definition
and look at how to enable current data analysis tools and frameworks to deal with
restrained data movements. More specifically, we aim our attention at SQL analytics
on Geo-distributed data stored in relational databases which are part of federated
database systems. Given an user query issued on the federated systems and the
formalized data constraints, the result of our work generates compliant execution
plans by specifying when and where data shipments are allowed to take place between
the data centers.
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Chapter 1

Introduction

Nowadays, more and more data is generated by the numerous automated systems
around us and is typically collected and stored in sophisticated distributed systems
whose autonomous nodes are scattered around the globe, ensuring low communication
latency and high availability. For example, Amazon Web Service Cloud spans an area
which covers America, Asia, Europe, and Oceania [1] and Google’s data centers are
present in multiple countries in Europe and North America [3]. Moreover, the latest
trends in Big Data involve the use of several popular tools and frameworks, such
as Spark [19], Flink [7], Hive [15], Hadoop [2], and many more, to derive valuable
insights from the analysis of such Geo-distribute data which benefits many diverse
applications. A few examples are: cancer prediction and prognosis in predictive
medicine using Machine Learning methods [8], intrusions detection in cybersecurity
discovering correlations between security events across heterogeneous sources [20],
tailored and personalized recommendations for multimedia entertainment such as
Youtube [10].

Analysis of Geo-distributed data is typically accomplished by either (i) trans-
ferring all data to a central location or (ii) distributing the execution task over the
multiple data engines and moving data around the sources in such a way that the
least amount of data transfer occurs across the sites. However, following the recent
events on data protection, a whole new dimension of constraints is increasingly
receiving more attention and posing serious limitations to the above mentioned ways
of processing Geo-distribute data. Legal restrictions pertaining to data sovereignty
and data movements control the flows of data from one location to another in order to
impede any information disclosure which might damage individuals, companies, or, in
general, any kind of organization. Consider the case of the General Data Protection
Regulation (GDPR) [5] whose jurisdiction especially concerns companies residing
in the EU and which forbids personal data transfers to third parties without the
owner’s consent. Depending on the disclosure risks associated to hypothetical leaks
of information, data conveyances are either completely cut off, obliging organizations
to carry out solely local data analysis, or they undergo several transformations so
that the result is an exposure-friendly version of the input having sensitive data
concealed.

In this work, we explore the new dimension of constraints and look at how to
enable current data analysis tools and frameworks to deal with restrained data
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movements. More specifically, we focus on Geo-distributed data stored in relational
databases, as they are widely adopted, and that are part of federated database
systems which provide a coherent and comprehensive view of the whole regardless
of the sources heterogeneity. Furthermore, we aim our attention at SQL analytics,
based on relational algebra augmented with communication (shipping) operators,
allowing us to leverage the extensive literature work on query optimization, data
integration, and query rewriting. Given a user query posed on the federated systems
and the formalized data constraints, the result of our work looks for execution
strategies that are compliant to these restrictions, specifying when and where data
shipments are allowed to take place, and are inherently efficient from both local
resources usage and network transmission point of view.

In summary, we make the following contributions in this thesis:

• We provide a formalization for data movement constraints using extended
relational views. An extended view definition includes a legal set, which is
a set of locations where the data can be legitimately shipped to. Specifying
that some data D from location L1 is allowed to be transferred to location L2
implies the existence of a view on D with L2 in its legal set.

• We show how to enumerate compliant execution strategies based on optimiza-
tion rules that enforce constraints by rewriting parts of the user query using
views. If a (sub) query matches or subsumes a view, then the query results
can be legitimately be shipped to the locations in the legal set. Using this
mechanism we specify where operations may take place and when to ship data
without information leaks.

• We implement a prototype of our system using Apache Calcite, an extensible
query parser and optimizer framework. Since Calcite is internally employed by
many other well-known data frameworks, as for example Flink, Storm, and
Drill, stacking our implementation on top of it easily enables these tools to
deal with data movement constraints.

In this way we show that constraint-aware query processing for Geo-distributed
data is a feasible approach and can be easily achieved by our proposed solution,
supporting the current data protection demands in the era of Big Data analysis.

The thesis is organized as follows. In Chapter 2, we explore the background work
we leveraged for the thesis, namely query processing, data integration, and query
rewriting. Chapter 3 discusses the formalism for the data movements and describes
its implementation using extended relational views. In Chapter 4, core of our
work, we explain the constraint enforcer mechanism based on query rewriting using
views and show how to generate compliant plans using a set of optimization rules.
Chapter 5 describes the details of the system implementation and the Geo-distributed
environment we simulated to test our solution, for then providing some example use
cases. Lastly, Chapter 6 contains our final remarks and future objectives.
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Chapter 2

Background

As stated previously, we will focus on query processing in distributed relational
database systems, where user queries are issued on the federated schema and then
executed on the underlying heterogeneous sources. As we will see later in Chapters
3 and 4, our solution specifies data movements constraints by means of relational
views and extends a top-down optimizer that explores only compliant execution
plans as a result of constraint-tailored rules set. In particular, one type of such rules
enforces constraints by using an inference mechanism that attempts to rewrite parts
of the user query in terms of the given constraint-views.

Given this premise, in the following chapter, we briefly describe the aforemen-
tioned concepts by touching the topics of traditional and distributed query processing,
data integration, and query rewriting using views. The chapter is structured as
follows. Section 2.1 provides a high level description of a general query processing
architecture and a concise description of its components, for then focusing on query
optimization. For additional information of the topic, we suggest the reader to
refer to [9] and [18]. Section 2.2 reviews query processing in distributed systems
highlighting the differences from the centralized case. An interesting reading on
the general techniques in this context is [14]. Section 2.3 provides a summary on
federated database systems and explains how they provide a coherent view of the
data in presence of heterogeneous sources. Lastly, Section 2.4 shortly describes the
major concepts in query rewriting using views. We suggest [13] for a survey on the
topic.

2.1 Traditional Query Processing

All types of database systems (centralized, distributed, parallel, etc.) normally agree
on the general query processing architecture depicted in figure 2.1. As shown, it
is composed by three macro-steps; the first two translate a high-level query into a
sequence of low-level operations on data sources, while the last one actually carries
out the previous specified instructions to return the resulting tuples to the user.

The input of the process is a SQL query that is converted by the Parser into
an abstract syntax tree, an internal representation more suitable for machine ma-
nipulation. The Parser also checks the query syntax for errors and ensures that
the attributes and relations referenced in the query are actually in the catalog. If
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Figure 2.1. General architecture for Query Processing.

the query is acceptable, the abstract syntax tree is casted into another tree whose
nodes are relational algebra operators, which, in turn, represent the operations to
carry out on data. The Optimizer, then, accepts the algebra tree in input, generates
multiple feasible execution plans, and selects the best one according to a function
based on cost metrics, like CPU, I/O, etc., and statics about the data. Lastly, the
selected query plan is evaluated on the underlying database system and the answer
is returned to the user.

The plan generation phase, in particular, consists of two steps which might be
interleaved: logical plans generation and physical plans generation. The first one
concerns only the logical transformations of the data, i.e. the types of relational
operators in the plan and their order. To do so, the optimizer applies algebraic
equivalences rules which transform the original query tree into another semantically
equivalent relational algebra tree. Relational algebra equivalences such as join
associativity and join commutativity are an example of these algebraic rules. Physical
plans generation, instead, defines the physical details of both operators and data
involved in the query. In this step, the optimizer decides which algorithms should
be used (merge-join, hash-join, etc.), how intermediate results should be treated
(materialized or pipelined), and which properties the output data should have (sorted
on an attribute, distributed on nodes, etc.).

Both previous steps are usually based on optimization rules that perform the
logical and physical transformations described above; the optimizer begins with
an initial query plan and sequentially applies rules until a feasible and satisfactory
solution is found. Moreover, there are two popular approaches for searching the best
execution plan: top-down and bottom-up. The bottom-up approach computes the
best plans for all expressions on k relations before considering expressions involving
more than k relations. On the other hand, the top-down approach computes the best
plans for only those expressions on k relations which are included in some expression
on more than k relations being expanded. In other words, the top-down approach
will never consider solutions on k relations whose cost is higher than solutions on
more than k relations.

2.2 Query Processing in Distributed Databases

The general practice of query processing described in the previous section is valid
even for the cases of distributed database systems, however, some steps must be
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adjusted to the new underlying infrastructure. While queries in centralized systems
involve only the data stored and maintained in a single location, queries in distributed
systems refer to relational tables which are fragmented and replicated across multiple
autonomous physical locations. The query optimization process itself is distributed;
The practice typically consists of a global optimization step involving all the sources,
followed by local optimization steps at each affected site.

Besides deciding the type and the order of the operations, the global optimizer also
has to establish at which site each operation is to be executed and when intermediate
results have to be relocated between sources. In the case of table replication, there
is the further choice of which local copy it should access among the ones available.
The preceding aspects are handled in the physical plan generation phase through
location properties and shipping operators. In particular, each operator is labeled
with an execution site, where the operation takes place, and the data movement
processes are captured by specifying where the output of a previous operation should
be moved to, using shipping operators. Hence, a plan in the global optimization
step is deemed to be completely specified when all the operations are labeled with
an execution site and shipping operators ensure the data lies at right location. An
example of an enhanced query tree in the context of distributed sources is depicted
in fig. 2.2.

Figure 2.2. Query tree in a Geo-distribute environment.

However, since data movements are costly, not all execution plans are explored
by the optimizer search strategy. For this reason, the network traffic is taken into
account in the cost function and, in order to minimize it, the optimizer attempts to
reduce the amount of data transfers occurring among the sources.

Finally, the global optimizer decomposes the original query plan in multiple
subplans, one for each involved source, and then the local optimizers independently
operate on them to seek for the best local solution.

2.3 Federated Databases
Generally, data nodes in a distributed system might present different logical schemata
and users can issue queries only if they are aware of the underlying distribution of
the data sources. Through data abstraction, federated database systems provide
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a uniform user interface, enabling users to store and retrieve data from multiple
non-contiguous databases with a single query - even if the component databases are
heterogeneous and the users does know about the system infrastructure. Queries
posed on the so-called global schema are then transparently answered using data
contained in the sources, regardless of the sources schemata.

The relationship between the global schema and sources schemata is expressed
in terms of mappings which essentially establish what data populates the global
tables and how retrieving it. For relational databases, mappings are equivalent to
views. They can be basically specified in two manners: Global As View (GAV) and
Local As View (LAV). The first kind of mappings impose that the global schema
must be defined in terms of the sources, namely a table in the global schema is a
query over the sources. The user query, which references global relations, can be
easily translated into a query over the sources - global tables are replaced by the
query defined in the mappings. LAV mappings are quite the opposite; they require
the sources to be defined in terms of the global schema, that is to say, for each
relation in the sources there is a query over the tables in the global schema. For this
reason, user queries must undergo a more complicated query rewriting procedure
to generate a query over the sources. Nevertheless, LAV mappings are superior to
GAV in describing the data contained in the sources and result more meaningful in
query answering. Another type of approach, GLAV mappings, is a hybrid obtained
by mixing the previous two.

Following the choice of mappings, data in the global schema might either be
materialized, creating an actual database, or not, keeping mappings virtual. In
terms of materialized relations, user queries are straightforwardly answered with the
tuples in the global tables while virtual mappings require one or more queries to be
issued on the sources to retrieve the necessary data.

Whatever type of mappings one decides to employ, user queries always have to
be rewritten in terms of sources in a way or another. This raises the issue of source
completeness, or rather, do sources have all the appropriate information to answer
the query? Under the Closed World Assumption (CWA), the set of all tuples fetched
by mappings is enough to provide a ‘certain’ answer to the query. On the other
hand, under the Open World Assumption (OWA), sources are acknowledged to be
incomplete and some tuples may not appear in the query answer.

2.4 Query rewriting using views

As we have seen in the last section, query rewriting using views holds a central
role in federated database systems since user queries always have to be rewritten
in terms of the sources using mappings (views). Even in the context of query
optimization its application is relevant, as materialized views can greatly speed
up the query answering process with precomputed results. Furthermore, as we
mentioned before, constraints enforcement in our work is carried out by means of
an inference mechanism based on query rewriting in the optimization context; the
optimizer attempts to rewrite parts of the user queries using views (constraints).

Regardless of the application, query rewriting techniques lean on the fundamental
concept of query equivalence; Two queries are said to be equivalent if for each database
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state, they compute the same set of tuples. In the context of optimization, we are
interested in finding an equivalent rewriting for the whole query or for part of it with
a set V of views V1, V2, ..., Vn. A query Q′ is said to be an equivalent rewriting of
the (sub) query Q if:

1. Q′ refers only to the views in V

2. Q′ is equivalent to Q.

Trivially, database relations might be involved in the rewriting procedure using views
that mimic their definition. Nevertheless, since the query equivalence problem in full
relational algebra is undecidable, all the practical approaches on finding an equivalent
rewriting of Q are restricted to smaller subsets of solutions. They mostly differ in
the type of queries and views they consider (select-project-join queries, aggregate
queries,etc.) and they type of rewriting they produce (single query rewriting, union
rewriting, etc.). Furthermore, not all views in V are usable to answer a specific query
Q even if they involve the same table and each rewriting approach formally define
their condition for usability. Informally, a view can be used in the rewriting if either
is equal to the query (trivial case) or the query is subsumed by the view, that is,
the view results to be more ‘general’ than the query itself, and the results can still
be computed from its output. The second case implies that additional operations
should be carried out on the view to obtain the same result of the query such as
filtering with additional predicates, removing some columns, etc.
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Chapter 3

Constraints Specification

As we know from Section 2.2, answering a query in geographically decentralized
systems means to distribute the execution task across the involved data sources
and to relocate intermediate data results when needed. However, in Chapter 1, we
introduced the emerging dimension of data movement constraints and how it affects
data analysis in such a context. Data shipments between Geo-distributed sites are
strictly regulated by data sovereignty measures and must adhere to a set of data
protection rules in order to prevent any type of information disclosure. The severity
of these ‘disclosure constraints’ varies according to the needs of the issuing entities.
Strict restrictions might impose a forced localization by banning data transfers,
while more flexible rules may allow shipments under some conditions (e.g. data is
masked before sending).

In the following Chapter, we provide a new formalism for data movement con-
straints which enables both entities to easily define customized shipment restrictions
and data analysis frameworks to deal with these recent processing limitations. Sec-
tion 3.1 holds a fully and clear description on the context in which constraints fit
in and provides basic observations to their dynamics. In Section 3.2, we discuss
the definition of data movement constraints. Finally, in Section 3.3, we describe a
simple implementation for relational databases using extended relational views which
includes location disclosure policies in their definition. Chapter 4, then, will explain
how we leveraged this definition to achieve a constraint-aware query processing.

3.1 Constraints Context and Dynamics

Before starting to discuss about data movement constraints and their definition,
we firstly introduce their context with the respect of federated relational databases
and provide few basic rules to their enforcement. As already mentioned, data in a
Geo-distributed system is collected and stored at multiple autonomous relational
sources and it is subjected to different data sovereignty measures that depend on the
location of the sites. In particular, we assume data sources are organized in groups
of sites, each one belonging to a jurisdictional area where the same data movement
constraints apply. We denote the areas with A1, A2, ..., An. Furthermore, we consider
that areas do not overlap and locations where jurisdictions intersect are handled as
new areas subjected to the constraints of both intersecting parts. The shape of these
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areas may either be defined by international and national regulations, matching
borders with actual boundaries between countries or international organizations, or
by company policies and individual needs, creating custom areas tailored to more
specific data protection needs. We use the term ‘constraint administrators’ to refer
to the generic entities (international organization, companies, and so on) that hold
the responsibility to set the data movement constraints for the relational tables
in their area. A single table might be involved in many constraints while a single
constraint may refer to the data in multiple tables as long as they lie in the same area.
The reason for this choice is to avoid to create unnecessary dependencies between
constraints leading to flawed definitions. When a new data source is attached to
the federated system, constraint administrators supply the new rules that guide the
data interactions between the new site and the other locations. We denote with
Ax → Ay the set of data movements rules from Ax to Ay.

Basically, there are two main observations on these interactions:

1. Data lying at one site in Ax can freely move to other sites within the location
boundaries. No need to enforce constraints since data is still in a ‘safe zone’.

2. Data leaving their origin site in Ax and crossing the area boundary of Ay

must be compliant to the disclosure constraints of Ax relative to Ay. In other
words, rules regarding the pair Ax → Ay must apply. Data might be masked
to ensure compliance.

Let us notice that the second point also concerns data transits in third locations
Az; if data originally collected in Ax moves to Az and then to Ay, it is subjected to
both constraints rules of Ax → Az and Ax → Ay.

3.2 Data movement constraints definition

As we said in the previous section, data is stored in relational databases which, in
turn, belong to some jurisdictional areas where the same rules apply. For this reason,
in this section, we will define data movement constraints referring to areas the data
belongs to, rather than the specific residing sites. We will use the term area and
location interchangeably.

Essentially, we define constraints as triples:

(D,M, L)

D delineates the portion of the data affected by the constraint and determines its
extent, M is the masking operation which yields to an exposure-friendly version
of the data, and L, called legal set, is the collection of locations (areas) where the
concealed data, consequent of masking, is entitled to go. Hence, a constraint can be
interpreted as follows; the data specified by D, coming from tables within the same
location, must undergo the transformationsM before being moved to locations in
L. Let us notice that, as default, if no constraint refer to some data D, then all
transfers of D across area boundaries are forbidden in any case.

The nature of M is defined by the constraint administrators and depends on
the strictness of their data concealment requirements. It might be that the same
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data is transferred unaltered to some locations (no masking involved) while it has
to be heavily transformed when sent to ‘less secure’ areas. In particular, according
to the interpretation given above, masking operations may be carried out even in
sites and areas distinct from the one where the data has been originally collected.
Consider the case in which data from Ax travels to Az after having been masked
according to the rules Ax → Az. If data has to be further sent to Ay, then the
masking operations for Ax → Ay can be carried out either in Ax or Az. We embrace
various types of masking operations inM, which some examples are: identity (data
can be shipped as it is), suppression, aggregation, shuffling, as well as user defined
functions for customized masking.

A flexible data scope D is a crucial requirement in constraints definition since con-
straint administrators might design rules regarding different data granularity levels
(rows, columns, etc.). On its basis, there are three types of constraint specifications:
attribute-based, tuple-based, and value-based. In order to familiarize with these
concepts, we will consider examples of constraints involving mock relations "Em-
ployee" (Table 3.1) and "Department" (Table 3.2) which contain information about
employees and departments in a company located in Europe. We will momentarily
focus only on the D andM while L will be considered in the next section.

Table 3.1. Employee table.

Name Surname Age Salary Department

Mario Rossi 36 50k HR
Tim Fischer 54 45k IT

Adrienne Canard 43 40k BB
Freja Nilsson 55 60k HR

Carmen Serrano 22 20k IT
Dimitrios Pilos 59 62k BB

Table 3.2. Department table

Name FullName Manager

HR Human Resources Robert
IT Information Technologies Timothy
BS Business Robert

Attribute-based specification

Attribute-based, or column-based, constraint specifications impose restrictions on
sets of columns in a relational table. Assume for example that attributes Salary and
Age cannot be disclosed outside Europe and must be suppressed before crossing any
boundary. With attribute-based constraints we are able to express this requirement
and produce the table in 3.3 for foreign locations. If an user query involves only
the remaining attributes, query execution can be distributed to locations outside
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Europe, otherwise if the query refers to Salary and Age, then, since they cannot
trespass, intermediate results are rigidly localized in their origin area.

Table 3.3. Employee table without the Salary and Age attributes

Name Surname Department

Mario Rossi HR
Tim Fischer IT

Adrienne Canard BB
Freja Nilsson HR

Carmen Serrano IT
Dimitrios Pilos BB

Another policy could allow us to disclose the attribute Salary only if the values
are shuffled among people belonging to the same Department as in Table 3.4. As we
can see, employee "Dimitrios Pilos" has a wrong salary of 40k instead of the true
value of 62k. Therefore, querying for Person-Salary would yield to incorrect results
outside Europe while querying for the sum of salaries grouped by department would
lead to the same results everywhere.

Table 3.4. Employee table with Salary values shuffled within the Department.

Name Surname Age Salary Department

Mario Rossi 36 60k HR
Tim Fischer 54 20k IT

Adrienne Canard 43 62k BB
Freja Nilsson 55 50k HR

Carmen Serrano 22 45k IT
Dimitrios Pilos 59 40k BB

Tuple-based specification

Tuple-based, or row-based, constraint specifications target tuples instead of attributes.
They select the rows from tables which should undergo masking operations before
shipping. Assume, for instance, we cannot disclose employees that earn more than
48k as in Table 3.5. It is reasonable to query the Employee table for people earning

Table 3.5. Employees earning less or equal than 48k.

Name Surname Age Salary Department

Tim Fischer 54 45k IT
Adrienne Canard 43 40k BB
Carmen Serrano 22 20k IT

less than 48k since the result is a subset of tuples fully contained the previous table.
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However, if the selection predicate includes salaries higher than that, some tuples
would be missing from the result when exported.

As an example of a constraint involving more tables, consider the case where
we disclose only the employees that work in the departments managed by Robert
and are older than 40 as in Table 3.6. As we mentioned, the tables involved in

Table 3.6. Employees working in departments managed by Robert and older than 40.

Name Surname Age Salary Department FullName Manager

Adrienne Canard 43 40k BB Business Robert
Freja Nilsson 55 60k HR Human Resources Robert

Dimitrios Pilos 59 62k BB Business Robert

a constraints must lie in the same area. If the Department relation was located
outside Europe then the previous constraint would be useless since we cannot match
employees to departments without disclosing values. A weak solution would be to
provide further constraints which allow the movement of data for the matching
purposes. However, the previous constraint would be depended on these and, in
general, we may possibly create unnecessary circular dependencies.

Value-based specification

Lastly, value-based, or cell-based, constraint specifications have a more finer area
of action, namely cells of tables. Consider the case where employees choose if they
want to disclose their information as in the table 3.7. Y means we have consent to
reveal the information while N forbid us to do so. After the masking, the table will

Table 3.7. Employee table showing people consent to reveal information.

Name Surname Age Salary Department

Mario (Y) Rossi (Y) 36 (Y) 50k (N) HR
Tim (Y) Fischer (N) 54 (Y) 45k (N) IT

Adrienne (Y) Canard (Y) 43 (N) 40k (Y) BB
Freja (Y) Nilsson (N) 55 (N) 60k (N) HR

Carmen (Y) Serrano (Y) 22 (Y) 20k (Y) IT
Dimitrios (Y) Pilos (N) 59 (Y) 62k (N) BB

look like the one portrayed in fig. 3.8. In this case, it is less clear which classes of
queries may return the right results outside Europe

3.3 Expressing constraints through extended views

Referring to the previous section, data movement constraints are defined as triple of
targeted data, masking operations, and a set of locations (the legal set). While the
first two aspects involve the manipulation of data by retrieving it from relational
tables and transforming it, the third establish where the masking outcome can
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Table 3.8. Employee table with suppressed values.

Name Surname Age Salary Department

Mario Rossi 36 HR
Tim 54 IT

Adrienne Canard 40k BB
Freja HR

Carmen Serrano 22 20k IT
Dimitrios 59 BB

legitimately be shipped. Since in our work we focus on SQL analytics in relational
databases, we decided to implement the constraint data manipulation using rela-
tional views. Thereby, it allows us to reuse the data definition language of the
SQL framework without specifying a separate rule formalism. Views can project
out specific columns and select subset of rows allowing a fine-grained data access
compatible with the previously mentioned constraint specifications. For example,
we could obtain the table 3.3 with no salary and age attributes using the following
view.

CREATEVIEW EmpNoSalaryNoAge AS
SELECT Name, Surname , Department FROM Employee ;

Or, for the case of the tuple-based constraint in table 3.5, we could select employee
with a salary lower or equal than 48k using the following view.

CREATEVIEW EmpLowSalaries AS
SELECT ∗ FROM Employee WHERE Sa lary <= 48k ;

In general, we may define more complex queries involving multiple tables. Con-
sider the case where we mask the salary values computing the sum of salaries per
department.

CREATEVIEW SumSalariesPerDepartment AS
SELECT Dep . FullName , Sum( Sa lary )
FROM Employee AS Emp JOIN Department
AS Dep ON Emp. Deparment = Dep .Name
GROUPBY Dep . FullName ;

Furthermore, since most of relational databases allow the definition of stored proce-
dures, it may be possible to employ user defined functions to customize the masking
processes. For each person in the Employee table, the following view computes a
hash function on the pair Name-Surname, a binary value depending on if the age is
above 30, and a range of values where their salary should be in.

CREATEVIEW MaskedData AS
SELECT Hash (Name, Surname ) , IsOlderThan30 (Age ) , Bucket ize ( Sa lary )
FROM Employee ;

Views alone, though, are not able to express where the data can be legally shipped
to, since they just manipulate it. To address the previous problem, we extend view
definition with a list of areas as below.
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CREATEVIEW <name> WITH LEGAL SET <l i s t o f areas> AS
<sql>

Trivially, the data origin location is always implicitly included in the legal set of the
view referring to it. One example of usage in the case the filtered table Employee is
allowed to be shipped from Europe to America and China is shown below.

CREATEVIEW EmpNoHighSalaries WITH LEGAL SET America , China AS
SELECT ∗ FROM Employee WHERE Sa lary >= 48k ;

In general, a single table may be involved in many constrains depending on the SQL
query and the list of locations in the view. In particular, it may happen that the
same table appears in different constraints for the same location as in the following
example.

CREATEVIEW C1 WITH LEGAL SET America , China AS
SELECT ∗ FROM Employee WHERE Age < 50 ;

CREATEVIEW C2 WITH LEGAL SET America , Aus t r a l i a AS
SELECT Name, Surname , Age FROM Employee WHERE Sa lary BETWEEN(30k ,40 k ) ;

Observe that, both constraints include America in their legal set, despite applying
different type of masking on different part of the same table. Depending on the
query issued on the Employee table, one or both constraints might be used to safely
distribute the data outside the Europe location.

Even if the constraint definition allows any type of transformation for M, in
the following work we only focus on masking operations in extended relational
algebra (projection, selection, aggregation, etc.), leaving other types of masking for
future goals. The next Chapter explains how extended relational views enable us to
convert the issue of enforcing disclosure rules in a distributed environment to the
well-studied problem of query rewriting using views. The constraints, in particular,
will be used to generate compliant plans where intermediate results are moved to
locations specified by the legal sets.





17

Chapter 4

Constraint-Aware Query
Processing

As we saw in Section 2.2, the physical plan generation phase in Geo-distributed
query processing enriches the logical query trees with implementation details by
labeling the data operations with execution sites and injecting shipping operators
to ensure that intermediate results are processed at the right source. Optimization
rules are normally used by optimizers to provide these physical properties in query
plans, as well as to evaluate other semantically equivalent execution strategies. In
Section 2.4, we briefly reviewed the notion of equivalent rewritings and mentioned
that different practical approaches of query rewriting using views have different
conditions to evaluate the views usability. In Chapter 3, we introduced the notion
of jurisdictional areas, locations where all data sites conform to the same data
movement policies, defined data movement constraints as triples (D,M, L), and
provided an implementation for relational databases using extended view definition.

In this chapter, we explain how the three previous aspects are blended together
to achieve a constraint-aware query processing in a Geo-dispersed environment.
Essentially, we provide a set of Constraint-tailored optimization rules to a global
optimizer and bias the optimizer search strategy towards compliant execution plans
using a constraint enforcer mechanism based on query rewriting using views. The
chapter is structured as follows. First, in section 4.1, we detail the distributed query
optimization process in presence of locations. There, we introduce location-aware
physical properties for operators, called location conventions, and adapt the definition
of shipping operators. In section 4.2, we explain the constraint enforcer mechanism
based on compliance-inference using views. Lastly, in section 4.3, we describe the
compliant plan enumeration process in a top-down optimizer with the use of a special
set of optimization rules concerning the location. The implementation details of our
work are deferred to Chapter 5.

4.1 Location Conventions

When a new user query is asked on a distributed database system, the query optimizer
eventually finds an execution plan where each operation is labeled with an execution
site. In other words, for each operation, it selects a node which will (1) receive the
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intermediate results produced by previous operations from the network, if they are
not already present in the node, (2) carry out the operation on the gathered data
and possibly ship the results to another node. Rather than designating a specific site
for an operation, in our work we localize operations on data to sets of sites, each set
representing a location, and defer the specific execution node choice to subsequent
optimization steps. To implement this labeling procedure and associate operations to
jurisdictional areas, we use a type of physical properties called location conventions.
When an operation is labeled with a location convention Lx, any site belonging
to the location Ax can carry it out. In this context, shipping operators assume a
new meaning: they represent data transfer between locations rather than between
specific sites. In figure 4.1 we show an illustrative compliant plan with location
conventions and shipping operators. There are two location conventions in the plan
encoded with different colors: Europe convention in blue and American convention
in green. As we can tell from the picture, the projection on Employee table is carried
out in Europe and the results are shipped to a generic site in America. There, the
last two operations, a join and a selection, are executed. With the adoption of the

Figure 4.1. Example of plan with location conventions

above notation, we will able to fully characterize the compliant execution strategies
generated by our optimizer.

4.2 Constraint Compliance Inference
In Section 2.4, we mentioned that since the problem of query rewriting using views is
unfeasible in full relational algebra, the different practical approaches are restrained
to some classes of solutions which consider only certain types of queries, views, and
rewritings. Consequently, there are different types of conditions to view usability as
they depend on the approach followed. However, these requirement always rely on
subsumption or equivalence between the view and the query. Furthermore, as we
remember from the previous Chapter, a data movement constraint is formalized by a
relational view and a set of locations where the results can be shipped to. Specifying
constraints in this way allows us to convert the issue of data restriction enforcement
to the well-studied query rewriting problem. Essentially, views offer a safe window
on data manipulation by specifying which transformations should be applied on
data before safely shipping it, and if the query can be rewritten in terms of them,
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we infer the location execution properties of the operations in the query plan. For
such purpose, we will consider only single-view equivalent rewritings in which we try
to rewrite the (sub) query solely using one view. Hence, if a (sub) query is rewritten
in terms of a view then we infer that the query results can be legitimately shipped
to the locations specified in the legal set.

Let us consider a simple query in which we retrieve the names and ages from all
employees

SELECT Name, Age FROM Employee ;

and suppose that Employee is horizontally partitioned into two tables, one in Europe
and one in America. An equivalent way to write the user query would be

SELECT Name, Age FROM Employee . Europe
UNION ALL
SELECT Name, Age FROM Employee . America ;

Assume furthermore we have the following constraint on the Employee partition in
Europe

CREATEVIEW EmpEuropeToAmerica WITH LEGAL SET America AS:
SELECT Name, Surname , Age FROM Employee . Europe ;

which allows to ship to America only the Name, Surname, and Age attributes. As
we can see, the query fragment that selects Name and Age from Employee.Europe
is subsumed by the previous constraint and an additional projection on top of the
view would generate an equivalent rewriting. It follows that the results of the query
fragment can be safely moved to the locations in the legal set, namely America.
Given the following, a compliant plan is shown in Figure 4.2.

Figure 4.2. A compliant plan

In general, a single table may be involved in many constrains depending on the
SQL query and the list of locations in the view, hence, multiple viable compliant
plans can be feasible. Consider the following query where the department table
Department is located in Australia.

SELECT ∗ FROM Employee AS Emp
JOIN Department AS Dep ON Emp. Department = Dep .Name
WHERE Emp. Age BETWEEN(20 ,40) AND Dep . Manager = "Timothy " ;

Assume we have the following constraints:
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1. CREATEVIEW EmpEuropeToAustralia WITH LEGAL SET Aust ra l i a AS:
SELECT ∗ FROM Employee . Europe AS Emp WHERE Emp. Age < 40 ;

2. CREATEVIEW DepToAmerica WITH LEGAL SET America AS:
SELECT ∗ FROM Department . Aus t ra l i a AS Dep
WHERE Dep . Manager LIKE "T∗ " ;

3. Employee.Europe can be freely shipped to America

4. Employee.America can be freely shipped to Australia

Following the same reasoning of before, two compliant query trees are depicted in
Figures 4.3 and 4.4. In the plan shown in Fig 4.3, the final location is America since

Figure 4.3. First compliant execution plan

Figure 4.4. Second compliant execution plan
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both the data from Employee Europe and Department Australia are shipped there.
The third constraint allows the shipping of the Employee.Europe table to America
while the shipping operator Aus→Ame is inferred from the second constraint. As for
the latter, it is easy to see that the condition Manager = "Timothy" in the query is
more specific than the predicate Manager LIKE "T*", hence, it allows us to ship the
filtered table to America. In the plan in Fig. 4.4, instead, the data from Europe is
firstly shipped to America and then, together with the American data, is shipped to
Australia. Let us notice that, although the European data lies in America after the
first shipping, the first rule clearly specify that tuples from Employee Europe can be
disclosed to Australia if and only if filtered on age. For this reason, the shipping
operator Ame→Aus is inferred from the first and third constraints for the European
data and from the fourth for the American data.

In the next section we will show how this compliance inference mechanism is
used by a global optimizer to seek for feasible execution strategies that adhere to
data movement restrictions. In particular, the plan exploration phase is steered
by optimization rules which specify location conventions for operators and inject
shipping operations according to the given constraints.

4.3 Constraint-Aware Plan Enumeration

The previous section showed the main mechanism in data movement constraints
enforcement based on the generation of single-view equivalent rewritings of the user
(sub) query. The compliant query plans we saw in the last example were only two
alternatives among of many potential execution strategies that could be attained for
a user query and data movements constraints. We know that an optimizer normally
explores various feasible solutions by the way of optimization rules before choosing
one on cost-basis and our global optimizer is no exception. In this section, we
describe the compliant plan enumeration process that happens within our system,
momentarily ignoring the cost dimension associated to the execution strategies.
Essentially, we decided to employ a top-down optimizer, widely used in practice,
and provide a set of optimization rules concerning the location properties of data
and operations. Before delving into the details of plan enumeration, we will firstly
take a look at the AND-OR DAG representation [12] which compactly represent all
feasible plans for a given query.

A Logical AND-OR graph is a directed acyclic graph (DAG) whose nodes can
be partitioned into AND nodes, also called operation nodes, and into OR nodes,
also named equivalence nodes. AND nodes have only OR nodes as children and, in
turn, OR nodes have only AND nodes as children. An AND node coincides with an
algebraic operation, such as a selection or an union, and it is characterized by the
logical operation and its inputs. Operation nodes are called AND nodes because
all their children muFt be evaluated in order to evaluate the AND node themselves.
An equivalence node, instead, represents the equivalence class of logical expressions
that generate the same result or, in other words, an OR node encloses the equivalent
rewritGngs for a given subquery. The name OR node originates from the fact that
any child node can be evaluated in order to evaluate the OR node parent. In figure
4.5 we show the AND-OR DAG for the following query
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SELECT Name, Age FROM Employee AS Emp;

Figure 4.5. Initial Logical AND-OR DAG

The circular nodes enclosing logical operations are the AND nodes, while the
rectangular nodes represents the OR nodes. In order to distinguish equivalence
nodes from one another, we label them with an expression picked from their relative
equivalence classes. The root of the DAG, which represent the final result, is
highlighted in red and is always an equivalence node.
Assume now, the optimizer generates an equivalent plan where the projection is
pushed down the union. The modified AND-OR graph is shown in Figure 4.6. Since
the two expressions π(Emp Europe ∪ Emp America) and π(Emp Europe) ∪ π(Emp
America) are equivalent, they are encoded by the same equivalence node.

Figure 4.6. Expanded Logical AND-OR DAG

While logical AND-OR DAGs take into account only the logical transformation of
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data, physical AND-OR DAGs consider the implementation details of the plans,
adapting the definition of AND and OR nodes. Physical equivalence nodes in the
new DAG coincide with pairs [e,p], where e is the logical equivalence node and p are
the physical properties enforced on the result of e. In our context, these physical
properties correspond to location conventions. There are two types of operation
nodes: algorithms, which physically implement a logical operation, and enforcers,
which enforce specific physical properties on the data. Since we leave the choice of
algorithms selection for operators to subsequent steps, we are only interested in the
enforcer category where Shipping Operators falls in. The initial physical AND-OR
DAG of the previous query is depicted in Figure 4.7. The dashed-boxes represent

Figure 4.7. Physical AND-OR DAG expanded

the previous logical equivalence nodes while the square inside them are the physical
equivalence nodes. There are two location conventions in the above graph: Eur
for Europe and Ame for America. Notice that, initially, only the two sources Emp
Europe and Emp America have a location convention, while all the other physical eq.
nodes have ‘None’ as physical property, which basically means that the AND nodes
pointing to these OR nodes cannot be currently implemented. The operation nodes
that fall outside the dashed-box represent the standard logical operation nodes while
the ones that are contained in them are the enforcers (shipping operators).

The goal of optimization in the context of constraint-aware processing is to find
an execution plan where all operators are labeled with a location convention. Hence,
after having expanded the physical AND-OR DAG, plan selection finally chooses
the cheapest plan traversing the graph by starting from the root. Only equivalences
nodes with location conventions are taken into account. The process starts selecting
the cheapest phyiscal equivalence node in the root and ends when the optimizer
reaches the leaves. For each physical equivalence node reached, the optimizer select
the cheapest operations (AND nodes) to implement it. For each operation node
reached, instead, all its children (OR nodes) are selected.
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Given these premises, in the next subsection we describe three type of optimiza-
tion rules which are used to explore all possible execution strategies.

4.3.1 Location-tailored Optimization Rules

As we already said in the Background Chapter, optimization rules are commonly
used in the query optimization process to generate alternative plans through series
of logical and physical transformations. The first kind are based on algebraic
equivalences between expressions and relational algebra equivalences, such as the join
associativity, are an example of such a type. Physical transformations, instead, handle
physical operation properties such as the location convention. In this subsection,
we provide location-tailored optimization rules, a type of physical rules, whose goal
is to expand the AND-OR DAG in two ways: (a) they assign location conventions
to operators, creating new physical equivalence nodes, (b) they inject shipping
operators, creating new physical operation nodes. These optimization rules are:

View-based rules whose job is to enforce the data movement constraints. Each
one is associated to a different constraint;

Propagation rules which propagate location conventions bottom-up the DAG;

Indirect Shipping rules which inject shipping operators where needed.

We will show the application of the above rules on the physical AND-OR DAG of
the plan originally shown in Figure 4.5. The physical counterpart is shown in Figure
4.8 .

Figure 4.8. Initial Physical AND-OR DAG
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View-based Rules

In Section 4.2, we discussed the compliance inference mechanism based on query
rewriting using views. If the (sub) query was either equivalent to the view or
subsumed by it, then its results could be shipped to the locations specified by the
legal set. View-based rules exploit this mechanism in the following way. Given a
view and its legal set, a view-based rule detects if it exists a subexpression in the
DAG such it ’matches’ the view expression by equivalence or subsumption. The
matching modalities depends on the underlying query rewriting mechanism one
decides to employ. When a match happens, the root of the matched subtree, a
physical equivalence node [e, L0], is replicated for each area A1, ..., Ak in the legal
set, creating the new physical nodes [e, L1], ..., [e, Lk]. Shipping operators are added
as many as needed to link the tree root to each of the new nodes. Let us consider
the case of where we can ship the whole American partition to Europe

CREATEVIEW EmpToEurope WITH LEGAL SET Europe
SELECT ∗ FROM Employee . America ;

Using the above rules, we will eventually match the physical node [Emp,Ame] and
create a new physical equivalence node with the European convention as we see in
Figure 4.9.

Figure 4.9. Physical DAG after having applied a View-base rule.

Propagation Rules

In order to have a fully specified compliant plan, all the tree nodes should be labeled
with a location convention, however, the previous type of rules only matches a
limited set of nodes, roots of subtrees associated to views. Propagation rules, as the
name suggests, propagate location properties from child to the parent, targeting
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a wider group of nodes and, hence, addressing the previous issue. These rules are
applied bottom-up since they match nodes which have at least one child labeled with
a location convention for then spreading it to the parent. As strict requirement, a
parent node can inherit a location property L only if all its children are labeled with
L. Trivially, an unary operator always inherit a location convention if its child has
it. Back to the plan in fig. 4.9, we see that the union operation has two equivalence
nodes in input. The left child has convention Europe while the right one convention
America. The union operation cannot take place anywhere since its children have
different location properties. However, the right child has a logically equivalent
node with the Europe convention, hence, propagation rules can be applied. When
this happens, a new union operation whose inputs and output both have Europe as
location property is created. The result is depicted in Figure 4.10. As we can notice,

Figure 4.10. Physical DAG after having applied Propagation rules.

the new union equivalence node [Emp,Eur] led to the fire of another propagation
rule for the upper projection creating the node [(Name,Address),Eur]. It is easy to
notice that now we can generate a compliant plan where the table Emp Europe is
shipped to America and all the subsequent operations are carried out there.

Indirect Shipping Rules

The last type of propagation rules is used to ensure that the planner consider different
placing of the shipping operator in the tree, not only where a view has been matched.
Consider the case of the physical DAG shown in fig. 4.7 where we pushed down the
projection past the union and let us focus only of the subtree involving Emp America.
Assuming that view-based and propagation rules have already been fired, the result
would be the one shown in Figure 4.11. The moment we choose the location for
the Emp America table (shipping it or not) all the subsequent operations have to
take place there, and, for example, the planner will never explore the possibility
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Figure 4.11. Subtree involving Emp America after having applied propagation and view-
based rules.

of shipping the result of the projection to another location. Certainly, shipping
only projected attributes instead of the whole table is cost-saving but no shipping
operator appears in the π(Emp America) node. Indirect propagation rules address
this problem creating shipping operators between the nodes; when a new physical eq.
node with location convention L1 is added to the same equivalent set of a physical
eq. node with location convention L2, two shipping operators in opposing direction
are created, linking the two nodes. The aftermath of the rule fire is shown in Figure
4.12.

Figure 4.12. Subtree after having fired an Indirect shipping rule.
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Chapter 5

Implementation

The previous Chapter 4 addressed the problem of generating compliant execution
plans in Geo-Distributed environments in presence of constraints. More specifically,
we showed we were able to explore the space of feasible solutions using location-
focused optimization rules within a top-down optimizer. In this Chapter, now, we
aim our attention at the system implementation of our work, its implementation
settings, and some exemplifying cases of user queries and constraints.

The chapter is structured as follow. Section 5.1 describes the data we used
and the Geo-distributed environment we set up. In order to carry out multiple
experiments, we simulated different data distribution scenarios changing both the
data sources involved and the federated schema available to the user. In Section 5.2
we delve into the details of the implementation, describing how we employed the
Apache Calcite software, a popular query parser and optimizer framework, to find
compliant execution strategies. Lastly, in Section 5.3, we examine some use-cases
scenarios and show how our system is able to provide feasible solutions.

5.1 Geo-distributed environment

In Section 2.3, we saw that even if data sources may heavily differ in storing and
organizing data, federated database systems address this heterogeneity issue by
defining a global schema, a unique logical view of the system which ignores the
specific data distributions, and mappings, queries that express which data in the
sources will be used to answer the user queries. As for the latter, there are two main
approaches to mapping definition: GAV, a table in the global schema is a query over
the sources, or LAV, a source table is defined as query over the global schema.

In this section we describe how we set up a simulating Geo-distributed en-
vironment comprising of multiple sources administered within a single federated
database so that we were able to test our system behavior in different use-cases.
More specifically, we decided to change our simulated environment according to: (a)
source schemes (b) mappings and global schema. Regardless of the experiment, we
preserved the following choices:

• Every data schema (global or local) is based on the logical design of the TPC-H
Benchmark [4] introduced shortly
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• Along the source dimension, we decided to have a total of five locations, namely
Africa, America, Asia, Europe, and Middle East, and have one data source
per location.

• In terms of mappings, we opted for the GAV definition since their query
rewriting was easy to implement.

With these given premises, we now describe in more details the data employed, the
Geo-distributed source settings, and finally the federated schema and mappings.

Data

The TPC-H is a decision support benchmark which includes a business oriented
schema and a synthetic data generator algorithm. Entities and relationships in the
schema reproduce realistic database settings in the industrial context and they were
therefore appropriate for our experimental environment. We designed global and
local schemes in our experiments using tables in TPC-H schema as reference and
filled them with synthetic data coming from the generator algorithm. TPC-H schema

Figure 5.1. TPC-H schema
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is depicted in figure 5.1. The table "Region" contains five names in total: Africa,
America, Asia, Europe, and Middle East. We chose the locations according to these
regions, for this reason we now will use the term region and location interchangeably.

Heterogeneous sources

In order to simulate Geo-distributed data sources, we set up five PostgreSQL servers,
one per location, running on the same machine over different ports. An additional
server, called the master, was set up to ease the data distribution process. This
server stored all the TPC-H tables filled with generated data. Since we wanted to
have different schemes for the sources, we wrote a Python script that allowed to
distribute data across the five locations in the following way. For a fixed table in the
master server, the user could decide to duplicate it at certain location or partition it
on region basis. The latter, in particular, is achieved through a series of joins across
the TPC-H tables until we reach the Region table. Obviously, not all tables can be
partitioned. For example, the table Supplier can be partitioned according to Nation
which in turns can be partitioned according to the Region while Part table has no
foreign keys chain to table Region and hence cannot be split. When the script runs,
it creates the custom schemas for each source and loads the data to the right server.
Considering only two locations, an example of Geo-distribution could be the one
shown below in Figure 5.2. Both locations have the same copy of the Region table

Figure 5.2. An example of Geo-distribution.

while only the America source has the table Part. The table Supplier, instead, has
been split on the basis of the location.

Mappings and Global Schema

Following the Geo-distribution of data between the five instances, our system was able
to connect to the relational databases using a model file containing the connection
credentials. With the connection set, the system read the source schemata and added
the source tables to the global schema by default, allowing us to query the single
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local tables. In order to define global tables involving more sources, we defined GAV
mappings by providing the new table name and the SQL query over the sources.
When a new user query is issued on the global schema, the global tables referenced
are resolved and substituted by the query definition. Consider the case where we
have the following mapping:

Customer → Customer.Africa ∪ Customer.America

where the global table Customer is expressed through the union of the American
and Africa partition. The user query

SELECT Name FROM Customer ;

is processed and resolved as the following

SELECT Name FROM (
SELECT ∗ FROM Customer . A f r i ca
UNION ALL
SELECT ∗ FROM Customer . America
) ;

Consequently, the initial query tree associated is expanded accordingly before
optimization, as we can see in Figure 5.3.

Figure 5.3. Before and after the query with mappings

5.2 System Implementation

In terms of implementation, our system is built in Java on top of Apache Calcite [6],
a popular open-source SQL parser and optimizer framework. There are three main
reasons on why we decided to employ Calcite in our project. First, Calcite handles
data engines heterogeneity providing schema and table abstractions, as well as
adapters for connecting to specific database types. Hence, we did not have to worry
about differences between database systems implementations. Second, its query
processing components, such as cost model, optimization rules and so on, are easily
extensible and allowed us to adapt the system to our needs. Last, Calcite is internally
used by other Big Data framework such as Flink, Storm, Drill, Hive and many others,
and so it makes the adoption of our system much easier. However, location traits
and data movement constraints are not concerned in Calcite’s optimization process
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as it is guided only by the default cost model and logical equivalence rules. We
extended the framework in the following three aspects.
Location-awareness for operators: We provided location conventions as physical
traits in order to evaluate Geo-distributed plans.
Extended Cost Model: The new cost model considers ‘Shipping cost’ as fourth
dimension. Since standard operations do not move data out of the source, only
Shipping Operators increase the shipping cost.
New Optimization Rules: We expanded the optimizer rule set with the new
optimization rules described in the previous chapter.

As it regards to the compliance inference mechanism discussed in Section 4.2, we
opted for the query rewriting approach discussed in [11] since we wanted to determine
in a fast and scalable way if a query could be expressed in terms of views. Furthermore,
they handle cases where both the query and the views involve selections, projections,
joins, and aggregations which is compatible with our preliminary assumption of
SQL-based analytics.

In terms of global optimizer, we employed Volcano [12], a top-down query
optimizer which efficiently explores plans thanks to memorization and branch-and-
bound pruning. The location-based optimization rules were given to the optimizer
together with other rules concerning the logical transformations. Rules were applied
starting from the root of the initial query tree until either a satisfactory solution
was found or there were no more transformations to apply.

5.3 Example use cases

In this section, we explore some exemplifying use cases of queries and constraints.
The cost model we employ is based of four dimensions: # of rows, CPU, I/O, and
shipping. They are merged by the following mock cost function

#rowcount + 2*shipping + (CPU + I/O + 1)/2

which gives much more weight to the shipping value. The latter is increased by
the shipping operators depending on the bandwidth between locations. Hence, for
example, it could be more expensive to send data from Europe to America rather
than sending to Africa.

Example #1

As first example, consider the scenario where there are three locations, Africa,
America, and Asia, and two tables, Orders and Lineitem. The Order table is
partitioned between Africa and America while the Lineitem table lies in Asia. As
we can tell from the TPC-H schema, the two tables are linked by the order key
attribute. Moreover, assume we have the following constraints:

1. Orders.Africa can freely be shipped to America

2. Orders.Africa can be shipped to Asia only if o_totalprice < 1000

3. Orders.America can freely be shipped to Asia
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4. Lineitem.Asia can be shipped to America only if 2016 ≤ l_shipdate ≤ 2019

The extended relational views associated to these data movements constraints are
the following:

CREATEVIEW C1 WITH LEGAL SET America AS:
SELECT ∗ FROM Orders . A f r i ca ;

CREATEVIEW C2 WITH LEGAL SET Asia AS:
SELECT ∗ FROM Orders . A f r i ca WHERE o_to ta lp r i c e < 1000 ;

CREATEVIEW C3 WITH LEGAL SET Asia AS:
SELECT ∗ FROM Orders . America ;

CREATEVIEW C4 WITH LEGAL SET America AS:
SELECT ∗ FROM Lineitem . Asia WHERE l_sh ipdate BETWEEN(2016 , 2019 ) ;

Lastly, in our user query, we ask for all information on lineitems that have been
shipped between the 2017 and 2018 and which are related to orders whose total
price is below 500.

SELECT ∗ FROM Linte i tem
JOIN Orders ON l_orderkey = o_orderkey
WHERE l_sh ipdate BETWEEN ( ’ 01−01−2017 ’ , ’ 01−01−2018 ’ )
AND o_to ta lp r i c e < 500

The query tree of one output of our system is shown in 5.4. It is easy to notice

Figure 5.4. First query tree of the first example.

that filters have been pushed down to the sources since it cheaper to carry out
the selection locally instead of shipping the whole table and doing the selection
later. The shipping operator Afr→Ame is the result of the view-based rule related
to constraint C1. Trivially, if the whole table is entitled to be moved from Africa
to America, shipping only a subsets of the rows is indeed compliant to C1. The



5.3 Example use cases 35

shipping operator Ame←Asi, instead, comes from the appliance of constraint C4 as
its relational view clearly includes the tuples requested by the query.

In the previous example, we consider that the cost of shipping between the
locations was equal. Suppose now that it is very expensive to move data outside
Asia. In this case the system would output the alternative compliant plan in Figure
5.5. As we could have expected, there are no data movements from Asia to other

Figure 5.5. Second query tree of the first example.

locations since they are hugely costly and most operations are executed there, even
the union. The two shipments from Africa and America to Asia are allowed by the
second and third constraints respectively.

Example #2

Suppose now we have the locations Europe and Middle East and two tables Customer
and Orders. The latter are partitioned between the locations. We have the following
constraints.

CREATEVIEW C1 WITH LEGAL SET MiddleEast AS:
SELECT c_name , c_phone , c_address ,SUM( o_to ta lp r i c e )
FROM Customer . Europe JOIN Orders . Europe ON c_custkey=o_custkey
WHERE o_orde rp r i o r i t y < 7
GROUPBY c_name , c_phone , c_address ;

CREATEVIEW C2 WITH LEGAL SET Europe AS:
SELECT c_name , c_phone , c_address
FROM Customer . MiddleEast ;

CREATEVIEW C3 WITH LEGAL SET Europe AS:
SELECT ∗ FROM Orders . MiddleEast ;

Let us observe that the first constraint refers to two tables belonging to the same
location. Assume the query is the following.



36 5. Implementation

SELECT c_name , c_phone ,SUM( o_to ta lp r i c e )
FROM Customer JOIN Orders ON c_custkey=o_custkey
WHERE o_orde rp r i o r i t y = 5
GROUPBY c_name , c_phone
HAVINGSUM( o_to ta lp r i c e ) > 500 ;

where we ask for the credentials of customers which spent more than 500 on average
priority orders. Two compliant execution strategies are depicted in Figure 5.6. As

Figure 5.6. Query trees of the second example.

before, most of the operations are pushed down the sources because the cost of
shipping heavily impact on the total cost of a plan. The difference between the two
lies only on where to execute the last operations. Both the Europe and Middle East
are possible final result locations since that constraint C1 allows the generation of
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the first plan while constraints C2 and C3 combined allows for the second.

Example #3

As last example, we want to show a case where the standard view matching approach
does not work. Consider the tables Supplier, Partsupp, and Lineitem which reside in
Europe, Asia, and America respectively. Assume we have the following constraints:

CREATEVIEW C1 WITH LEGAL SET Europe AS:
SELECT l_partkey , l_tax FROM Lineitem . America ;

CREATEVIEW C2 WITH LEGAL SET America AS:
SELECT ∗ FROM Partsupp . Asia ;

CREATEVIEW C3 WITH LEGAL SET Europe AS:
SELECT ps_partkey , ps_suppkey FROM Partsupp . Asia ;

Observe that no constraint refer Supplier.Europe and, because it is forbidden to
ship data from it outside the location boundaries, it implies that regardless of the
query involving the three sources, Europe must be the final location. Assume we
want to ask the following query:

SELECT partkey , suppkey , tax
FROM Lineitem . America , Partsupp . Asia , Supp l i e r . Europe
WHERE l_partkey=ps_partkey AND l_suppkey=ps_suppkey
AND ps_suppkey=s_suppkey

Our system will not be able to find a compliant execution plan since it is limited
by the standard notion of equivalence in query rewriting and does not know how
to ‘combine’ constraints. In Figure 5.7, for example, it is not possible to infer the

Figure 5.7. Example where query rewriting does not work.
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shipping operator highlighted in red even if we are not disclosing more information
than the views in the constraints already disclose. The optimizer will try to apply
the view-based rules associated to the constraints but it will only match the first
local projections in America and Asia. In order to match the projection after the first
join, the optimizer should understand that the three constraints can be combined
and allow the shipping operation to Europe. Addressing the following problem is
one of our future objectives.
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Chapter 6

Conclusion & Future work

In this thesis, we studied the problem of analyzing Geo-distributed data that is
subjected to data movement constraints. We showed that constraint-aware query
processing for Geo-distributed relational data is a feasible approach and the that our
solution could support current data analysis frameworks to find compliant execution
strategies in presence of strict data movement restrictions. We have provided a
formalism for data movements constraints that we believe is intuitive and easy to
employ by both constraint administrators and Geo-distributed data frameworks.
Through a high level description of constraints based on triples (D, M, L), the
constraint administrator of a specific location defines what portion of data should
be masked through a series of operations of their choice before being revealed to
sites in foreign locations. Mapping these abstract definitions to relational views has
the advantage of effortlessly implementing the constraint enforcement mechanism in
Geo-distributed data frameworks which already deal with relational data formats.
Nevertheless, the concept of "view" itself is present even in non-relational databases
such as CouchDB, MongoDB, and Cassandra and using a more specialized query
rewriting measure, we may be able to extend the compliance-inference mechanism
and deploy it in various data frameworks. Consequently, the set of optimization
rules we provided to seek compliant execution strategies can be naturally adapted
to these systems. Furthermore, we stacked our implementation on top of Apache
Calcite which is already adopted by many data frameworks such as Hive, Flink,
Storm, Drill etc. and these software can be easily enabled to work with data flow
restrictions between geographically sparsed sources.

To our knowledge, there are no current works on the topic that actually involves
the data sovereignty measures with data movements constraints in the optimization
process. Vulmiri et al. [16] considers the problems of privacy and data sovereignty
in building a data analysis distributed solution which pushes computations to the
hedges and optimizes the workflow. However, the authors do not directly address
these issues and, apart from avoiding a centralized approach to data processing,
they leave it as future objective. Geode [17], an extension of the previous work,
includes data sovereignty constraints in the site selection phase for distributed
query processing. In particular, they employ integer linear programming for seeking
solution that adhere to these constraints which minimize the total bandwidth cost.
Nevertheless, as they state in the limitation section, they allow arbitrary queries on
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the system and make no attempt to proscribe data movement by queries.
Future directions for our work concern three aspects:

1. extending our implementation to embrace non-relational databases;

2. considering more complex masking operations in constraints;

3. extending the query rewriting mechanism to the respect of constraints.

As we already mentioned, our current implementation in Apache Calcite only works
with relational databases and relational views and a reasonable extension would be
to augment the types of data engines that can be attached to our system and accept
non-relational databases also. In addition, the query rewriting mechanism should be
adapted accordingly in order to operate in the new data formats settings.

As regards to the second point, in this work we only focused on masking operations
achievable through relational algebra operators. In general, more complex masking
transformations are not forced to have a relational algebra counterpart such as
shuffling, bucketization, or generalization. The main issue of going beyond these
standard operators lies in the compliance-inference mechanism used, as most of the
query rewriting approaches are tuned on a limited set of queries in which general
user defined functions are ignored. One idea to overcome this issue and generalize
our approach to all types of concealment transformations would be to define masking
operations in terms of ‘masking properties’; these describe the characteristics of the
outcome of a masking transformation. As an example, the transformation which
shuffles the salaries between people belonging in the same department would still
enable the user to query for the sum of salaries grouped by department and hence it
is ‘sum-preserving’ respect to the department attribute. The constraint compliance
mechanism should adapted to work only on these properties instead of the definition
of the operations.

Finally, the third point would imply to improve the rewriting mechanism and
tailoring it to types of constraints. As we saw in an example in Chapter 5, there are
cases in which even if there is not an exact match between the views and the query, a
compliant plan could be found anyway. However, the system will not be able to find
such a compliant solution. The limitation in this approach is that the system does
not know how to combine the data movement constraints. Addressing this would
mean to understand the effect that more constraints have on the compliance and
build a mechanism which combines them accordingly during the plan exploration
phase.

In conclusion, we believe we have laid the groundwork for practical use of
constraint-aware query processing for Geo-distributed data as we think data sovereignty
measures and data movement restrictions will have a huge impact on the future of
query processing.
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