
Heartbeat detection and Arrhythmia classification
from the ECG signal using Machine Learning tech-
niques

Dipartimento di Informatica, Automazione e Gestionale

Corso di Laurea Magistrale in Master of Science in Engineering in Computer
Science

Candidate

Alessandro Scirè
ID number 1770594

Thesis Advisor

Prof. Ioannis Chatzigiannakis

Co-Advisor

Prof. Aris Anagnostopoulos

Academic Year 2017/2018



Thesis defended on 16 Gennaio 2019
in front of a Board of Examiners composed by:

Prof. Alessandro De Luca (chairman)
Prof. Ioannis Chatzigiannakis
Prof. Roberto Beraldi
Prof. Giorgio Grisetti
Prof. Massimo Mecella
Prof. Umberto Nanni
Prof. Fabio Patrizi

Heartbeat detection and Arrhythmia classification from the ECG signal using
Machine Learning techniques
Master’s thesis. Sapienza – University of Rome

© 2018 Alessandro Scirè. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 6, 2019

Author’s email: alescire94@gmail.com

mailto:alescire94@gmail.com


iii

Introduction

In the following document is described the usage of machine learning techniques for
the purpose of arrhythmia detection and classification from the ECG signal.
In the last 50 years, electrocardiogram (ECG) have been a powerful tool in the
exploration and diagnostic of heartbeat diseases. This approach gained a lot of
popularity due to the fact that the acquisition of data is not invasive for patients
and requires simple and cheap devices. Its wide employement allowed the medical
community to afford a huge amount of data to be analyzed.

The analysis of the ECG record is a time consuming process even for an
expert cardiologist, since it is a repetitive procedure applied to a long sequence of
heartbeats. Therefore, a lot of efforts have been employed in order to automate
this process. Furthermore, arrhythmias can take place in a healty heart and be of
minimal consequence but they may also indicate a serious problem that may lead to
stroke or sudden cardiac death. For this reason, automatic arrhythmia detection
is crucial in clinical cardiology especially when performed in real time, and that
is the point in which the field of machine learning comes in hand. The problems
of Heartbeat detection and Arrhythmia classification will be addressed in a
Supervised learning framework: the analysis of ECG tracings annotated from
expert cardiologists allows to extract useful knowledge applicable to real world
scenarios.

ECG devices are capable of recording the heart’s patterns are available only
in hospitals and are bulky for usage in outside place. To overcome this problem,
in the last years, wearable devices have been developed such as Wahoo Fitness
and Polar H10 Heart Rate Sensor. Currently available portable ECG devices rely
on 1-3 leads which have limited accuracy and reliability, as electromagnetic noise
may be either of environmental (e.g., mobile phones, electrical wires, appliances) or
internal origin (e.g., produced by muscular contractions) and remains a frequent
source of abnormally appearing ECGs. This problem is addressed by introducing
more than one recording points (three, six, twelve ECG leads) in order to
acquire more information from more than one heart regions. Considering additional
recording points increase the power consumption of the device and produce a
high-definition signal that requires bigger memory capacity to be stored [1]. This
creates a trade-off between accuracy and longevity of the wearable device. This
problem lead to the necessity of an efficient approach based on 1-2 Leads without
loosing accuracy for what concerns the R peak detection and the arrhythmia analysis.
In this study we demonstrate that such an approach based on Supervised Learning
is possible.



iv

A real time agorithm based on KNN has been developed for ECG peak
detection, we evaluated the performance with respect to the state of the art and, in
addition, we measured the computational time on Internet of Things (IoT) devices
such as Raspberry Pi 3 and two Android smartphones. This algorithm relies on a
single ECG lead, that means less battery consumption and memory usage, achieving
good results in terms of beat detection accuracy. Furthermore, we demonstrated that
they can operate in real-time on IoT devices which is a real improvement beacuse
there is no need to store the entire sequence of ECG data.

Use Cases

An automated healthcare application [2] allows patients to share information to their
physicians, monitor their health status independently and notify the authorities
rapidly in emergency situations. Any advanced healthcare monitoring system must
be used from both patients and doctors, offline or in real-time, and under all
circumstances. In general, a comprehensive healthcare monitoring system should
support patient self-monitoring, physician offline monitoring through accessing
obtained datasets from various user devices, physician online monitoring and patient
monitoring within healthcare infrastructures such as hospitals and day-care centers.
This analysis leads to the accurate definition of four use cases:

1. Patient self-monitoring: This use case refers to end-users that would like
to perform self-monitoring of their medical conditions.

2. Physician off-line monitoring: This scenario targets doctors that will use
healthcare products to monitor their patients either at their office or at a
patients home during a visit. The patients carry the wearable device at home
and then, after a period of time, return the device to their physician to acquire
the traces and conduct the diagnosis.

3. Physician on-line monitoring: This particular use case is an extension of
the previous one, where the patients use the device over an extended period of
time and the physician can remotely monitor the acquired vital traces via the
available cloud services.

4. Patient monitoring within Healthcare Infrastructures: Being the most
advanced scenario, this can take place inside an ambulance, hospital or adult
day-care center whereby the wearable devices, operated by a personal health
assistant instantly acquire the traces of the patient and enable real-time
monitoring of the data which are stored to the cloud services.

An example of such application is the HEART platform, that combines wearable
embedded devices, mobile edge devices, and cloud services to provide on-the-spot,
reliable, accurate, and instant monitoring of the heart. Initially, the wearable ECG
goes through a learning phase in order to collect an adequate number of ECG
recordings based on which we will train the pattern matching engine to match the
needs of the particular patient. This is a necessary first step as the evaluation
of and ECG depends on anthropometric data (body height and body weight) on



v

Information exchange during the three phases of Learning, Training and Detection, source:[1]

age and sex of a patient. During this phase, the wearable device is continuously
storing the ECG recordings and periodically forwards them to the nearby edge
device. This latter analyzes the received signal and forward it to the cloud services
along with computerized annotations. The authorized physician may view reports,
search traces and examine ECG alerts aggregated on the patient’s health records
remotely after they are synced with the cloud platform. The physician goes through
the annotated recordings and validates or rejects the computerized interpretations
depending on his expert assessment. When an adequate number of normal and
abnormal sessions have been identified by the authorized physician, the system is
ready to enter the training phase. The human-curated annotations are forwarded to
the edge device where the corresponding sessions are extracted from the local storage,
are analyzed to extract a carefully selected set of features. The features of each
session along with the annotations constitute the training vectors for the pattern
matching engine. When the training completes, the wearable device is ready to enter
the detection phase. During the detection phase the signals collected from the ECG
leads are analyzed and the features are extracted using the local processor. The
resulting vector is passed to the pattern matching engine for classification. In case
an abnormal event is detected, the wearable device is in a position to immediately
notify the authorized physician via a short message exchange including only the
alert type. As soon as the patient visits the physician, the complete ECG recordings
are relayed to the nearby edge device. The ECG recordings are finally uploaded
on the cloud platform where they become available to the authorized physician
for examination and assessment. The above described cycle of learning, training
and detecting is repeated periodically to re-evaluate the operation of the pattern
matching of the wearable device and fine-tune its performance. A wearable device
that is used for diagnosing and monitoring heart diseases needs to be capable of
collecting high-quality ECG traces. During the learning phase, the wearable device
is continuously storing the ECG traces on the internal memory. During this offline
monitoring period, the device is expected to store a recorded session of 24 hours.

List of Contributions

1. QRS KNN algorithm: A new algorithm for heartbeat detection is pre-
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sented, named QRS KNN, that exploits a different feature definition with
respect to the one explained in [3].This new approach has the advantage
of requiring a smaller amount of data for training, and resulted in perfor-
mances(Precision = 0.988 , Recall = 0.923) comparable to the State of the
Art approaches and lower computational time for both the training and classi-
fication steps with respect to the implementation of [3].

2. KNN algorithm: The procedure based on the KNN(K Nearest Neighbors)
algorithm, described in [3], has been implemented in order to provide a baseline
for comparison with the QRS KNN. Therefore, the algorithm performance has
been evaluated and the computational time has been measured.

3. First-order difference Algorithm: The first-order difference approach
is a naive algorithm designed to find the local maxima in a generic signal.
The decision of implementing this approach was taken in order to have a
comparison between ad-hoc methods for ECG analysis for heartbeat detection
and a standard signal processing module.

4. Recurrent Neural Network: The heartbeat detection module aims to
identify the heartbeats along the ECG tracing. The output of this module is
then feed to the Arrhythmia classification stage. A Recurrent Neural Network
has been designed and trained in order to discriminate normal heartbeats to
the arrhythmic ones. The detected arrhythmic beats are then classified in more
fine-grained classes, defined by a well-known standard for cardiac algorithm
evaluation[4].

5. Comparative Evaluation: A comparative evaluation of the various ap-
proaches for both heartbeat detection and arrhythmia classification described in
this study has been provided according to the correctness of the results and the
computational time. The computational time has been measured executing the
various algorithms on three different platforms: an Intel®Core™i3-3240 CPU
@3.40GHz, an Arm Cortex-A53 CPU @2.1GHz and a Qualcomm SnapDragon
600 CPU @1.9 GHz.

Document Structure
• Chapter 1: introduction into the cardiological field, and the relationship

between the ECG signal morphology and the cardiac cycle.

• Chapter 2: description of the approach followed for the heartbeat detection
along an ECG record and comparisons with standard solutions.

• Chapter 3: arrhythmia classification procedure and description of the results.

• Chapter 4: Conclusions and future work
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Chapter 1

The Heartbeat Cycle:
Arrhythmia interpretation on
the ECG signal

The electrical activity of the heart can be monitored by the ECG tracing, while
the mechanical activity is evaluated by assessing pulses and blood pressure [5]. An
ECG record is designed to give a graphic display of the electrical activity of the
heart. The pattern displayed on the ECG is called rhythm. Therefore, the word
arrhythmia refers to an abnormal heart rhythm.

1.1 The electrical activity of the heart

At the start of the cycle, when the heart is in a resting state, positive and negative
electrical charges are balanced. This is called the polarized state, where no electrical
flow is generated. A difference of potential between the inside of the heart and the
outside is needed for the organ in order to receive the stimulus to start beating.
When the charges inside and outside the earth trade places, the electricity flows in
a wave-like motion throughout the heart. This wave is called depolarization, i.e.
the process of the electrical discharge and flow of electrical activity. The process
that follows the depolarization, which brings the heart ot the initial state, is called
repolarization.

1.2 Heart conduction system

The electrical cells in the heart are all arranged in a system of pathways, called the
conduction system. The study of this system is an essential part for the arrhythmia
interpretation purpose. Normally, the electrical originates in the Sinoatrial(SA) node
and travels to the ventricles by way of the AV node; 1.1 after leaving it, the impulses
go through the Bundle of His to reach the right and left bundle branches, located
within the right and left ventricles. At the terminal ends of the bundle branches,
small fibers distribute the electrical impulses to muscle cells to stimulate contraction.
These fibers are called Purkinje fibers.



2 1. The Heartbeat Cycle: Arrhythmia interpretation on the ECG signal

Figure 1.1. Electrical Conduction through the Heart, source:[5]

Each site has its own rate, called inherent rate at which it initiates impulses.
The SA node, in normal conditions, has the greatest inherent rate; for this it is the
normal pacemaker of the heart. If, however, a site becomes irritable and begins to
discharge impulses at a faster than normal rate, it can override the SA node and
take over the pacemaking function for the heart. This mechanism of an irritable
site speeding up and taking over as pacemaker is called irritability. It is usually
an undesirable occurrence, since it overrides the normal pacemaker and causes the
heart to beat faster than it otherwise would. Something very different happens if
the normal pacemaker slows down for some reason. If the SA node drops below
its inherent rate, or if it fails entirely, the site with the next highest inherent rate
will usually take over the pacemaking role. The next highest site is within the AV
junction , so that site would become the pacemaker if the SA node should fail. This
mechanism is called escape and is a safety feature that is built into the heart to
protect it in case the normal fails.

1.3 Waves and measurements

The electrical patterns of the heart can be picked up from the surface of the skin
by attaching an electrode and connecting it to a machine that will display the
electrical activity on a graph paper. There is a basic rule regarding the flow of
electricity through the heart and out of the electrodes: if the electricity flows toward
the positive electrode, the patterns produced on the graph paper will be upright.
Conversely, if the electricity flows away from the positive electrode or passes through
the negative one, the pattern will be a downward deflection. 1.2
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Figure 1.2. Rule of electrical flow, source:[5]

1.3.1 Monitoring leads

The positioning of an electrode for monitoring the ECG allows to see a single
view of the heart’s electrical pattern. Each view of the heart is called lead. For
sophisticated ECG interpretation, many leads are inspected to visualize the entire
heart, however for basic interpretations of arrhythmia only one single lead can be
considered sufficient. Single lead that give good pictures of the basic waves are called
monitoring leads beacuse they are used to monitor patterns such as arrhythmia. The
first widely used monitoring lead was Lead II, but now it is common to use other
leads as well, especially variations of the chest leads(MCL1 for instance). Figure
1.3 shows the placement of electrodes to monitor Lead II. Note that the positive
electrode is at the apex of the heart, and the negative electrode is below the right
clavicle.The third electrode is a ground electrode and does not measure electrical
flow in this lead. A widely used configuration of electrodes is one composed of 10
electrodes: one of the electrodes is positioned on the left arm (LA), on on the right
arm (RA), one on the left leg (LL), one on the right leg (LL) and six on the chest(V1
to V6), allowing a formation of 12 leads[6]. The 10 electrodes (12 lead) configuration
can be seen in 1.4



4 1. The Heartbeat Cycle: Arrhythmia interpretation on the ECG signal

Figure 1.3. Electrode Placement for Monitoring Lead II, , source:[5]

Figure 1.4. Typical 10 electrodes configuration, source:[6]

1.3.2 Time and voltage measurements

It is the strength of the current, or its voltage, that will determine the magnitude of
the deflection. Therefore, the height of the deflection will indicate the amplitude of
the electrical charge that produced the deflection. The second, and more important
thing that the graph paper can provide is the determination of time. The vertical
lines in the graph paper can tell how much time it took to the electrical current
within the heart to travel from one area to another. This information is one of the
most important for identifying an arrhythmia.

1.3.3 Cardiac cycle from the ECG perspective

The heart has four chambers: the upper two are the atria and the lower two are
the ventricles. Atria and ventricles both operates as a single unit. In the normal
heart, blood enters both atria simultaneously and then is forced into both ventricles
simultaneously as the atria contract. All of this is coordinated so that the atria fill
while the ventricles contract and viceversa. During each phase of the cardiac cycle, a
distinct pattern is produced on the ECG graph paper. By learning to recognize these
wave patterns and the cardiac activity they represent, we can study the relationships
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between the different areas of the heart and begin to understand what is taking
place within the heart at any given time.

In the ECG, each of the heartbeat phases is displayed by a specific wave pattern.
A single cardiac cycle is expected to produce one heartbeat. In labeling the activity
on the graph paper, the deflection above or below the median (a.k.a. isoelectric) line
are called waves. In a single cardiac cycle there are five prominent waves, and each
is labeled with a letter. In Figure 1.5 is it possible to determine the P, Q, R, S and
T waves. An interval refers to the area between waves, and a segment identifies a

Figure 1.5. The ECG complex

straight line or area of electrical inactivity between waves.

The first identifiable wave of the cardiac cycle is the P wave. The P wave
starts with the first deflection from the isoelectric line. It is indicative of atrial
depolarization.

As the impulse leaves the atria and travels to the AV node, it encounters a slight
delay. The tissues of the node do not conduct impulses as fast as other cardiac
electrical tissues. This means that the wave of depolarization will take a longer time
to get through the AV node than it would be in other parts of the heart. On the
ECG, this is translated into a short period of electrical inactivity called the PR
segment.

The subsequent wave is the QRS complex. The ventricular depolarization is
shown by the ECG by a large complex of three waves: the Q, the R, and the S.
This wave is significantly larger than the P wave beacuse ventricular depolarization
involves a greater muscle mass than atrial depolarization. The Q wave is defined as
the first negative deflection following the P wave but before the R wave. The Q wave
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flows immediately into the R wave, which is the first positive deflection following
the P wave.

Next comes the S wave, which is defined as the second negative deflection
following the P wave, or the first negative deflection following the R wave.

After the ventricles depolarize, they begin their repolarization phase, which results
in another wave in the ECG. The T wave is indicative of ventricular repolarization.
The atria also repolarize, but this event is not significant enough to show up in the
ECG.

Between the S and the T wave is a section called the ST segment. The ST
segment is the flat, isoelectric section of the ECG between the end of the S wave and
the beginning of the T wave. It represents the interval between ventricular depolari-
sation and repolarisation. The most important cause of ST segment abnormality
(elevation or depression) is myocardial ischaemia / infarction.

1.3.4 Artifacts

The complexes on an ECG tracing are created by electrical activity within the heart.
But it is possible for things other than cardiac activity to interfere with the tracing
under analysis. Some common causes of interference, or, artifact are:

• Muscle tremors

• Patient movement

• Loose electrodes

• The effect of other electrical equipment in the room.

All these artifacts may interfere with the arrhythmia interpretation, because they
may cause deflections on the signal.

1.3.5 Refractory Periods

Since depolarization takes place when the electrical charges begin their wave of
movement by exchanging places across the cell membrane, it would follow that this
process cannot take place unless the charges are in their original position. This
means that the cell cannot depolarize until the repolarization process is complete.
When the charges are depolarized and have not yet returned to their polarized state,
the cell is said to be electrically refractory because it cannot yet accept another
impulse.

On the ECG, the refractory period of the ventricles is when they are depolarizing
or repolarizing. Thus, the QRS and the T wave on the EKG would be considered
the refractory period of the cardiac cycle, since it signifies a period when the heart
would be unable to respond to an impulse. Sometimes an electrical impulse will try
to discharge the cell before repolarization is fully complete. In most cases nothing
will happen because the cells are not back to their original position and therefore
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cannot depolarize. But once in a while, if the stimulus is strong enough, an impulse
might find several of the charges in the right position and thus discharge them before
the rest of the cell is ready. This results in abnormal depolarization and hence is an
undesirable occurrence. Thus, there is a small part of the refractory period that is
not absolutely refractory. This small section is called the relative refractory period
because some of the charges are polarized and thus can be depolarized if the impulse
is strong enough.

1.4 Basic Arrhythmias

Arrhythmia analysis is a quite complex task since not only does every person on
earth have his or her own individual ECG, distinct from all others, but one person’s
ECG can look very different from one moment to the next. It is inadequate to
memorize some of the most common ECG patterns and trying to recognize them in
the future. This type of ECG analysis is called pattern recognition and is a common
but accidental way to approach arrhythmias. A much more reliable way to approach
an EKG tracing is to take it apart, wave by wave, and interpret exactly what’s
happening within the heart.

Arrhythmias can be categorized into groups according to which pacemaker site
initiates the rhythm. The most common sites, and thus the major categories of
arrhythmias, are:

• Sinus

• Atrial

• Junctional

• Ventricular

The most common cardiac rhythm is sinus in origin, because the sinus(SA) node is
the usual pacemaker of the heart (Section 1.2). Therefore, a normal, healthy heart
would be in Normal Sinus Rhythm (NSR) because the rhythm originated in
the SA node.

1.4.1 Sinus Rhythms

This category comprehends the rhythms originating in the Sinus node (SA) (Section
1.2). This group includes:

• Normal Sinus Rhythm

• Sinus Bradychardia

• Sinus Tachycardia

• Sinus Arrhythmia
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Technically speaking, the Normal Sinus Rhythm is not an arrhythmia beacause it
is a normal, rhythmic pattern. In a Normal Sinus Rhythm 1.6 the pacemaker impulse
originates in the sinus node and travels through the normal conduction pathways
within normal time frames. The P waves will be uniform, and since conduction
is normal, one P wave will be in front of every QRS complex. Since the SA node

Figure 1.6. Mechanism of the Normal Sinus Rhythm, source:[5]

inherently fires at a rate of 60-100 times per minute, a Normal Sinus Rhythm must,
by definition, fall within this rate range.

If a rhythm has all the characteristics of a NSR except fot the rate, that is lower
than 60 bpm, it is called a bradychardia(Fig. 1.7), meaning slow heart.

Figure 1.7. Mechanism of Sinus Bradychardia, source:[5]

The same thing is true for a rhythm that fits all of the rules for NSR except
that the rate is too fast. When the heart beats too fast, it is called tachycardia,
meaning fast heart. So a rhythm that originates in the sinus node and fits all rules
for NSR except that the rate is too fast will be called Sinus Tachycardia(Fig. 1.8).

Figure 1.8. Mechanism of Sinus Tachychardia, source:[5]
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Finally, The Sinus Arrhythmia(Fig.1.9) is characterized by a pattern that
would normally be considered NSR, except that the rate changes with the patient’s
respirations. When the patient breathes in, the rate increases, and when he or she
breathes out, the rate slows. This causes the R-R interval to be irregular across the
strip. The result is a pattern with an upright P wave in front of every QRS complex,
a normal and constant PRI, a normal QRS complex, but an irregular R-R interval.
The difference between NSR and Sinus Arrhythmia is that NSR is regular and Sinus
Arrhythmia is irregular.

Figure 1.9. Mechanism of Sinus Arrhythmia, source:[5]

1.4.2 Atrial Rhythms

Sometimes the sinus node loses its pacemaking role, and this function is taken over
by another site along the conductive system. The site with the fastest inherent rate
usually controls the pacemaking function, as explained in Section 1.2. Since the
atria have the next highest rate after the SA node, it is common for the atria to
take over from the SA node. Rhythms that originate in the atria are called atrial
arrhythmias. Atrial arrhythmias are caused when the atrial rate becomes faster
than the sinus rate, and an impulse from somewhere along the atrial conduction
pathways is able to override the SA node and stimulate depolarization. As with a
sinus rhythm, an impulse that originates in the atria will travel through the atria
to the AV junction anf then through the ventricular conduction pathways to the
Purkinje fibers. The only difference is in the atria, where the conduction will be a
little slower and rougher than it is with sinus rhythms.

Since atrial depolarization is is seen on the ECG as a P wave, it is expected
to be of unusual shape. It can be flattened, notched, peaked, sawtoothed or even
diphasic( meaning that it goes first above the isoelectric line and then dips below it.)

The first presented atrial arrhythmia is called Wandering Pacemaker (Figure
1.10). Wandering Pacemaker is caused when the pacemaker role switches from beat
to beat from the SA node to the atria and back again. The result is a rhythm
made up of interspersed sinus and atrial beats. The sinus beats are preceded by
nice, rounded P waves, but the P wave changes as the pacemaker drops to the atria.
The P waves of the atrial beats are not consistent and can be any variety of atrial
configuration (e.g., flattened, notched, diphasic). In Wandering Pacemaker, the
rhythm is usually slightly irregular.
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Figure 1.10. Mechanism of Wandering Pacemaker, source:[5]

When a single beat arises from an ectopic focus (a site outside of the SA node)
within the conduction system, that beat is called ectopic beat. When an ectopic
beat originates in the atria, it is called and atrial ectopic. An ectopic beat arises
when a site somewhere along the conduction system becomes irritable and overrides
the SA node for a single beat.

An atrial ectopic that is caused by irritability is called a Premature Atrial
Complex(PAC)(Figure 1.11). A PAC is an ectopic beat that comes early in the
cardiac cycle and originates in the atria.

Figure 1.11. Mechanism of Premature Atrial Complex, source:[5]

A rhythm with PACs will be irregular beacuse the ectopics come permaturely
and interrupt the underlying rhythm. Because PACs originate in the atria, they will
have a characteristic atrial P wave that differs in morphology from the sinus P wave.

It is also possible for a single focus in the atria to become so irritable that it begins
to fire very regularly and thus overrides the SA node for the entire rhythm. This
arrhythmia is called Atrial Tachycardia (AT) (Figure 1.12) Atrial Tachycardia

Figure 1.12. Mechanism of Atrial Tachycardia, source:[5]
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will have all of the charachteristics of a PAC, except that is an entire rhythm instead
of a single beat. All of the P waves in AT will have an atrial configuration. Atrial
Tachycardia is a charachteristically very regular arrhythmia. It is usually very rapid,
with a rate range between 150 and 250 bpm.

When the atria become so irritable that they fire faster than 250 bpm, they are
said to be fluttering.This rhythm is called Atrial Flutter. In this case the atrial
rate is usually in the range of 250-350 bpm.

Figure 1.13. Mechanism of Atrial Flutter, source:[5]

The problem with a heart rate this rapid is that the ventricles don’t have
enough time to fill with blood between each beat. The result is that the ventricles
will continue to pump but they won’t be ejecting adequate blood volume to meet
body needs. The heart has a built-in protective mechanism to prevent this from
happening: the AV node. The AV node is responsible for preventing excess impulses
from reaching the ventricles. This blocking action allow the ventricles to have time
to fill with blood before they have to contract. This will be seen on the ECG as a
very rapid series of P waves(Flutter Waves), but not every one followed by a QRS
complex.

The last atrial arrhythmia in this study is the Atrial Fibrillation(Figure 1.14)
This rhythm result when the atria become so irritable that they are no longer
beating but are merely quivering ineffectively. This quivering ineffectively is called
fibrillation. On the ECG tracing it is seen as a series of indescirnible waves along

Figure 1.14. Mechanism of Atrial Fibrillation, source:[5]

the isoelectric line. In Atrial Fibrillation there are no discirnible P waves. The
fibrillatory waves characteristic of Atrial fibrillation are called f waves. The rhythm
is grossly irregular because the fibrillatory waves are conducted in a very chaotic
way.
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1.4.3 Ventricular Rhythms

Ventricular Arrhythmias are very serious for several reasons. First, the heart was
intended to depolarize from the top down. The atria were meant to contract before
the ventricles in order to pump blood effectively. When an impulse originates in
the ventricles, the process is reversed, and the heart’s efficiency is greatly reduced.
Furthermore, since the ventricles are the lowest site in the conduction system, there
are no more fail-safe mechanisms to backup a ventricular arrhythmia. In this section
five ventricular arrhythmias are presented:

• Premature Ventricular Contraction

• Ventricular Tachychardia

• Ventricular Fibrillation

• Idiovenrticular Rhythm

• Asystole

The Premature Ventricular Complex(PVC)(Figure 1.15)is not a rhythm
but instead a single ectopic beat originating from an irritable ventricular focus. For
this reason, the complex will come earlier than expected on the cardiac cycle and will
interrupt the regularity of the underlying rhythm. Because PVCs originate in the
ventricles, the QRS will be wider than normal. But a second feature of a ventricular
focus is that there is no P wave preceding the QRS complex. One of the things that

Figure 1.15. Mechanism of Premature Ventricular Contraction, source:[5]

gives a PVC a bizarre appearance, in addition to the width of the QRS complex, is
the tendency for PVCs to produce a T wave that extends in the opposite direction
of the QRS complex. Another frequent feature that may be helpful in identifying a
PVC is the compensatory pause that usually follows a ventricular ectopic.

A compensatory pause is created when a PVC comes early, but since it doesn’t
conduct the impulse retrograde through the AV node, the atria are not depolarized.
This leaves the sinus node undisturbed and able to discharge again at its next
expected time. The result is that the distance between the complex preceding the
PVC and the complex following the PVC is exactly twice the distance of one R-R
interval.
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Another configuration possibility is that the PVC be followed by no pause what-
soever. This occurs when the PVC squeezes itself in between two regular complexes
and does not disturb the regular pattern of the sinus node. This phenomenon is
called an interpolated PVC, because the PVC inserts itself between two regular
beats

If the myocardium is extremely irritable, the ventricular focus could speed up and
override higher pacemaker sites. This would create what is essentially a sustained
run of PVCs. This rhythm is called Ventricular Tachychardia(VT)(Figure 1.16)
In ventricular tachychardia you will see a succession of PVCs across the strip at a

Figure 1.16. Mechanism of Ventricular Tachychardia, source:[5]

rate of about 150-250 bpm. This arrhythmia usually has a very uniform appearance,
even though the R-R interval may be slightly irregular. It is possible for VT to
occur at slower rates, but when it does, it is qualified by calling it a slow VT. All
the description related to PVCs apply to VT.

In extremely severe cases of ventricular irritability, the electrical foci in the
ventricles can begin fibrillating. This means that many foci are firing in a chaotic,
ineffective manner, and that the heart muscle is unable to contract in response.
Ventricular Fibrillation(Figure 1.17) is a lethal arrhythmia, since the rhythm is
very chaotic and ineffective. Ventricular Fibrillation (VF) is probably the easiest of

Figure 1.17. Mechanism of Ventricular Fibrillation, source:[5]

all the arrhythmias to recognize. This is because there are no discernible complexes
or intervals and the entire rhythm consists of chaotic, irregular activity. VF has no
measurable waves or complexes.

There are two ways a ventricular focus can assume control of the heart. One is
irritability and the other is escape(see Section 1.2). A ventricular escape rhythm
is one that takes over pacemaking in the absence of a higher focus and depolarizes
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the heart of the inherent rate of the ventricles, which is 20-40 bpm. This rhythm
is called Idioventricular Rhythm(Figure 1.18). It is not possible to see P waves
in an Idioventricular Rhythm, since the escape mechanism would take over only if
the atrial pacemaker sites had failed. Idioventricular Rhythm is initiated by the

Figure 1.18. Mechanism of Idioventricular Rhythm, source:[5]

very last possible fail-safe mechanism within the heart. When the rhythm is in its
terminal stages, that is, as the patient is dying, the complexes can lose some of their
form and be quite irregular. In this stage, the arrhythmia is said to be agonal, or
a dying heart. The word agonal is used to describe a terminal, lethal arrhythmia,
especially when it has stopped beating in a reliable pattern. Idioventricular Rhythm
is an agonal rhythm, especially when the rate drops below 20 bpm and the pattern
loses its uniformity.

The last stage of a dying heart is when all electrical activity ceases. This results
in a straight line on the ECG, an arrhythmia called Asystole Asystole is a lethal

Figure 1.19. Mechanism of Idioventricular Rhythm, source:[5]

arrhythmia that is very resistant to resuscitation effort

1.4.4 Junctional Rhythms

The AV junction consists of the AV node and the Bundle of His(see Section 1.2).
This unique part of the conduction system is responsible for conducting impulses
from the SA node down the conduction pathways to the ventricles. The body of
the AV node is responsible for delaying each impulse just long enough to give the
ventricles time to fill before contracting. The lower region of the AV junction
houses the pacemaking cells that initiate the group of arrhythmias called junctional
rhythms.
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When electrical impulses originate in the AV junction, the heart is depolarized in
a somewhat unusual fashion: with the pacemaker located in the middle of the heart,
the impulses spread in two directions simultaneously(see Figure 1.20). Recalling
from Section 1.3.1, electrode positions for Lead II place the negative electrode
above the right atria and the positive electrode below the ventricle. In the normal

Figure 1.20. Electrical Flow in Junctional Arrhythmias, source:[5]

heart, the major thrust of electrical flow is toward the ventricles (and toward the
the positive electrode in Lead II), thus producing an upright QRS complex. In a
junctional rhythm, the ventricles are depolarized by an impulse travelling down the
conduction system toward the positive electrode; thus the QRS complex is upright.
But, at the same time, the impulse can spread upward through the atria toward the
negative electrode. When the atria are depolarized in this backward fashion, it is
called retrograde conduction because the electrical impulse travels in the opposite
direction it usually takes. Thus, the atrial activity will produce a negative deflection
on the ECG. In other words, the P wave of an AV junctional arrhythmia should
be inverted beacuse it was produced by an impulse travelling toward the negative
electrode.

In junctional arrhythmias, the P wave does not always have to precede the QRS
complex beacause it is possible for the ventricles to be depolarized before the atria,
if the force reach them first. If they both depolarize simultaneously the P wave will
be hidden within the QRS complex.

The junctional pacemaker site can produce a variety of arrhythmias, depending
on the mechanism employed. Four basic mechanisms common to the AV junction
will be discussed:

• Premature Junctional Complex

• Junctional Escape Rhythm

• Accelarated Junctional Rhythm

• Junctional Tachycardia

The Premature Junctional Complex or PJC (Figure 1.21), is not an entire
rhythm; it is a single ectopic beat. A PJC is similar in many ways to a Premature
Atrial Contraction(PAC)(see Section 1.4.2). In the case of PJC, the irritable focus
comes from the AV junction to stimulate an early cardiac cycle, which interrupts
the underlying rhythm for a single beat. The P wave of a PJC is inverted as for the
others junctional arrhythmias.
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Figure 1.21. Mechanism of Premature Junctional Complex, source:[5]

A Junctional Escape Rhythm (Figure 1.22) is expected to have a rate of
40-60 bpm since this is the inherent rate of the AV junction.

Figure 1.22. Mechanism of Junctional Escape Rhythm, source:[5]

A junctional escape rhythm has all the characteristics previously described of a
junctional arrhythmia. Such rhythm us a fail-safe mechanism rather than an irritable
arrhythmia(see Section 1.2). However, the AV junction is capable of irritability
and is known to produce an irritable arrhythmia called Junctional Tachycardia.
This rhythm occurs when the junction initiates impulses at a rate faster than its
inherent rate of 40-60 bpm, thus overriding the SA node. Junctional Tachycardia is
usually divided in two categories, depending on how fast the irritable site is firing.
If the junciton is firing between 60 and 100 bpm, the arrhythmia is termed an
Accelarated Junctional Rhythm(Figure 1.23 ) When the rate exceeds 100 bpm,

Figure 1.23. Mechanism of Accelerated Junctional Rhythm, source:[5]

the rhythm is considered a Junctional Tachycardia (Figure 1.24 )

Junctional Tachycardia can be as fast as 180 bpm, but at this rapid rate, it is
extremely difficult to identify positively since P waves are superimposed on preceding
T waves.
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Figure 1.24. Mechanism of Junctional Tachycardia, source:[5]

The only difference appreciable on the ECG signal among Junctional Escape
Rhythm, Accelarated Junctional Rhythm and Junctional Tachycardia is the rate.
The rates are listed in table 1.1 :

Rhythm Rate(bpm)

Junctional Escape 40-60

Accelerated Junctional 60-100

Junctional Tachycardia 100-180
Table 1.1. Rates of Junctional Rhythms, source:[5]
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Chapter 2

Heartbeat Detection

The first stage of an arrhythmia detection system consists in the extraction of
heartbeats along the ECG signal. In the following chapter it is described the
Heartbeat Detection module, aimed to locate a sequence of heartbeats inside a
raw ECG signal.

The heartbeat, as observed in the ECG tracing, is composed by three waves
(Section 1.3.3): the P, QRS and the T wave. The most prominent in terms of
amplitude is the QRS wave and therefore it is the easiest to detect. Hence, the
heartbeat detection problem is equivalent to the QRS detection.

The QRS detection problem, on its standard formulation, takes as input an ECG
sample and computes whether it resides in a QRS wave.

QRS detection is difficult, because the beat morphology varies along the time,
and different sources of noise can be present[7]. Noise sources include muscle noise,
artifacts (Section 1.3.4) due to electrode motion, power-line interference, baseline
wander, and T waves with high-frequency characteristics similar to QRS complexes.[9]

Most QRS detection algorithms have two differentiated stages: preprocessing
and decision [8]. In preprocessing stage different techniques are applied to the signal,
such as linear and non-linear filtering or smoothing to attenuate P and T waves
as well as noise. In decision stage the most important task is the determination of
thresholds and in some cases the use of techniques to discriminate T waves. Some
algorithms include another decision stage to reduce false positives.

Once the QRS waves have been detected, it is possible to solve the more specific
R Peak detection problem: The R peak is the sample of maximal amplitude
inside the QRS wave. From the locations of the R peaks in the ECG tracing it
is possible to extract the complete sequence of heartbeats, useful for arrhythmia
analysis purposes.

In this work, the R peak detection problem is formalized as a Machine Learn-
ing task. This is possible when dealing with databases annotated by expert
cardiologists: a learning algorithm is trained on the labeled data in order to ex-
tract useful knowledge to be applicable to real world data. This scenario is the
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standard Supervised Learning framework. In this study, two Supervised learning
approaches based on the KNN algorithm have been implemented and evaluated in
terms of quality of the results and computational time measured on different IoT
platforms. Another algorithm has been implemented in order to provide a more
complete comparison: the First-Order difference algorithm is a naive algorithm
designed to find the local maxima in a generic signal. The decision of considering
this approach was taken in order to have a comparison between ad-hoc methods for
ECG analysis for heartbeat detection and a standard signal processing module.

In Section 2.1 a selection of the most representative state of the art algorithms for
R Peak detection, including the aforementioned one, have been described. In Section
2.2 it is possible to find a description of the procedures based on the KNN algorithm
implemented in this study in order to solve the heartbeat detection problem. In
Section 2.3 we define the assumptions considered for evaluating the procedures
in terms of correctness of the results and computational time. In Section 2.4 we
report all the combinations of parameters studied and the obtained score, in order
to select the best ones for each beat detection algorithm. In Section 2.5 a complete
comparison between the implemented approaches is presented.

2.1 State of the art

2.1.1 Artificial Neural Network

The approach described in [10] consists in a novel QRS complex detector using 3-
layer artificial feedforward back propagation neural network. The training
method is Levenberg-Marquardt back propagation. After baseline drifts elimi-
nation and lowpass filtering, each sample in ECG signal is extractedand then
given as input to the neural network. The algorithm is tested with the MIT-BIH
Arrhythmia Database records and the accuracy is 99.5%. Baseline drifts elimination
is done using two median filters (200-ms and 600-ms). The 200-ms median filter
is for removing QRS-complexes and P-waves while the 600-ms median filter is for
removing the T-waves. By subtracting the filtered signal from the original signal,
the baseline drifts and artifacts are removed. In order to reduce the size of the
input of the neural network, features of each sample are firstly extracted. This is
accomplished by a function called Features Extractor whose inputs are the ECG
signal and the sample identifier, n . The output of Features Extractor is a matrix of
three rows of values, which are shown below.

1. The average amplitude of the samples from n -16 to n +16

2. The average of derivatives of samples before n, which are n− 1, n− 2, n− 5,
n− 10, n− 20, n− 50, n− 100.

3. The average of derivatives of samples after n , which are n+ 1, n+ 2, n+ 5,
n+ 10, n+ 20, n+ 50, n+ 100.

The output of the ANN is just a number which ranges between -1 and 1. By using a
Sign function, the positive output values of ANN means the corresponding samples
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are determined to be R-peak and the negative output values means the corresponding
samples are determined not R-peak.

In the conclusive section of the paper is reported that the accuracy obtained
on the recordings of MIT-BIH arrhythmia database used as test is 99.5%, but it
is not clear what criterion has been followed for the dataset partition in training
and test set. Furthermore, the accuracy measure is not relevant in this context,
because of the Accuracy paradox.1 Precision and recall measures are more reliable
in classification problems in which one or more classes are dominant with respect to
others.

2.1.2 Convolutional Neural Network

In the paper [11] it is presented a QRS detection algorithm based on pattern
recognition as well as a new approach to ECG baseline wander removal and signal
normalization. Each point of the zero-centred and normalized ECG signal is a
QRS candidate, while a 1-D CNN classifier serves as a decision rule. Positive
outputs from the CNN are clustered to form final QRS detections. The data is
obtained from the 44 non-pacemaker recordings of the MIT-BIH arrhythmia
database. Classifier was trained on 22 recordings and the remaining ones are used
for performance evaluation. The preprocessing step is conducted solely to ensure the
data is zero-centred and normalized for the classifier training and prediction step.
The idea is to have a well extracted ECG morphology, with as little information loss
as possible. Every point of the signal was described by a sample of 145 neighbouring
points, resulting in a total of 14296832 data samples. Each data sample is labelled
positive if the candidate point is inside a Âś40ms distance of an original positive
beat annotation. The proposed CNN architecture besides a 1-D input layer, consists
of two convolutional layers with a max-pooling layer between them , two fully-
connected layers and a softmax classification layer. All convolutional and fully-
connected layers have a dropout probability of 0.5 to reduce overfitting on training
data and make the trained model less sensitive to partial deformations of ECG
morphology. Stochastic gradient descent with 0.9 momentum and an initial learning
rate of 0.005 was used to train the network. Mini-batch size was 128 samples, and
the training was limited to 3 epochs. After the classification step, they performed a
hierarchical group-average agglomerative clustering upon all CNN decisions
of a single recording, with clustering criterion being the temporal euclidean distance.
Final QRS detection is the mean of all CNN detections within the same cluster. To
determine whether a detection is a true positive (TP), a Âś75ms tolerance window
is used. This method achieves a sensitivity of 99.81% and 99.93% positive predictive
value, which is comparable with most state-of-the-art solutions.

1The accuracy paradox is the paradoxical finding that accuracy is not a good metric for predictive
models when classifying in predictive analytics. This is because a simple model may have a high
level of accuracy but be too crude to be useful. For example, if the incidence of category A is
dominant, being found in 99% of cases, then predicting that every case is category A will have an
accuracy of 99%. Precision and recall are better measures in such cases
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2.1.3 Hidden Markov Models

An HMM [12] is a statistical model used to characterize signal dynamics as a function
of time. A typical HMM is composed of n hidden states and the set of parameters
λ = (A,B, π), where:

1. A = aij is the matrix of state transition probability distribution from state i
to j.

2. B = bj(k) is the observation symbol probability distribution in state j.

3. π = πi is the initial state distribution.

A training stage is performed to obtain the set of parameters λ in order to maximize
P (Otrain|λ), the probability that an observation sequence Otrain = O1, O2..., OT ,
taken from the analyzed system, is generated by the model. In the work explained
in [13], an automatic QRS complex detector based on continuous density hid-
den Markov models (HMM) is proposed. HMM were trained using univariate
observation sequences taken either from QRS complexes or their derivatives. The
detection approach is based on the log-likelihood comparison of the observation
sequence with a fixed threshold. A sliding window was used to obtain the observation
sequence to be evaluated by the model. The threshold was optimized by receiver
operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F 1 score
were used to evaluate the detection performance. The approach was validated using
ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation
shows that the best detection performance was achieved with 2 states HMM trained
with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F 1 = 0.309).

2.1.4 Support Vector Machine

The paper [14] presents an algorithm for QRS complex detection based of support
vector machine (SVM). The proposed algorithm is evaluated on annotated standard
databases such as MIT- BIH Arrhythmia database. The procedure of preliminary
processing of a signal is used as the signal contains different noise and artifacts:a
low pass filter with a cut-off frequency of 13 Hz and high pass filter with a cut- off
frequency of 9 Hz are used, as well as the function of the moving average with a
5 measurements window sizes. Informative feature as rise speed of a signal is
chosen, because QRS complex possesses the greatest climb rate. This informative
feature is implemented as follows: an array of the values of the slope of the tangent
to each point of the filtered and squared ECG signal. After that SVM classification
function is applied to the received selection. Informative feature as correlation
forms of QRS-complexes are chosen, because QRS-complex possesses a specific
form. This informative feature is implemented as follows: Firstly, test pulse is created
based on 1000 QRS-complexes with the R-peak in the middle lasting 51 counting
(141.67 ms), which occurs after their averaging, for this procedure the signal N.100
is used. Secondly, an array of correlation coefficients forms of QRS-complexes in
a moving window is created. After that SVM classification function is applied to
the received selection. For train recording signals No100, No104, No214, No200,
No205 are used. The training set consists of 30,000 values for each of the signs.
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The function of classification was calculated for each informative feature separately.
Signals from MIT-BIH database with 30 min of duration are used for testing. After
testing, a train of 1’s is obtained at the output of SVM classifier. Then this train of
1’s is picked and by using their duration, average pulse duration of 1’s is evaluated.
Those trains of 1’s, whose duration turns out to be more than the average pulse
duration are detected as QRS-complex and the others are discarded. The QRS
detector obtained a sensitivity Se = 98.32% and specificity Sp = 95.46%.

2.1.5 First-Order Difference

The First-Order Difference algorithm is a naive procedure designed to find the local
maxima in a generic signal. The decision of considering this approach was taken in
order to have a comparison between ad-hoc methods for ECG analysis for heartbeat
detection and a standard signal processing module.

Since this is a standard signal analysis algorithm, the preprocessing phase is
not aimed to improve the performance but just to adapt the input data. The
implementation used to generate the results, named PeakUtils[24], requires a positive
normalized signal as input. This means that every amplitude of the signal must be
in the positive and in the range [0,1]. In order to achieve this, a max-normalization
is performed: each sample of the signal is divided by the value of the maximum
amplitude. After that transformation, the maximum of the signal will have a
resulting amplitude of 1, and the values corresponding to the other samples will
represent the amplitude in percentage with respect to the maximum. The whole
process is formally expressed by:

sample = abs(sample)
max (abs(signal))

The first order difference in the signal, i.e. the first derivative [24] , defined in
this context as simple as:

y′(n+ 1) = y(n+ 1)− y(n)

The locations of the local maxima, i.e. the candidate R Peak indexes, corre-
spond to the ones that satisfy the following conditions:

• The first order difference is zero, y′(n) = 0

• The previous and the subsequent value of the point, are of discordant sign:
y′(n− 1)− y′(n+ 1) < 0 or y′(n+ 1)− y′(n− 1) < 0

These conditions lead to the detection of points in which a curvature of the original
function occurs, the presumed rpeak locations.

Such computation is refined with the tuning of the following parameters:
• Threshold : Only the peaks with amplitude higher than the threshold will

be detected.

• Minimum Distance: Minimum distance between each detected peak. a
peak detection that is at distance lower than the minimum from the previous
will be discarded. From a medical point of view, the physiological minimum
distance between two heartbeats is 0.2s
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2.1.6 Pan Tompkins

The Pan Tompkins algorithm [9], is a real-time adaptive thresholding method for R
Peak detection. The detection of QRS complexes is based upon digital analysis of
slope, amplitude and width of the ECG data.

The algorithm implements a special digital band pass filter. It can reduce false
detection caused by the various types of interference present in the ECG signal.

The algorithm automatically adjusts the thresholds and parameters periodically
to adapt the changes in QRS morphology and heart rate. There are two sets of
thresholds to detect QRS complexes. One set thresholds the filtered ECG while the
other thresholds the signal produced by moving window integration. The signal
emitted after the moving window integration technique is actually the same as the
original ECG except for the fact that is delayed by the total processing time of the
detection algorithm. The algorithm uses a dual-threshold technique to find missed
beats, and thereby reduce false negatives. Hence, there are two separate threshold
levels both for the filtered signal and for the one produced after the applying of the
moving window integration. One level is half of the other. Note that the higher of
the two thresholds in each of the two sets is used for the first analysis of the signal
while the lower threshold is used if no QRS is detected in a certain time interval
to perform a search-back technique: If a QRS complex is not found in the time
interval corresponding to 166% of the current average RR interval, the maximal peak
detected in that time interval that lies between these two thresholds is considered
to be a possible QRS complex. Once a valid QRS complex is recognized, there is a
200ms refractory period before the next one can be detected. This refractory period
eliminates the possibility of a false detection such as multiple triggering on the same
QRS complex during the time interval. When a QRS detection occurs after the end
of the refractory period but within 360ms of the previous complex, it is important
to understand if the candidate QRS is a valid QRS complex or a T wave. In this
case, the waveform with the largest slope is judged to be a QRS complex.

2.2 K Nearest Neighbors approaches

Applications in which the training data comprises examples of the input vectors
along with their corresponding target vectors are known as supervised learning
problems. [15] Given that the database contains cardiologist annotations (Section
2.3.1.1) corresponding to the QRS locations, it is possible to consider a supervised
learning approach to solve the R peak detection problem.

The K Nearest Neighbors(KNN) algorithm has been chosen in this study
because it is considered one of the simplest machine learning approaches. Given a
distance function d a training set of labeled data {X_train, Y_train}, and a test
set X_test: the algorithm retrieves the K-neighbors set N of each sample in X_test
according to d, and determines the corresponding label with some voting strategy
(Section 2.2.3.2) based on the labels of the samples in N.
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Thus to classify a new point, we identify the K nearest points from the training
data set and then assign the new point to the class having the largest number
of representatives amongst this set. The particular case of K = 1 is called the
nearest-neighbor rule because a test point is simply assigned to the same class as
the nearest point from the training set[15].

The nearest neighbors of an instance can be retrieved, as an example, in terms
of the standard Euclidean distance. More precisely, let an arbitrary instance x be
described by the feature vector:

[a1, a2(x), ...an(x)]

The the distance between two instances xi and xj is defined to be d(xi, xj) where[16]:

d(xi, xj) =
√∑n

r=1 (ar(xi)− ar(xj))2.

The QRS detection problem consists in determining whether a sample of the
ECG signal belongs to a QRS wave or not, therefore it is a binary classification
problem. In this section the Supervised learning procedures implemented in the
project in order to solve the QRS detection problem and then R Peak detection task
are described. Two different approaches have been considered:

• SSK algorithm: it is the algorithm described in [3], based on the KNN
algorithm

• QRS KNN algorithm: it is a new algorithm, also based on the KNN
algorithm according to a novel feature definition

2.2.1 Signal Preprocessing: Filtering and Squaring Techniques

We consider a record as a structure composed by a number (n) of channels,
therefore the vector is n-dimensional. The elements of the channels represent the
amplitude of the signal at any given time, called samples. A channel is the signal
recorded from a specific lead configuration(Section 1.3.1).

The ECG signal is affected by various sources of noise. Noise sources include
muscle noise, artifacts(Section 1.3.4) due to electrode motion, baseline wander, and
T waves with high-frequency characteristics similar to QRS complexes.[9] In this
approach, digital filters reduce the influence of these noise sources. The input
signal is first processed by a bandpass filter. Such filter reduces the influence of
muscle noise, baseline wander2, and T-wave interference. The desirable passband
to maximize the QRS energy is approximately 5-15 Hz.[9] It is implemented with
a cascade of low-pass and high-pass filters to achieve a 3dB passband from about
5-12 Hz, reasonably close to the desirable passband. The output is then processed
by a derivative filter in order to provide the QRS complex slope information.
After differentiation, the signal is squared point by point. This makes all data

2baseline wander (BW) is actually the effect where the isoelectric line (Section 1.3.3) viewed on
a screen appears to ’wander’ or move up and down rather than be straight. that may be due to
respiration or the motion of the patients or the instruments.
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points positive and does a nonlinear amplification of the output of the derivative
emphasizing the higher frequencies (i.e., predominantly the ECG frequencies and
the QRS complex in particular).

The result of the preprocessing stage is shown step-by-step in Figure 2.1:

(a) Raw Signal (b) Filtered Signal

(c) Derived Signal (d) Squared Signal

Figure 2.1. Preprocessing stages

2.2.2 SSK Algorithm

This algorithm is the one explained in the paper QRS detection using K-Nearest
Neighbor algorithm (KNN) and evaluation on standard ECG databases[3] In this
approach, a [m × n] feature matrix is formed, consisting of m instances of n features.
The number of feature vectors (m) is equal to the number of samples of selected
portions of ECGs, i.e. the dimensionality of a channel. Hence, there is a feature
vector for each sample. The feature vector is n-dimensional, where n is the number
of channels employed in the computation.

The feature labels are assigned according to the database annotations: ∀ sample s in X_train:

label(s) =
{

1 if s ∈ QRS region

−1 otherwise

In the annotations files, the only labeled samples are the R peaks, so it is up to the
author to define the amount of points around the annotated peak to consider as a
QRS region. Since the QRS width varies patient by patient, it is necessary to find
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an average amount of points that seems reasonable for all signals. Unfortunately,
the authors did not specify the choice they made. People very rarely agree on what
a normal time range is for the QRS measurement. It is usually considered to be
between 0.06 and 0.11 seconds([5], Chapter 2.46). For simplicity we decided to
consider the QRS of width 0.1 seconds.

The test samples that are predicted from the classifier, are the ones belonging to
QRS regions. After testing, a train of 1’s is obtained at the output of KNN classifier.
Then this train of 1’s is picked and by using their duration, average pulse duration of
1’s is evaluated. Those trains of 1’s, whose duration turns out to be more than the
average pulse duration are detected as QRS-complex and the other are discarded.

To the extent of comparison with the other approaches, we added a final module
performing the detection of the R peak inside the remaining regions. The R
peak location is then detected from such regions by simply applying the following:
∀detected QRS region qrsi:

rpeak_i = argmax(|qrsi|)

The location of the R Peak is the one corresponding to the maximum absolute
value in the region detected as a QRS wave. Channels corresponding to V1-V5 lead
configurations presented the R peak annotations on the negative peaks; that is why
we added the absolute value in the computation.

2.2.2.1 Training

The training step is performed with an inter-patient perspective: Records (cor-
responding to patients) are partitioned in training and test sets: a single classifier
is employed in the whole process. In this approach, only one record is chosen for
training and all the others are used for performance evaluation.

At this point it is performed a 5-fold crossvalidation in order to avoid to overfit
on the training set. Overfitting is the production of an analysis that corresponds
too closely or exactly to a particular set of data, and may, therefore, fail to fit
additional data or predict future observations reliably.[17] In k-fold cross-validation,
the original training set is randomly partitioned into k equal sized subsamples. Of
the k subsamples, a single subsample is retained as the validation data for testing
the model, and the remaining k - 1 subsamples are used as training data. The
cross-validation process is then repeated k times, with each of the k subsamples used
exactly once as the validation data. The k results are then averaged to produce a
single estimation.[18]

2.2.2.2 Model Selection

The KNN classifier is then tuned with a configuration of parameters to be chosen
inside a space of candidate combinations (Section 2.4.2.1). The classifier is chosen
according to the number of neighbors and the distance metric[19].
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The number of neighbors attribute determines the cardinality of the neighbors
set, i.e. how many neighbors labels to consider for predicting the label of the test
sample. The distance metric attribute is selected between the Manhattan distance,
or City Blocks, the Euclidean distance and the Correlation distance.

The Euclidean distance metric is the most usual way of computing a distance
between two objects. It examines the root of square differences between coordinates
of a pair of objects and is defined using the following equation[20]:

dst =
√∑n

r=1 (xsj − ytj)2.

The Manhattan distance is based on Taxicab geometry, first considered by
Hermann Minkowski in the 19th century, is a form of geometry in which the usual
metric of Euclidean geometry is replaced by a new metric in which the distance
between two points is the sum of the absolute differences of their coordinates defined
using the following equation:

dst =
∑n
r=1 |xsj − ytj |.

The Correlation distance is one minus the sample correlation between points
(treated as sequences of values), that is a measure of the strength and direction of
the linear relationship between two variables that is defined as the covariance of the
variables divided by the product of their standard deviations.[21] In order to pick
the best one, the KNN classifier is trained trying all the possible configurations of
parameters inside the candidate space.

The result produced by each combination are compared in terms of a selected
score: In this context is considered the accuracy score, defined as[22]:

TP+TN
TP+TN+FP+FN

In this context, a True Positive(TP) is a correctly detected QRS region, a False
Positive it is a region that is wrongly detected as a QRS, a True Negative is a
region correctly detected as a part of th signal that is different from a QRS wave
and finally a False Negative is the case in which a real QRS region has not been
detected. In table 2.1 it is possible to find the definition of TP, FP, TN, FN in this
context.

predicted/real QRS not QRS

QRS TP FP

not QRS FN TN
Table 2.1. TP, FP, TN, FN definition for QRS detection

The whole process of trying all the possible combination of parameters and select-
ing the one with the best score using cross validation is known as Crossvalidated
Grid Search[19].
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2.2.3 QRS KNN Algorithm

This is a new approach in which the feature vector corresponds no longer to
a sample(Section 2.2.2) but to a time segment, i.e. a window. The algorithm
determines for each window whether it is a QRS wave or not. The signal is therefore
segmented in equally sized (see Section 2.4.3.2) and contiguous windows. Con-
sequently, each segment in the training set is labeled according to the database
annotations: ∀ segment s in X_train:

label(s) =
{

1 if s contains a QRS annotation

−1 otherwise

The QRS detection output consists on the classifier predictions for each unseen
region in the test set. The segments to which corresponds a positive prediction(+1)
are the ones which presumably contains a QRS wave.

The R peak location is then detected from such regions, as explained in 2.2.2
by applying the following:

rpeak_location = argmax(abs(region))

The location of the R Peak is the one corresponding to the maximum absolute value
in the region detected as a QRS wave. This is because, given that a time segment
has been detected as a QRS wave, it is very likely that, in such a small portion of
the signal, the R peak is located at the point of maximum amplitude.

2.2.3.1 Training

The training step is performed with an intra-patient perspective: We considered a
separated classification instance for each patient; Every single record is partitioned
into two sets aimed for training the classifier and for performance evaluation. There-
fore, we trained one KNN classifier on the first n seconds (see Section 2.4.3.4) of
the signal corresponding to the record from one patient. At this point as in Section
2.2.2.1, we employed a 5-fold crossvalidation in order to avoid to overfit on the
training set.

2.2.3.2 Model Selection

The KNN classifier must be tuned with a configuration of parameters to be chosen
inside a space of candidate combinations (Section 2.4.3.1). We tuned the KNN
classifier for what concerns the number of neighbors and weights attributes.[19]
The number of neighbors attribute determines the cardinality of the neighbors
set, i.e. how many neighbors labels to consider for predicting the label of the test
sample. The weights attribute is about the voting strategy adopted for the final
prediction.

The uniform strategy is a simple majority voting: the most frequent label in the
neighbors set will be the label associated with the test sample. In this context of
binary classification, the number of neighbors value should be set to an odd number
to avoid ties.



30 2. Heartbeat Detection

The distance strategy biases the votes counting according to the inverse distance
between the test sample and its neighbors. The nearer the neighbor, the greater will
be its influence in the final result.

In order to pick the best one, the KNN classifier is trained trying all the possible
configurations of parameters inside the candidate space. The result produced by
each combination are compared in terms of a selected score: In this context we
considered the F1 score, defined as [22]:

F1 score = 2× precision×recall
precision+recall

where precision = TP
TP+FP and recall = TP

TP+FN
The definitions of True Positives(TP), False Positives(FP), True Negatives(TN) and
False Negatives(FN) in this context are explained in Section 2.2.2.2, Table 2.1.

2.3 Evaluation

Since not all the annotations of the R peak locations in the database are placed
precisely on the maximum of the QRS wave but guaranteed to be inside it, we could
not use them as we find them in the database for the evaluation purpose. For this,
a peak detection is considered correct if it resides inside a range of 0.1s around the
real peak annotation. Such amount of sample is chosen to be comparable to the
average QRS width.([5], Chapter 2, Section 41)

According to this definition of correctness, we evaluate the performance of the
proposed algorithms with the following measures:

Precision = |correctly detected|
|detected|

Recall = |correctly detected|
|real peaks|

F1 Score = 2Precision×Recall
Recall+Precision [22]

The result reported in all the plots of this document (Section 2.4) consists in the
average of results of precision and recall obtained for all signals (patients).

A critical aspect in the implementation of an ECG analysis algorithm, is the
possibility of a real time execution. Therefore, we measured the elapsed time of
the computation of all the algorithms considered in this study. For this, we picked
as unit measure, the elapsed time for processing a sample, i.e. the amount of
time that occurred to the decision stage for determining whether a sample is an R
peak or not. More precisely:

elapsed_time = t
n

where t is the total time to process one signal and n the number of samples in it.
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2.3.1 Database

The database considered in this study is a collection of annotated ECG recordings
obtained by the Arrhythmia Laboratory of Boston’s Beth Israel Hospital, named
the MIT-BIH Arrhythmia Database[23]. From such collection, 48 half-hour
excerpts of two-channels, 24 hours, ECG recordings obtained from 47 subjects
(record 201 and 202 are from the same subject) have been selected. Of these, 23
(the "100 series") were chosen at random from a collection of over 4000 Holter tapes,
and the other 25 (the "200 series") were selected to include examples of uncommon
but clinically important arrhythmias that would not be well represented in a small
random sample. The subjects included 25 men aged 32 to 89 years and 22 women
aged 23 to 89 years; approximately 60% of the subjects were inpatients.

In most records, one channel is a modified limb lead II, MLII, obtained by
placing the electrodes on the chest as is standard practice for ambulatory ECG
recording, and the other channel is usually V1( sometimes V2, V4 or V5 depending
on the subject). The digitization rate or frequency of sampling is of 360 samples
per second per channel). Four of the 48 recordings include paced beats, i.e. produced
by a pacemaker.

Each recording of the MIT-BIH Arrhythmia Database corresponds to a 2D
vector of 650K entries. The vector is composed of two channels, therefore it is two
dimensional.

2.3.1.1 Annotations

Once the digital tapes had been prepared, they have been annotated using a simple
slope-sensitive QRS detector. The charts for each recording were given to two
cardiologists, who worked independently, adding additional beat labels and deleting
false detections as necessary, and changing the labels for abnormal beats. The
cardiologists also added rhythm and signal quality labels. At this point the two
sets of annotations were compared: each discrepancy was examined and resolved by
consensus. Notably, six of the 48 records contain a total of 33 beats that remain
unclassified, because the cardiologist-annotators were unable to reach agreement
on the beat types. The database contains seven episodes of loss of signal or noise
so severe in both channels simultaneously that QRS complexes cannot be detected;
these episodes are all quite short and have a total duration of about 10 s. In all of
the remaining data, every QRS complex was annotated, about 109,000 in all.

2.4 Protocol Fine-Tuning

In this section, we report all the combinations of parameters studied and the
obtained score, in order to select the best ones for each beat detection algorithm.
The performance comparison allows choosing the combination of parameters that
maximizes the F1 score (see Section 2.3).
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2.4.1 First-Order Difference Algorithm

We tried out different threshold values, precisely in a range from 0.1 to 1 with a
step of 0.1. The result, still measured according to precision and recall (see Section
2.3), are depicted in Figure 2.2. The best threshold is the one that maximizes the
F1 score (Section 2.3).

Figure 2.2. Precision and Recall for different threshold values

The best threshold value is 0.3. This means that every sample with amplitude
less than 0.3 mV after the preprocessing stage(Section 2.1.5) cannot be detected as
a peak.

2.4.2 SSK Algorithm

2.4.2.1 Model Parameters

The model selection phase consists in choosing the best configuration of parameters
inside a set of candidates. We tried all the possible combinations inside the space of
parameters defined in [3]:

• number of neighbors : [1, 3, 5, 7, 9]

• distance: [‘Manhattan distance’, ‘Euclidean distance’, ‘Correlation distance’]

2.4.3 QRS KNN

2.4.3.1 Model Parameters

The model selection phase consists in choosing the best configuration of parameters
inside a set of candidates. We tried all the possible combinations inside the following
space of parameters:

• number of neighbors : [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

• weights: [‘uniform’, ‘distance’]
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2.4.3.2 Window Size

The approach explained in Section 2.2.3, requires to split the signal into contiguous
and fixed size regions.For this, we had to choose the window size. We tried different
size values and compared them according to the precision and recall (Section 2.3) of
the outcomes produced. The results of this experiment are depicted in Figure 2.3:

Figure 2.3. Precision and Recall for different feature size values

From this, we deduced that the F1 Score is maximized when the window size is
set to 50 samples. In the sequel, all experiments will use this window size.

2.4.3.3 Channels

The MIT-BIH Arrhythmia Database provides two channels records, i.e. data coming
from two different configurations of electrodes. The first channel is, in most of the
cases, the output of the MLII lead, which is the most used in literature for the R
peak detection purpose.

By the way, we wanted to analyze whether the inclusion of the second channel
would improve the results. In Figure 2.4 are depicted the results obtained with one
channel and two channels separately, and the ones obtained by the combination of
both, in terms of Precision, Recall and F1 Score(Section 2.3) averaged for all signals.
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Figure 2.4. Precision, Recall and F1 Score with First, Second and Both Channels

Channels Precision Recall F1 Score

1 0.988 0.923 0.955

Both 0.988 0.923 0.955

2 0.924 0.807 0.867
Table 2.2. Precision, Recall and F1 Score for First, Second and Both Channels

From this, we deduced that the inclusion of the second channel does not provide
an improvement of the results.

Due to the way that the electrode positions are orthogonally placed in Holter
recording, a high-quality signal on one channel normally implies a low-amplitude
ECG with a poor signal-to- noise ratio on the second channel. The only way that
two- channel algorithms will yield improved performance for most patients is by
adopting a new way of electrode placement that will provide usable signals in both
channels.[9]
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2.4.3.4 Training size

We studied the minimum amount of signal necessary for the training step in order
to achieve appreciable results. A small training set is ideally preferable for a faster
computation and a more realistic evaluation of the performance on the test set.
Furthermore, with a greater test size, we will have at disposition more outcomes
usable in the following steps of the work, that is the Arrhythmia classification. For
this reason, we tried different training size values expressed in percentage of the
total size of the signal.

Figure 2.5. Precision, Recall and F1 Score with varying test size

From this, we deduced that a training size corresponding to the 3% of the signal,
that is the first 54 seconds of each signal, is the smallest that produces an acceptable
result. This is because is the smallest training size that produces an average result
greater than 90%. In this way, we discard from the following stages of computation
only 56 beats on average. We could obtain better results of devolving more data
for training purposes but at the cost of fewer beats for the arrhythmia classification
stage.

2.5 Comparative Evaluation
In this section, it is presented the comparative evaluation of the implemented ap-
proaches for R Peak detection. At first, we wanted to prove the usefulness of the
preprocessing stage(Section 2.2.1); thus, we evaluated the algorithms preformances
when applying the same procedures both on the raw and the filtered signals. As an-
other experiment, we studied how much the lead configuration selection, (i.e. which
channels to include in the computation) is relevant for the quality of the results.
Therefore, we measured the algorithms performances considering all the combinations
of channels (First, Second and Both). Finally, we performed the evaluation of the
efficiency of the procedures applied to all the aformentioned combinations of the in-
put. The elapsed time to determine whether a sample is a R peak has been considered.
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From now on will refer to each combination we tried with the following schema
xx_yy_ww_zz that means :

• xx : It is the kind of approach. We will refer to KNN using KNN and to
First order difference with FOD.

• yy : refers to the QRS KNN approach (w) or to the SSK approach (s).

• ww : This can be RS if no preprocessing is applied or FS if the preprocessing
is applied.

• zz : 1 stands for "First channel selected", 2 stands for "Second channel
selected and "B" stands for both channels selected.

2.5.1 Results Comparison

In Table 2.3 the results of each combination are listed, while in Table 2.4 the best
results for each algorithm are presented.

From the results obtained we denote that the best combination in terms of
Precision, Recall and F1 Score is KNN_w_FS_1, i.e the QRS KNN algorithm
applied to the preprocessed first channel. The novel feature definition effectively
improved the performance with respect to the implementation of the approach
explained in the paper [3], in our proposed evaluation framework.

The preprocessing module in general, resulted to be effective in all the combina-
tions, except when applying the First-Order Difference algorithm.

Note also that, as expected, an ad-hoc procedure designed to process ECG
signals, lead to better results with respect to the ones obtained with a generic signal
analysis module.
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Combination Precision Recall F1 Score

FOD_RS_1 0,817 0,768 0,792

FOD_RS_2 0,574 0,676 0,621

FOD_FS_1 0,301 0,973 0,46

FOD_FS_2 0,319 0,834 0,461

KNN_s_RS_1 0,347 0,457 0,394

KNN_s_RS_2 0,237 0,313 0,27

KNN_s_RS_B 0,304 0,632 0,411

KNN_s_FS_1 0,371 0,825 0,512

KNN_s_FS_2 0,392 0,686 0,499

KNN_s_FS_B 0,322 0,588 0,416

KNN_w_RS_1 0,926 0,843 0,883

KNN_w_RS_2 0,893 0,744 0,812

KNN_w_RS_B 0,93 0,852 0,889

KNN_w_FS_1 0,988 0,923 0,954

KNN_w_FS_2 0,924 0,807 0,862

KNN_w_FS_B 0,988 0,924 0,955
Table 2.3. Algorithm Performances on all combinations of

input

LEGEND:
FOD = First Order Difference
KNN = Knn
w = QRS KNN
s = SSK
RS = Raw Signal
FS = Filtered Signal
1 = First Channel
2 = Second Channel
B = Both First and Second channel

\ QRS KNN SSK[3] First Order Difference[24]

Precision 0.988 0.371 0.817

Recall 0.923 0.825 0.768

F1 Score 0.954 0.512 0.792
Table 2.4. Best Precision, Recall and F1 Score for each algorithm
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2.5.2 Computational Time Comparison

The computational time of each procedure has been measured on the following
devices:

1. Computer:

• Processor: Intel(R) Core(TM) i3-3240 CPU @3.40GHz, 4 cores

• RAM: 4 GB

• Operative System: Ubuntu 16.04

• Linux Kernel: 4.4

2. Raspberry:

• Processor: Arm Cortex-A53 CPU @2.1GHz, 4 cores

• Ram: 1 GB

• Operative System: Android 4.4.2

• Linux Kernel: 4.4

3. Android smartphone:

• Processor: Qualcomm SnapDragon 600 CPU @1.9 GHz, 4 cores

• Ram: 2 GB

• Operative System: Android 4.4.2

• Linux Kernel: 3.4

4. Android smartphone:

• Processor: Arm Cortex-A53 CPU @2.1 GHz, 4 cores, @1.7 GHz, 4
cores

• Ram: 3 GB

• Operative System: Android 7.0 Emotion UI v5.0 Nougat

• Linux Kernel: 4.1.18

The comparison between the different machines in terms of elapsed time is
decribed in Table 2.5
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Table 2.5. RAM usage and elapsed time measured in millisecond for each combination

elasped time (ms)
Ratio Cortex/Intel

Ratio

Qualcomm/Intel

Ratio

Qualcomm/Cortex 4 cores

Ratio Cortex 8 cores/

Cortex 4 cores
RAM usage (MB)

Processor
Intel(R) Core(TM) i3-3240

CPU @3.40GHz, 4 cores

Arm Cortex-A53

CPU @2.1GHz, 4 cores

Qualcomm Snapdragon 600

CPU @1.9 GHz, 4 cores

Arm Cortex-A53 CPU

@2.1GHz, 4 cores

@1.7GHz, 4 cores

FOD_RS_1 0.00639 0.0611 0.0603 0.0217 9,56 9,43 0,98 0,35 92,372

FOD_RS_2 0.00651 0.0629 0.0605 0.0273 9,66 9,29 0,96 0,43 91,832

FOD_FS_1 0.000180 0.00274 0.0743 0.00332 15,22 412,77 27,11 1,21 92,424

FOD_FS_2 0.000181 0.00204 0.0789 0.00329 11,27 435,91 38,67 1,61 92,025

KNN_s_RS_1 70.350 466.34 672.51 880.00 6,629 9,559 1,442 1,887 127,594

KNN_s_RS_2 64.616 479.79 698.15 892.00 7,425 10,805 1,455 1,859 120,245

KNN_s_RS_B 87.273 1980.1 1705.1 1983.0 22,689 19,538 0,861 1,001 139,637

KNN_s_FS_1 110.45 1154.3 1036.3 1046.0 10,451 9,383 0,898 0,906 138,639

KNN_s_FS_2 105.55 703.54 1026.4 1060.0 6,665 9,724 1,46 1,507 137,461

KNN_s_FS_B 127.52 2556.8 2178.4 2228.0 20,05 17,083 0,852 0,871 181,993

KNN_w_RS_1 0.0029 0.0219 0.0531 0.0504 7,552 18,31 2,425 2,301 109,227

KNN_w_RS_2 0.0032 0.0211 0.0003 0.0499 6,594 0,93 0,014 2,365 109,637

KNN_w_RS_B 0.0044 0.0392 0.0008 0.0919 8,909 0,18 0,02 2,344 128,618

KNN_w_FS_1 0.0031 0.0212 0.0662 0.0499 6,839 21,355 3,122 2,354 127,34

KNN_w_FS_2 0.0032 0.0212 0.0519 0.0501 6,625 16,22 2,448 2,363 110,14

KNN_w_FS_B 0.0049 0.0379 0.0001 0.0911 7,735 0,02 0,003 2,404 129,03

Given that the signals have a frequency of sampling of 360 HZ, it means that
each sample is processed every 3 ms (1/360s × 1000). If the elapsed time for one
algorithm to process one sample is less than this value, the procedure is executable
in real time. This is true for what concerns both the QRS KNN and the First
Order Difference even in the slowest machine (Qualcomm Snapdragon 600 ). We
also measured the amount of RAM needed to process one signal, which resulted
feasible for each machine specification and not affecting too much the performances.

2.6 Critical Issues

In this section, we analyze the cases in which the algorithms fail in the peak detection
and we try to understand the reason why that happened.

2.6.1 Example 1: First Order Difference Algorithm

Figure 2.6 shows a detected peak from the First Order Difference algorithm (Section
2.1.5) in the signal ‘102’ of the ‘MIT-BIH Arrhythmia Database’.

As explained in Section 2.3, this detection is not correct because the peak
detected does not reside in the evaluation window, which is of 0.1s around the
annotation, which corresponds to 36 samples in this context. Recall that the signal
in the plot is the absolute value of the signal normalized; We deduce that, after this
transformation, the amplitude of the real peak is lower than the algorithm threshold
(see Section 2.4.1) and therefore it cannot be detected.

2.6.2 Example 2: QRS KNN Algorithm

Figure 2.7 shows a detected peak from the QRS KNN algorithm (Section 2.2.3) in
the signal ‘101’ of the ‘MIT-BIH Arrhythmia Database’.
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Figure 2.6. First-Order Difference Algorithm Wrong R Peak detection

Figure 2.7. KNN Algorithm Wrong R Peak detection
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In this plot are depicted the detected R peak and the corresponding real peak,
taken from the database annotations. The signal plotted in figure is the result of the
filtering and the squaring phases explained in 2.2.1. In order to understand why the
algorithm fails in this case, we have to look at the labels present in the neighbors in
the training set. Recalling that the signal is first segmented in regions, we have to
retrieve the K nearest(according to Euclidean distance in this case) regions to the
segment in which the detected peak resides. In this case K=5, and the segments are
shown in Figure 2.8:

Figure 2.8. KNN of the detected region

Since the strategy adopted for the signal was the ‘uniform’ (Section 2.2.3.2),
this is a simple majority voting. 4 out of 5 neighbors regions contain a peak, so
the algorithm decided that the region contains a peak. The detected peak is finally
the max of the absolute value of the detected region. In Figures 2.9, 2.10 there is
another example of failure in the signal ‘102’.
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Figure 2.9. KNN Algorithm Wrong R Peak detection

Figure 2.10. KNN of the detected region
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Chapter 3

Arrhythmia Classification

Nowadays cardiac arrhythmias are the most common causes of mortality. Early
diagnosis of the type of arrhythmia will facilitate proper treatment and thereby a
prolonged life [25].

An ECG record is designed to give a graphic display of the electrical activity
of the heart. The pattern displayed on the ECG is called rhythm [5]. Therefore,
the word arrhythmia refers to an abnormal heart rhythm.(Section 1.4) Heart
arrhythmias result from any disturbance in the rate, regularity, and site of origin or
conduction of the cardiac electric impulse [26].

Broadly speaking, arrhythmias can be divided into two groups.[27] The first
group includes ventricular fibrillation and tachycardia which are life-threatening and
require immediate therapy with a defibrillator. Detection of these arrhythmias is
well researched and successful detectors have been designed with high sensitivity
and specificity [28] [29].

This study investigates the second group which includes arrhythmias that are
not imminently life-threatening but may require therapy to prevent further problems.
Some arrhythmias appear infrequently and up to a week of ECG activity may need to
be recorded using a Holter ECG monitor to successfully capture them. As desccribed
in Section 1.4, many arrhythmias manifest as sequences of heartbeats with unusual
timing or ECG morphology.

An important step toward identifying an arrhythmia is the classification of
heartbeats. The rhythm of the ECG signal can then be determined by knowing the
classification of consecutive heartbeats in the signal. Classification of heartbeats
can be very time-consuming and hence any automated processing of the ECG that
assists this process would be of assistance and is the focus of this study.

A common paradigm for automatic arrhythmia analysis is the classification in in
multiple classes: given an heartbeat, the classifier determines whether it is normal
and specifies the typology of arrhythmia, if this is the case.
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One major problem faced by today’s automatic ECG analysis machine is the wild
variations in the morphologies of ECG waveforms of different patients [30]. An ECG
beat classifier which performs well for a given training database often fails miserably
when presented with a different patient’s ECG waveform. Such an inconsistency
in performance is a major hurdle preventing highly reliable, fully automated ECG
processing systems to be widely used clinically. One obvious approach to alleviate
this problem is to use as much training data as possible to develop the ECG classifier.
This is the approach taken by all the vendors of ECG processing devices: a large
in-house ECG database is developed and maintained to test each ECG processing
algorithm to be incorporated into the product. However, such an approach suffers
two important pitfalls:

1. No matter how large this database may be, it is not possible to cover every
ECG waveform of all potential patients, as explained in Section 1.4. Hence,
its performance is inherently limited.

2. The complexity of the classifier grows as the size of the training database
grows. When a classifier is designed to correctly classify ECG from millions
of patients (if it ever becomes possible), it has to take numerous exceptions
into account. The result is a complicated classifier which is costly to develop,
maintain, and update.

The answer, according to [30], is to allow the classifier to be patient-adaptable.
That is, to let the classification algorithm adaptable to the special characteristics of
each patient’s ECG records. For example, we may include the training algorithm
to be delivered to the users, so that the classification algorithm can be fine- tuned
with each patient data, designing one classifier for each patient, as we did in Section
2.2.3.1. But one problem still occurs. If we consider as training set a single ECG
tracing from one single patient, some of the arrhythmic classes may be absent in
the training data, resulting in a very poor generalization on unseen recordings. For
this reason, an intra patient paradigm similar to the one in Section 2.2.3.1 must be
discarded in this stage.

To deal with this problem, we propose a vertical split: the training dataset has
been defined to include a fraction of heartbeats from each ECG record. A smaller
fraction is then considered as validation dataset, in order to tune the hyperparameters
of the model, and the remaining beats are used for the performance evaluation,
belonging to the test set.

This study demonstrates that a single classifier trained on a reasonable amount
of heartbeats from one or more patients, it is able to make correct predictions on
unseen heartbeats from the same source of data.

We implemented two different models of Recurrent Neural Networks, using
the MIT-BIH Arrhythmia Database [23] for training, validation and evaluation
purposes. The AAMI classes [4] for evaluation are considered in this context and
our results have been compared to those of [30] and [27].
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3.1 State of the Art

3.1.1 Reservoir Computing and Logistic Regression

In [34] they employed a machine learning paradigm named reservoir computing
(RC)[41] [42]. RC mimics brain neural networks by processing information that
generates patterns of transient neural activity as a response to a sensory signal and
is composed of layers for processing the information. They used a kind of reservoir
consisting of a nonlinear dynamical element subject to delayed feedback. One of
the simplest delay system is a single nonlinear node influenced by its own dynamics
after a certain delay time τ . A ring topology network of 25 such nodes has been
employed, with the output of a node influencing the following ones. The network
processes the beats extracted from the MIT-BIH arrhythmia Database without any
preprocessing. Each beat is processed in a serial manner, sample-by sample; The
outcome of each node is then fed to the output layer of the network, which performed
a simple Logistic Regression, classifying each beat in one of the five classes defined by
the Association for the Advancement of Medical Instrumentation[4]. They followed
the partition of the database proposed by [27], consisting in a inter-patient paradigm
(Section 2.2.2.1). They obtained good results in terms of average Sensitivity/Recall
= 84.3% and Precision=88.75%. We tried to reimplement this approach, but we
didn’t succede in obtaining good results, since it was not clear how they modeled the
dependency between the nodes outcomes in the ring topology. From this we kept
the concept of dependency between subsequent beats, and the beat extraction
techinque from the ECG tracing(see Section 3.3.1).

3.1.2 Weighted SVM

In [39] they proposed a feature based approach followed by a classification step
performed by a SVM classifier. They considered several groups of features extraced
from each heartbeat that can be summarized in seven major categories:

• R-R intervals: This group consists of three features built from the R-R
interval series. The first three features are the R-R interval to the previous
beat, the R- R interval to the next beat and the average of R-R intervals in a
window of 10 surroundings beats.

• Segmentation intervals: A large variety of 24 features are computed from
the annotated characteristic points. These features include a boolean flag
indicating the presence or absence of QRS, P and T waves. If the waves
are present, their duration, maximum and minimum values, area, standard
deviation, skewness and kurtosis are computed as features. The Q-T, S-T,
Q-R, R-S intervals are also included. When the characteristic points needed
to compute a feature failed to be detected in the heart beat annotation step,
the feature value is set to the patient’s mean feature value.

• Morphological features: Ten features are derived by uniformly sampling
the ECG amplitude in a window defined by the onset and offset of the QRS
complex, and nine other features in a window defined by the QRS offset and the
T-wave offset. As the ECG signals were already sampled, linear interpolation
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was used to estimate the intermediate values of the ECG amplitude. Here
again, when the onset or offset points needed to compute a feature were not
detected, the feature value is set to the patient’s mean feature value.

• HBF coefficients: The parameters for computing the HBF expansion co-
efficients as defined in [43] are used. The order of the Hermite polynomial
is set to 20, and the width parameter ÏČ is estimated so as to minimize the
reconstruction error for each beat.Weighted SVMs and Feature Relevance
Assessment 219

• Higher order statistics: The 2nd, 3rd and 4th order cumulant functions
are computed. The parameters as defined in [40] are used: the lag parameters
range from -250 msec to 250 msec centered on the R spike and 10 equally
spaced sample points of each cumulant are used as features, for a total of 30
features.

• Normalized R-R intervals: These features correspond to the ratio between
the previous three R-R values and their mean value for this patient. These
last features are thus independent from the mean normal behavior of the heart
of patients, which can naturally be very different between individuals, possibly
misleading the classifier.

• Normalized segmentation intervals: This group of features contains the
same features as the previous segmentation group, but the values are normalized
by their mean value for each patient. The normalization is obviously not applied
to boolean segmentation features. Here again, the objective is to make each
feature independent from the mean behavior of the heart of a patient, because
it can naturally be very different between individuals

They performed an exhaustive search of all the possible combinations of feature
groups. Their results indicate that R-R intervals, normalized R-R intervals
and HOS features are the most important feature sets to include in the model.
In order to mitigate the class unbalancing (see Section 3.3.2) of the MIT-BIH
arrhythmia Database, they propose a weighted version of the SVM classifier. The
cost function has been weighted in order to take into account the distribution of the
training set: a wrong prediction on a least represented class is penalized more than
a mistake on the normal class.

They reported just the results in terms of Accuracy and Average Accuracy
between the 4 classes in the aami definition[4]. The accuracy measure is not relevant
in an unbalanced dataset, beacuse of the Accuracy paradox.The accuracy paradox
is the paradoxical finding that accuracy is not a good metric for predictive models
when classifying in predictive analytics. This is because a simple model may have a
high level of accuracy but be too crude to be useful. For example, if the incidence of
category A is dominant, being found in 99% of cases, then predicting that every case
is category A will have an accuracy of 99%. Precision and recall are better measures
in such cases. We reimplemented this approach but we did not succed in obtaining
good results according to the non reported measures of Precision and Recall.
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3.1.3 Mixture of Experts

In [30] a mixture-of-experts (MOE) approach to develop customized electrocardi-
gram (ECG) beat classifier is presented. A small customized classifier is developed
based on brief, patient-specific ECG data. It is then combined with a global classifier,
which is tuned to a large ECG database of many patients, to form a MOE classifier
structure. This proposed approach is based on three popular artificial neural net-
work (ANN)-related algorithms, namely, the self- organizing maps (SOM), learning
vector quantization (LVQ) algorithms, along with the mixture-of-experts (MOE)
method. SOM and LVQ together are used to train the patient-specific classifier, and
MOE is a paradigm which facilitates the combination of the two classifiers (original
and patient-specific) to realize patient-adaptation. In MOE, the two classifiers are
modeled as two experts on ECG beat classification. The original classifier, called
the Global expert (GE) in this work, knows how to classify ECG beats for many
other patients whose ECG records are part of the in-house, large ECG database.
The patient-specific classifier, called the local expert (LE) in this work, is trained
specifically with the ECG record of the patient. A gating function, based on
the feature vector presented, dynamically weights the classification results of the
GE’s and the LE’s to reach a combined decision. The process is analogous to two
human experts arriving at a consensus based on their own expertise. In this study
they concentrated on the classification of ventricular ectopic beats (VEB’s). The
48 records (tapes) from MIT/BIH ECG arrhythmia database [23] are used for the
development and evaluation of the classifier. Since such study is to evaluate the
performance of a classifier that can identify a premature ventricular contraction
(PVC) (Section 1.4.3), certain records in the database with no PVC’s (11 records)
were excluded from the study, leaving 33 records of interest. the fully automatic
configuration (GE classifier) approach obtained results are: accuracy 75.3%, recall
69.6% and precision 34.6% ;while the results obtained with their semi-automatic
MOE approach: (accuracy 93.6%, recall 78.9% and precision 76.0%).

3.1.4 ECG Morphology and Heartbeat Interval Features

The aim of the study in [27] was to design and test an automatic classification system
using a comprehensive ECG database following AAMI recommended practice [4].
Methodology improvements on previous approaches included:

• trialing eight representations of the ECG morphology;

• use of the heartbeat classes recommended in [4];

• comparison of 12 classifier configurations processing feaures obtained from
single and multiple ECG leads;

• weighting the training examples to prevent the large classes from dominating
the training process.

Features relating to fiducial point intervals were calculated for each heartbeat.
Features relating to heartbeat intervals and ECG morphology were calculated
separately for the two ECG signals for each heartbeat. Figure 3.1 lists the features
used in this study.
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Figure 3.1. Group of features considered in [27]

Classifier models based on linear discriminants (LDs) were utilized throughout
this study. The model parameters were determined using "plug-in" maximum-
likelihood estimates calculated from the training data. For the Supraventricular
Ectopic Beats(SVEB) class, the recall was 75.9%, the precision was 38.5%. The
recall was 77.7% and the precision was 81.9% for the VEB class.

3.2 Recurrent Neural Network

Countless learning tasks require dealing with sequential data. Image captioning,
speech synthesis, and music generation all require that a model produce outputs that
are sequences. In other domains, such as time series prediction, video analysis, and
musical information retrieval, a model must learn from inputs that are sequences
[31].

Recurrent Neural Networks (RNNs) are connectionist models that capture
the dynamics of sequences via cycles in the network of nodes. Unlike standard
feedforward neural networks, recurrent networks retain a state that can represent
information from an arbitrarily long context window.[31] In a traditional neural
network we assume that all inputs (and outputs) are independent of each other. But
if the task consists in predicting the next word in a sentence it is useful to know
which words came before it. RNNs are called recurrent because they perform the
same task for every element of a sequence, with the output being dependent on
the previous computations.[32]

For this reason it seemed reasonable to apply this approach for the Arrhyth-
mia classification purpose: ECG data is sequential and determining whether a
heartbeat is arrhythmic or not depends not only on its morphology but also on
those of the previous beats (Section 1.4). In many approaches this dependency is
modeled by considering the RR interval between heartbeats [33]; In this context
this idea is represented by the structure of a particular kind of RNN, such as the
Long Short Term Memory(LSTM).
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3.3 Preprocessing

3.3.1 Input Preparation

This module takes as input the outcome of the previous stage of R peak detection.
Arrhythmia detection requires the extraction of the beats from the R peak locations.
A beat is defined as the amount of signal necessary to include the P, Q and T waves.
We can define one beat as the signal around an R peak location.In this way, we
extract one heartbeat from every R peak location. Furthermore, the LSTM network
requires a tridimensional shaped input organized as:

input_shape = (n_beats, timesteps, n_samples)

Where n_beats is the total number of detected beats, timesteps is the amount of
previous beats to consider in order to make a prediction, n_samples is the amount
of samples which constitute a beat. In other words, the sequence of beats is split in
sliding windows, each of which is composed by t beats, where t corresponds to the
timesteps value.

3.3.2 Dataset Rebalancing

In a real world scenario, a dataset composed by individuals ECG recording would
likely be characterized by many normal beats and a smaller set of arrhythmic ones.
In this case we are dealing with an unbalanced dataset, which would lead in a bias
in the training stage. A classifier that is trained on a very unbalanced dataset may
likely end up in learning too much the features of the instances of the most prominent
class, almost completely ignoring the characteristics related to the other classes.
Many attempts are known in order to overcome this issue, such as the adoption of a
penalized model, and the techinques of data undersampling/oversampling.[35]

In this approach we implemented a simple algorithm to generate synthetic data
in order to rebalance the dataset classes distribution, augmenting the number
of samples in the least populated ones. We augmented the samples in the under-
represented class c with the following:
∀ beat b ∈ c :

ri = random number ∈ (0, 1)
r = random vector s.t. size(r) = size(b) and rj = ri, ∀j ∈ [0, size(r)]
synthetic_sample = b+ r
X_train = X_train ∪ syntethic_sample

Where X_train is the set of beats for training, ri is the generic element of the
random vector r and the operator + stands for the vector addition.

This procedure has been adopted since the shape is the relevant feature in order
to discriminate between arrhythmic beats. Adding the same value ri to each sample
in the beat would in fact preserve the shape, providing more training data to the
network, as if it was new data.
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A naive oversampling technique consists in simply replicating the instances of
the minority classes without any further processing. By the way, this method may
lead the network to overfit on such data, memorizing the specific amplitudes without
capability of generalization on unseen data:for this reason this randomized approach
has been preferred.

As another attempt, we tried to reduce the number of instances belonging to
the over-represented class, i.e. the Normal(N). We implemented a random sampling
technique, which consists in randomly select a subset of hearbeats in the normal
class. The cardinality of the normal class is reduced by a reduction factor, more
precisely:

|Nr| = |N |
r

where || denotes the cardinality, N is the set of instances initially belonging to the
normal class, Nr is the reduced set and r is the reduction factor.

3.3.3 Standardization

Most Machine learning models requires that the input data has a Gaussian (bell
curve) distribution. Data standardization is the process of rescaling one or more
attributes so that they have a mean value of 0 and a standard deviation of 1. In
order to obtain zero mean, the actual mean value of the data is subtracted to each
sample. For this, such techinque is also known as data centering. A sample x is
standardized as follows:

standardize(x) = x−µ
σ

where µ is the mean and σ the standard deviation.

3.4 Network Structure

Given an input sequence x = (x1, ..., xT ) a standard recurrent neural network(RNN)
computes the hidden vector sequence h =(h1, ..., hT ) and the output vector se-
quence y = (y1, ..., yT ) by iterating the following equations from t=1 to T:

ht = H(Wxhxt +Whhht−1 + bh)
yt = Whyht + by

Where the W terms denote weight matrices (e.g. Wxh is the input-hidden weight
matrix), the b terms denote bias vectors(e.g. bh is hidden bias vector) and H is the
hidden layer function, usually a tanh.[36]
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Figure 3.2. Basic RNN cell structure, source:[32]

Recurrent Neural Networks suffer from short-term memory problem. If a
sequence is long enough, carrying information from earlier time steps to later ones
results difficult. During back propagation, recurrent neural networks suffer from
the vanishing gradient problem. Gradients are values used to update a neural
networks weights. The vanishing gradient problem is when the gradient shrinks as
it back propagates through time. If a gradient value becomes extremely small, it
doesn’t contribute too much learning.

These problems have been solved with the design of a variant of the RNN,
namely the LSTM. The Long Short Term Memory(LSTM) architecture uses
purpose built memory cells to store information, and resulted better at finding
and exploiting long range context[37]. An LSTM has a similar control flow as a
recurrent neural network. It processes data passing on information as it propagates
forward. The differences are the operations within the LSTM’s cells.[38]

Figure 3.3. LSTM Cell and It’s Operations, source:[38]

The core concept of LSTM’s are the cell state, and the various gates. The
cell state act as a transport highway that transfers relative information all the way
down the sequence chain. It is the memory component of the network. So even
information from the earlier time steps flows to later time steps, reducing the effects
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of short-term memory. Gates contains sigmoid activations: A sigmoid activation
is similar to the tanh activation. Instead of squishing values between -1 and 1, it
squishes values between 0 and 1. That is helpful to update or forget data beacuse
zero multiplications cause values to disappear(forgotten), while one multiplications
allows values to be kept. The network can learn which data is not important therefore
can be forgotten or which data is important to keep.

Figure 3.4. Sigmoid Activation function

The forget gate decides what information should be thrown away or kept.
Information from the previous hidden state and information from the current input
is passed through the sigmoid function. Values come out between 0 and 1. The
closer to 0 means to forget, and the closer to 1 means to keep.

Figure 3.5. Forget gate, source: [38]

The input gate manages the update of the cell state. First,the previous hidden
state and current input are processed by a sigmoid function. That decides which
values will be updated by transforming the values to be between 0 and 1. 0 means
not important, and 1 means important. The hidden state and current input are
given as input to the tanh function which outputs values between -1 and 1. The tanh
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output gets multiplied with the sigmoid output. The sigmoid output will decide
which information is important to keep from the tanh output.

Figure 3.6. Input gate, source: [38]

The cell state gets pointwise multiplied by the forget vector. This has a
possibility of dropping values in the cell state if it gets multiplied by values near 0.
Then the output from the input gate are taken and a pointwise addition is performed.
This last operation updates the cell state to new values that the neural network
finds relevant.

Finally the output gate decides what the next hidden state should be. The
hidden state contains information on previous inputs and is also used for predictions.
First, the previous hidden state and the current input are passed into a sigmoid
function. Then the newly modified cell state is processed by the tanh function. The
final multiplication between the tanh output and the sigmoid output determines
what information the hidden state should carry. The output is the hidden state.
The new cell state and the new hidden is then carried over to the next time step.

Figure 3.7. Output gate, source: [38]
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3.4.1 Neural Networks Activation Functions

The main activation function that was widely used is the Sigmoid function however,
when the Rectifier Linear Unit(ReLU) was introduced[46], it soon became a
better replacement for the Sigmoid function due to its positive impact on the different
machine learning tasks. The ReLU activation function has the following form [47]:

ReLU(x) = max(0, x)

which has derivative:

d

dx
ReLU(x) =

{
0 if x ≤ 0
1 otherwise

It comes with the aim to solve the vanishing gradient and exploding gra-
dient problems: while using Sigmoid and working on shallower layers doesn’t give
any problem, some issues arise when the architecture becomes deeper because the
derivative terms that are less than 1 will be multiplied each other many times that
the values will become smaller and smaller until the gradient tends towards zero
hence vanishing. On the other hand if the values are bigger than 1 then the opposite
happens, with numbers being multiplied becoming bigger and bigger until they tend
to infinity and explode the gradient.A good solution would be to keep the values to
1 so even when they are multiplied they don’t change. This is exactly what ReLU
does: it has gradient 1 for positive inputs and 0 for negative ones.

The second activation function to be examined is the Exponential Linear
Unit(ELU) [48] which is given as:

elu(x) =
{
α(exp(x)− 1) if x ≤ 0
x otherwise

which has the gradient:

d

dx
elu(x) =

{
elu(x) + α if x ≤ 0
1 otherwise

where α = 1 ELU is a function that tend to converge cost to zero faster and produce
more accurate results. Different to other activation functions, ELU has a extra
alpha constant which should be positive number. ELU is very similiar to RELU
except negative inputs. They are both in identity function form for non-negative
inputs. On the other hand, ELU becomes smooth slowly until its output equal to
−α whereas RELU sharply smoothes.
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Figure 3.8. ReLU and ELU activations

ReLU and ELU activations functions are plotted in Figure 3.8
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3.5 Training and Validation

The dataset has been partitioned in the training, validation and test sets according
to a vertical split: the training dataset has been defined to include a fraction of
heartbeats from each ECG record. A smaller fraction is then considered as validation
dataset, in order to tune the hyperparameters of the model, and the remaining beats
are used for the performance evaluation, belonging to the test set. The first 50% of
each ECG signal is used for training the network, the subsequent 10% for validation
and the last 40% for testing. Therefore, a single LSTM model has been trained and
validated on a fraction of heartbeats from all the records in the database.Records
corresponding to patients with pacemaker (102,104,107,217) have been excluded the
database, as in [27]. Figure 3.9 illustrates, for simplicity, the dataset partition on
three ECG tracings of 8s duration.

Figure 3.9. Vertical split partition example on 8s duration ECG tracings

3.6 Evaluation

According to the Association for the Advancement of Medical Instrumentation
(AAMI) standard [4] for testing and reporting performance results of cardiac rhythm
and ST segment measurement algorithms, the evaluation of an Arrhythmia detector
algorithm is on the classification performance on 4 major classes of heartbeats:

• N-class includes beats originating in the sinus node (normal and bundle
branch block beat types);

• S-class includes supraventricular ectopic beats;

• V-class includes ventricular ectopic beats (VEBs);

• F-class includes beats that result from fusing normal and VEBs.
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Furthermore, each class contains more fine-grained classes of arrhythmic beats. In
the table below are listed the complete classes definitions:

Table 3.1. Beat classification Categories

CLASSES N S V F

DEFINITIONS

normal beat atrial premature beat
premature ventricular contraction

fusion of ventricular and normal beat

left bundle branch block beat aberrated atrial premature beat

right bundle branch block beat nodal (junctional) premature beat

ventricular escape beatatrial escape beats
supraventricular premature beat

nodal (junctional) escape beat

3.6.1 Performance Measures

The measures considered in this study are the per-class Precision, per-class Re-
call, per-class F1 Score, Average Precision, Average Recall and Average
F1 Score, with the following definitions:

Precisionc = TPc
TPc+FPc

Recallc = TPc
TPc+FNc

The definitions of TP, TN, FP and FN for each class are presented in Table 3.2

F1 Scorec = 2× Precisionc×Recallc
Precisionc+Recallc

where c is the class index, and TPc, FPc are the true positives and false positives
fro what concerns the class c

Average Precision =
∑3
c=0

TPc
TPc+FPc

Average Recall =
∑3
c=0

TPc
TPc+FNc

Average F1 Score =
∑3
c=0 2× Precisionc×Recallc

Precisionc+Recallc

predicted/real N S V F

N TPN FNS&FPN FNV &FPN FNF&FPN

S FNN&FPS TPS FNV &FPS FNF&FPS

V FNN&FPV FNS&FPV TPV FNF&FPV

F FNN&FPF FNS&FPF FNV &FPF TPF

Table 3.2. TP, FP, TN, FN definition for Arrhythmia Detection
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3.6.2 Database Annotations

The database considered in this study is again the the MIT-BIH Arrhythmia
Database[23]. In Figure 3.10 it is presented a listing of the beat annotations made
by cardiologists on the MIT-BIH Arrhythmia Database.

Table 3.3 shows the distribution of heartbeats in the 4 AAMIs evaluation classes[4]

Figure 3.10. MIT-BIH Arrhythmia Database Beat Annotations

Class N S V F

Instances 90585 2781 7235 802

Table 3.3. Distributions of heartbeats according to the AAMI recommendations

3.7 Protocol Fine-Tuning

The validation stage is devoted to search the best combination of hyperparameters,
that is the one which results in the best performance on the validation set.

We defined the best combination as the one with the best Average F1 Score,
Section 3.6.1, since it is it is a measure that takes into account both the precision
and the recall of the result for each class.

The following hyperparameters have been fine-tuned:

• Window size

• Number of Channels
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• augmentation factors

• reduction factors

• Timesteps

• Number of LSTM layers

• Number of fully connected layers

• Number of neurons for each layer

• Batch Size

• Dropout Probability

• Hidden Units Activation Function

The Adam has been chosen as optimization algorithm. The loss function selected is
the categorical cross entropy [44], defined as:

−
∑M
c=1 yo,clog(po,c)

where M is the number of classes, log the natural log, y is a binary indicator(0 or
1) if class label c is the correct classification for observation o, p is the predicted
probability observation o is of class c. The Number of epochs parameter varied
for each combination: an Early Stopping Criterion has been employed; the model
stops training when the value of the loss function does not decrease for 10 epoch in
the validation step. Once this happens, the weights of the network corresponding to
the lowest loss value are restored.

Since an exhaustive Grid Search was not feasible to perform due to the elevated
number of candidate combinations, each parameter has been tuned in isolation
mantaining the others fixed. Once a parameter value has been chosen, such decision
is kept for all the subsequent runs.

3.7.1 Window Size

In Section 3.3.1, we defined an heartbeat a fixed amount of signal around an R Peak
location. Such amount is not clearly defined in literature so we decided to try different
values. Another idea consists in defining the feature vector as a bigger portion of
the signal, including more than one heartbeat. The result of this experiment for the
varying window sizes of 200, 300, 400, 500 are illustrated in Figure 3.11
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Figure 3.11. Average F1 Score with different Window Sizes

The best value in terms of Average F1 Score on the validation dataset is 200
samples. This means that the best result is obtained with the feature vector composed
by one heartbeat.

3.7.2 Number of Channels

As in Section 2.4.3.3 we want to analyze whether the inclusion of the second channel
improves the results. In the configuration that uses both channels, the data from
the two signals is concatenated in one feature vector, of doubled dimension.

In Figure 3.12 are depicted the results obtained with one channel and two
channels separately, and the ones obtained by the combination of both in terms of
Average F1 Score
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Figure 3.12. Average F1 Score with First Channel, Second Channel and Both

From this we deduce that the inclusion of Both channels improves the classification
results.

3.7.3 Augmentation and Reduction Factors

The least represented classes in the MIT-BIH Arrhythimia Database are the S-class
and the F-class, while the over-represented one is the normal class, as depicted
in Table 3.3. In order to mitigate the class unbalancing problem we performed a
dataset rebalancing techniques (Section 3.3.2). At this point we must define the
augmentation and reduction factors, i.e. how many times to replicate each
heartbeat in the training dataset, belonging to the least represented classes.

In Figure 3.13 are depicted the results obtained with the augmentation factors
of None(no augmentation at all); (S:4, F:9), (S:3, F:8), (S:4, F:8) and (S:3, F:9) and
the reduction factors of None(no reduction at all); (N:2), (N:3) and (N:4)

Figure 3.13. Average F1 Score with varying reduction and augmentation factors

From this we deduce that the best augment/reduction factors are (S:4, F:8) and
(N:3)
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3.7.4 Timesteps

As explained in Section 3.3.1, the timesteps value is the amount of previous beats
to consider in order to make the prediction for the current beat.

In Figure 3.14 are depicted the results obtained with the timesteps values of 2,
3, 4 and 5

Figure 3.14. Average F1 Score with varying timesteps

From this we deduce that the best timesteps value is 2

3.7.5 Network Layers

For what concerns the Network layers, we must determine how many LSTM layers
to concatenate in a sequential manner in our model. Then, we determined whether
the inclusion of standard Fully Connected Layers after the LSTMs improves the
results. Furthermore, the activation between the elu and the relu(See Appendix
3.4.1 for further reading) and the number of neurons for each layer has been selected.
Finally, we tried to apply Dropout regularization layers between the Fully Connected
layers. The Dropout Probabilities considered are None(no Dropout layers), 0.1, 0.3,
0.5, 0.8. The Batch size parameter also influences the correctness of the results; it
is the number of instances after which the update of parameters is performed. We
tuned such value in the space of 32, 64, 128, 256.

All the results of such experiments are depicted in Table 3.4

From this we deduce that the optimal number of LSTMs and Fully Connected
layers are respectively 4 and 3, the inclusion of Dropout layers with Probability of
0.1 improved the F1 Score, the best Activation Function is the elu and the best
Batch Size is of 128.
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Table 3.4. Average F1 Score with varying Number of LSTMs, Fully Connected layers,
Dropout Probablity, Activation Function and Batch size
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3.8 Results
The validation step determines which is the set of hyperparameters that obtained
the best performance results on the validation dataset. The parameters related to
the Network Structure allow us to build our Recurrent Neural Network, depicted in
Figure 3.15, as displayed in TensorBoard[45], a graphical tool for visualizing and
debugging Neural Networks

Figure 3.15. Recurrent Neural Network Structure

The best hyperparameters related to the Preprocessing stage:
• Window size = 200

• Number of Channels = Both

• augmentation factors = (S:4, F:8)
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• reduction factors = (N:3)

• Timesteps = 2

Once all the parameters have been chosen we measure the performance on the
test set. The final results are exposed in the confusion Matrix and the normalized
version, shown in Figures 3.16a and 3.16b

(a) Confusion Matrix (b) Normalized Confusion Matrix

The values in Figure can be interpreted as explained in Table 3.2. The Complete
Performance Measure are shown in Table 3.5

Accuracy Recall Precision F1 Score

Our RNN 0.968 0.891 0.805 0.844
Table 3.5. Performance Measures

3.8.1 Performance Comparison with State of The Art Algorithms

In Table 3.6 it is shown the comparison with the results of [30]. Note that their
results are obtained on 11 signals out of the 48 of the MIT-BIH Database.

Accuracy Recall Precision

Our RNN 0.968 0.891 0.805

MOE [30] 0.936 0.789 0.76
Table 3.6. Performance Comparison with [30]

In Table 3.7 it is shown the comparison with the results of [27]. Note that the
results are not referred to the same test dataset, since they designed a different
partition of the database.
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RecallS PrecisionS RecallV PrecisionV

Our RNN 0.788 0.626 0.961 0.899

Morphology and Interval Features[27] 0.759 0.385 0.777 0.819

Table 3.7. Performance Comparison with [27]
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Chapter 4

Conclusions and Future Work

This study concerns the development of an end-to-end system for Arrhythmia
analysis along the ECG signal. The first stage, described in Chapter 2 detects
the locations of heartbeats in a single ECG tracing. The Arrhythmia classification
stage, takes as input the locations of the first stage, extracts the whole sequence
of heartbeats and, according to their morphologies, performs a diagnosis of the
occurring arrhythmic events. The different stages of computation are depicted in
Figure 4.1

Figure 4.1. End-to-end system for Arrhythmia analysis

The Heartbeat detection stage achieved good performance measures Preci-
sion=0.988 and Recall=0.923, comparable to the State of the Art approaches.

For what concerns the Arrhythmia analysis, this study demonstrates that a
single classifier trained on a reasonable amount of heartbeats from one or more
patients, is able to make correct predictions on unseen heartbeats from the
same source of data. The achieved perfomance measures are of Recall=0.891 and
Precision=0.805.
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A use case in which a single classifier is tuned on one patient’s data would be
more interesting for production purposes. However this solution requires an amount
of data greater than the 30 minutes of ECG tracing publicly available. Anyhow,
this study proves that this approach would be possible if a larger database for each
patient was available.
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