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Abstract

LoRaWAN is one of the most promising LPWANs, and the Internet of Things
applications using it are rapidly increasing, so it is vital to guarantee a high-security
standard.
The thesis is composed by two parts: a research on LoRaWAN security based on a
scientific paper that will be published shortly; the design and the implementation of
an Industry 4.0 LoRaWAN use case.
In the first part of this thesis, we will focus on the activation schemes of LoRaWAN,
in particular on the Over-The-Air Activation Method (OTAA).
After a brief introduction of OTAA, we will analyze the possible vulnerabilities,
taking into account related works relative both to LoRaWAN and to other IoT-
specific technologies. Then, we propose a new Rejoin-Request to improve the security
of the IoT resource-constrained devices using the Over The Air Activation methods,
then we will discuss the time and energy consumption of the proposed new protocol.
The last chapter presents and describes the architecture of ssense, an Industry 4.0
use case of LoRaWAN, developed in Arpsoft S.r.l. during these months.
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Chapter 1

Introduction

The Internet of Things is growing exponentially, and in years our cities, our houses
will be filled with IoT devices exchanging data and helping us in every aspect of our
life. Most of these devices are cheap sensors and actuators, and they are exposed to
security threats.
Securing the enormous network composed of the "things" is crucial since they can
exchange sensible data or they can control critical features, for example in a Smart
City, the traffic lights or the street lights, or a security system in our house.
To support the huge number of IoT devices new technologies are emerging like the
Low-Power Wide Area Networks (LPWANs) [40], that permits, as the name points,
to connect "things" also at big distances, with reduced energy consumption and
computational power. The LPWANs are promising since they offer the possibility
to develop scalable networks and at the same time guarantee a long lifetime for IoT
devices.
LPWANs are emerging technologies thus they can lack security, so it is vital to
define some security protocols and standards for this type of network. The "classical"
Internet communication makes use in the majority of the case IP-based protocols,
with well-defined security standards. These standards need special attention to be
used in Low-Power Wide Area Network [18], and the limitations in terms of packet
size, data rate, and in some cases the elevated Time-On-Air could be a problem. In
addition to that, the IoT devices cannot make use of cryptographic primitives that
require high computational power, or that are not energy efficient, since they have
to guarantee a long lifetime.
LoRaWAN is one of the most interesting LPWANs, developed by the LoRa Alliance
as an open standard [27], its private and public networks are spreading all over
the world [53]. This thesis focuses on LoRaWAN activation methods, i.e. on the
key agreement protocols between the end-devices and the Network or Join Server,
analyzing the possible vulnerabilities. In particular, the focus is on the Over-The-
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Air activation method, which makes use of two root keys, the NwkKey and
the AppKey to compute the session keys. Those keys are hard-coded, into the
device that means that even in the case of device restart those never change, and
the parties have to restart the process of activation with the same root keys.
In the actual specification, it is possible to refresh the session keys, but it is not
possible to refresh the aforementioned root keys. That can be seen as a weak point
of OTAA and it can be a vulnerability, taking into account that a LoRaWAN device
should have a lifetime of at least 10 years.
This work proposes a new type of Rejoin-Request and Join-Accept message that allows
refreshing also the root keys using the Elliptic-Curve Cryptography and without
modifying the actual architecture, in this way, we ensure the backward-compatibility
with the actual specification, taking into account that a Key Agreement protocol
must guarantees key freshness [11], and it must encounter these cryptographic
properties [22, 26]: Computational Key Secrecy, Decisional Key Secrecy,
and Key Independence.
During the period of my thesis I have done an Internship in Arpsoft S.r.l., where
I designed and implemented an Industry 4.0 LoRaWAN use case ssense. The
application’s goal is to offer the end-user a web-based interface in which the user
can control and visualize in several ways some data collected by LoRaWAN sensors.
The actual version of ssense is focused on environmental sensors, in particular
temperature, humidity, light, motion, and CO2 level, but the architecture of the
application is scalable and can adapt easily to new type of sensors.
Moreover, ssense allows the user to manage a hierarchy of points of interest where
the sensors are actually mounted. The hierarchy starts from groups of geographical
areas, to the single room on a building or to the single sensor.
The rest of the thesis is organized as follows: Chapter 2 summarizes the state
of the art regarding LPWANs security listing some related works and comparing
them to my proposal; in Chapter 3 I describe the main technologies I used to
reach my goal: LoRaWAN, the Over-The-Air Activation Method, the Elliptic-Curve
Cryptography, and the Elliptic-Curve Diffie-Hellman protocol. In Chapther 4 are
listed some vulnerabilities of LoRaWAN1.1 ; in Chapter 5 is described in detail the
proposed new Rejoin Mechanism for LoRaWAN1.1 OTAA, and then in Chapter 6
the protocol is analysed with respect to security and performances point of view.
In Chapter 7 is described the architecture and the technologies used to implement
ssense. Finally, in Chapter 8 are listed the conclusion and the possible future works
both regarding LoRaWAN security and ssense.
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Chapter 2

Related and Previous works

The enormous heterogeneity of the IoT devices is expected to magnify security
threads with respect that to the current internet, and it is crucial to set high
standards of security, privacy, and trust for the IoT application [47]. The security of
LPWANs is an open issue, and several works analyze possible vulnerabilities.
The authors in [10] perform a detailed analysis on LoRAWAN security, ranging
from the hazard of physical access to the end-device to the possibility to perform
an ACK spoofing attack or an Application-Specific attack. An interesting analysis
regards the eavesdropping, which can lead to compromise the encryption method
and to decrypt part of the entire cipher-text, in the case of the frame counter reset
and the session keys remain the same, for example when we use the Activation By
Personalization activation method. That underlines the importance of having an
efficient and complete key refresh mechanism in every Key Agreement Protocol.
The authors in [9] lists some potentials vulnerabilities in LoRaWAN1.1. They focus
on the possibility of performing a replay attacks relaying on jamming techniques,
to lead to a Denial Of Service. They also point as a vulnerability the non-secured
beacons in case of LoRaWAN class B devices to de-synchronize the receive windows
and the possibility of network analysis.
In [6], similarly to the aforementioned work, the authors find the possibility to
combine a jamming attack to a replay attack. In addition, they focus on a replay
attack in case of a bad configured application server, i.e. when the frame counter is
disabled.
In [48] is proposed a new architecture for LoRaWAN networks, in order to
reinforce security and to provide an end-to-end secure communication scheme. The
authors point as a possible solution a Median Server, a new entity in the architecture
that has the role of a registration authority for both end-devices and gateways. To
fulfil this purpose a Central Authority is introduced to ensure that only authenticated
devices interact with the system, and that they connect only with authenticated
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gateways. They introduce also a VPN network to secure the communication between
the gateways and the Median/Network servers.
The proposal make use of the Elliptic-Curve Cryptography [8, 33] to agree the
new pair of root keys between the end-device and the Network Server. ECC permits
us to have the same level of security of RSA using smaller parameters [24] for
example an elliptic curve over a 283-bit field gives the same level of security as a
3072-bit RSA modulus or Diffie-Hellman prime.
As is shown in [31] and [51], ECC is a better alternative with respect to RSA for
resource-constrained devices used in IoT context, both in terms of computational
power and energy efficiency. In particular, in [31] it is shown how using ECC
add a small run-time overhead, that is worth the gain in term of security.
Another topic of interest is the key agreement and the group key agreement protocols
in resource-constrained context.
The authors in [43] perform an attack exploiting a vulnerabilities in the ZigBee
OTA features, that allows them to update the firmware of smart lights with a
malicious code that spread over others smart bulbs. This shows the importance of a
secure Over-The-Air activation, both in the initialization phase of the end-devices,
and in the phase of updating the firmware or the keying material.
In [44] is proposed a lightweight bootstrapping protocol for authentication and
establishing credentials for 4G/5G and NB-IoT networks. The proposal find
LO-CoAP-EAP as a feasible and efficient solution for NB-IoT and 5G networks.
The authors in [11] propose a Group Key Establishment protocol in a Wireless
Sensor Network following a distributed approach that does not require many-to-
many messages and that does not rely on a global ordering of devices. The protocol is
interesting for the use of the Elliptic-Curve Diffie-Hellman protocol to generate
a shared secret between the devices.
In [45] the authors propose some alternatives to the actual key management in
LoRAWAN. They explore the possibility of an approach based respectively on
IKEv2, DTLS and EDHOC, analysing the pros and cons of each approach, but
they do not formalize an alternative key management scheme for LoRaWAN using
one of the aforementioned protocols.
The authors in [39] propose two group key agreement protocols for enabling a secure
multi-casting in WSNs. Both protocols are based on Elliptic Curve Cryptography,
that permits to use asymmetric encryption at low cost in term of energy consumption
and computational power.
In [17] it is proposed a root key distribution scheme for LoRaWAN OTAA. The
authors make use of Rabbit, a high-efficient synchronous stream cipher, to generate
a new pair of root key. After the generation of the new keys, the end-device will
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trigger a new Join-Request with the Join Server.
My proposal offersmore efficient way to generate a new pair of root keys, because
it can refresh all the keying material with the exchange of only two messages.
The authors in [55] propose a new key management schema for LoRaWAN based
on Hierarchical Deterministic Wallet using the BIP32 algorithm [54]. On the
contrary, the protocol described in this work adds the possibility to refresh the root
keys without any modification of the actual architecture of LoRaWAN.
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Chapter 3

Technologies

In this chapter, we will introduce the main technologies used to carry on the research
work: LoRaWAN and the Elliptic-Curve Cryptography.

3.1 LoRaWAN1.1

The information contained in this section are based on the official LoRaWAN1.1
Specification by LoRa Alliance [5].
LoRaWAN networks are laid out in a star-topology, in which the sensors send the
packets to a gateway that forward them to a Network Server. Afterwards the
Network Server send the packets to the application-specific Application Server.
The communication between the gateways and the different types of server are based
on the Internet standard TCP/IP protocol, on the contrary the communication
between the sensors and the gateways are based on LoRa.
The LoRaWAN devices are distinguished in three classes:

• Class A: each up-link message is followed by two receiving windows, so the
device listen and can receive messages only during these time windows.

• Class B: in addition to the Class A devices, they can open extra receiving
windows at scheduled time, synchronized by beacons sent by the gateways.

• Class C: the devices have a nearly continuous open receiving window. They
cannot receive messages only when they are sending a packet.
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The power consumption is greater in case of Class C devices and is smaller in case
of Class A device, so the Class A device can guarantee a longer battery life-time.
LoRaWAN operates in unlicensed radio spectrum, that allows to anyone to use the
radio frequencies without paying any fee [52]. The frequencies in which LoRaWAN
operates are different with respect to the region, for example in Europe is used the
863-870MHz ISM Band [4].

3.1.1 Activation Methods

LoRaWAN has two types of activation to ensure a secure communication between
the end-device and the Join/Application Server:

• Activation By Personalization - ABP: this activation method is the
simplest, but is also the less secure. It make use of a set of predetermined
keys, used as session and integrity keys. These keys are hard-coded into the
end-device, so it is not possible to refresh them.

• Over The Air Activation - OTAA: This activation method permits to the
end-device and the Join Server to agree upon the session and the integrity
keys thanks to an handshake. OTAA makes use of some hard-coded keys that
are used to determine the needed keys.

While ABP is used in particular in development phase, cause is faster, OTAA is the
recommended activation method since it guarantee an higher level of security for
the communication since it permits to refresh the session and integrity keys.

3.1.2 Activation By Personalization - ABP

The Activation by Personalization directly tied up the end-device to the Net-
work/Application Server by hard-coding the session and integrity keys directly into
the device. That allows to establish a secure communication in a faster way as long
as a join procedure is not required. On the other hand, this activation method is
not secure, since the packets are encrypted with the same key for the entire life of
the device.

3.1.3 Over-The-Air Activation - OTAA

Before starting the actual handshake, both the end-device and the Join Server need
some data that they will use to agree on the keys.

• DevEUI: a global end-device identifier of 64 bits that uniquely identify the
device. The DevEUI must be stored into the device before the activation. It
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can be public, and it is a recommended practice to make it available on the
device label.

• JoinEUI: a global application identifier of 64 bits that uniquely identifies the
Join Server. The JoinEUI must be stored into the device before activation.

• Device Root Keys: the NwkKey and the AppKey are AES-128 root keys
specific to the end device that are assigned to it during fabrication. These
keys are the ones used to derive the session and integrity keys. They never
change during the life-cycle of the end-device, so securing distribution, storage
and usage of them, both in the end-device and in the Join Server, is crucial
for the entire security of the protocol.

The last data needed before activation are two keys derived from the NwkKey:

• JSIntKey: used to compute the MIC (Message integrity code) for the Rejoin-
Request message and the Join-Accept message.

JSIntKey = aes128_encrypt(NwkKey, 0x06|DevEUI|pad16)

• JSEncKey: used to encrypt the Join-Accept message triggered by a Rejoin-
Request.

JSEncKey = aes_encrypt(NwkKey, 0x05|DevEUI|pad16)

Data computed during activation

The end-device after the activation will have these additional information:

• The DevAddr, 32 bits that identify the end-device within the LoRa network.
It is allocated by the Network-Server.

• The Forwarding Network Session Integrity Key - FNwkSIntKey, used
by the device to calculate the MIC for all up-link messages.

• The Serving Network Session Integrity Key - SNwkSIntKey, used by
the end-device to check the MIC of all down-link messages.

• The Network Session Encryption Key - NwkSEncKey, used to encrypt
and decrypt both up-link and down-link MAC commands transmitted as
payload on port 0 or in the FOpt field.

• The Application Session Key - AppSKey, used by both the device and
the Application Server to encrypt and decrypt the payload field of application-
specific messages.
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Join-Request Message

The join procedure is started by the end-device by sending a Join-Request mes-
sage. The message contains the JoinEUI, the DevEUI and a DevNonce, that
is a counter, starting at 0, incremented at each Join-Request message. It is used as
a countermeasure for the replay attack since it can not be used twice for a given
JoinEUI.

JoinEUI DevEUI DevNonce
8 Bytes 8 Bytes 2 Bytes

Figure 3.1. Join-Request message

The MIC for the message is computed as follows:

cmac = aes128_cmac(NwkKey,MHDR|JoinEUI|DevEUI|DevNonce)

MIC = cmac[0...3]

The Join-Request is NOT encrypted.

Join-Accept Message

The Join-Accept message contains a JoinNonce, a network identifier NetID, the
DevAddr, aDLSettings field providing some down-link parameters, theRxDelay,
and an optional list CFList containing network parameters.

JoinNonce Home_NetID DevAddr DLSettings RxDelay CFList

3 Bytes 3 Bytes 4 Bytes 1 Byte 1 Byte 16 Bytes (optional)

Figure 3.2. Join-Accept message

The JoinNonce is a device specific counter value, that never repeats itself,
provided by the Join Server and used by the end-device to derive the session and
integrity keys. It is incremented at each Join-Request message.
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Session and Integrity keys derivation

F NwkSIntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|JoinEUI|DevNonce|pad16)
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSEncKey = aes128_encrypt(NwkKey, 0x04|JoinNonce|JoinEUI|DevNonce|pad16)
AppSKey = aes128_encrypt(AppKey, 0x02|JoinNonce|JoinEUI|DevNonce|pad16)

Rejoin-Request Message

Once activated an end-device may periodically transmit a Rejoin-Request message,
which gives the server the possibility to initialize a new session context for an
end-device.
There exist three types of Rejoin-Request:

• Rejoin-Request type 0: contains NetId and DevEUI. Used to reset a
device context including all radio parameters.

• Rejoin-Request type 1: contains JoinEUI and DevEUI. Equivalent to
type 0, but transmitted on top of normal application traffic without discon-
necting the end-device.

• Rejoin-Request type 2: contains the NetId and DevEUI. Used to re-key
a device or change its devAddr, the radio parameters are kept unchanged.

The Rejoin-Request is NOT encrypted.
The Rejoin-Request of type 0 and 2 make use of counter, RJcount0, incre-
mented at every type 0 or 2 Rejoin frame transmitted. If the RJcount0 reaches
216 − 1 the device shall stop transmitting Rejoin-Request of the given types, and
restart completely the Join Request.

Rejoin Type = 0 or 2 NetID DevEUI RJcount0

1 Byte 3 Bytes 8 Bytes 2 Byte

Figure 3.3. Rejoin-Request type 0 or 2 message

The Rejoin-Request of type 1 make use of another counter, RJcount1,
incremented at every type 1 Rejoin-Request message transmitted. In this case,
the counter shall never warp around, due to the lifecycle of the device for a given
JoinEUI value.
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Rejoin Type = 1 JoinEUI DevEUI RJcount1

1 Byte 8 Bytes 8 Bytes 2 Byte

Figure 3.4. Rejoin-Request type 1 message

Rejoin-Request Message Processing

For all the three types of Rejoin-Request message the Network Server respond with:

• A Join Accept message to modify the device’s network identity. The RJcount0
or the RJcount1 replaces the DevNonce in the key derivation.

• A normal down-link frame optionally containing MAC commands.

In most cases following a Rejoin-Request message of type 0 or 1, the server will not
respond.

Figure 3.5. LoRaWAN 1.1 Key Derivation scheme [5]
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3.2 Elliptic-Curve Cryptography - ECC

The Elliptic-Curve Cryptography curves are implemented over two number
fields, the prime field, and the binary field. The binary field curve has worse
performance and energy efficiency when executed on general-purpose processors [51],
but outperforms the prime field curve if dedicated hardware is used. Since the
IoT devices are heterogeneous and in most cases are cheap boards with no particular
hardware capabilities, we pointed towards a prime field curve to implement the new
type of Rejoin. In this way, we can assure good performance and energy efficiency
for all devices.
In particular, we found the secp256k1 and the secp256r1 curves as the best
candidates, because smaller curves do not guarantee always better performances
[51], and the key size of these two curves fit the purpose of the proposal.
The main difference between the candidates curves is that the secp258k1 curve is
generated over a prime field associated with a Koblitz curve, on the other hand, the
secp256r1 curve is generated over random domain parameters. Koblitz curves are
generally less secure but in 256-bit curve, the impact is minimal [7]. The secp256k1
curve is generally faster than the other curve if the implementation is optimized,
in particular for the signature generation and verification, and that is one of the
motives the curve is used by Bitcoin [19]. On the other hand we can see in [46] that
the elapsed time difference for public key and secret generation in the two types of
curves is very low.
Since the difference in terms of performance and energy efficiency for our purpose
are negligible, we choose the secp256r1 curve, since it offers a major level of security.

3.2.1 Elliptic-Curve Diffie-Hellman

To fulfill the goal of the new proposal, we need a key agreement protocol, to refresh
the LoRaWAN root keys. The Elliptic-Curve Diffie-Hellman protocol allows
to do that using the Elliptic-Curve Cryptography. The ECDH is is similar to
the classical Diffie-Hellman Key Exchange protocol but it uses ECC point
Multiplication instead of modular exponentiation [32].
The ECDH protocol works as follows [3]:

1. The two parties A and B have to agree on a common Elliptic-Curve Group
G of order n, and on a Primitive Element P in G of order n. In our case
we choose the secp256r1 curve that defines these parameters.

2. A selects an integer a ∈ [2, n− 1] and it computes Q = [a]P . Where Q is the
public key of A, and a is the private key.
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3. B selects an integer b ∈ [2, n− 1] and computes it R = [b]P . Where R is the
public key of B, and b the private key.

4. The two parties exchange their public keys.

5. A computes the secret SA = [a]R = [a][b]P

6. B computes the secret SB = [b]Q = [b][a]P

7. The two parties have a common secret SA = [a]R = [a][b]P = [b]Q = SB
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Chapter 4

Vulnerabilities in LoRaWAN1.1

To analyse the possible vulnerabilities of LoRaWAN1.1 Over-The-Air-Activation
method we have to take into account the goals of the attacker [56]. This thesis
focuses on the key agreement between the end-device and the the Join/Application
Server, so we can suppose that the attacker aims to collect information that can help
it to guess the session and integrity keys used to encrypt the application messages.
If an attacker knows those keys it can decrypt the messages and it can impersonate
the end-device as long as a new Rejoin-Request is successfully completed.
The attacker has another goal, i.e. to guess the root keys, in this case the attacker
can decrypt all the messages and it can impersonate the end-device until the end of
its lifetime.

4.1 Replay Attack

The authors in [9] point the replay attack as a vulnerability of OTAA. Using a
selective RF jamming technique an attacker can jam and capture a first Join-Request
from an end-device. The device will re-transmit a second Join-Request after a
timeout, since it will not receive a Join Accept message. The second Join-Request
message will be jammed, and the first jammed Join-Request is transmitted by
the attacker. The Network Server will respond to the first Join-Request with a
Join Accept message. From now on, the Network Server, the Join Server and the
end-device are de-synchronized.

4.2 Passive Man In The Middle Attack

An attacker performing a simple Passive Man In The Middle Attack, can eavesdrop
all messages from/to and end-device, and read the content if not encrypted, and it
can collect some useful information used during the OTAA procedure.
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The information useful to the attacker to compromise the session and the integrity
keys are:

• NwkKey/AppKey

• JoinNonce

• JoinEUI

• DevNonce

When an end-device transmit a Join-Request message, since it is not encrypted the
attacker collects the JoinEUI and the DevNonce. These information are always
available to the attacker even in case of a Rejoin-Request message, since also this
message is unencrypted. From a Rejoin-Request of type 0 or 2, an attacker can
extract the DevEUI, and the RJcount0. From a Rejoin-Request message of type
2 instead he can collect the JoinEUI and the RJcount1. The RJcount0 or the
RJcount1 take the place of the DevNonce during a rejoin request. So an attacker
knows the DevNonce and the JoinEUI at each time of the life-cycle of the device.
As we seen in Section 3.1.3 the JoinNonce is a device specific counter incremented
at each Join-Request message, so it is easy for the attacker to compute the value of
this information counting the number of Join-Request the end-device send to the
Network Server.

4.3 Root keys

Since an attacker can collect the JoinNonce, the JoinEUI and the DevNonce,
simply performing a MITM attack, the security of OTAA is based on the the storage
of the NwkKey and the AppKey.
These root key are hard-coded into the end-device during fabrication, and they never
change during the entire life-cycle of the device. Now the only way to refresh those
keys is to manually change them, both in the Network/Application Server and into
the device. This process can be expensive, in particular for devices placed in hard
reachable locations.
To overcome this issue, in the next section we propose a new type of Rejoin-Request
that permits to refresh the root keys periodically.



16

Chapter 5

New Rejoin-Request message

In this section is described in details our proposal.
To maintain the actual architecture of LoRaWAN we offer a new type of Rejoin-
Request message and a respective new type of Join-Accept message. Thereby our
solution is backwards compatible with the three type of Rejoin-Request previously
described, moreover we maintain the same philosophy, so with the exchange of only
two messages it is possible to refresh all the keying material, including the root keys.

5.1 Rejoin-Request message of type 3

We propose a new type of Rejoin-Request message, that permits to refresh all the
key materials at once.
First of all, the end-device have to generate a new pair of private/public ECC keys
using the secpr256r1 curve.
The Rejoin-Request of type 3 contains the RejoinType, one byte equals to 3;
the NetID; the DevEUI; the RJcount3, that behaves in the same way of the
RJcount0 and RJcount1, and it will substitute the DevNonce for the subsequent
session key generation; and previously generated compressed public key of the
device.

Rejoin Type = 3 NetID DevEUI RJcount3 End-Device 
Public compressed Key

1 Byte 3 Bytes 8 Bytes 2 Byte 33 Bytes

Figure 5.1. Rejoin-Request type 3 message
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The RJcount3 is a counter that is incremented at each Rejoin-Request of type
3, it shall never wrap around, due to the lifecycle of the device for a given NwkKey
and AppKey value. The RJcount3 prevents replay attacks for the given type
of the Rejoin-Request, since the Network Server discards all the Rejoin-Request
messages with a counter value less or equal to the last Rejoin-Request type 3 valid
message. The RJcount3 restarts from 0 after a successful Rejoin Request of all type,
so it has to be unique for a given combinations of values of NwkKey, AppKey,
and sessions keys.
TheMessage Integrity Code of the Rejoin-Request message of type 3 is computed
as follows:

cmac = aes128_cmac(SNwkSIntKey,

MHDR|RejoinType|NetID|DevEUI|RJcount3|DeviceCompressedPublicKey)

MIC = cmac[0...3]

This message will be sent not encrypted, like the other types of Rejoin-Request.

5.2 Join-Accept message of type 1

The Network Server that receive a valid Join-Request message of type 3, will respond
to the end-device with a Join-Accept message of type 1. Before sending the
message, it have to generate a new pair of private/public keys using the secp256r1
curve.
The Join-Accept message of type 1 contains: the JoinNonce, theHome_NetID,
the DevAddr, the DLSetting, the RxDelay, and the compressed public key
of the network Server. The MIC of the Join-Accept message of type 1 is computed

Join Nonce Home_NetId DevAddr DLSettings RxDelay Server
Public compressed Key

3 Byte 3 Bytes 4 Bytes 1 Byte 1 Byte 33 Bytes

Figure 5.2. Join-Accept type 1 message

as follows:
cmac = aes128_cmac(JSIntKey,

RejoinRequestType|JoinEUI|RJcount3|MDHR|JoinNonce|NetiD|DevAddr|

DLSetting|RxDelay|ServerCompressedPublicKey)

MIC = cmac[0...3]
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The Join-Accept type 1 message will be encrypted as follows:

aes128_decrypt(JSEncKey, JoinNonce|NetID|DevAddr|DLSettings|RxDelay|

ServerCompressedPublicKey|MIC|pad16)

Where pad16 is a pad of 3 bytes to make the Join-Accept message 48 bytes long,
multiple of 16. It is used the AES decrypt operation in ECB mode to encrypt the
message, the same as the actual Join-Accept message.

5.3 NwkKey and AppKey generation

ECDH Shared secret

256 Bits

New NwkKey

128 Bits

New AppKey

128 Bits

0 127 128 255

Figure 5.3. New Root Keys Derivation

Once the Network Server has received the Rejoin-Request of type 3 message
and it has generated its own private/public pair of keys, it can compute a secret
using the public key of the end-device and its private key using the Elliptic-Curve
Diffie-Hellman protocol [28].
The end-device, after receiving the Join-Accept message of type 2, can also compute
the same secret using its private key and the public key of the Network Server.
Both the end-device and the Network Server have a common 256-bit secret, the 128
most significant bits will be used as the new NwkKey, meanwhile the 128 less
significant bits as the new AppKey (Figure 5.3). After the generation of the new
root keys both the end-device and the Network Server can discard the private/public
keys previously generated, and they can recompute all keying material: JSIntKey,
JSEncKey, FNwkSIntKey, SNwkSIntKey, NewSEncKey and AppSKey.
In case of a reboot, the device needs to reissue a new Join-Request as specified in
the actual specification, but the two parties will use the newly computed root keys
to generate the session and integrity keys.
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Chapter 6

Security and Performance
Analysis

In this chapter the proposal defined in Chapter 5 will be analyzed with respect to
security and performances points of view.

6.1 Security Analysis

In this section the security of our proposal is analyzed with respect to the vulnera-
bilities listed in Chapter 4.

6.1.1 Replay Attack

In the Rejoin-Request type 3, the RJcount3 is a counter that is incremented at
each Rejoin-Request of this type. Its value substitutes the DevNonce in the session
keys generation, and it used to prevent Replay Attacks, since the Join Server will
discard a Rejoin-Request of type 3 with a value of RJcount3 lesser than or equals
to the last valid Join-Request of type 3 received. The device and the Join Server
reset that counter each time a Rejoin-request of each type is successfully completed,
that ensure to have unique RJcount3, even in the case of device reboot.
Our proposal remains vulnerable to a Replay attack combined with a selective RF
jamming attack as described in Section 4.1.

6.1.2 Man In The Middle Attack - MITM

An attacker performing a MITM attack can eavesdrops the Rejoin-Request message
since it is not encrypted. So it can access the following information: the NetID, the
DevEUI, the RJcount3 (i.e. the DevNonce), and the end-device public key.
The attacker cannot obtain any information from the Join-Accept type 1 message,



6.1 Security Analysis 20

since it is encrypted, but it can derive the JoinNonce as we already described in
Section 4.2.
The information the attack can obtain or derive are not sufficient to guess the value
of the new NwkKey and AppKey keys, or the new session keys.
The attacker cannot compute the value of the ECDH shared secret knowing only
the public key of the end-device.

6.1.3 Keys freshness

Since a LoRaWAN device is supposed to work for at least ten years, it is important
to not use the same keys for this long amount of time, so our proposal offers a way to
refresh periodically those keys, enhancing the overall security of the entire activation
method.
Moreover, a Key Agreement protocol must guarantees key freshness [11], and
regarding this requirement it must encounter these cryptographic properties [22, 26]:

• Computational key secrecy: it must be computational infeasible for any
passive adversary to discover any key.

• Decisional key secrecy: there must be no information leaked other that
public key information.

• Key independence: a passive adversary that knows a subset of keys must
not discovery any other information of the remaining keys. This property
decompose into:

– Forward Secrecy: a passive adversary that knows a subset of keys must
not discover any subsequent keys.

– Backward secrecy: a passive adversary that knows a subset of keys
must not discover any preceding keys.

LoRaWAN1.1 current specification complies with these requirements and proper-
ties concerning the integrity and session keys (FNwkSIntKey, SNwkSIntKey,
NwkSEncKey, AppSKey), but it does not guarantee key freshness in the case
of the root keys (NwkKey, AppKey) and consequently for the JSIntKey and
JSEncKey keys.
Our proposal guarantees key freshness also for those keys, and it encounters the
aforementioned cryptographic properties. An adversary can know only the public
key information, and thanks to the the Elliptic Curve Cryptography, it is compu-
tationally infeasible for him to know the private keys of both parties [25], or the
shared secret computed via ECDH. So the Computational and Decisional key
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secrecy are guaranteed.
Key independence is respected because the new root keys are completely inde-
pendent from the previous and the subsequent ones, because the Elliptic-curve
Diffie-Hellman protocol is used to compute the new root keys. In addition, the
pair of private/public ECC keys is discarded, and it is generated a new pair from
scratch at each Rejoin-Request, both from the server an the end-device.

6.2 Performance Analysis

The power and time consumption of each operations that our proposal introduced is
tested with respect to the encryption of a single 128-bits AES block of plain-text,
using several System On a Chip, with different processors and hardware support.
The tests are implemented using RIOT Operating System [42], in particular
with the support of the micro-ecc library [23] that implement ECDH and ECDSA
for 8-bit, 32-bit, and 64-bit processors. To implement the 128-bits AES encryption I
used the Crypto module available in RIOT OS [41].
The test are executed on the FIT IoT-LAB testbed [2], in particular on six different
development boards: the IoT-LAB M3, the SAMR21 Xplained Pro, the ST
B-L072Z-LRWAN1, the nRF51DK, the nRF52DK, and the nRF52840DK.

SoC CPU Frequency RAM AES HW support HWPRNG

nRF51422 Cortex-M0 16MHz 20KB YES NO
STM32L072CZ Cortex-M0+ 32MHz 20KB YES NO

ATSAMR21G18A Cortex-M0+ 2.4GHz 32KB YES NO
STM32F103REY Cortex-M3 72MHz 64KB NO NO

nRF52832 Cortex-M4 64MHz 64KB YES NO
nRF52840 Cortex-M4 64MHz 256KB YES NO

Table 6.1. System on Chips Hardware overview

6.2.1 ARM Cortex-M0

The ST B-L072Z-LRWAN1 board uses the STM32L072CZ microcontroller by
STMicroelectronics [50] with an ARM Cortex-M0+ 32-bits RISC core operating
at 32MHz. The microcontroller has up to 192KB of Flash program memory, 6KB
of data EEPROM, 20KB of RAM, and it offers hardware support for 128-bits AES.
The nRF51DK board is based on nRF51422 chip by Nordic Semiconductor [34].
The SoC has a 16MHz ARMCortex-M0 core, with up to 256KB of Flash memory,
and up to 32KB of RAM. It has a 128-bit AES/ECB/CCM/AAR co-processor.
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ST B-L072Z-LRWAN1 nRF51DK

Compute ECC Public/Private Keys 523432µs 1045543µs
Compress ECC Public Key 20µs 43µs

Decompress ECC Public Key 39639µs 79216µs
Compute EC-DH Secret 523353µs 1045496µs
128-bits AES encryption 116µs 216µs

Table 6.2. Time consumption for ST B-L072Z-LRWAN1 and nRF51DK boards of each
ECC operations and the encryption of a single 128-bits AES block (in microseconds)

The SAMR21 Xplained Pro board is based on the ATSAMR21G18A SoC
by Microchip [29]. It has at its core an ARM Cortex-M0+ working on 2.4GHz
frequency, with a Flash memory of 256KB and a SRAM of 32KB. Furthermore,
the SoC offers a 128-bits AES crypto engine to enhance the performances of AES
operations, but it does not offer any support for the Pseudo-Random Number
Generator.

6.2.2 ARM Cortex-M3

The IoT-LAB M3 board is based on the STM32F103REY Microcontroller Unit
by STMicroelectronics [49]. The MCU uses an ARM Cortex-M3, operating at
72MHz frequency with a Flash memory of 512KB and SRAM up to 64KB. It offers
no hardware support neither for AES, nor for ECC, and nor for Psuedo-Random
Number Generation.

SAMR21 Xplained Pro IoT-LAB M3

Compute ECC Public/Private Keys 387376µs 184052µs
Compress ECC Public Key 22µs 12µs

Decompress ECC Public Key 29298µs 13881µs
Compute EC-DH Secret 387330µs 184035µs
128-bits AES encryption 97µs 48µs

Table 6.3. Time consumption for IoT-LAB M3 and SAMR21 Xplained Pro boards of each
ECC operations and the encryption of a single 128-bits AES block (in microseconds)

6.2.3 ARM Cortex-M4

The nRF52DK board has the nRF52832 SoC by Nordic Semiconductor [35], with
a 64MHz Cortex-M4 core with Floating-Point Unit. The chip has up to
512KB of Flash memory, and up to 64KB of RAM. Like the previous chip has a
128-bit AES/ECB/CCM/AAR co-processor.
The last board, the nRF52840DK has the nRF52840 chip by Nordic Semicon-
ductor [36]. It has an Cortex-M4 core with Floating-Point Unit operating at
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64MHz frequency, with 1MB of Flash memory and 256KB of RAM. Moreover
it offers the Arm CryptoCell CC310 crytographic security module and a 128 bit
AES/ECB/CCM/AAR co-processor.

nRF52DK nRF52840DK
Compute ECC Public/Private Keys 161234µs 161279µs

Compress ECC Public Key 10µs 10µs
Decompress ECC Public Key 11778µs 11754µs

Compute EC-DH Secret 161253µs 161245µs
128-bits AES encryption 41µs 41µs

Table 6.4. Time consumption for nRF52DK and nRF52840DK boards of each ECC
operations and the encryption of a single 128-bits AES block (in microseconds)

No board has an Hardware Pseudo-Random Number Generator, that increase of
a significant factor the time to execute some ECC-based operations. In Tables 6.3,
6.2 and 6.4 are summarized the results of our tests regarding the time consumption.

6.2.4 Power Consumption

The power consumption of the introduced ECC-based operations are listed in Table
6.5, taking into account only the IoT-LAB M3, and the SAMR21 Xplained
Pro boards, since the Consumption Monitor in FIT IoT-LAB testbed was available
only for those boards.

SAMR21 Xplained Pro IoT-LAB M3

Idle State 0.5200W 0.056W
Compute ECC Public/Private Keys 0.542W 0.130W

Compress ECC Public Key 0.5210W 0.058W
Decompress ECC Public Key 0.5237W 0.129W

Compute EC-DH Secret 0.5420W 0.129W
128-bits AES encryption 0.5230W 0.068W

Table 6.5. Power consumption of IoT-LAB M3 and SAMR21 Xplained Pro boards of each
ECC operations and the encryption of a single 128-bits AES block (in Watt)

Taking into account that the proposed Rejoin mechanism need to be executed at
low frequencies, the overhead in terms of time and power consumption is affordable
with respect to the enhancement of the overall security of LoRaWAN1.1 Over-
The-Air Activation method. Moreover using System on a Chip with an Hardware
Pseudo-Random Number Generator that overhead can be reduced.
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Chapter 7

An Industry 4.0 use case: ssense

During the period of my master thesis in parallel with the work of research
on LoRaWAN security, I have done an internship in Arpsoft S.r.l. where I had
the opportunity to design and implement ssense, an Industry 4.0 use case for
LoRaWAN.
In this chapter I will describe the architecture and the choices we made to create
the service.

7.1 Overview

We can locate ssense in the smart facilities context, since it aims to create a dash-
board for factories, companies, hospitals, etc. to control environmental factors like
temperature, humidity, Co2 level or lightning, taking into account the maximum
scalability to integrate different and new type of sensors.
Clients have full control of their buildings since ssense offers a hierarchical organiza-
tion of the points of interest: starting from groups of geographical areas, arriving at
a single room in a building; and fine management of the users.
ssense defines two main types of users:

• the administrator, that has complete access to all the data, it can modify
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the information of all the points of interest and the he can manage the users,
means that he can handles the request of subscription, he can set the roles of
the user, and in case of simple users he can set the permission level for each
point of interest.

• the simple users according to the permissions set by an administrator can
visualize the data of some or all points of interest, and in some cases he can
modify the relative information. He cannot access to the user management
options.

The administrator can set and modify the access permissions for the simple user.
ssense provides three level of access to each point of interest of the hierarchy.

• no permission: the user has no access permission of that point of interest.
He cannot visualize its data or know about its existence

• only read: the user can visualize the data of the given point

• admin: he has access to the data of the given point of interest, but he can
also modify the information regarding it

Figure 7.1. User permissions setting

To visualize the data, it is crucial to offers a simple way to navigate into the hierarchy,
to reach this goal we gave to the user two possibilities:

• a list view (Figure 7.2) in which you can go inside a certain level and navigate
the various elements
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Figure 7.2. Example of list view in ssense

• a map (Figure 7.3) that depending on the zoom level you can see a specific
level of the hierarchy up to the level of the buildings.

Figure 7.3. Example of map in ssense

At the level of the buildings, for both the list and map view, the user can explore
the floors using the list view or using a graphical representation of the building, in
which is possible to access the single floor and see the blueprint, containing only the
rooms for which the user has at least the read access. ssense gives the possibility
to create and modify the blueprint of each floor, that are implemented using SVG
elements.
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Figure 7.4. Example of floor blueprint in ssense

The end-user can visualize the data collected by the sensors in two ways, via
dashboards and via a dynamic table. The dashboards (Figure 7.5) organize the
data in charts and they are available for each buildings, floors and rooms. They
gives the possibility to navigate the data through each moment in time, and the
charts are dynamic and responsive.

Figure 7.5. Example of dashboard in ssense

On the other hand, using the table (Figure 7.6) the user can aggregate the
data on each level of the hierarchy and it offers several time range from one hour to
24 hours, in different time intervals.
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Figure 7.6. Example of table in ssense

7.2 End-to-End Architecture

To reach our goals we needed to orchestrate heterogeneous services and technologies,
starting from the Wireless Sensor Network to the user interface.

7.2.1 Wireless Sensors Network

The data are collected by LoRaWAN sensors, in particular ERS Elsys [13] and
ERS CO2 Elsys [14] sensors. They are sensor for indoor measurements, they are
equipped with a temperature sensor, a humidity sensor, a passive infrared (PIR)
sensors, a light sensor, and the ERS CO2 has also a CO2 sensor.
The temperature sensor operates from 0°C to 50°C, with a resolution of 0.1°C and
an accuracy of ±0.2°C. The humidity sensor operates from 0%rF to 85%rF , it has
accuracy at 25°C of ±2%rF , and a resolution of 0.1%rF . The light sensor has a
range from 2 LUX to 2000 LUX, it has an accuracy of ±10 LUX and a resolution of
1 LUX.
The CO2 sensor in the ERS CO2 operates from 0ppm to 2000ppm with an accuracy
of ±50ppm.
The sensors use the Over-The-Air Activation method (Section 3.1.3) to establish
a secure communication with the Kerlink Wirnet iFemtoCell-evolution [20]
LoRaWAN indoor gateway.
The gateway has a 4G module with 3G/2G fall-back and an Ethernet connection to
forward the data to the Internet. It has KerOS, as operating system with embedded
GNU/Linux based on Yocto 2.4 and LTS kernel 4.14, native support for Python2,
C/C++ and Shell, and it includes SQlite and lighttpd. A web interface is available
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to configure the gateway.
The gateway gives us the possibility to create private LoRaWAN network, cause
it is also a LoRaWAN Join/Network server, so it receives, decrypts, and decodes,
the LoRaWAN packets from the sensors. Moreover, the gateway offers Node-RED
[38] a flow-based programming tool targeted for event-driven application. We use
Node-RED to decode the LoRaWAN packet received by the sensor, and to format
the JSON object and finally we send the newly created JSON to Elastic Search.

7.2.2 Cloud Architecture

To manage the large amount of data ssense uses several Cloud Services, in
particular Elastic Cloud and Google Cloud.

Elastic Cloud

To store and visualize data we used the Elastic Stack [12], a service that combine
ElasticSearch and Kibana, to offer data storage and data visualization.
ElasticSearch is a distributed, JSON-based search and analytics engine, that we
use to store all the data needed by ssense from the users information to the data
collected by the sensors. Kibana offers a simple and flexible way to display the
data in charts, grouped in dashboards that we export and embed in our web views.
The Elastic Stack is offered in two ways:

• Self-Managed that allows you to install the services in your machine, via a
standalone application or using Docker containers.

• Elastic Cloud that permits to host the services in the cloud. It offers the
possibility to deploy them on the three main cloud provider AWS, Google
Cloud and Microsoft Azure.

We choose to deploy the services in the cloud, in particular on Microsoft Azure
[30] to gives the client maximum scalability and availability.
Elastic Search has a native support for managing and authenticating users, and
offers several authentication services as a Token-based and an API KEY-based
authentication. In both cases is possible to define roles with different permissions,
that can limit the access to the indexes or to the Kibana features. We define two
roles for the ssense user: the ssense-admin, and the ssense-user to distinguish
the two main type of users mentioned in Section 7.1.

Google Cloud

To authenticate the users of ssense we use the Token-based authentication, that
is managed by a REST server in Node.js, developed using Express Framework
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[37]. The back-end manages the login, the creation, the modification and the deletion
of the users.
In addition, the server handles the retrieving of the data with respect to the
permission level of the simple user, in such a way the information about the points
of interest and of the sensors measures are filtered before reaching the client browser.
The server, as the gateways, uses an API KEY to authenticate with Elastic Search,
for security reason the key has only the permissions to access to the indexes and the
services that it needs to fulfil its goal.
The server is deployed using Google Cloud Functions [15] a Function As A
Service that allows to run code in a scalable way without server management.

7.2.3 Framework7 - Progressive Web App

The user interface is implemented using Framework 7 [21], a free and open-source
cross-platform framework to develop mobile, desktop or web application based on
JavaScript.
We choose to implement ssense as a Web Progressive App [16]. The PWAs are
web applications that gave the end-user the feeling of a platform-specific applications.
This is possible thanks to the improved capabilities of the web applications now-
days, better performances offered by the PWAs with respect to the standard web
application thanks to a caching system that permits the user to navigate the app
even with a not reliable internet connection. Moreover, the Progressive Web App
can be installed and run in stand-alone windows, and they are launchable like any
other native applications.
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Chapter 8

Conclusion and Future Works

Keeping in mind that a group key agreement protocol must guarantee the freshness
of the keys, we saw that the current specification of LoRAWAN does not guarantee
that in case of the NwkKey, the AppKey, the JSIntKey, and the JSEncKey.
The first two keys are hard-coded into the end-device, and the only way to change
them is to hard-code a new pair of them.
In this work is proposed a new type of Rejoin-Request message that can permit to
refresh those keys during the operational phase of the end-device [18], using the
Elliptic Curve Cryptography. The ECC permits us to take advantages of the
asymmetric encryption with a small overhead in terms of computational power and
energy consumption, fitting particularly well in resource-constrained LoRaWAN
devices.
In addition, the new method needs to add the possibility to refresh the root keys
without modifying the core architecture of LoRaWAN1.1, that is why we proposed
a new type of Rejoin-Request message, that can be seen as an add-on of the actual
specification. In this way, the backward compatibility is maintained, and in this
way we ease the implementation of our proposal. The length of both the new type
of messages introduced, even if they are bigger than the other messages used by
OTAA, they do not exceed the maximum payload that range from 51 to 222 bytes
depending on the spreading factor, the frequencies and the bandwidth [1].
ssense is a real-world example of the potentialities of LoRaWAN and of the LP-
WANs in general, since it allows to create a very dense wireless sensors network with
affordable economic cost and low maintenance, since LoRaWAN gateways offers a
wide area of coverage and they can connect to a great number of sensors, and the
LoRaWAN sensors ensures a long lifetime with standard AA batteries.
Potential future works include proceeding with the research on LoRaWAN secu-
rity, a first step can be the implementation of the proposed protocol to test it in a
real-world context, and to try to mitigate other vulnerabilities in LPWANs.
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Regarding ssense, a first beta version is ready to be deployed in a company, to test
better the architecture and the implementation, moreover new features and support
for new type of sensors will be added in the future version of the application.
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