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1 I N T R O D U C T I O N

1.1 business case
The Financial Data Providers industry sells market data and re-

lated services to financial institutions, traders and investors. Lead-
ing industry vendors aggregate data and contents from stock market
feeds, brokers and dealer desks as well as regulatory repositories,
to distribute financial news and business information to the investor
community. They play a key role in the financial professional’s work-
flow and the demand for such services is constantly growing.

In addition to the big number of products and services available,
the Financial & Market Data offering is extremely complex and it is
characterized by: low competition, strong expansion of demand and
constantly increasing prices [28]. In terms of variety, products range
from simple services to complex data feeds and sophisticated data
processing platforms, serving multiple business areas of a financial
institution (front-middle-back office).

Table 1: Financial information platforms market shares [26]

Vendor Platform Number of users Share

Bloomberg Bloomberg Terminal 325,000 33.40%
Refinitiv Eikon 190,000 23.10%
S&P Capital IQ Undisclosed 5.60%
FactSet FactSet 89,000 4.20%
Others - - 33.70%

In this scenario, it is extremely difficult to identify small financial
services providers, since they only own very little market shares and
are therefore often excluded from the market data procurement pro-
cess. Indeed, as stated in the Gartner Glossary1: Procurement is the
corporate function that has governance over purchasing decisions for a com-
pany. Activities of the procurement function include strategic vendor eval-
uation and selection, competitive bidding, contract negotiation and purchas-
ing. Effective procurement practices enable organizations to reduce costs and
maximize value.

1 https://www.gartner.com/en/sales/glossary/procurement
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4 introduction

In the past, Procurement Automation (aka eProcurement) was mainly
focused on the use of ERP management tools to record and examine
previous buying decisions and expenditure data [13]. In recent years,
machine learning and artificial intelligence were applied to procure-
ment workflows, introducing computation of external or third-party
unstructured data, to achieve a higher level of market knowledge and
decision automation. This new kind of procurement is often referred
to as AI Procurement or Digital Procurement[1].

Although the procurement process of a public institution, like Banca
d’Italia, must go through several legal, commercial and financial val-
idation steps, the use of Machine Learning and Natural Language
Processing perfectly suits the need of the financial services sourcing
task, particularly for below-threshold contracts2.

The main requirement of this experimentation is the development
of a search engine that allows to search a financial product and out-
puts a list of potential competitors as comprehensive as possible. A
platform of this kind, can potentially speedup and enhance market
researches that are generally executed manually or by purchasing ex-
pensive third party reports. In detail, the Operations and Payments
Settlement Directorate aims to:

1. Identify new suppliers and markets

2. Make more accurate decisions to carry out well-timed analysis
and insights based on Big Data

3. Identify new opportunities for spending optimization

4. Automate manual tasks by freeing Full Time Equivalent to in-
volve in other processes

5. Optimize demand management

6. Improve suppliers management (vendor analysis and rating)

7. Have greater transparency about the selection and acquisition
of services on the market

8. Discover innovative products never used before in business op-
erations

1.2 project overview
To achieve the aforementioned goals, this project was built as a

pipeline of three state-of-the-art Natural Language Processing mod-

2 Below-threshod contracts definition:
https://www.codiceappalti.it/Italian_Procurement_Code/Art__36_
_Below-threshold_contracts/9622

https://www.codiceappalti.it/Italian_Procurement_Code/Art__36__Below-threshold_contracts/9622
https://www.codiceappalti.it/Italian_Procurement_Code/Art__36__Below-threshold_contracts/9622
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els, to end up with an hybrid system in which the output of a model is
used as input for the next one. This project can indeed be split into
four consequent steps that I’m going to further explain in the next
chapters:

1. Dataset building: Collecting a huge corpus of financial textual
data from Reddit3.

2. Dataset pre-processing: Removing all the markdown syntax
and computing a Part-of-Speech tagging model over the dataset
for better information extraction.

3. Word embedding model training: Train a Word Embedding
model over preprocessed dataset to exploit search by similarity
feature.

4. Named-entity disambiguation and linking: Similarity results
disambiguation and matching against a knowledge base (Wiki-
data) to provide structured information. This custom algorithm
uses combinations of Document Embeddings generated over
Wikipedia pages and edit distances between Knowledge Base
entity aliases.

Reddit Corpus

Word2Vec

Word
Embeddings

with Word2Vec
Part-of-Speech
tagging with flair

Named
Entity
Disamb.

NED w/
Document

Embeddings (USE)

Figure 1: Hybrid System pipeline visualization

1.3 outline
This thesis is composed of seven chapters, each of them covers one

or two of the steps just described. Below you can find a short outline
of what each chapter was intended for:

1. Chapter 1: The business case and the requirements for this
project are presented

2. Chapter 2: The methodology for dataset building and prepro-
cessing is shown

3 https://www.reddit.com/

https://www.reddit.com/
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3. Chapter 3: An in-depth analysis of Word Embedding models
for similarity computation among words in the dataset is pro-
vided

4. Chapter 4: A Named Entity Disambiguation custom algorithm
description for additional filtering and matching of Word Em-
bedding results is given

5. Chapter 5: Web application overview for user model querying

6. Chapter 6: A real use-case is addressed

7. Chapter 7: Conclusions and future works



2 DATA S E T B U I L D I N G A N D
P R E - P R O C E S S I N G

2.1 dataset building
2.1.1 Dataset Identification

Data is the most important factor for a project of this kind. The
Dataset of Economic and Financial News by Refinitiv is a financial text
corpus that has already been used in many sentiment-analysis based
projects [3][29][31]. This dataset is available in different forms:

1. Historical Data from 1997 to 1998 and from 2008 to 2009 can be
downloaded after application to NIST1.

2. Recent news can be collected using Machine Readable News
(MRN) with Elektron Message API (EMA) by Refinitiv2.

Refinitiv itself provides straight-foreward sentiment analysis tuto-
rials for developers, using financial news from its Eikon trading plat-
form API 3.

Nevertheless, preliminary word embedding tests carried out over
this dataset, in partnership with the Italian National Institute of Statis-
tics (ISTAT), showed discouraging results. In particular, such experi-
ments highlighted the need for a dataset with the following require-
ments:

1. Containing (also) information like: opinions, descriptions and
comparisons of financial products

2. Data size big enough to train a machine learning model, in the
order of Gigabytes

3. Freely available (non-mandatory)

The quest for a suitable corpus ended up in Reddit. It is an Ameri-
can social news aggregation, web content rating, and discussion web-
site4, that covers a very wide range of topics in multiple languages.
The key feature of Reddit is that discussions are organized into user-
created areas of interest called subreddits. This allows for a much

1 https://trec.nist.gov/data/reuters/reuters.html
2 https://www.refinitiv.com/en/products/world-news-data
3 https://developers.refinitiv.com/article/introduction-news-sentiment\
-analysis-eikon-data-apis-python-example

4 https://en.wikipedia.org/wiki/Reddit
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easier data topic filtering if compared to a social media corpus like
Twitter or others.

The selection of the financial subreddits of interest was carried out
manually, searching directly into Reddit or exploiting existing non-
complete lists available online. In particular, 66 subreddits were se-
lected, each of them having a relevant number of members (at least
few hundreds). It is important to specify that only english subreddits
were taken into account. The chosen subreddits are listed below:

1. Investing

– r/investing

– r/RobinHood

– r/wallstreetbets

– r/SecurityAnalysis

– r/InvestmentClub

– r/StockMarket

– r/Stock_Picks

– r/Forex

– r/options

– r/cryptocurrencies

– r/CanadianInvestor

– r/stocks

– r/ETFs

– r/ausstocks

– r/UKInvesting

– r/FuturesTrading

– r/TradeVol

– r/Commodities

– r/Daytrading

– r/Trading

– r/phinvest

– r/FixedIncome

– r/forex_trades

– r/pennystocks

– r/IndiaInvestments

2. Finance in general

– r/personalfinance

– r/PersonalFinanceCanada

– r/FinancialPlanning

– r/CRedit

– r/finance

– r/FinancialCareers

– r/CFA

– r/portfolios

– r/Economics

– r/Accounting

– r/Bogleheads

– r/economy

– r/AskEconomics

– r/tax

– r/actuary

– r/sales

– r/fican

– r/fiaustralia

– r/FIREUK

– r/ukpersonalfinance

– r/eupersonalfinance

– r/EuropeFIRE

– r/financialindependence

– r/leanfire

– r/fatFIRE

– r/Fire

– r/UKPersonalFinance

– r/PersonalFinanceNZ

– r/AusFinance
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3. Economic Data

– r/econmonitor

– r/econometrics

– r/academiceconomics

– r/datasets

4. Green

– r/greeninvestor

– r/sustainableFinance

5. Algorithms

– r/algotrading

– r/BusinessIntelligence

– r/quant

– r/algorithmictrading

– r/fintech

2.1.2 Data collecting

Reddit provides official APIs to download and collect data. Many
wrapper libraries are also available, the most liked one on Github
is PRAW5 (Python Reddit API Wrapper). However, we are not go-
ing to use any library that works with the official API, because a
recent update disabled the functionality of filtering posts based on
time ranges6. This makes the retrieval of threads from the past ex-
tremely hard, allowing to get only posts from last day, last month, etc.

Luckily, a project called Pushshift7, that is not supported by Reddit,
provides an API that serves a copy of all Reddit comments and sub-
missions since 2015. More in general, Pushshift is a big-data storage
and analytics project started and maintained by Jason Baumgartner.
As of today, Reddit data is copied into Pushshift at the time it is
posted to Reddit. As stated in [6], Pushift is composed of the follow-
ing subsystems:

1. An ingest engine to collect and store raw data.

2. A PostgreSQL database for data advanced querying and meta-
data storaging.

3. An Elastic Search document store cluster, for indexing and data
aggregation.

4. An API to access collected data.

Before technically describing how posts were collected, it is impor-
tant to note that data in Reddit is split into submissions and comments:

1. submissions: are the posts of a subreddits, containing either
a title and a description. Many times they refer to questions
asked by users to the community of the subreddit.

5 https://github.com/praw-dev/praw
6 https://www.reddit.com/r/changelog/comments/7tus5f/update_to_search_
api/

7 https://pushshift.io/api-parameters/

https://github.com/praw-dev/praw
https://www.reddit.com/r/changelog/comments/7tus5f/update_to_search_api/
https://www.reddit.com/r/changelog/comments/7tus5f/update_to_search_api/
https://pushshift.io/api-parameters/
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ables researchers to easily execute queries on the whole dataset
without the need for downloading the monthly dumps. This
reduces the requirement for substantial storage capacity, thus
making the data more available to a wider range of users. Fi-
nally, we provide access to a Slackbot that allows researchers
to easily produce visualizations of data from the Pushshift Red-
dit dataset in real-time and discuss them with colleagues on
Slack. These resources allow research teams to quickly begin
interacting with data with very little time spent on the tedious
aspects of data collection, cleaning, and storage.

2 Pushshift
Pushshift is not a new or isolated data platform, but a five
year-old platform with a track record in peer-reviewed pub-
lications and an active community of several hundred users.
Pushshift not only collects Reddit data, but exposes it to re-
searchers via an API. Why do people use Pushshift’s API in-
stead of the official Reddit API? In short, Pushshift makes it
much easier for researchers to query and retrieve historical
Reddit data, provides extended functionality by providing full-
text search against comments and submissions, and has larger
single query limits. Specifically, because, at the time of this
writing, Pushshift has a size limit five times greater than Red-
dit’s 100 object limit, Pushshift enables the end user to quickly
ingest large amounts of data. Additionally, the Pushshift API
offers aggregation endpoints to provide summary analysis of
Reddit activity, a feature that the Reddit API lacks entirely.

The Pushshift Reddit dataset provides not just a technical
infrastructure of software and hardware for collecting “big so-
cial data” but also a social infrastructure of organizational pro-
cesses for responsibly collecting, governing, and discussing
these research data.

2.1 Data collection process
Pushshift uses multiple backend software components to

collect, store, catalog, index, and disseminate data to end-
users. As seen in Fig. 1, these subsystems are:
• The ingest engine, which is responsible for collecting and

storing raw data.
• A PostgreSQL database, which allows for advanced

querying of data and meta-data storage.
• An Elastic Search document store cluster, which per-

forms indexing and aggregation of ingested data.
• An API to allow researchers dynamic access to collected

data and aggregation functionality.

Ingest Engine. The first stage in the Pushshift pipeline is the
ingest engine, which is responsible for actually collecting data.
The ingest engine can be thought of as a framework for large
scale collection of heterogeneous social media data sources.
The ingest engine orchestrates the execution of a multiple data
collection programs, each designed to handle a particular data
source. Specifically, the ingest engine provides and manages
a job scheduling queue, and provides a set of common APIs
to handle the data storage. Currently, Pushshift’s ingest engine

Queryable Data Stores

Ingest Engine

Archives

API

PostgreSQL

Elasticsearch Index

Segments Segments

Segments Segments

Segments Segments

Segments Segments

Primary Shard 1 Primary Shard 2

Replica Shard 1 Replica Shard 2

Figure 1: Pushshift’s Reddit data collection platform.

works as follows:
First, the program runner starts each ingest program (i.e.,

the programs that actually collect the data). The ingest engine
is agnostic to the particulars of the individual ingest programs:
no particular programming language is required, and there is
no particular expectation of how an ingest program works,
modulo its interactions with the remainder of the ingest en-
gine. Typically, an ingest program will directly interact with
Web APIs, scrape content from HTML pages, use data streams
where available, etc. Next, the ingest program inserts the raw
data retrieved into a database as well as into a document store.
Behind the scenes, each piece of collected data is added to an
intermediate queue (currently implemented via Redis), which
serves as a staging area until the data is processed by any cus-
tom processing scripts the ingest program’s creator might re-
quire. Finally, the raw data is periodically flushed to disk. The
data storage format can be specified by the ingest program cre-
ator via the custom processing scripts previously mentioned,
or a standard, Pushshift-implemented format can be used (e.g.,
ndjson).

PostgreSQL & ElasticSearch. Pushshift currently uses
Elasticsearch (ES) as a scalable document store for each data
source that is part of the ingest pipeline. ES offers a number
of important features for storing and analyzing large amounts
of data. For example, ES achieves ease-of-scaling by utilizing
a cluster approach for horizontal expansion. It ensures redun-
dancy by creating multiple replicas for each index so that a
node outage does not affect the overall health of the cluster.
The ES robust dynamic mapping tools allow easy modifica-
tion and expansion of indexes to accommodate changes in data
structure from the source. This is useful because Reddits API
does not implement any type of versioning, yet there are con-
stant additions and modifications made to the API when new
features and data types are added to the response objects. By
using dynamic mapping types, Pushshift can easily add new
fields to existing indices. This enables us to quickly modify
the corresponding mappings to allow search and aggregation
on those new fields. Pushshift also makes use of the ICU Anal-
ysis plug-in for ES [31, 40], which provides support for inter-
national locales, full Unicode support up through Unicode 12,

2

Figure 2: Pushshift’s Reddit data collection platform. Source: [6]

2. comments: are the replies made by the users of a subreddit to
a submission. All submissions are archived after six months,
denying the possibility to add new comments

Due to this categorization, data provided by Reddit always con-
tains the identification code of a parent element. Hierarchical identifi-
cation code prefixes are used to better highlight the interconnections
between data objects:

• t1_ = Comment

• t2_ = Account

• t3_ = Link

• t4_ = Message

• t5_ = Subreddit

• t6_ = Award

Accounts, links, messages and awards are not useful for this the-
sis. If you would like to further investigate them please refer to
https://www.reddit.com/dev

Pushshift also uses the same kind of classification. In particular,
data can be downloaded in two ways:

1. Via monthly dumps, with separate files for comments and sub-
missions: https://files.pushshift.io/reddit/

2. Via API, with separate endpoints for comments and submis-
sions:

a) https://api.pushshift.io/reddit/submission/search/

b) https://api.pushshift.io/reddit/comment/search/

https://www.reddit.com/dev
https://files.pushshift.io/reddit/
https://api.pushshift.io/reddit/submission/search/
https://api.pushshift.io/reddit/comment/search/
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Most of the data for this project was collected filtering subreddits
of interest from monthly dumps. These files are very big (up to 16Gb
for single dump) and are jsonlines (aka ndjson) serialized, i.e. json-
like encoding with a separate json object per line. These files can be
lazy-loaded into computer RAM reading one line at a time, removing
any potential risk of memory saturation.

Moreover, they are compressed using one of the following algo-
rithms: bzip2 (.bz2), LZMA2 (.xz) or zstd (.zst). A python class called
GrepDumps has been implemented to read them, line by line, while
still being compressed. The code extracts only json objects that refer
to the subreddits taken into account. It can be used for both submis-
sions dumps and comments dumps. All json objects that refer to the
same subreddit are merged in a single file. For example, the files for
subreddit r/investing will be:

1. Submissions files:

– RS_2016-01_investing.jsonl

– RS_2016-02_investing.jsonl

– ...

2. Comments files:

– RC_2016-01_investing.jsonl

– RC_2016-02_investing.jsonl

– ...

Listing 1: Methods grep_xz and write_line of GrepDumps class

def grep_xz(self, root , pname , ext):
with lzma.open(os.path.join(root , pname), mode=’rt’)

as file:
for line in file:
try:
obj = json.loads(line)
self.write_line(obj , pname)

except Exception as e:
logger.error("Skipped line while working on %s/%s%s

" % (root , pname , ext))
logger.error(e)

return

def grep_bzip(self, root , pname , ext):
[...]

def grep_zst(self, root , pname , ext):
[...]

def write_line(self, obj , outname):
if ’subreddit ’ in obj and obj[’subreddit ’] in self.

subreddit_list:
try:
self.file_writers[obj[’subreddit ’]]. write(obj)
logger.info(’Writing line in %s_%s.jsonl’ % (outname

, obj[’subreddit ’]))
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except Exception as e:
Path(os.path.join(self.output_directory , obj[’

subreddit ’])).mkdir(parents=True , exist_ok=True)
self.file_writers[obj[’subreddit ’]] = jsonlines.open

(os.path.join(self.output_directory , obj[’
subreddit ’], ’%s_%s.jsonl’ % (outname , obj[’
subreddit ’])), mode=’w’)

logger.info(’Opened file %s.jsonl for writing ’ %
outname)

self.file_writers[obj[’subreddit ’]]. write(obj)
logger.info(’Writing line in %s_%s.jsonl’ % (outname

, obj[’subreddit ’]))

[...]

However, these dump files are published with a certain delay in
the repository. Hence, it was needed to implement a small Crawler

class to download and collect data of remaining months through the
API. This class is based on a wrapper library called PSAW8 (Python
Pushshift.io API Wrapper).

Listing 2: Method extract_reddit_data of Crawler class

@staticmethod
def extract_reddit_data(type , month , output_directory ,

subreddit_list):
api = PushshiftAPI ()

assert type == ’submission ’ or type == ’comment ’, "
Type not allowed"

start_epoch = int(month.timestamp ())
end_epoch = int((month + relativedelta(months =1)).

timestamp ())

logger.info(’Crawling %ss for %s ( from %s to %s )’ %
(type , month.strftime(’%Y−%m’), str(start_epoch),
str(end_epoch)))

if type == ’submission ’:
file_name = "RS_" + month.strftime(’%Y−%m’)

else:
file_name = "RC_" + month.strftime(’%Y−%m’)

for subreddit in subreddit_list:
logger.info(’Crawling %ss for subreddit: %s’ % (type ,

subreddit))
Path(os.path.join(output_directory , subreddit)).mkdir

(parents=True , exist_ok=True)

8 https://github.com/dmarx/psaw

https://github.com/dmarx/psaw
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output_file = os.path.join(output_directory ,
subreddit , file_name + ’_’ + subreddit + ’.jsonl’)

with jsonlines.open(output_file ,mode=’w’) as writer:
if type == ’submission ’:
gen = api.search_submissions(after=start_epoch ,

before=end_epoch ,
subreddit=subreddit ,
sort=’asc’)

else:
gen = api.search_comments(after=start_epoch ,

before=end_epoch ,
subreddit=subreddit ,
sort=’asc’)

for item in gen:
item[−1].pop("created")
writer.write(item[−1])

logger.info(’%ss saved to: %s’ % (type , str(
output_file)))

By means of these two classes, a dataset starting from January 2016

to February 2020 was collected. The total size of the data, including
json encoding syntax, is 36Gb. Indeed, every post in Reddit comes
with a bunch of extra information, but only the following json tags
are important for us:

1. Submissions files:

– id: submission identifier without prefix

– subreddit: subreddit name

– selftext: markdown encoded text of the submission

– created utc: UNIX timestamp referring to the time of the
submission creation

– num comments: number of comments of the submission

2. Comments files:

– id: comment identifier without prefix

– link id: submission identifier with prefix

– parent id: identifier of the parent of this comment with
prefix, i.e. a submission id or another comment id

– subreddit: subreddit name

– body: markdown encoded text of the comment

– score: number of upvotes of the comment minus the num-
ber of downvotes

– created utc: UNIX timestamp referring to the time of the
comment creation
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– retrieved utc: UNIX timestamp referring to the time the
comment was crawled by Pushshift

– num comments: number of comments of the submission

After downloading both comments and submission files, they were
merged together into a single file per month per subreddit:

– RSRC_2016-01_investing.jsonl

– RSRC_2016-02_investing.jsonl

– ...

This allows a much easier data feed in the training phase of a ma-
chine learning model. However, there are several issues to face be-
fore getting those files merged. In particular, since a submission is
archived in six months, if it is created in month n, its comments will
be split in files from month n to month n + 7 (considering the delay
between created_utc and retrieved_utc). To solve this problem, let’s
assume to have a directory with all submissions and comments files
of a subreddit. Then let’s create an ordered list with all the names
of comments files that can be read using a window of size 7, which
will be shifted to the right every time the algorithm starts reading the
submission file of the next month.

Moreover, the comments of a submission should be merged in the
same order they are displayed in Reddit, since they are feeded as a
single sentence to the word embedding model during the training
phase. This is important to achieve maximum information extrac-
tion. Indeed, one of the possible algorithms used for training (CBOW)
is based on a fixed-size sliding window mechanism for words in a
phrase. More about this is presented in 3.2.

There are two major issues to recreate such an order:

1. Comments in Reddit can be nested many times. There is virtu-
ally no depth limit in nesting level.

2. Comments in Reddit are sorted by default using a complex al-
gorithm called BEST, which applies to all comments of the same
level that share the same parent item (comment or submission).
Further details about this algorithm can be found in [22].

To address the former issue, we have to read all comments of a
submission and create a tree by using the parent_id tag provided by
Pushshift. Then traverse the graph using a depth-first search (DFS)
algorithm. As cited by Wikipedia: "The (depth-first search) algorithm
starts at the root node (selecting some arbitrary node as the root node in
the case of a graph) and explores as far as possible along each branch before
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Figure 3: Reddit comments ordering example.

backtracking". In this case, the root node is the submission itself.

There may be some (very rare) cases, though, in which some com-
ments were not retrieved, turning our tree into a disconnected directed
graph. A disconnected directed graph is a graph in which exist two
nodes such that, if we replace directed edges with undirected edges,
there is no path having those nodes as endpoints. Hence, we need
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to run DFS over every connected component in the graph, selecting the
root node as the one without any incoming edge.

About the latter issue, we cannot compute the BEST algorithm be-
cause we would need to know the number of upvotes and the total
number of votes. Unfortunately, score tag provided by the API is de-
fined as the number of upvotes of the comment minus the number of
downvotes. In this case, the best approximation we can get is to sort
by score itself.

To develop what described so far, classes Binder and Graph were
implemented. Relevant code snippets are shown below:

Listing 3: Methods add_to_buffer and bind_submission_with_comments of
Binder class

def add_to_buffer(self, path_to_file):
in_memory_json = {}
with jsonlines.open(path_to_file) as reader:
for obj in reader:
if obj[’link_id ’] not in in_memory_json:
in_memory_json[obj[’link_id ’]] = []

in_memory_json[obj[’link_id ’]]. append(obj)
self.buffer.append(in_memory_json)

def bind_submission_with_comments(self, nested_bool):
comments_files = []
for root , dirs , files in os.walk(self.input_directory)

:
for fname in filter(lambda fname: fname.startswith(’

RC_’) and fname.endswith(’.jsonl’), files):
comments_files.append(fname.replace(’RC_’, ’’).

replace(’−’, ’’).replace(’.jsonl’, ’’))

comments_files.sort()
iterations = len(comments_files)

# Initialization
if iterations != 0:
output_dir = self.input_directory + ’

_submissions_comments/’
Path(output_dir).mkdir(parents=True , exist_ok=True)
if iterations < 7:
loop = iterations

else:
loop = 7

else:
return

logger.info(’Loading buffer of files’)
for i in range(loop):
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rc_file_dir = os.path.join(self.input_directory , ’RC_
’ + comments_files[i][:4] + ’−’ + comments_files[i
][4:] + ’.jsonl’)

if os.path.isfile(rc_file_dir):
self.add_to_buffer(rc_file_dir)

for j in range(iterations):
filename_suffix = comments_files[j][:4] + ’−’ +

comments_files[j][4:] + ’.jsonl’
rs_file_dir = os.path.join(self.input_directory , ’RS_

’ + filename_suffix)
if os.path.isfile(rs_file_dir):
logger.info(’ Working on file RS_’ + filename_suffix

)
with jsonlines.open(os.path.join(output_dir , ’RSRC_’

+ filename_suffix), mode=’w’) as writer:
with jsonlines.open(rs_file_dir) as reader:
for obj in reader:
obj[’comments ’] = []
submission_id = ’t3_’ + obj[’id’]

g = Graph()
for i in range(len(self.buffer)):
if submission_id in self.buffer[i]:
for comment in sorted(self.buffer[i][

submission_id], key=lambda k: (k[’score’], −
k[’created_utc ’])):

g.addEdge(comment[’parent_id ’], ’t1_’ +
comment[’id’])

obj[’comments ’]. append(comment)
if nested_bool:
order_list = g.DFS_iterative(submission_id)
obj[’comments ’] = sorted(obj[’comments ’], key=

lambda x: order_list [1:]. index(’t1_’ + x[’id’
]))

writer.write(obj)
if len(self.buffer) > 0:
self.buffer.pop(0)

if j + 7 < iterations:
self.add_to_buffer(os.path.join(self.input_directory

, ’RC_’ + comments_files[j + 7][:4] + ’−’ +
comments_files[j + 7][4:] + ’.jsonl’))

Listing 4: Methods DFSUtil_iterative and DFS_iterative of Graph class

def DFSUtil_iterative(self, s, visited , order_list):
# Create a stack for DFS
stack = []

# Push the current source node.
stack.append(s)
while (len(stack) != 0):
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s = stack.pop()

if (not visited[s]):
order_list.append(s)
visited[s] = True

i = 0
while i < len(self.graph[s]):
if (not visited[self.graph[s][i]]):
stack.append(self.graph[s][i])

i += 1

def DFS_iterative(self, v):
order_list = []

visited = {v_key: False for v_key in [item for sublist
in self.graph.values () for item in sublist ]}

visited.update ({v : False})

self.DFSUtil_iterative(v, visited , order_list)

while not all(visited.values ()):
logger.info("Broke graph:", v)
subtree_root = self.find_subtree_root(visited)
if subtree_root:
self.DFSUtil_iterative(subtree_root , visited ,

order_list)
else:
break

return order_list

[...]

2.2 dataset pre-processing
2.2.1 Pre-processing steps

Next step of this experimentation is to clean and enhance data be-
fore training the model. The following pre-processing tasks were
planned:

1. Markdown Syntax Clean-up: needed to extract plain text of
submissions (comments) body from markdown encoded self-
text (body) json tag.

2. Part-of-Speech tagging: to concatenate names made of two or
more words into a single one using underscores. More details
about this step are in section 2.2.3
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2.2.2 Markdown Syntax Clean-up

Pushshift provides the body of submissions and comments as Mark-
down encoded text. Markdown is an effortless lightweight markup
that can be easily converted to HTML and other formats. Official
markdown syntax can be found at https://daringfireball.net/
projects/markdown/syntax

Some natural language models require textual documents to be en-
coded in a specific syntax before being trained. The word embedding
model that we are going to use next needs plain-text only, instead.
Therefore, all markdown syntax must be removed. In python, this
can be achieved by using a Markdown parser that outputs a HTML
code (e.g. Mistune v2

9), and then retrieving decoded text with a fur-
ther HTML parser (e.g. BeautifulSoup4

10)

Reddit however uses a custom Markdown syntax which is slightly
different from the official one and is fully documented at https:
//www.reddit.com/wiki/markdown. This makes standard Markdown
parsers unusable without writing an ad-hoc extension. However, our
requirement is not to parse any Markdown, but just to remove any
encoding. This could be worked around by using a series of regular
expressions.

Regular expressions (a.k.a. regex) describe a syntax used to de-
fine patterns for strings handling. Regex engines are available for the
majority of the existing programming languages, making this syn-
tax a de-facto standard for strings manipulation. More about regular
expressions can be read in the original 1968 paper by Ken Thomp-
son[30].

A new class, called Preprocess , provides method preprocess_

sentence_regex , to carry out this clean-up process. Markdown links
were the most difficult part to handle, the syntax for a hyperlink is
the following:

[Roma](https ://en.wikipedia.org/wiki/Rome)

We were interested in removing the url (within round braces) while
preserving the title of the link (within square braces). However, the
Reddit Markdown documentation states: ’Note that links can only con-
tain parentheses if they are "balanced" — that is, if every "(" is later fol-
lowed by ")". To link to a URL with unbalanced parentheses, either escape

9 https://github.com/lepture/mistune
10 https://www.crummy.com/software/BeautifulSoup/

https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://www.reddit.com/wiki/markdown
https://www.reddit.com/wiki/markdown
https://github.com/lepture/mistune
https://www.crummy.com/software/BeautifulSoup/
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the parenthesis with backslash (")̈, or use the alternate linking syntax, en-
closing the URL in matched angle brackets, "<" and ">".’

Hence, URLs (that are already surrounded by round braces) can
contain both balanced or unbalanced inner round parenthesis. In the
former case allowing for multiple nested braces. This was handled
writing a regex called MD_URL_INNERMOST_PARENTHESIS to be exe-
cuted in loop until no matches occur. This regular expression uses
variable-length lookbehind and lookahead that are not natively supported
by the Python regex engine, a custom one called mrab-regex11 was
used instead.

Code snippet of preprocess_sentence_regex method is provided
below:

Listing 5: Method preprocess_sentence_regex of Preprocess class

MD_URL_INNERMOST_PARENTHESIS = re.compile(r’
(? <=\\[.+\\]\\([^) ] ) \\(([^() ]) \ \ ) (?=[^(] \\) )’, re
.UNICODE) # v 1.0.0

MARKDOWN_LINKS = re.compile(r’ \\[([^\\[\\]] )
\\]\\([^\\) ] \ \ ) ’, re.UNICODE) # v1.0.0

# Regex copyright https :// emailregex.com/ edited by
Mauro Papa

EMAIL_REGEX = re.compile(r’(( mailto :)?[a−zA−Z0−9_.+−]+@
[a−zA−Z0−9−]+\.[a−zA−Z0−9−.]+)’, re.UNICODE)

# Regex copyright Diego Perini https :// gist.github.com/
dperini /729294

# Ported in python by Peter Cheung
# Edited by Mauro Papa to check urls in the middle of a

sentence
URL_REGEX = re.compile(
u"(?:(?:(?: https?|ftp|git|steam|irc|news|mumble|ssh|

ircs|ts3server):)?//)?"
u"(?:\S+(?::\S ) ?@)?"
u"(?:"
u"(?!(?:10|127) (?:\.\d{1,3}) {3})"
u"(?!(?:169\.254|192\.168) (?:\.\d{1,3}) {2})"
u"(?!172\.(?:1[6−9]|2\d|3[0−1])(?:\.\d{1,3}) {2})"
u"(?:[1−9]\d?|1\d\d|2[01]\d|22[0−3])"
u"(?:\.(?:1?\d{1,2}|2[0−4]\d|25[0−5])){2}"
u"(?:\.(?:[1−9]\d?|1\d\d|2[0−4]\d|25[0−4]))"
u"|"
u"(?:"
u"(?:"
u"[a−z0−9\u00a1−\uffff]"
u"[a−z0−9\u00a1−\uffff_−]{0,62}"

11 https://bitbucket.org/mrabarnett/mrab-regex/src/hg

https://bitbucket.org/mrabarnett/mrab-regex/src/hg
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u")?"
u"[a−z0−9\u00a1−\uffff ]\."
u")+"
u"(?:[a−z\u00a1−\uffff ]{2 ,}\.?)"
u")"
u"(?::\d{2,5})?"
u"(?:[/?#]\S ) ?"
, re.UNICODE | re.I

)

[...]

@classmethod
def preprocess_sentence_regex(cls , sentence):
if not sentence:
return ’’

# https ://www.reddit.com/dev/api/
pre_replacements = [
(’&lt;’, ’’),
(’&gt;’, ’’),
(’&amp;’, ’\u0026’),
(r’\\\(’, ’%28’), # Remove escaped
(r’\\\)’, ’%29’),
(’ \ ’, ’’),
(’~~’, ’’),
(’!<’, ’’),
(’>!’, ’’),
(’\^’, ’’),
(’‘’, ’’),
(’#’, ’’),
(’\\"’, ’’),
(’\\n’, ’ ’),
(’\\r’, ’ ’)

]

for old , new in pre_replacements:
sentence = re.sub(old , new , sentence)

# Turn unicode values into unicode characters
sentence = unidecode.unidecode(sentence)

# Convert html entities
sentence = html.unescape(sentence)

nb_rep = 1

# Remove innermost parenthesis in MD links
while (nb_rep):
(sentence , nb_rep) = cls.MD_URL_INNERMOST_PARENTHESIS

.subn(r’%28\1%29 ’, sentence)
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sentence = cls.MARKDOWN_LINKS.sub(r’\1’, sentence)
sentence = cls.EMAIL_REGEX.sub(’’, sentence)

# Removes non−MD urls
sentence = cls.URL_REGEX.sub(’’, sentence)

post_replacements = [
(r’(?<=[^_\s])_(?=[^_\s])’, ’ ’),
(’_’, ’’),

]

for old , new in post_replacements:
sentence = re.sub(old , new , sentence)

return sentence

2.2.3 Part-of-Speech tagging

As stated in section 1, this dataset will be used to feed a Word
Embedding model. This kind of NLP model can turn words into nu-
merical vectors, such that the distance between vectors expresses the
semantic similarity between words. But since every word becomes
a vector, if a name of a product or a brand is made of two or more
words, then the model will turn that name in multiple vectors split-
ting the meaning of the original name.

For example, suppose we have "six" and "six financial". The former
refers to a number and the latter to a financial information provider. If
we would give those names as input of the Word Embedding model,
it would produce two vectors: "six" and "financial". Therefore, we
would loose any reference to the original name "six financial". In-
stead we would like to get a vector for "six" and another one for "six
financial", as in picture 5.

six [number]

six

six financial [brand]

financial

Figure 4: Current Word Embedding output.

This can be achieved just by concatenating those names into a sin-
gle word, by means of underscores or other special characters, i.e. six
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six [number]

six

six financial [brand]

six financial

Figure 5: Desired Word Embedding output.

financial would become six_financial. Word Embedding model is then
forced to treat them as single entities.

Due to the huge size of the collected corpus, this task surely can
not be carried out by hand. A Part-of-Speech model, indeed, is an
NLP model that computes grammatical tagging over sentences, iden-
tifying each word as a noun, verb, adjective, adverb, etc. This can
be used to concatenate all names (nouns) close to each other using
underscores. There are several Part-of-Speech frameworks out there.
Among the others, Flair12, although being notoriously slower if com-
pared to other frameworks like spaCy13, can provide state-of-the-art
results. Further details about Flair can be found in [2].

Flair provides three english PoS models (see table 2). These models
are ready-to-use since they are already trained on an ad-hoc dataset
called Ontonotes [32].

Table 2: Flair PoS English models

ID Task Training Dataset Accuracy
’pos’ PoS Tagging (fine-grained) Ontonotes 98.19

’upos’ PoS Tagging (universal) Ontonotes 98.6
’pos-fast’ PoS Tagging (fine-grained) Ontonotes 98.1

To speed-up the overall inference time, pos-fast model was picked.
The computation was carried out by both my home desktop computer
and by Google Colab, with the following configurations:

Table 3: Home desktop computer configuration

CPU RAM GPU
Intel i7 4770k 16 Gb DDR3 Nvidia gtx 750-ti

However, inference time turned out to still be very slow if used to
tag one comment or submission at a time. A huge speed improve-
ment can be achieved by passing to the tagger a list of sentences and

12 https://github.com/flairNLP/flair
13 https://spacy.io

https://github.com/flairNLP/flair
https://spacy.io
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Table 4: Google Colab configuration

GPU GPU Memory RAM
Nvidia K80 / T4 12 / 16 Gb 25 Gb

enabling mini-batches during inference. This means that, before com-
puting PoS, the algorithm has to read all or as many phrases as pos-
sible from a file, introducing risk of memory saturation. Once the
tagging is done, the algorithm has to rebuild the file preserving the
original json encoding.

Moreover, even with a small number of sentences in the input list,
the tagger is not able to handle phrases that are too long. Hence,
we split them at every occurrence of the dot character and defined
a max_sentence_size threshold. If after the splitting, a period is
still longer than max_sentence_size, it is split again at the right-
most space before the max_sentence_size-th character (method split

_just_before_limit of Preprocess class). Default value for max_

sentence_size was set to 2500 characters.

The list of input sentences to pass to the model is in reality a list of
instances of the flair Sentence class. This class provides a method to
return the tagged text after the inference process. Therefore, we can
write a child class called SentencePoS that inherits from Sentence

and provides and additional method (to_concatenated_string) to
return the original string with consecutive nouns concatenated to-
gether. It is important to specify that Flair gives a confidence score for
every tag. The above method only considers noun tags with a confi-
dence greater than 0.65.

The overall tagging process was manly carried out with the desk-
top configuration above, however also Google Colab was used to infer
some files. This means it is hard to give an exact timing of the whole
tagging process, but it can be estimated between 10 and 12 days.

Due to the length of the code described above, relevant snippets
only are provided:

Listing 6: Methods flair_pos_tagging and split_just_before_limit of Preprocess
class

@staticmethod
def flair_pos_tagging(list_of_sentences , pos_model):
list_of_sentences = [SentencePoS(sentence) for

sentence in list_of_sentences]
list_of_sentences = pos_model.predict(

list_of_sentences , mini_batch_size =16)
return [sentence.to_concatenated_string () for sentence

in list_of_sentences]
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[...]

@staticmethod
def split_just_before_limit(sentence , max_sentence_size

=2500):
list_of_sentences_splitted = re.findall(r’\s?[^\s]+’,

sentence)
list_of_sentences = []
current_sentence = ’’

for splitted in list_of_sentences_splitted:
if len(splitted) + len(current_sentence) >

max_sentence_size:
if current_sentence != ’’:
list_of_sentences.append(current_sentence)

if len(splitted) > max_sentence_size:
list_of_sentences += re.findall(r’.{{1,{

max_sentence_size }}}’, splitted)
current_sentence = ’’

else:
current_sentence = splitted

else:
current_sentence += splitted

if current_sentence != ’’:
list_of_sentences.append(current_sentence)

return list_of_sentences

[...]

Listing 7: SentencePoS class that inherits from Flair Sentence class

class SentencePoS(Sentence):

def is_noun(self, span):
suitable = ["NOUN", "PROPN"]
if span.tag in suitable and span.score > 0.65 and len

(span.text) > 1:
return True

else:
return False

def process_noun_from(self, noun):
return re.escape(re.sub(r’\s+’, ’ ’, noun.strip()))

def process_noun_to(self, noun):
return re.sub("’", ’’, re.sub(r’\s+’, ’_’, noun.strip

()))
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def to_concatenated_string(self):
list_replacements = [[]]

for span in self.get_spans(’pos’):
# Spans remove leading and trailing spaces but keep

\n
# \n is treated like dot
if self.is_noun(span):
if span.text [0] == r"\n" or span.text [0] in string.

punctuation or (list_replacements[−1] and
list_replacements[−1][−1][−1] in string.
punctuation):

list_replacements.append ([span.text])
else:
list_replacements[−1].append(span.text)

elif list_replacements[−1] != []:
list_replacements.append ([])

if list_replacements[−1] == []:
list_replacements.pop()

concatenated_string = re.sub(r’\s+’, ’ ’, self.
to_original_text ())

for noun in list_replacements:
try:
noun_from = self.process_noun_from(’ ’.join(noun))
noun_to = self.process_noun_to(’ ’.join(noun))
concatenated_string = re.sub(
noun_from , noun_to , concatenated_string)

except Exception as error:
logger.error(error)
logger.error(’Bad noun is: %s’ % noun)

return concatenated_string



3 W O R D E M D E D D I N G M O D E L
T R A I N I N G

3.1 introduction to word embedding
Word embedding models are neural networks that provide vector

representations for words, i.e. they allow to turn words into numer-
ical vectors, such that the distance between vectors expresses the se-
mantic similarity between words.

The most famous algorithms for word embedding are:

1. Word2Vec developed by Tomas Mikolov[20][21]

2. GloVe developed by Standford University[25]

3. fastText developed by Facebook’s AI Research (FAIR) lab[8][17]

In general, embeddings generated by Word2Vec and GloVe tend to
perform very similarly1. On the other hand, fastText can also han-
dle words that never appeared in the training dataset (OOV, out-of-
vocabulary) by splitting each words in smaller n-grams. However, if
we compare the results of Word2Vec against fastText, as done in [27],
we can see that Word2Vec model seems to perform better on seman-
tic tasks, because information from irrelevant n-grams worsens the
embeddings. Instead, fastText embeddings are significantly better at
encoding syntactic information.

The main idea behind the search engine that we aim to build, is
to discover new financial services by selecting the words that corre-
spond to the neighbours vectors of an input one (i.e. name of the
service we are searching competitors for). Since there is no evidence
that similar financial services tend to have similar names, Word2Vec
seems a logic choice for this project.

3.2 training phase
In order to train Word2Vec, it is needed to write an iterator class

(CorpusIter) that goes through the whole dataset and feeds the
model while training. This class also handles:

1. Tokenization of the sentences in the dataset

1 https://www.quora.com/How-is-GloVe-different-from-word2vec

27

https://www.quora.com/How-is-GloVe-different-from-word2vec


28 word emdedding model training

2. Bot detection and filtering

Listing 8: CorpusIter class

class CorpusIter(object):
def __init__(self, dirname , bot_file , limit):
self.dirname = dirname
self.bots = []
count = 0
with jsonlines.open(bot_file) as reader:
# pylint: disable=not−an−iterable
for list_line in reader:
if count >= limit:
break

count +=1
self.bots.append(list_line [0])

def preprocess_tokenizer_wrap(self, obj , censor=True):
document_list = []

if ’title’ in obj :
document_list.append(obj[’title’])

if ’self text’ in obj :
document_list.append(obj[’self text’])

for comment in obj[’comments ’]:
if comment[’author ’] not in self.bots and comment[’

author ’][−3:] != ’bot’ and comment[’body’] not in
document_list:

document_list.append(comment[’body’])

document = ’ ’.join(document_list)

if censor:
document = profanity.censor(document , ’’)

return Preprocess.preprocess_tokenizer(document)

def __iter__(self):
for r, d, f in os.walk(self.dirname):
for file in f:
if ’.jsonl’ in file:
print(’Working on file: ’ + file)
with jsonlines.open(os.path.join(r, file)) as

reader:
for obj in reader:
document = self.preprocess_tokenizer_wrap(obj)
if document != []:
yield document
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Tokenization takes a sentence as input and returns a list of lower-
case tokens (words), filtering out undesired characters. These tokens
are generated by a function of the Preprocess class that is based on
the use of regular expressions. This regex select every consecutive
occurrence of: letters (a-z), underscores and & character. It discards
all numbers and every other special character. Please note that:

1. Underscores are preserved due to Part-of-Speech tagging

2. & character is preserved because it is sometimes used in finan-
cial vendor names, e.g. "Standards & Poors".

3. Numbers are discarded because they are most likely tagged
with label NUMBERS by the Part-of-Speech and not with
NOUNS. This means we are potentially unable to distinguish
names containing numbers from names just written before or
after a number. Hence method to_concatenated_string from
class SentencePos will never concat a number together with a
name (see code listing number 7).

Listing 9: Methods tokenize and preprocess_tokenizer of Preprocess class

PAT_ALPHABETIC_UNDERSCORE = re.compile(r’(((?![\d])[A−
Za−z_&])+)’, re.UNICODE)

[...]

@classmethod
def tokenize(cls , sentence):
sentence = deaccent(sentence.lower())
for match in cls.PAT_ALPHABETIC_UNDERSCORE.finditer(

sentence):
yield match.group()

[...]

@classmethod
def preprocess_tokenizer(cls , sentence , min_len=2,

max_len =50):

if sentence == ’[ deleted ]’ or sentence == ’[deleted]
’ or not sentence:

return []

tokens = [
token for token in cls.tokenize(sentence)
if min_len <= len(token) <= max_len and not token.

startswith(’_’)
]

return tokens
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Bot detection is carried out measuring the average response time
of every user that appeared in the dataset. Most likely bot candidates
are the ones with the smallest response delay. In Pushshift Github
repository there is a script to be run over the monthly dumps that
does exactly this kind of measurement2, ordering users by response
time in ascending order and providing a bunch of extra useful met-
rics. By manually evaluating the names of the accounts in the output
list of this script, it was decided to discard the comments of the first
250 accounts. Moreover, comments (or submissions) post by users
with name ending with "bot" are skipped too.

The above filters are really effective and remove a good amount of
bots without building a machine learning classifier for bot detection.
Few false positives or false negatives can be allowed for this kind of
experimentation.

The training phase of a word embedding model require some hyper
parameters to be fine-tuned. For this reason, six different models
were trained (see table 5).

Table 5: Word embedding models trained with different hyperparameres

size min_count sg

Embeddings
dimension

Minimum
word occur.

Skipgram (sg=1)
or CBOW (sg=0)

m1_s300_cb 300 1 0

m1_s100_cb 100 1 0

m5_s100_cb 100 5 0

m5_s100_sg 100 5 1

m5_s300_cb 300 5 0

m5_s300_sg 300 5 1

All these models were trained using 5 iterations (epochs) over the
corpus, this has been done not to excessively increase the average
training time, that is now around two days and six hours. More
details are shown in table 8.

The hardware configuration used for training is the same described
in section 2.2.3 in table 3.

The choice of min_count values has been done looking at the dataset
vocabulary. This text file provides word-occurrences pairs and was ex-
tracted from the first trained model (m1_s300_cb). The goal was to

2 https://github.com/pushshift/Reddit-Bot-Detector

https://github.com/pushshift/Reddit-Bot-Detector
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find a threshold which could remove enough garbage words without
removing too many names/brands of products. After a manual in-
spection min_count = 5 seemed a fair value, min_count = 1 was left
for completeness.

Please note that CBOW and Skip-Gram are the only algorithms
used in literature for this particular model, and they were introduced
in the original Word2Vec paper. Both of them describe how the neu-
ral network learns the underlying word representation.

Figure 6: CBOW vs Skipgram. Source: https://fasttext.cc/

CBOW (Continous Bag-of-Words) tries to predict a target word
given a context (fixed size window of surrounding words to the tar-
get), while Skipgram learns to predict a target word thanks to a
nearby word.

For example, given the sentence I am selling these fine leather jack-
ets and fine as target word, Skipgram model tries to predict the target
using a close-by word. CBOW, instead, selects a window of surround-
ing words and uses the sum of their vectors to predict the target.

Further details can be found in the orginal Word2Vec paper by
Thomas Mikolov[21]. Accuracy measurement of the above models
is carried out in section 3.3

3.3 test set definition and evaluation tech-
nique

In order to evaluate the word embedding model, Banca d’Italia
business experts defined a set of 22 words, appeared at least once in
the dataset, to be searched in the model. Such target words are listed
below:

https://fasttext.cc/
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1. bloomberg_terminal

2. dow_jones

3. eikon

4. euro_stoxx

5. factset

6. finastra

7. iboxx

8. intex

9. metastock

10. moodys_analytic

11. morningstar

12. morningstar_ratings

13. morningstar_research

14. msci_emerging_markets

15. pitchbook

16. refinitiv

17. reuters_news

18. stoxx

19. tradeweb

20. vanguard_money_market

21. xetra

22. ycharts

For each of these words, the first 15 most similar terms returned by
the word embedding model were used to build a test set. Since six
different models were trained, there is a total of 15 x 22 x 6 = 1980

results to evaluate. Filtering duplicates returned by these w2v mod-
els, the number of results in the test set drops to 966. Banca d’Italia
business experts made a boolean (GOOD/BAD) evaluation of these
results by hand. In particular:

1. If a term was already known, it was immediately classified as
GOOD or BAD in relation to the corresponding target word
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2. If a term was not known, an additional online search was needed
to figure out if it was somehow related to its target word.

This kind of evaluation was time-consuming but allowed us to get
the most reliable measurement of the model accuracy. An example
of manual evaluation of target word iboxx, for model m5_s300_cb, is
presented in table 6.

Table 6: Manual evaluation of target word iboxx for model m5_s300_cb

Target term W2V similar term Cosine sim. Label

iboxx powershares 0.736 GOOD
iboxx ishares_u 0.735 GOOD
iboxx ishares_core 0.727 GOOD
iboxx ishares_core_s 0.723 GOOD
iboxx xtrackers 0.723 GOOD
iboxx year_treasury_bond_etf 0.721 BAD
iboxx core_s 0.720 BAD
iboxx aggregate_bond 0.707 BAD
iboxx yr_ucits_etf 0.702 BAD
iboxx large_cap_etf 0.690 BAD
iboxx invesco_s 0.692 GOOD
iboxx vfmv 0.688 GOOD
iboxx xslv 0.680 GOOD
iboxx schwab_us 0.680 GOOD
iboxx ishares_s 0.679 GOOD

Please note that at this stage no false positives or false negatives are
available. Therefore no recall, precision or f1 can be computed for the
moment.

3.4 accuracy measurement
Accuracy for manual evaluation of the test set is defined below:

Accuracy =
Number of elements labeled as GOOD

Total number of elements
(3.1)

As presented in table 7, model m5_s300_cb has the best accuracy
with 80% of good results, while model m1_s300_cb follows with 77%.

Hence, skipping words with a number of occurrences that is too
low, while training the w2v model, seems to slightly increase the
accuracy for this test set.
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Table 7: Manually evaluated accuracy for Word embedding models.

Model name Num. of results per model Accuracy

m1_s300_cb 22 x 15 = 330 0.778

m1_s100_cb 22 x 15 = 330 0.715

m5_s100_cb 22 x 15 = 330 0.757

m5_s100_sg 22 x 15 = 330 0.712

m5_s300_cb 22 x 15 = 330 0.8
m5_s300_sg 22 x 15 = 330 0.739

Let’s also point out that models m5_s300_cb and m5_s300_sg are
trained with the same values for size and min_count . Therefore,
CBOW reaches higher accuracy if compared to Skip-Gram, over this
dataset, with this test set.

Since these models will need to be loaded in-memory, it is also
important to compare their size to better understand the hardware
(RAM) requirements needed at run-time. These details are provided
in the table 8, together with training and loading times.

Table 8: Word embedding models size and loading time.

Model name Size
Training time

(Cython enabled)
Loading time

m1_s300_cb 8.5 GB 2d 9h 12m 3m 57s
m1_s100_cb 2.92 GB 2d 4h 50m 2m 57s
m5_s100_cb 338 MB 2d 3h 44m 18s
m5_s100_sg 338 MB 2d 4h 35m 16s
m5_s300_cb 993 MB 2d 8h 25m 20s
m5_s300_sg 993 MB 2d 9h 14m 22s

The accuracy of m1_s300_cb and m5_s300_cb are very close to each
other. By the table above, however, it is clear that m1_s300_cb is also
the biggest and slowest model to load. On the other hand, model
m5_s300_cb seems to be the best choice, because it provides either a
higher accuracy and a smaller size. Please note that "model loading
time" refers to the initialization time and not to the time to carry out
a single query.

During the evaluation process, Banca d’Italia experts were able to
identify new alternative financial services that require further inves-
tigation and analysis. Although the number of discovered services
depends on Banca d’Italia previous knowledge and it is not represen-
tative of the model accuracy, it is an important proof of the goodness
of the model built so far.



3.4 accuracy measurement 35

Table 9: New discovered financial services for Word embedding models.

Model name Number of discovered financial services

m1_s300_cb 26

m1_s100_cb 32

m5_s100_cb 33

m5_s100_sg 40

m5_s300_cb 26

m5_s300_sg 29

As we can see from table 9, model m5_s100_sg has the highest num-
ber of discovered services.

Initially, we thought this could be related to the usage of Skip-gram,
because Mikolov himself stated that: Skip-gram works well with small
amount of the training data, represents well even rare words or phrases;
CBOW is several times faster to train than the skip-gram, slightly better
accuracy for the frequent words3. However, we would have expected to
see a similar spike also in model m5_s300_sg which was trained with
Skip-gram too, but this did not happen. Therefore, we do not have
any strong statistical evidence that Skip-gram performs better to find
less-known financial products in this test set.

3 https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/
E5ld8LcDxlAJ

https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ
https://groups.google.com/g/word2vec-toolkit/c/NLvYXU99cAM/m/E5ld8LcDxlAJ




4 N A M E D E N T I T Y
D I S A M B I G U AT I O N

4.1 introduction to named entity disambigua-
tion

Named-entity disambiguation (NED), also known as Entity-linking
or Wikification, is the Natural Language Processing task of mapping
words of interest (named-entities) from an input text to correspond-
ing unique entities in a target Knowledge Base. Name-entity disam-
biguation is different from Named-entity Recognition which instead
tries to classify names of interest into pre-defined categories such as
person, place, organization, etc.

Figure 7: NED example. Source: https://en.wikipedia.org/wiki/
Entity_linking

Named entity algorithms available in literature always take a sen-
tence as input and extract the named-entities to disambiguate. In this
case, instead, the input of the NED algorithm is the output of the
word embedding model, i.e. a list of semantically similar words.

In this chapter, the development of a custom NED algorithm that
is capable of dealing with this kind of input will be presented.

4.2 choice of the knowledge base
When developing a NED algorithm, the first choice to make is the

Knowledge Base to use for matching. From now on, let’s use the
term Knowledge Graph instead of Knowledge Base. Although there
is quite a debate on the real definition of Knowledge Graph, for the
purposes of this project we can define it as a RDF-based Knowledge

37
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Base.

RDF (aka Resource Description Framework) it’s a W3C specifica-
tion[18] for semantic data modelling. It is based on the use of triples,
i.e. statements of the form subject–predicate–object. Either the sub-
ject, the predicate and the object must have a unique identifier. Such
kind of data encoding is easily readable by both humans and ma-
chines. RDF, together with ontology languages, is at the base of the
so-called Semantic Web1

subject object

predicate

Colosseum Rome

is located in

Figure 8: A generic RDF triple (top). An real example of RDF triple (down).

Both Google and Microsoft have private Knowledge Graphs. The
former one, called Google Knowledge Graph is freely accessible by
means of an API that, at the time of writing, is defined as not suitable
for use as a production-critical service2. The latter, called Bing Knowl-
edge Graph, can be accessed as paid service through the Bing Entity
Search API3.

Despite them, there is also a larger body of open Knowledge Graphs,
such as DBpedia[7], Wikidata4 and YAGO4[24]. An overview of how
these databases are populated and the interlinking between them can
be found at [14]. The choice for the best fitting Knowledge Graph de-
pends on project domain and requirements. In this experimentation,
we are probably going to need matching also some not-well-known en-
tities, like minor financial products with small market shares. As high-
lighted by the comparison work among these KGs in [11], Wikidata
is the best suited for this kind of use-case. Moreover, it can be edited
at any time by the community and it is continuously queryable.

The most important aspect of Wikidata, however, is its bigger num-
ber of entities if compared to other open bases. As of today, Wikipedia
features 89 millions of content pages5 (October 2020) versus the 5 mil-
lions entities of DBPedia[14] (Version 2016-10) and the 50 million en-

1 https://en.wikipedia.org/wiki/Semantic_Web
2 https://developers.google.com/knowledge-graph
3 https://azure.microsoft.com/en-gb/services/cognitive-services/
bing-entity-search-api/

4 https://en.wikipedia.org/wiki/Wikidata
5 https://www.wikidata.org/wiki/Wikidata:Statistics

https://en.wikipedia.org/wiki/Semantic_Web
https://developers.google.com/knowledge-graph
https://azure.microsoft.com/en-gb/services/cognitive-services/bing-entity-search-api/
https://azure.microsoft.com/en-gb/services/cognitive-services/bing-entity-search-api/
https://en.wikipedia.org/wiki/Wikidata
https://www.wikidata.org/wiki/Wikidata:Statistics
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tities of YAGO4
6

Of course, due to the language-dependent nature of the NLP mod-
els used so far, we are only going to disambiguate among English
entities.

Wikidata is a document-oriented NoSQL database for entities col-
lection. Each entity represents a topic, concept, or object and has an
identifier starting with letter ’Q’ (QID). There may be entities named
with the same label but each of them has a different QID. Descriptions
and aliases are provided too, if available.

Figure 9: Wikidata page example. Source: https://en.wikipedia.org/
wiki/Wikidata

Statements in Wikidata are recorded as property-value pairs. Every
property has an identifier starting with letter ’P’ and may have one
or more entities as values. For the sake of this project, we are mainly
interested in the following properties:

1. Property P856 "official website": The official website of the en-
tity, if available

2. Property P831 "instance of": That class of which the current
entity is a particular example and member. Since every entity
of Wikidata can be used as a value for properties, we could have
millions of potential classes to choose from.

6 https://yago-knowledge.org/downloads/yago-4

https://en.wikipedia.org/wiki/Wikidata
https://en.wikipedia.org/wiki/Wikidata
https://yago-knowledge.org/downloads/yago-4
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As we will see later, the algorithm also takes in special considera-
tion the Wikipedia page linked to each entity, being the main source
for an in-depth description of the entities.

4.3 core idea behind ned algorithm for word
embeddings

Before going through the full description of the NED algorithm
developed for this project, it is important to clarify some differences
between applying NED on the output of a Word Embedding model
instead of on a sentence. Take for example the fifteen most simi-
lar words for term bloomberg_terminal from model m5_s300_cb, to-
gether with their cosine similarity:

1. bloomberg_terminals [0.7495272159576416]

2. capital_iq [0.6867133378982544]

3. datastream [0.6670815944671631]

4. capiq [0.6655162572860718]

5. eikon [0.6468931436538696]

6. wrds [0.6486623287200928]

7. capitaliq [0.6128060817718506]

8. yahoo_finance [0.6137667298316956]

9. bloomberg [0.6159719824790955]

10. factset [0.6060885787010193]

11. quandl [0.6075608730316162]

12. bamsec [0.5830370187759399]

13. ycharts [0.5825964212417603]

14. reuters_eikon [0.5766008496284485]

As we can see, there are some particularities that must be pointed
out. First, the same product may appear multiple times with slightly
different names (e.g. eikon and reuters_eikon). Second, the same word
may appear again due to typing errors (e.g. capital_iq and capitaliq).
Third, the similarity score provided by the word embedding model
cannot be trusted too much in detail, i.e. reuters_eikon is the same of
eikon, however, it is at the bottom of the list with the lowest similarity.
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Last but not least, it is important to note that most of these words
refer to the same context (trading platforms in this case) and this is
extra information that must be exploited somehow. Indeed, we want
to disambiguate those words together, instead of one at a time, such
that the context information does not get lost. Let’s try to clarify it
with an example. Suppose you need to disambiguate the word Apple.
A quick search on Wikidata outputs two candidate entities: Apple Inc.
(Q312) and Apple (fruit) (Q89). If the word embedding model returned
Apple as similar word for Microsoft, then with high probability we are
referring to Apple Inc. (Q312). If, instead, the word embedding model
returned Apple as similar word for Orange, then we are probably re-
ferring to Apple (fruit) (Q89).

In order to achieve this, we can imagine generating a new vector
embedding on the description of each candidate entity, such that the
more similar the descriptions, the closer the embeddings of those
entities. This is somewhat analogous to what the word embedding
models already do. However, we now need to encode a full-text doc-
ument into a single vector and not just a single word.

Suppose we need to disambiguate a list of n terms. We search these
words in Wikidata and get a set of candidate entities per term:

Qi = candidate entities for term ti; with i = 1, ...,n

We can then define the set C of all combinations of candidate enti-
ties as follows

C = {cj | cj =< ~v1, ..., ~vi, ..., ~vn > st ~vi = e(qi) and qi ∈ Qi}

where e(qi) = ~vi represents the formula to turn entity qi into em-
bedding ~vi. Of course, the choice of the right method to convert
entities into embeddings is extremely important and influences the
accuracy of the whole NED algorithm. As explained in section 4.4.5,
a third machine learning model is used here.

The core idea of this algorithm is to select the combination such
that the distance between its embeddings is the smallest among all
other combinations.

Of course, since a combination may have more than two entities, in-
stead of computing the sum of the pairwise cosine similarity between
all the embeddings, we can just compute the sum of the similarity of
each embedding against the mean vector ~mv of the combination itself.
Thus we can choose the best combination cbest as

cbest = argmax
cj∈C

∑
~vi∈cj

cs( ~mvcj
, ~vi) (4.1)



42 named entity disambiguation

Microsoft

Apple

Microsoft   wikidata.org/wiki/Q2283

Apple Inc.   wikidata.org/wiki/Q312

Apple (fruit)     wikidata.org/wiki/Q89

c1= <vQ2283,vQ312> c2= <vQ2283,vQ89>

vQ2283

vQ312

vQ89

Figure 10: Context as distance between vector embedding of entities

where cs( ~va, ~vb) is the cosine similarity formula that returns a value
c ∈ [0, 1]. The higher c the closer the argument vectors.

The formula above, however, suffers from a major drawback that
may occur when the candidate entities of a searched term are very
similar to each other. For example, we want to disambiguate to-
gether Pepsi-cola and Sprite, as in picture 11. Suppose that searching
Pepsi-cola in Wikidata we get both Pepsi-Cola (Q47719) and Coca-Cola
(Q2813), while Sprite returns Sprite (Q206978) only. Computing the
embeddings for these entities we end up having two possible combi-
nations:

c1 =< ~vQ206978, ~vQ2813 >=< ~vsprite, ~vcoca−cola >

c2 =< ~vQ206978, ~vQ47719 >=< ~vsprite, ~vpepsi−cola >

Sprite

Pepsi-Cola

Sprite    wikidata.org/wiki/Q206978

Coca-Cola   wikidata.org/wiki/Q2813

Pepsi-Cola wikidata.org/wiki/Q47719

c1= <vQ206978,vQ2813>

vQ2813

vQ206978

vQ47719

c2= <vQ206978,vQ47719>

Figure 11: Failure example of NED based on formula 4.1

Either Pepsi-Cola (Q47719) and Coca-Cola (Q2813) refers to cola-based
carbonated soft drinks and their embeddings will surely be close to
each other. However, since both Coca-Cola (Q2813) and Sprite (Q206978)
are produced by ’The Coca-Cola Company’, they will probably be
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closer than the distance between Sprite (Q206978) and Pepsi-Cola (Q47719).
Hence, formula number 4.1 would fail choosing combination c1 in-
stead of combination c2.

This issue can be solved noting that the term Pepsi-Cola is more
similar (equal) to the title of entity Q47719 (Pepsi-Cola) than title of
entity Q2813 (Coca-cola). Hence, we can just compute an edit distance
similarity ed(string1, string2) ∈ [0, 1] between the searched term and
the name of each candidate entity. The greater the value, the more
similar the two strings. Formula 4.1 now becomes:

cbest = argmax
cj∈C

∑
~vi∈cj

cs( ~mvcj
, ~vi) ∗ ed(ti, titleqi

) (4.2)

Even if with different implementations, Knowledge Bases and ma-
chine learning models used, the idea behind this approach is similar
to [23].

4.4 description of ned algorithm for word
embeddings

This section will go through a detailed description of the NED algo-
rithm developed for this project, that implements the idea described
in 4.3.

Since both the word embedding model and this algorithm will be
queried at runtime, the latter should be as fast as possible. How-
ever, this project has no real-time requirement. Therefore, the NED
algorithm will not work with any preprocessed in-memory dump of
Wikidata, but instead, it will deal with Wikidata (and Wikipedia) API,
using asynchronous HTTP requests when possible, such that entities
displayed to the user are always up-to-date.

To make the whole algorithm faster, it extensively uses vectorization
instead of looping, i.e. most of the computation is done at optimized
c-level. This is mainly achieved using specific python libraries, like:
SciPy7, NumPy8 and Pandas9.

The code of this algorithm is composed of four consecutive batches
of asynchronous HTTP requests to Wikipedia and Wikidata APIs. It
can be virtually split into six main steps, that we are going to describe
in the next subsections:

7 https://www.scipy.org
8 https://numpy.org
9 https://pandas.pydata.org/

https://www.scipy.org
https://numpy.org
https://pandas.pydata.org/
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1. First Batch of HTTP requests to collect candidate entities search-
ing each term through the Wikidata and Wikipedia search en-
gine via Web API.

2. Second Batch of HTTP requests to analyze disambiguation
pages retrieved in the previous batch through the Wikipedia
API.

3. Third Batch of HTTP requests to get property values and other
information from Wikidata page of candidate entities.

4. Fourth Batch of HTTP requests to retrieve introduction extract
from Wikipedia and meta-description-tag from entities official web-
sites.

5. Selection of the best combination of entities

6. Handling of unresolved and discarded terms

4.4.1 First Batch of HTTP requests

The algorithm has been implemented by means of a NED class that
provides method disambiguate for entity linking:

Listing 10: Prototype of method disambiguate of NED class

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1)

This method takes the following input parameters:

1. terms : a list of the most similar terms returned by the word
embedding model when searching a target word. Such target
word is assumed to be placed at the beginning of the list.

2. terms_cosine : a list of the cosine similarities returned by the
word embedding model, in the same order provided for terms .

3. terms_occ : a list with the number of occurrences of input
words in terms as counted in the dataset used for training the
word embedding model.

4. chunk_size : value for combinations splitting to speed-up the
computation. More about this is stated in 4.4.5.

5. min_true_nn : value for nearest neighbouring for Wikidata
property instance of (P31). More about this is described in 4.4.5.

Before start making any HTTP request, the algorithm does a pre-
liminary check on misspelt input words. As said in section 4.3, very
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often the word embedding model, trained on this dataset, returns the
same word either spelt correctly and with some minor typos. Conse-
quently, if a pair of very similar words has been detected, the algo-
rithm assumes the good one to be the one with the highest number
of occurrences and discards the other. Hence, terms are first ordered
by occurrences in descending order, then an edit distance metric is
computed between each term and the ones with higher occurrences
(method get_st_couples).

An edit distance is a measure that expresses how much similar two
strings are. The algorithm used here is the levenshtein_ratio that gives
a value l ∈ [0, 1] equal to 1 when two strings are identical. The leven-
shtein_ratio is based on the levenshtein_distance, that can be informally
defined as the minimum number of atomic edits needed to turn a
string into another one. A detailed analysis of the levenshtein_distance
can be found in the original paper by Vladimir Levenshtein from 1966

[19].

levenshtein_ratio =
levenshtein_distance(stringA, stringB)

max(len(stringA), len(stringB))
(4.3)

The levenshtein computation is carried out by the FuzzyWuzzy10 python
library (method max_fuzz_ratio), that also provides other edit dis-
tance functions, used later on in this algorithm. At this stage, we
only prune misspelt words that are very similar to the good ones, i.e.
words with a levenshtein_ratio equal or greater than 0.9

Listing 11: Methods max_fuzz_ratio, get_st_couples and portion of method dis-
ambiguate of NED class

def max_fuzz_ratio(self, search_term , arr_like ,
scorer_array = [fuzz.WRatio], filter_len = True):

if len(arr_like) == 0:
return (np.nan , 0)

search_term = re.sub(’_’, ’ ’, search_term)
assert search_term != np.nan
mst_len = 1 . 5 len(search_term)

# If there are strings , np.nan get converted to ’nan’
labels = np.hstack(arr_like).astype(’str’)
labels = labels[labels != ’nan’]

if labels.size == 0:
return (np.nan , 0)

10 https://github.com/seatgeek/fuzzywuzzy

https://github.com/seatgeek/fuzzywuzzy
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if filter_len:
filter_labels = np.array([True if len(x) < mst_len

else False for x in labels ])
labels = labels[filter_labels]

max_match = tuple()

for scorer in scorer_array:
sc = process.extractOne(search_term , np.char.lower(

labels), scorer = scorer)
if sc:
max_match = max_match + sc

else:
max_match = max_match + (np.nan , 0)

return max_match

def get_st_couples(self, terms , terms_occ):

sort_idx = terms_occ.argsort ()[::−1]
terms_sorted = terms[sort_idx]

# Term with highest occurrences goes immediately in
terms_pruned = [terms_sorted [0]]
df_rpl = pd.DataFrame(columns =[’st_kept ’, ’st_rpl ’])

for st in terms_sorted [1:]:
st_kept , kept_score = process.extractOne(st,

terms_pruned , scorer = fuzz.ratio)
logger.debug("St preliminar pruning: %s %s" % (st,

kept_score))
if kept_score > 90:
df_rpl = df_rpl.append ({’st_kept ’: st_kept , ’st_rpl ’

: st}, ignore_index=True)
else:
terms_pruned.append(st)

return (terms_pruned , df_rpl)

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

headers = {
’User−Agent’: ’Mozilla /5.0 (Macintosh; Intel Mac OS X

10_11_5) AppleWebKit /537.36 (KHTML , like Gecko)
Chrome /50.0.2661.102 Safari /537.36 ’}

min_true_nn = min_true_nn if min_true_nn < 1 else 1

assert len(terms) == len(terms_cosine) and len(
terms_cosine) == len(terms_occ), "Different sizes
in parameters"
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# IMPORTANT target word is assumed to be in first
position

root_term = terms [0]
terms = np.asarray(terms)
terms_occ = np.asarray(terms_occ).astype(int)
terms_cosine = np.asarray(terms_cosine).astype(float)

# terms_pruned sorted differently from terms
terms_pruned , df_rpl = self.get_st_couples(terms ,

terms_occ)

[...]

Once this preliminary pruning is done, the algorithm is ready to
search the remaining terms in Wikidata, to find the candidate enti-
ties to disambiguate. Since every Wikipedia page has a correspond-
ing Wikidata entity (a corresponding QID), the search process can
also be carried out through Wikipedia. This is handled using both
Wikipedia and Wikidata web APIs, that return a json-encoded version
of the same results we would have using the search feature provided
in their online GUI. Please note that, for each term that we want to
disambiguate, the algorithm needs to make two HTTP calls (one for
Wikidata and another one for Wikipedia). In order to speed-up the
whole process, these requests are made asynchronously, using the AIO-
HTTP11 python framework.

Listing 12: Methods wikidata_search_entities, wikipedia_search_entities,
fp_search_entities and a piece of method disambiguate of NED
class

WIKIDATA_ENDPOINT="https ://www.wikidata.org/w/api.php"
WIKIPEDIA_ENDPOINT="https ://en.wikipedia.org/w/api.php"

WIKIDATA_SEARCH_ENTITIES = {
’action ’: ’query’,
’generator ’: ’search ’,
’format ’: ’json’,
’prop’ : ’cirrusbuilddoc ’,
’gsrlimit ’ : 10

}

WIKIPEDIA_SEARCH_ENTITIES = {
’action ’: ’query’,
’generator ’: ’search ’,
’format ’: ’json’,
’prop’: ’pageprops|description|redirects ’,
’gsrlimit ’ : 10

}

11 https://docs.aiohttp.org/en/stable/

https://docs.aiohttp.org/en/stable/
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[...]

@backoff.on_exception(backoff.expo , aiohttp.ClientError
, max_tries=5, max_time =100, giveup=fatal_code)

async def wikipedia_search_entities(self, search_term):
df = pd.DataFrame(columns =[’search_term ’, ’entity_id ’,

’wp_title ’, ’redirects ’, ’dis_page ’])
search_parameter = {
’gsrsearch ’: search_term

}

async with aiohttp.ClientSession () as session:
async with session.get(url=self.WIKIPEDIA_ENDPOINT ,

params = { self.WIKIPEDIA_SEARCH_ENTITIES ,
search_parameter}, raise_for_status=True) as r:

response = await r.json()

if search_term == ’iiroc’:
print(response)

warning_keys = set(response).difference ({’query’, ’
batchcomplete ’, ’continue ’})

if warning_keys:
if ’error’ in warning_keys:
logger.error("[%s]: %s" % (search_term , {key:

response[key] for key in warning_keys }))
else:
logger.warning("[%s]: %s" % (search_term , {key:

response[key] for key in warning_keys }))

if ’query’ in response and ’pages’ in response[’
query’]:

for page_id in response[’query’][’pages’]:
if page_id == ’−1’:
logger.error(response[’query’][’pages’][’−1’])

if ’pageprops ’ in response[’query’][’pages’][
page_id] and ’wikibase_item ’ in response[’query
’][’pages’][ page_id ][’pageprops ’]:

if ’title’ in response[’query’][’pages’][ page_id]
and ((’description ’ in response[’query’][’

pages’][ page_id] and ’disambiguation ’ in
response[’query’][’pages’][ page_id ][’
description ’].lower()) or (’disambiguation ’ in
response[’query’][’pages’][ page_id ][’title’].

lower())):
df = df.append ({’search_term ’: search_term , ’

entity_id ’: response[’query’][’pages’][
page_id ][’pageprops ’][’wikibase_item ’], ’
wp_title ’: response[’query’][’pages’][ page_id
][’title’], ’redirects ’: np.nan , ’dis_page ’:
True}, ignore_index=True)



4.4 description of ned algorithm for word embeddings 49

elif ’redirects ’ in response[’query’][’pages’][
page_id ]:

df = df.append ({’search_term ’: search_term , ’
entity_id ’: response[’query’][’pages’][
page_id ][’pageprops ’][’wikibase_item ’], ’
wp_title ’: response[’query’][’pages’][ page_id
][’title’], ’redirects ’: tuple(redirect[’
title’] for redirect in response[’query’][’
pages’][ page_id ][’redirects ’]), ’dis_page ’:
False}, ignore_index=True)

else:
df = df.append ({’search_term ’: search_term , ’

entity_id ’: response[’query’][’pages’][
page_id ][’pageprops ’][’wikibase_item ’], ’
wp_title ’: response[’query’][’pages’][ page_id
][’title’], ’redirects ’: np.nan , ’dis_page ’:
False}, ignore_index=True)

return df

@backoff.on_exception(backoff.expo , aiohttp.ClientError
, max_tries=5, max_time =100, giveup=fatal_code)

async def wikidata_search_entities(self, search_term):
df = pd.DataFrame(columns =[’search_term ’, ’entity_id ’

])
search_parameter = {
’gsrsearch ’: search_term

}

async with aiohttp.ClientSession () as session:
async with session.get(url=self.WIKIDATA_ENDPOINT ,

params = { self.WIKIDATA_SEARCH_ENTITIES ,
search_parameter}, raise_for_status=True) as r:

response = await r.json()
# Similar to wikipedia_search_entities
[...]

def fp_search_entities(self, search_terms =[]):
wd_group = asyncio.gather ( [ self.

wikidata_search_entities(term) for term in
search_terms ])

wp_group = asyncio.gather ( [ self.
wikipedia_search_entities(term) for term in
search_terms ])

all_groups = asyncio.gather(wd_group , wp_group)
return self.loop.run_until_complete(all_groups)

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

#First API call
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wikidata_entities_plus_disamb = self.
fp_get_wikidata_entities(terms_pruned)

wd_dataframe = pd.concat(wikidata_entities_plus_disamb
[0])

wp_dataframe = pd.concat(wikidata_entities_plus_disamb
[1])

#Dataframes merged together
df = wd_dataframe.merge(wp_dataframe , on=[’search_term

’, ’entity_id ’], how="outer")

[...]

The candidate entities found so far are stored in a pandas Dataframe. A
DataFrame is a 2-dimensional labelled data structure with columns
of potentially different types, that allows for faster and easier data
manipulation. It is the de-facto standard for Data Scientists.

Table 10 shows an example output Dataframe retrieved after the
first batch of HTTP calls, searching words capital_iq and eikon.

Table 10: Example of pandas Dataframe after first batch of HTTP calls.

search_term entity_id wp_title redirects dis_page

eikon Q12727367 NaN NaN NaN
eikon Q1303835 NaN NaN NaN
eikon Q43763745 Eikon NaN False
eikon Q5323200 EIKON Intern... NaN False
eikon Q5349269 Eikon Basilike (Icon Basilike,) False
eikon Q58628389 NaN NaN NaN
eikon Q96377047 Eikon Exhibi... NaN False
eikon Q96697163 NaN NaN NaN
eikon Q99203699 NaN NaN NaN
... ... ... ... ...
eikon Q60741469 Refinitiv NaN False
eikon Q17078254 Reuters 3000 Xtra NaN False
capital_iq Q2931538 CIQ NaN True
capital_iq Q5157260 Compustat (CompuStat,) False
capital_iq Q170277 Intelligence quo... NaN False
capital_iq Q6066208 Ira Rennert NaN False
capital_iq Q56283816 List of S&P 600 ... NaN False
capital_iq Q4035851 S&P Capital IQ NaN False

Entities retrieved from method wikipedia_search_entities have
additional information if compared to the ones retrieved by method
wikipedia_search_entities . In particular:
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1. wp_title : a Wikipedia page title

2. redirects : a tuple of alternative names for Wikipedia pages.
They can be used as additional aliases for corresponding Wiki-
data entity.

3. a boolean flag called dis_pages : to highlight all the entities
that are Wikipedia disambiguation pages

The column search_term refers to the input terms we are trying
to disambiguate. Please note that wikidata_search_entities does
not currently provide any title for entities found (it will be added
later on). Moreover, this method skips all disambiguation pages,
because they are already handled by wikipedia_search_entities

that allows for in-depth research of those pages based on their inner
text content.

4.4.2 Second Batch of HTTP requests

All the disambiguation pages found so far (dis_page = True) are
searched back in Wikipedia, in order to retrieve their text body. They
are an useful source for extra information and new candidate entities.

The algorithm parses the content of such pages and adds every
new mentioned entity to the Dataframe, as a candidate entity for the
input term the disambiguation page was returned for.

Moreover, these entities could have names or descriptions that are
different from what can be found in Wikipedia and Wikidata. These
can be used as additional information that we want to save for later
computation (stored in columns dis_aliases and dis_text).

The title of the disambiguation page itself can often be used as an
alias for all the entities included in the page. Most of the times it
refers to an acronym (e.g. page https://en.wikipedia.org/wiki/
CIQ - we want ’CIQ’ to be an alias for ’Capital IQ’). However, there
may be cases in which this title is too generic and using it would
degrade the result of the whole NED process. This happens when
the title of the page is similar to a substring of the title of the en-
tity mentioned in the page text (e.g. page https://en.wikipedia.
org/wiki/Bloomberg - we do not want ’Bloomberg’ to be an alias for
’Bloomberg Terminal’). Thus, we can use another edit distance func-
tion provided by FuzzyWuzzy library, called token_set_ratio, that can
compare also strings that are of widely differing lengths using the
best partial match from a set of matching blocks. More details on this
algorithm can be found in [10]. Consequently, the algorithm is not
going to use the title of the disambiguation page if the token_set_ratio

https://en.wikipedia.org/wiki/CIQ
https://en.wikipedia.org/wiki/CIQ
https://en.wikipedia.org/wiki/Bloomberg
https://en.wikipedia.org/wiki/Bloomberg
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is higher than 0.8. This threshold, of course, was empirically fixed.

The above computation is carried out by two methods:

1. wikipedia_resolve_disambiguation_text to parse the text
of the Wikipedia Disambiguation pages by means of regular
expressions

2. wikipedia_resolve_disambiguation_entities to retrieve the
Wikidata identifiers of the entities mentioned in the Wikipedia
Disambiguation pages and to perform the edit distance measure-
ments as explained above.

Listing 13: Methods wikipedia_resolve_disambiguation_text,
sp_get_disambiguations and a piece of method disambiguate
of NED class

WIKIPEDIA_GET_DISAMB_ENTITIES = {
’action ’: ’query’,
’generator ’: ’links’,
’format ’: ’json’,
’redirects ’: 1,
’prop’: ’pageprops ’,
’gpllimit ’: 50,
’ppprop ’: ’wikibase_item ’

}

@backoff.on_exception(backoff.expo , aiohttp.ClientError
, max_tries=5, max_time =100, giveup=fatal_code)

async def wikipedia_resolve_disambiguation_entities(
self, disamb_entity_id , title):

df = pd.DataFrame(columns =[’disamb_entity_id ’, ’
entity_id ’, ’wp_title ’, ’dis_aliases ’])

search_disambiguations = {
’titles ’: title

}

title_clean = re.sub(’ (disambiguation)’, ’’, title)

async with aiohttp.ClientSession () as session:
async with session.get(url=self.WIKIPEDIA_ENDPOINT ,

params = { self.WIKIPEDIA_GET_DISAMB_ENTITIES ,
search_disambiguations}, raise_for_status=True) as
r:

response = await r.json()

warning_keys = set(response).difference ({’query’, ’
batchcomplete ’})

if warning_keys:
if ’error’ in warning_keys:
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logger.error("[%s] [%s]: %s" % (disamb_entity_id ,
title , {key:response[key] for key in
warning_keys }))

else:
logger.warning("[%s] [%s]: %s" % (disamb_entity_id

, title , {key:response[key] for key in
warning_keys }))

redirects = {}
red_aliases = {}

[...]

redirects[red[’to’]] = red[’from’]
red_aliases[red[’to’]] = [red[’from’], red[’

tofragment ’]] if ’tofragment ’ in red else [red[
’from’]]

# Disambiguation pages could link to other
disambiguation pages

red_aliases[red[’to’]] = list(filter(self.
NON_DISAMBIGUATION.search , red_aliases[red[’to’
]]))

[...]
page_title = response[’query’][’pages’][ page_id ][’

title’]
if page_title in red_aliases:
alias , score = self.max_fuzz_ratio(title_clean ,

[ red_aliases[page_title], page_title], [fuzz.
token_set_ratio], filter_len = False)

else:
alias , score = self.max_fuzz_ratio(title_clean , [

page_title], [fuzz.token_set_ratio],
filter_len = False)

if score <= 80:
if page_title in red_aliases:
red_aliases[page_title] = [ red_aliases[

page_title], title_clean]
else:
red_aliases[page_title] = [title_clean]

[...]

if ’pageprops ’ in response[’query’][’pages’][
page_id ]:

df = df.append ({’disamb_entity_id ’ :
disamb_entity_id , ’entity_id ’:response[’query’
][’pages’][ page_id ][’pageprops ’][’
wikibase_item ’], ’wp_title ’: redirects[
page_title] if page_title in redirects else
page_title , ’dis_aliases ’: tuple(red_aliases[
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response[’query’][’pages’][ page_id ][’title’]])
if response[’query’][’pages’][ page_id ][’title

’] in red_aliases else tuple()},ignore_index=
True)

return df

def sp_get_disambiguations(self, dis_pages =[]):
dis_text = asyncio.gather ( [ self.

wikipedia_resolve_disambiguation_text(dis [1]) for
dis in dis_pages ])

dis_entities = asyncio.gather ( [ self.
wikipedia_resolve_disambiguation_entities ( dis) for
dis in dis_pages ])

all_groups = asyncio.gather(dis_text , dis_entities)
return self.loop.run_until_complete(all_groups)

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

extra_text = self.sp_get_disambiguations(dis_pages)
# Add descriptions found in disambiguation pages
df_disamb_text = pd.concat(extra_text [0])
df_disamb_entities = pd.concat(extra_text [1])

# Add new entities found in disambiguation pages
# Disambiguation pages could be duplicated
new_entities = df[df[’dis_page ’] == True ][[’

search_term ’, ’entity_id ’]]
new_entities.columns = [’search_term ’, ’

disamb_entity_id ’]
new_entities = new_entities.merge(df_disamb_entities [[

’disamb_entity_id ’, ’entity_id ’]] , on=[’
disamb_entity_id ’], how="left")

new_entities = new_entities.drop(columns =[’
disamb_entity_id ’])

full_entities = pd.concat ([ new_entities , df[[’
search_term ’, ’entity_id ’]]]).drop_duplicates ()

df = full_entities.merge(df.drop(columns =[’search_term
’]).drop_duplicates (), on=[’entity_id ’], how="left"
)

dsd_df = df_disamb_text.merge(df_disamb_entities.drop(
columns =[’disamb_entity_id ’]), on=[’wp_title ’], how
="inner").drop(columns =[’wp_title ’]).
drop_duplicates(’entity_id ’, keep=’last’)

df = df.merge(dsd_df , on=[’entity_id ’], how=’left’)

[...]
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4.4.3 Third Batch of HTTP requests

Now that we have a complete list of candidate entities for each
input term, we want to retrieve as many details as possible from those
entities. Searching them by identifier in Wikidata, we can retrieve the
following information of interest:

1. The title of the Wikidata entity (wp_title)

2. The title of the corresponding Wikipedia page (wp_page), if
available and if not already retrieved by method wikipedia_

search_entities

3. A short text description (description)

4. A tuple containing all the aliases in addition to the ones already
found by means of Wikipedia (aliases)

5. A tuple of all the Wikidata entities for which the current entity
is instance of (instance_entities) (Wikidata P31 property). It
can be seen as a set of classes it belongs to.

6. A boolean flag (instance_of) that is True if at least one of the
instance_entities is in a manually selected set of 70 entities.
This set has been chosen from the most common entities/classes
that are instance of the test set used for word embedding evalu-
ation. More about this can be found in the section 4.4.5.

7. A tuple with the official websites of the Wikidata entity (websites
) (Wikidata P856 property)

The method that handles this retrieval is called wikidata_fill_

prune_entities . It is mandatory to specify that it does not return
any of the Disambiguation pages managed in 4.4.2, since we already
took everything needed from them. Since the Dataframe returned
by this method will be inner merged with the Dataframe containing all
the candidate entities, those disambiguation pages will be completely
discarded.

At this stage, we have all the information to compute the edit dis-
tance that we are going to use to pick the best combination of entities.
For every candidate entity we compute this value as the maximum
edit distance between the search_term and one of the following val-
ues: wp_title , wd_title , redirects , aliases and dis_aliases .

This measurement is carried out using FuzzyWuzzy’s WRatio func-
tion, that weights results from other FuzzyWuzzy’s functions12. Af-
ter empirical comparisons, it turned out WRatio returns a good score

12 https://github.com/seatgeek/fuzzywuzzy/blob/master/fuzzywuzzy/fuzz.py#
L222-L257

https://github.com/seatgeek/fuzzywuzzy/blob/master/fuzzywuzzy/fuzz.py#L222-L257
https://github.com/seatgeek/fuzzywuzzy/blob/master/fuzzywuzzy/fuzz.py#L222-L257
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even if the searched term has some adjectives or extra words (eg.
WRatio(’frances cac ’, ’CAC 40’) = 0.86). However, a more per-
missive function like this could return high scores when a term is
measured against a very long string, that has that term inside it. To
avoid such cases, the algorithm skips all the strings that are longer
than 1.5 times the length of the input term. Please note, every string
is lowercased before computing the WRatio.

The outcome of the WRatio computation is a percentage value
stored in a new column of the Dataframe called fuzz_ratio . The
candidate entities with a fuzz_ratio lower than 0.8 are immediately
discarded. This threshold, called min_lev, was empirically fixed af-
ter many trials.

search_term entity_id wd_title ... fuzz_ratio

0 capital_iq Q868587 S&P Global ... 1.00

3 eikon Q43763745 Eikon ... 1.00

13 capital_iq Q4035851 S&P Capital IQ ... 1.00

26 capital_iq Q5973340 IQ reference chart ... 0.86

27 capital_iq Q170277 intelligence quotient ... 0.90

Table 11: Candidate entities Dataframe after pruning on fuzz_ratio.

Listing 14: Methods wikipedia_fill_prune, tp_fill_prune_entities, max_fuzz_ratio
and a piece of method disambiguate of NED class

WIKIDATA_ENDPOINT = "https ://www.wikidata.org/w/api.php
"

WIKIDATA_GET_PARAMETERS = {
’action ’: ’wbgetentities ’,
’props’: ’claims|sitelinks|labels|aliases|descriptions

’,
’format ’: ’json’

}

@backoff.on_exception(backoff.expo , aiohttp.ClientError
, max_tries=5, max_time =100, giveup=fatal_code)

async def wikidata_fill_prune_entities(self,
entity_list):

#similar to wikidata_search_entities
[...]
async with session.get(url=self.WIKIDATA_ENDPOINT ,

params = { self.WIKIDATA_GET_PARAMETERS ,
search_parameter}, raise_for_status=True) as r:

[...]

def tp_fill_prune_entities(self, entity_list =[]):
return self.loop.run_until_complete(asyncio.gather ( [

self.wikidata_fill_prune_entities(entity_list[i
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self.WIKI_MAX_LIMIT :(i + 1) self.WIKI_MAX_LIMIT ])
for i in range((len(entity_list) + self.

WIKI_MAX_LIMIT − 1) // self.WIKI_MAX_LIMIT )]))

def max_fuzz_ratio(self, search_term , arr_like ,
scorer_array = [fuzz.WRatio], filter_len = True):

if len(arr_like) == 0:
return (np.nan , 0)

search_term = re.sub(’_’, ’ ’, search_term)
assert search_term != np.nan
mst_len = 1 . 5 len(search_term)

labels = np.hstack(arr_like).astype(’str’)
labels = labels[labels != ’nan’]

if labels.size == 0:
return (np.nan , 0)

if filter_len:
filter_labels = np.array([True if len(x) < mst_len

else False for x in labels ])
labels = labels[filter_labels]

max_match = tuple()

for scorer in scorer_array:
sc = process.extractOne(search_term , np.char.lower(

labels), scorer = scorer)
if sc:
max_match = max_match + sc

else:
max_match = max_match + (np.nan , 0)

return max_match

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# Third API call
wb_fill = self.tp_fill_prune_entities(

candidate_entities)
df = df.drop(columns =[’wp_title ’])
df = df.merge(pd.concat(wb_fill), on=[’entity_id ’],

how=’inner’)

# Pruning of rows with no names
df = df.loc[df[[’search_term ’, ’wp_title ’, ’wd_title ’,

’redirects ’, ’aliases ’, ’dis_aliases ’]]. dropna(
thresh =2).index]. reset_index(drop=True)
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# max_fuzz_ratio call
df_lev = pd.DataFrame ([self.max_fuzz_ratio(tuple[1],

tuple [2:], [fuzz.WRatio ]) for tuple in df[[’
search_term ’, ’wp_title ’, ’wd_title ’, ’redirects ’,
’aliases ’, ’dis_aliases ’]]. itertuples ()], columns =[
’fuzz_best_match ’, ’fuzz_ratio ’])

df_lev[’fuzz_ratio ’] = df_lev[’fuzz_ratio ’] / 100
df = pd.concat ([df , df_lev], axis =1)
df = df.drop(columns =[’redirects ’, ’aliases ’, ’

dis_aliases ’])

# Pruning of Wratio too low
df = df[df[’fuzz_ratio ’] > self.min_lev]

[...]

4.4.4 Fourth Batch of HTTP requests

The only descriptions available so far for the candidate entities are
the Wikidata description and the text retrieved from Disambiguation
pages (if available). In this batch of HTTP calls, the algorithm aims to
find additional information from:

1. The introduction of the english Wikipedia page linked to the
Wikidata entity

2. The title and meta-description tags in the HTML source code of
the official websites of the entity (property P856)

These descriptions are important, because they will be used to feed
a document-embedding machine learning model, to retrieve a vector-
based representation of these entities. More about this is presented
in the next subsection.

As already said before, the NLP models used in this project only
deal with English-based text. However, the websites retrieved by the
Wikidata P856 property could be in other languages. To work around
this issue we only preserve websites having meta-description with al-
phanumeric characters that fall into the ASCII standard and remaining
characters that fall into the following Unicode classes:

1. Punctuation (P)

2. Separator (Z)

3. Other (C)
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4. Mark (M)

5. Symbol (S)

Even if this approach is not very strong, it is very fast and it turned
out to be working in most of the cases, without the need for any
additional machine learning model for language recognition.

Listing 15: Methods wikipedia_get_extracts, get_meta_titles and a piece of
method disambiguate of NED class

WIKIDATA_ENDPOINT="https ://www.wikidata.org/w/api.php"

[...]

WIKIPEDIA_GET_INTRO = {
’action ’: ’query’,
’prop’: ’extracts ’,
’exintro ’: 1,
’explaintext ’: 1,
’redirects ’: 1,
’format ’: ’json’

}

[...]

META_TITLE = re.compile(r’(?<=<title [^ >] >) ([^ <]+)(?=</
title >)’, re.UNICODE)

META_DESCRIPTION = re.compile(r’(?<=<meta\s [^ >] (
property|name)\s?=\s?"(([A−Za−z]+:)?( description|
DESCRIPTION))"\s [^ >] content\s?=\s?") ([^ >"]+)
(?="[^ >] /? >) ’, re.UNICODE)

@backoff.on_exception(backoff.expo , aiohttp.ClientError
, max_tries=5, max_time =100, giveup=fatal_code)

async def wikipedia_get_extracts(self, df_input):
df = pd.DataFrame(columns =[’wp_title ’, ’text’])
titles_list = ’|’.join(df_input[’wp_title ’]. to_list ())

search_parameter = {
’titles ’: titles_list

}

async with aiohttp.ClientSession () as session:
async with session.get(url=self.WIKIPEDIA_ENDPOINT ,

params = { self.WIKIPEDIA_GET_INTRO ,
search_parameter}, raise_for_status=True) as r:

[...]

async def get_meta_title(self, entity_id , url , headers
={}):

df = pd.DataFrame(columns =[’entity_id ’, ’meta’, ’rank’
])

table = str.maketrans("\n\t\r", " ")
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try:
async with aiohttp.ClientSession () as session:
async with session.get(url , headers=headers , timeout

=5, allow_redirects=True) as r:
response = await r.text()
meta_list = []
rank = 0

meta_description = self.META_DESCRIPTION.search(
response)

if meta_description:
meta_description_lower = meta_description.group (0)

.lower()
if ’robot’ not in meta_description_lower and ’

captcha ’ not in meta_description_lower:
meta_des_ascii = self.is_ascii(url ,

meta_description.group (0))
if meta_des_ascii:
meta_list.append(html.unescape(meta_des_ascii).

translate(table))
rank = 1

meta_title = self.META_TITLE.search(response)
if meta_title:
meta_title_lower = meta_title.group (0).lower()
if ’robot’ not in meta_title_lower and ’captcha ’

not in meta_title_lower:
meta_title_ascii = self.is_ascii(url , meta_title.

group (0))
if meta_title_ascii:
meta_list.append(html.unescape(meta_title_ascii)

.translate(table))

meta = ’ ’.join(meta_list)
if meta:
df = df.append ({’entity_id ’ : entity_id , ’meta’ :

meta , ’rank’ : rank}, ignore_index=True)

except Exception as e:
logger.warning("Unable to scrape meta title for: %s

[%s]" % (url , e))

return df

def fp_get_wiki_meta(self, entity_wiki_extracts ,
entity_web_pages , headers ={}):

get_extracts = asyncio.gather ( [ self.
wikipedia_get_extracts(entity_wiki_extracts[i
self.WIKI_MAX_LIMIT :(i + 1) self.WIKI_MAX_LIMIT ])
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for i in range((len(entity_wiki_extracts) + self.
WIKI_MAX_LIMIT − 1) // self.WIKI_MAX_LIMIT )])

get_meta = asyncio.gather ( [ self.get_meta_title(row[’
entity_id ’], url , headers) for index , row in
entity_web_pages.iterrows () for url in row[’
websites ’]])

all_groups = asyncio.gather(get_extracts , get_meta)
return self.loop.run_until_complete(all_groups)

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# Merge of Wikipedia extracts
wiki_web_meta = self.fp_get_wiki_meta(

entity_wiki_extracts , entity_web_pages , headers)
df = df.merge(pd.concat(wiki_web_meta [0]), on=[’

entity_id ’], how=’left’)

# Take meta−descriptions/titles from websites of
entity only once

meta_df = pd.concat(wiki_web_meta [1])
meta_df = meta_df.sort_values(by=[’rank’])
meta_df = meta_df.drop_duplicates(’entity_id ’, keep=’

last’)
df = df.merge(meta_df , on=[’entity_id ’], how=’left’)
df = df.drop(columns =[’dis_page ’, ’rank’])

[...]

4.4.5 Selection of the best combination of entities

As already explained in 4.3, assuming to have the candidate en-
tities grouped by input terms (search_term), the main idea of this
algorithm is roughly to turn such entities into embeddings and find
the best combination using formula 4.2.

Depending on the number of input terms and candidate entities
found, the evaluation of all the possible combinations could be com-
putationally infeasible.

Therefore, we may think to split the list of input terms into smaller
chunks. Such that the algorithm can evaluate the combinations of
a single chunk and when the final entities are chosen, they may be
concatenated to the combinations of the next chuck, to preserve the
meaning of the context. Let’s call this mechanism context sharing. The
chunk dimension is set using variable chunk_size.
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However, splitting into chunks may lead the algorithm to unde-
sired behaviours we have to deal with. For example, suppose that
we fixed a chunk_size equal to two and that the word embedding
model returned a list of financial indexes. For some reason, the split-
ting process returns a chunk made of the following words: spanish
ibex and ibex. Both of them refer to the official index IBEX-35 of the
Spanish Continuous Exchange. Let’s assume the candidate entities
for both of these terms are:

1. Spanish ibex www.wikidata.org/wiki/Q549108

2. IBEX-35 www.wikidata.org/wiki/Q938032

The latter is the index itself while the former is a mammal and, un-
fortunately, it gets a 100% score when computing the WRatio against
the input term spanish ibex. This means that among the four possible
combinations displayed in figure 12, the algorithm chooses the one
with entity Spanish ibex (Q549108) for both the input terms, while we
would expect to get IBEX-35 (Q938032) instead (see image 12).

‘spanish ibex’

spanish ibex
[Q549108 WRatio:1]

c1= <vQ549108, vQ938032> vQ549108

‘ibex’

ibex 35
[Q938032 WRatio:0.86]

spanish ibex
[Q549108 WRatio:0.9]

ibex 35
[Q938032 WRatio:0.9]

[WRatio:1] [WRatio:0.9]

vQ938032

c2= <vQ549108, vQ549108> vQ549108
[WRatio:1] [WRatio:0.9]

c3= <vQ938032, vQ549108> vQ549108
[WRatio:0.86] [WRatio:0.9]

vQ938032

c4= <vQ938032, vQ938032> vQ938032
[WRatio:0.86] [WRatio:0.9]

Figure 12: Undesired behaviour of the splitting process

www.wikidata.org/wiki/Q549108
www.wikidata.org/wiki/Q938032
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Most of the times, the context sharing mechanism already prevent
this issue to occur. However, it may still happen in the first chunk for
which there is no previous context to use. In general, this problem
can be solved by ensuring terms, with similar candidate entities, to
be evaluated in different chunks.

This can be achieved computing the pairwise Jaccard index [16] on
the set of candidate entities of each input term. Assuming to have
two non-empty sets A and B, the Jaccard index is defined as:

J(A,B) =
|A∩B|
|A∪B| with 0 6 J(A,B) 6 1. (4.4)

With the formula above, we can build a matrix of Jaccard indexes,
having the input terms on both columns and rows, like in table 12.
For each row, we group together all the input terms with a Jaccard
index greater than zero. We want the entities being in the same
group not to be in the same chunk.

eikon capiq capital_iq ciq datastream

eikon 1.0 0.00 0.00 0.00 0.0
capiq 0.0 1.00 0.25 0.25 0.0
capital_iq 0.0 0.25 1.00 0.33 0.0
ciq 0.0 0.25 0.33 1.00 0.0
datastream 0.0 0.00 0.00 0.00 1.0

Table 12: Example of matrix with pairwise jaccard index on input terms.

Of course, it may happen to have both duplicate groups to be re-
moved and different groups with non-empty intersection. The latter
case can be handled merging those groups into a single one. This
can be related to the problem of identifying the connected components
within a graph, i.e. the subgraphs in which there is a path between
any two vertices, that are not connected to any other vertices in the
supergraph. Scipy library offers a convenient method for connected
components identification.

Once the final groups are identified, the algorithm split the input
terms into chunks using a round-robin-based mechanism, looping be-
tween groups and going back to the first one every time a chunk is
full.

Listing 16: A piece of method group_by_search_term and a piece of method
disambiguate of NED class

def group_by_search_term(self, df, np_entity_ids ,
root_term):

if df.empty:
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return df
# Sort by search_term and instance_of = true first
# Targer word must be placed on top
true_search_terms = np.unique(df[df[’instance_of ’] ==

True][’search_term ’])
df = df.sort_values(by=[’search_term ’])
df = pd.concat ([df[df[’search_term ’].isin(

true_search_terms)], df[~df[’search_term ’].isin(
true_search_terms)]])

df = pd.concat ([df[df[’search_term ’] == root_term], df
[df[’search_term ’] != root_term ]])

df.reset_index(drop=True , inplace=True)
df.drop(columns =[’instance_of ’], inplace=True)

keys , values = df.values.T
_, index = np.unique(keys , True)
index = np.sort(index)
ukeys = keys[index]
arrays = np.split(values , index [1:])
df2 = pd.DataFrame(data = [np.logical_or.reduce(

np_entity_ids == a.reshape((−1,1))).astype(int) for
a in arrays], columns = np_entity_ids , index =

ukeys)
return df2

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# IMPORTANTE: Reset index before Google USE
np_entity_ids = np.unique(df[’entity_id ’])
df_pre_jaccard = self.group_by_search_term(df[[’

search_term ’, ’entity_id ’, ’instance_of ’]],
np_entity_ids , root_term)

df_jaccard = distance.pdist(df_pre_jaccard , ’jaccard ’)
df_jaccard = 1 − pd.DataFrame(squareform(df_jaccard),

index=df_pre_jaccard.index , columns= df_pre_jaccard
.index)

len_st_grp , st_label = connected_components(csgraph=
csr_matrix(np.where(df_jaccard > 0, 1, 0)),
directed=False , return_labels=True)

# Take search_terms ordered as in df_jaccard
st_jaccard = df_jaccard.index
df_cc = pd.DataFrame(data = { ’cc_label ’ : st_label , ’

st_grp ’ : st_jaccard })
df_cc = self.group_by(df_cc , tuple_flag = False)
st_grp = df_cc[’st_grp ’]. to_list ()
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st_rr_flatten = []

# Round robin that restarts when a chunk is full
i = 0
lm_mod = chunk_size

while i < len(st_jaccard) :

if lm_mod > len_st_grp:
lm_mod = len_st_grp

im = i % lm_mod

if st_grp[im] != []:
st_rr_flatten.append(st_grp[im].pop(0))
i += 1

else:
st_grp.pop(im)
len_st_grp −= 1

st_chunk = [st_rr_flatten[i chunk_size :(i + 1)
chunk_size] for i in range((len(st_rr_flatten) +
chunk_size − 1) // chunk_size )

[...]

It is now finally time to turn entities into embeddings. This conver-
sion can be achieved computing document embeddings over a concate-
nation of the descriptions got so far for each entity:

1. Wikidata description

2. Description from Wikipedia disambiguation pages

3. Wikipedia page introduction

4. Title and meta-description of the official websites

In recent years, many powerful NLP models were released. We chose
to carry out this conversion by means of the Google Universal Sentence
Encoder (USE) [9] model. This model is capable of turning any vari-
able length English text into a 512 dimensional vector. If compared to
other models like BERT, ELMo, GPT-3 and XLNet, USE outperforms
them in semantic textual similarity (STS), since it was built with this
task in mind [15].

Google Tensorflow Hub provides several pre-trained USE mod-
els ready for inference. In particular, this project uses the universal-
sentence-encoder-lite v213, it is only 25MB and allows for smaller RAM

13 https://tfhub.dev/google/universal-sentence-encoder-lite/2

https://tfhub.dev/google/universal-sentence-encoder-lite/2
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requirements. Although it returns slightly worse results if compared
to the standard version (915MB) [4][5], empirical trials have shown
no real difference for the kind of use made by this algorithm.

Listing 17: A piece of method _init_ and a piece of method disambiguate of
NED class

def __init__(self, event_loop = None , dim_red = False):
[...]

# Create graph and finalize (finalizing optional but
recommended).

tf.disable_v2_behavior ()
g = tf.Graph()
with g.as_default ():
use_module = hub.Module("https :// tfhub.dev/google/

universal−sentence−encoder−lite/2")
self.input_placeholder = tf.sparse_placeholder(tf.

int64 , shape=[None , None])
self.encodings = use_module(
inputs=dict(
values=self.input_placeholder.values ,
indices=self.input_placeholder.indices ,
dense_shape=self.input_placeholder.dense_shape))

init_op = tf.group([tf.global_variables_initializer ()
, tf.tables_initializer ()])

# Create session and initialize.
self.session = tf.Session(graph=g)
self.session.run(init_op)
spm_path = self.session.run(use_module(signature="

spm_path"))
self.sp = spm.SentencePieceProcessor ()
self.sp.Load(spm_path)

g.finalize ()

[...]

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# Generate document−embeddings with Google USE
# Duplicate candidate entities are computed only once
phrases = df.drop_duplicates(’entity_id ’, keep=’last’)

[[’dis_text ’, ’description ’, ’text’, ’meta’]].
fillna(’’).agg(’ ’.join , axis =1).to_list ()

values , indices , dense_shape = self.
process_to_IDs_in_sparse_format(phrases)

np_embeddings = pd.DataFrame(self.session.run(
self.encodings ,
feed_dict ={self.input_placeholder.values: values ,
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self.input_placeholder.indices: indices ,
self.input_placeholder.dense_shape: dense_shape

}))

map_un_eid = df[[’entity_id ’]]. drop_duplicates(’
entity_id ’, keep=’first’)

map_un_eid_idx = map_un_eid.index
map_un_eid = map_un_eid.to_numpy ()

np_embeddings[’entity_id ’] = map_un_eid
np_embeddings = df[[’entity_id ’]]. merge(np_embeddings ,

on=[’entity_id ’], how=’left’)
np_embeddings = np_embeddings.drop(columns =[’entity_id

’]).to_numpy ()
df[’overview ’] = df[’text’]. fillna(df[’meta’]).fillna(

df[’dis_text ’]).fillna(df[’description ’])
df = df.drop(columns =[’dis_text ’, ’description ’, ’text

’, ’meta’])

[...]

Having both the USE embeddings and the (maximum) FuzzyWuzzy
WRatio score for the candidate entities, the algorithm is ready to
compute combinations and apply formula 4.2 to select the best one
for each chunk. Let’s call the entities in these selected combinations
matched entities. Relevant piece of code is provided below:

Listing 18: A piece of method disambiguate of NED class

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# Context sharing
gb = df[[’search_term ’, ’entity_id ’]]. groupby(’

search_term ’)

chunk_final_indexes = []
final_indexes = set()

for chunk in st_chunk:
# Compute combinations for every chunk
gb_chunk = [gb.get_group(label).index for label in

chunk]
np_cmb_indexes = np.array(np.meshgrid ( gb_chunk)).T.

reshape(−1, len(chunk))

if chunk_final_indexes != []:
np_cmb_indexes = np.concatenate (( np_cmb_indexes , np.

tile(chunk_final_indexes , (len(np_cmb_indexes) ,1)
)), axis =1)
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# Auxiliary array to compute the argmax
np_cmb_dist = np.array([ distance.cdist(np_embeddings[

cmb], [np_embeddings[cmb].mean(axis =0)], ’cosine ’)
for cmb in np_cmb_indexes ])

np_cmb_dist = np.reshape(np_cmb_dist , (np_cmb_indexes
.shape[0], np_cmb_indexes.shape [1]))

np_cmb_dist = 1 − np_cmb_dist

# Array with maximum levenshtein ratio for every
entity

np_cmb_lev = np.array([df.loc[cmb][’fuzz_ratio ’] for
cmb in np_cmb_indexes ])

np_final_score = np.sum(np_cmb_lev np_cmb_dist ,
axis =1)

chunk_final_indexes = np_cmb_indexes[np.argmax(
np_final_score)]

final_indexes.update(chunk_final_indexes)

[...]

Once the matched entities are finally chosen, the algorithm per-
forms a final pruning over the entities that do not fall into a fixed set
of values for the Wikidata property instance of (P31). The value of this
property can be seen as a set of classes the entity belongs to and can
be used to filter undesired results. Please note that every entity of
Wikidata can be used as a value for this property, therefore we could
have millions of potential classes to choose from.

First, a fixed set of 70 classes was selected (WIKIDATA_CLASSES),
chosen from the most commons classes appeared in the test set de-
fined in section 3.3. For the reason just explained, this cannot be a
complete set. The allowed classes are displayed below:

1. Q30242023: money amount

2. Q179179: interest rate

3. Q4830453: business

4. Q6881511: enterprise

5. Q4201895: investment fund

6. Q1738991: index number

7. Q1284784: Bond market in-
dex

8. Q223371: stock market in-
dex

9. Q730038: credit institution

10. Q22687: bank

11. Q73712047: JP Morgan
branch

12. Q11691: stock exchange

13. Q179076: exchange

14. Q37654: market



4.4 description of ned algorithm for word embeddings 69

15. Q159810: economy

16. Q1331793: media enterprise

17. Q43371537: trading venue

18. Q750458: capital market

19. Q208697: financial market

20. Q845477: Exchange-traded
fund

21. Q2620430: financial endow-
ment

22. Q1167393: economic indica-
tor

23. Q205180: interest rate
derivative

24. Q1166072: financial transac-
tion

25. Q247506: financial instru-
ment

26. Q15809678: financial prod-
uct

27. Q837171: financial services

28. Q169489: security

29. Q783794: company

30. Q192283: news agency

31. Q21980538: commercial or-
ganization

32. Q7397: software

33. Q2429814: software system

34. Q765517: credit rating
agency

35. Q891723: public company

36. Q35127: website

37. Q186165: web portal

38. Q166142: application

39. Q778043: electronic trading
platform

40. Q361390: Interbank foreign
exchange market

41. Q2659777: Interbank lend-
ing market

42. Q650241: financial institu-
tion

43. Q1194970: dot-com com-
pany

44. Q1386901: overnight rate

45. Q1058914: software com-
pany

46. Q194166: consortium

47. Q1153191: online newspa-
per

48. Q17232649: news website

49. Q1110794: daily newspaper

50. Q167037: corporation

51. Q72182881: venture capital
firm

52. Q5001853: business channel

53. Q218616: proprietary soft-
ware

54. Q438711: alternative trad-
ing system

55. Q5449703: Financial data
vendor

56. Q10836209: digital currency

57. Q11032: newspaper

58. Q1143635: business school

59. Q13479982: cryptocurrency

60. Q155271: think tank
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61. Q1589009: privately held
company

62. Q18388277: technology
company

63. Q20514253: blockchain

64. Q2073644: brokerage firm

65. Q219577: holding company

66. Q5418962: private equity
firm

67. Q41298: magazine

68. Q8513: database

69. Q536390: self-regulatory or-
ganization

70. Q43229: organization

Then, the algorithm uses a nearest neighbouring approach trained
over the space of the embeddings of all the candidate entities. Ev-
ery matched entity with property P31 outside WIKIDATA_CLASSES is
preserved only if enough of their nearest neighbours have their value
within this set.

Due to the high dimensionality of the embeddings generated with
the Universal Sentence Encoder, the algorithm uses an Approximated
Nearest Neighbouring approach for fast classification of those entities,
implemented using the Spotify Annoy library14.

As every KNN classifier, it is mandatory to pick a value for pa-
rameter K. However, the number of embeddings used for training
depends on the candidates found and indeed it is not fixed. For this
reason, instead of trying multiple values for K with a fixed minimum
threshold of 50%, K was empirically fixed to 9 (not too small odd
number) and the minimum required number of neighbours within
WIKIDATA_CLASSES was let variate instead. This minimum threshold
is a hyperparameter to take care of while computing accuracy mea-
surements in 4.5, let’s call it min_nn. Of course, since we want the
number of good surrounding entities to be greater than the bad ones,
the threshold values to test will be in {69 , 7

9 , 8
9 , 9

9 } = {0.65, 0.75, 0.85, 1}.

Listing 19: A piece of method disambiguate of NED class

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

f = 512
t = AnnoyIndex(f, ’angular ’) # Length of item vector

that will be indexed

for i in range(len(map_un_eid)):
# It will allocate memory for max(i)+1 items.
t.add_item(i, np_embeddings[map_un_eid_idx[i]])

14 https://github.com/spotify/annoy

https://github.com/spotify/annoy
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t.build (10) # 10 trees

false_instance_of = df.loc[final_indexes_list ][df[’
instance_of ’] == False][’entity_id ’]

for falsy_eid in false_instance_of:
falsy_un_idx , = np.where(map_un_eid == falsy_eid)
near_neigh = t.get_nns_by_item(falsy_un_idx , 10,

search_k=−1, include_distances=False)
near_neigh.pop(near_neigh.index(falsy_un_idx))

near_neigh_eid = map_un_eid[near_neigh]

sr_nn = df[df[’entity_id ’].isin(near_neigh_eid)][[’
entity_id ’, ’instance_of ’]]. drop_duplicates(’
entity_id ’, keep=’last’)[’instance_of ’].
value_counts(normalize=True)

sr_nn.index = sr_nn.index.map(str)

if ’True’ in sr_nn.index and sr_nn.loc[’True’] >=
min_true_nn:

df.loc[df[’entity_id ’] == falsy_eid , ’instance_of ’]
= True

logger.debug(’Instance of %s converted to True’ %
falsy_eid)

df = df.loc[final_indexes_list]

# Final pruning of entities outside WIKIDATA_CLASSES
df = df[df[’instance_of ’] == True]

[...]

Either the unresolved terms and the mispelt ones removed in get

_st_couples are now bond to the closest matching term by the al-
gorithm. This is done performing a pairwise levenshtein ratio be-
tween these terms, using ratio threshold equal to 0.75, which is lower
than 0.8 used in get_st_couples . The output Dataframe is indeed
grouped by the QID of the matched entities, as shown in table 13.

Listing 20: A piece of method disambiguate of NED class

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

# Try to solve mispelt terms using matched terms
terms_found = df[’search_term ’]. to_numpy ()
logger.debug("Tutti i search terms (unfiltered) sono :

%s" % terms)
missing_search_terms = np.setdiff1d(terms , terms_found

)
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entity_id search_term wd_title ...
strong
_sim

Q43763745 (eikon, reuters_eikon, ... Eikon ... 1.00

Q2349604 (bloomberg_terminal,) Bloomberg Ter... ... 0.77

Q1885491 (factset,) FactSet ... 0.76

Q1268489 (metastock,) MetaStock ... 0.76

Q98496776 (datastream,) Datastream ... 0.74

Q86453325 (intrinio,) Intrinio ... 0.70

Q4035851 (capitaliq, cap_iq, ... S&P Capital IQ ... 0.69

Table 13: Example output Dataframe

missing_df = pd.DataFrame ([(mst , ) + self.
max_fuzz_ratio(mst , terms_found , [fuzz.ratio]) for
mst in missing_search_terms], columns =[’
missing_search_term ’, ’search_term ’, ’mlev_ratio ’])

# IMPORTANT We use a lower threshold here than
get_st_couples ()

missing_df = missing_df[missing_df[’mlev_ratio ’] >
75]. drop(columns =[’mlev_ratio ’])

missing_df[’search_term ’]= missing_df[’search_term ’].
astype(str)

logger.debug("Dataframe terms that can be agregated
against resolved one")

logger.debug(missing_df)
missing_df = missing_df.merge(df, on=[’search_term ’],

how=’left’).drop(columns =[’search_term ’])
missing_df.rename(columns ={’missing_search_term ’:’

search_term ’}, inplace=True)
df = pd.concat ([df, missing_df ])

[...]

has_root_term = False
root_eid = ’’

if root_term in df.search_term.values:
has_root_term = True
root_eid = df[df[’search_term ’] == root_term ][[’

entity_id ’]].iat[0,0]
logger.debug("Root eid %s" % root_eid)

# Group by entity id
df_group = self.group_by(df[[ ’entity_id ’, ’

search_term ’]])
df = df.drop(columns =[’search_term ’]).drop_duplicates(

’entity_id ’, keep=’last’)
df = df_group.merge(df, on=[’entity_id ’], how=’left’)
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# Among all the terms matched against an entity , we
provide the highest word embedding similarity

bst_st_cosine = [self.bst_util(terms , terms_cosine ,
terms_occ , tuple_st [1]) for tuple_st in df[[’
search_term ’]]. itertuples ()]

bst_st , bst_cosine = zip ( bst_st_cosine)
df[’bst_st ’] = bst_st
df[’wv_similarity ’] = bst_cosine

[...]

Last, the USE embeddings can be used to provide a similarity score
for each matched entity. This can be computed as the cosine similar-
ity between the embedding of each input term against the embedding
of the target word. Let’s call it STRONG Similarity as opposed to the
(WEAK) similarity provided by the word embedding model. It is
much more meaningful since it is computed over in-depth textual de-
scriptions. In section 4.5.1 it is shown how the accuracy of the system
increases discarding all matched entities with STRONG Similarity un-
der a certain threshold.

Listing 21: A piece of method disambiguate of NED class

def disambiguate(self, terms , terms_cosine = [],
terms_occ = [], chunk_size = 3, min_true_nn = 1):

[...]

if has_root_term:
root_index = map_un_eid_idx[np.where(map_un_eid ==

root_eid)][0]
map_ordering_df = pd.DataFrame(data = {’entity_id ’ :

map_un_eid })
df = map_ordering_df.merge(df, on = [’entity_id ’],

how = ’inner’)
reids = df[’entity_id ’]. to_numpy () # resolved eids
rmask = np.in1d(map_un_eid , reids)
np_sim = distance.cdist(np_embeddings[map_un_eid_idx[

rmask]], [np_embeddings[root_index ]], ’cosine ’)
np_sim = np.reshape(np_sim , (np_sim.shape[0], np_sim.

shape [1]))
np_sim = 1 − np_sim
df[’use_similarity ’] = np_sim

# Sort by USE similarity
df = df.sort_values(by=’use_similarity ’, ascending=

False , ignore_index=False)

[...]
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4.4.6 Handling of unresolved and discarded terms

The algorithm described so far only returns to the user a Dataframe
containing matched entities. However, it takes also care of input
terms that, for some reason, have not been matched. Imagine for
example that the word embedding model returns the name of a per-
tinent financial product that is not registered in Wikidata. The NED
will not be able to resolve that term, however, we still want to display
it to the final user since it represents useful information that can be
easily solved by means of a quick Google search.

Having said this, we want to distinguish between unresolved and
discarded terms. The formers refer to useful input terms that could
not be solved due to missing entities in Wikidata. The latters refer
to input terms that should correctly be filtered out since they do not
represent any useful information.

Let’s define the unresolved terms as:

1. Not-matched input terms with no candidate entities at all

2. Not-matched input terms with candidate entities pruned due to
WRatio lower than 0.8 (both in and out WIKIDATA_CLASSES)

Please note that the unresolved terms do not contain the not matched
input terms having candidate entities with WRatio higher than 0.8
but outside WIKIDATA_CLASSES . We cannot, indeed, differentiate be-
tween the case in which the input term exists in Wikidata but is com-
pletely unrelated to the financial world, from the case in which the
term is pertinent but Wikidata contains only entities with the same
name but that refer to completely different things.

Finally, let’s define the discarded terms as the not matched input
terms that are not unresolved.

4.5 ned results evaluation
In this section, we are mainly focused on:

1. Measuring the accuracy of the NED algorithm against the man-
ually evaluated test set.

2. Measuring the overall accuracy, that is the accuracy of the word
embedding model, removing the results filtered out by the NED
algorithm
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4.5.1 Accuracy of NED against the manually evaluated test set.

To compare the results of the NED algorithm against the results
of the manual evaluation of the test set, we first need to clarify that
the NED algorithm will never be able to resolve a term, if the corre-
sponding entity is missing from the Knowledge Base. To evaluate the
accuracy of the algorithm, all the terms that are unresolvable due to
lack of entities in Wikidata must be removed. Therefore, the number
of samples in the test set, defined in 3.3, drops from 966 to 590 ele-
ments.

Moreover, the NED algorithm performs different choices than the
manual evaluation carried out by business experts. In particular, we
can imagine splitting the results of the word embedding model into
two categories:

1. Names or Brands of products

2. Generic words: words that do not include the proper name of a
product or vendor.

In the tables below we present the different choices made by either
the manual evaluation and the NED algorithm when evaluating these
two classes of results:

Table 14: Manual evaluation and NED algorithm behaviours

Manual evaluation Name of products Generic words

Finance related GOOD GOOD
Finance unrelated BAD BAD

NED Algorithm Name of products Generic words

Finance related GOOD BAD
Finance unrelated BAD BAD

In order to make a fair comparison between these two systems,
all the financial generic words that were evaluated as GOOD by
the manual evaluation, need to be labeled as BAD for this accuracy
measurement.

The NED Algorithm is capable of distinguishing between results
related or unrelated to the financial world by means of:

1. Filtering over Wikidata “instance_of” property (P31). This nearest-
neighbouring-based mechanism was described in 4.4.5 and re-
quires min_nn hyperparameter tuning.
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2. Pruning results with a too low STRONG Similarity score com-
puted over document embeddings. This minimum similarity
is another hyperparameter that influences accuracy measure-
ments, let’s call it min_similarity .

Another hyperparameter is the size of the chunks (chunk_size)
used to split the computation of all the candidate entities combina-
tions. For this evaluation, this parameter was empirically fixed to 5.

In order to measure accuracy, f1, recall and precision of the NED
model, it is mandatory to provide a clear definition of True Positives,
True Negatives, etc. as done in table 15.

Table 15: TP, TF, FP, FN definition

Manual
Evalutation

NED returns
an entity?

Right
entity?

Treated as

Good Yes, > min_similarity Yes True Positive (TP)
Good Yes, > min_similarity No False Positive (FP)
Bad Yes, > min_similarity Yes False Positive (FP)
Bad Yes, > min_similarity No False Positive (FP)

Good No No False Negative (FN)
Bad No No True Negative (TN)

Good Yes, < min_similarity Yes False Negative (FN)
Good Yes, < min_similarity No False Negative (FN)
Bad Yes, < min_similarity No False Negative (FN)
Bad Yes, < min_similarity Yes True Negative (TN)

Formulas for accuracy, f1, recall and precision are provided below:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(4.5)

Recall =
TP

TP+ FN
(4.6)

Precision =
TP

TP+ FP
(4.7)

F1 =
2 · Precision · Recall
Precision+ Recall

(4.8)

Important: as already said, table 15 does not take into account cases
in which the NED algorithm fails to match a word due to the lack
of the corresponding entity in Wikidata, since those terms were pre-
viously pruned from the test-set.
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As can be seen from figures 13, 14, 15 and 16, the maximum ac-
curacy achieved is 0.766 with min_nn = 1 and min_similarity =

0.50. Similarly, the highest F1 score is 0.821 with min_nn = 1 and
min_similarity = 0.50. It is interesting to note that accuracy and
F1 have similar shape, leading us to think they have the same under-
lying meaning in this kind of evaluation.

Figure 13: min_nn = 0.65; min_similarity = [0, 0.6]

4.5.2 Evaluation of the word embedding models removing un-
matched terms

The NED Algorithm acts as an additional filtering step over the
results of the word embedding model. Hence, the overall accuracy
measurement of the full hybrid system, built as a pipeline of the three
machine learning models (PoS, W2V, NED), can be computed as the
accuracy of the word embedding models (section 3.4), removing
from the test set:

1. All the unresolvable terms due to missing corresponding entity
in Wikidata

2. All the terms not matched by the NED algorithm or with a
similarity lower than min_similarity

Of course, hyperparameters min_nn and min_similarity were
fixed respectively to 1 and 0.50 as found in section 4.5.1. Please note
the NED algorithm may return slightly different results at every com-
putation and that for this measurement the number of samples per



78 named entity disambiguation

Figure 14: min_nn = 0.75; min_similarity = [0, 0.6]

Figure 15: min_nn = 0.85; min_similarity = [0, 0.6]

single model is relatively low. Therefore, the computation was re-
peated three times and mean values are provided in table 16.

Again, model m5_s300_cb reaches the best accuracy followed by
m5_s100_sg and m1_s300_cb. Interestingly, m5_s100_sg has a higher
accuracy increment, if compared to the values in table 7, than the
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Figure 16: min_nn = 1; min_similarity = [0, 0.6]

Table 16: Accuracy of the word embedding models removing unmatched
terms

Model name Total num. of results after pruning Accuracy

m1_s300_cb 183 0.927

m1_s100_cb 150 0.88

m5_s100_cb 171 0.867

m5_s100_sg 128 0.935

m5_s300_cb 169 0.940

m5_s300_sg 137 0.910

other models. However, it has only 128 samples versus the 169 of
model m5_s300_cb and the 183 of model m1_s300_cb.





5 W E B A P P L I C AT I O N F O R M O D E L
Q U E R Y I N G

5.1 overview
This chapter presents the development process of a web application

that allow users to inference the models built so far. As described in
the next sections, this application uses a Javascript front-end frame-
work and a Python back-end framework. Particular attention has
been paid to the UX and UI design, in order to provide a pleasant
and fast user experience. The application name is FiSHeR: Financial
Service Heuristic Retrieval.

5.2 frameworks choice
5.2.1 JavaScript front-end framework

As of 2020, several JavaScript-based front-end frameworks are avail-
able, the most famous are: React1, Angular2 and Vue.js3.

They allow to build reactive web applications. Reactivity is the ability
of a web framework to update your view whenever the application
state has changed. Reactive programming is a development paradigm
based on declarative state-driven code, that allows to dissect user inter-
faces into logical units called components. These units interact with
each other providing fast cutting-edge user experience. This is gener-
ally achieved using techniques like virtual DOM diffing that updates
the view at run-time.

Reactive programming, however, requires ad-hoc syntax and forces
the browser to do extra work to convert those declarative structures
into DOM operations. These techniques, indeed, cannot apply changes
to the real DOM without first comparing the new virtual DOM with
the previous snapshot, introducing additional overhead in terms of
speed and app size.4.

1 https://reactjs.org
2 https://angular.io
3 https://vuejs.org
4 https://svelte.dev/blog/virtual-dom-is-pure-overhead
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This project, however, uses a new JavaScript front-end framework
called Svelte5, that shifts this extra work made by the browser into
a compile step that happens at build-time, converting components
into highly efficient imperative code that surgically updates the DOM.
Svelte, indeed, is not a real framework but a compiler that preserves
the benefits of reactivity while building smaller-size framework-less
vanilla JavaScript applications. Consequently, Svelte also delivers a
better developer experience thanks to an easier syntax and almost no
boilerplate code. Although being quite young (version 3 was released
in 2019), Svelte is quickly raising popularity in the JavaScript commu-
nity, as stated in a 2019 survey carried over 21,717 respondents6.

All the code developed by Svelte will be deployed using nginx7 web
server.

Figure 17: Satisfaction rate for JavaScript front-end frameworks. Source:
https://2019.stateofjs.com/front-end-frameworks/

5.2.2 CSS front-end framework

CSS Frameworks provide pre-written CSS classes that can be used
to reduce the time needed for user interface styling. Most of these
frameworks deliver:

1. built-in responsiveness

2. cross-compatibility between browsers

5 https://svelte.dev
6 https://2019.stateofjs.com/
7 https://www.nginx.com

https://2019.stateofjs.com/front-end-frameworks/
https://svelte.dev
https://2019.stateofjs.com/
https://www.nginx.com
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Figure 18: Interest rate for JavaScript front-end frameworks. Source: https:
//2019.stateofjs.com/front-end-frameworks/

Figure 19: Awareness rate for JavaScript front-end frameworks. Source:
https://2019.stateofjs.com/front-end-frameworks/

3. usage of pseudo-CSS languages like Less8 or Sass9

This application uses Bulma10 framework. Although not being the
most adopted, it is very small in size and it has been developed as a
pure-CSS framework with no additional JavaScript code. The latter
feature goes very well with Svelte, since it handles all the dynamic
behaviours on its own.

8 http://lesscss.org/
9 https://sass-lang.com/

10 https://bulma.io

https://2019.stateofjs.com/front-end-frameworks/
https://2019.stateofjs.com/front-end-frameworks/
https://2019.stateofjs.com/front-end-frameworks/
http://lesscss.org/
https://sass-lang.com/
https://bulma.io


84 web application for model querying

5.2.3 Python back-end framework

Back-end is powered by Python AIOHTTP11 framework that was
already used for asynchronous calls in the NED algorithm described
in section 4.4. More in detail, AIOHTTP delivers:

1. Both client and http web server

2. Client and server WebSockets out-of-the-box

3. Middlewares, signals and pluggable routing for web server

Of course, we are only going to use the server-side functionalities
of AIOHTTP. The server deployment will be carried out using Guni-
corn12 Python WSGI HTTP Server for UNIX.

5.3 web application description
5.3.1 Web Application Overview

The description of both the front-end and the back-end code is
carried out starting from the main parts of the application Graphic
User Interface. Indeed, FiSHER GUI is composed of six main areas
that we are going to analyze in next the sections:

1. A search bar

2. A container with details of target word matched entity

3. A container with matched entities details

4. A container with unresolved terms

5. A container with discarded terms

6. A D3 force graph

Before going through the description of the parts above, it is impor-
tant to show the preliminary initializing steps performed by both the
front-end and the back-end code.

On the front-end side, the Svelte application is composed as single
page represented by App.svelte component. This parent component
wraps all other components and orchestrate their behaviours. The
structure of the front-end application is:

11 https://docs.aiohttp.org/en/stable/
12 https://gunicorn.org

https://docs.aiohttp.org/en/stable/
https://gunicorn.org
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• App.svelte

– D3ForceGraph.svelte

– EntityCard.svelte

– D3ForceGraph.svelte

– OccBox.svelte

– SearchBar.svelte

– TargetEntity.svelte

– Some minor components

On the back-end side, an app method is defined to perform the
following activities:

1. Creating an AIOHTTP application object instance

2. Creating an instance of class Server

3. Defining callable endpoints for the application instance and at-
taching methods of class Server to them

The initializer method of class Server is in charge of loading both
the Word Embedding model and the Universal Sentence Encoder
model (creating an instance of class NED). Moreover, it defines a
python dictionary (vocab) with the occurrences of each word ap-
peared in the former model and a sorted list of words that can be
searched in FiSHeR (orig_words) (see subsection 5.3.2).

Please note that only words with occurrences in the empirically-
fixed range [15, 150000] are allowed to be searched. Words with oc-
currences higher than 150000 are most likely generic words that are
of no interest for this application and we want them not to be dis-
played in the auto-complete functionality of FiSHeR search-bar (the
first proper name is Google with 149276 occurrences). Words with oc-
currences lower than 15 generally provide very bad results that are
not worth to be displayed. It is mandatory to specify that this lower-
bound does not contradict the min_count = {1,5} parameter used
to train word embedding models. Indeed, a word with low occur-
rences can still be returned as a result of the search of a term with
higher occurrences.

Listing 22: Back-end: method _init_ of class Server and method app

class Server(object):
def __init__(self, model_name , vocab_name , event_loop)

:
self.vocab = {}

# load the word2vec model from gzipped file
self.model = gensim.models.KeyedVectors.

load_word2vec_format(model_name , binary=True)
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self.model.init_sims(replace=True)
try:
del self.model.syn0
del self.model.syn1

except:
pass

try :
with open(vocab_name , ’r’) as dictfile:
for line in dictfile:
cells = line.strip().split()
self.vocab[cells [0]] = int(cells [1])

self.orig_words = [gensim.utils.to_unicode(word) for
word in self.model.wv.index2word if self.vocab[

gensim.utils.to_unicode(word)] >= 15 and self.
vocab[gensim.utils.to_unicode(word)] <= 150000]

except:
self.orig_words = [gensim.utils.to_unicode(word) for

word in self.model.wv.index2word]

indices = [i for i, _ in sorted(enumerate(self.
orig_words), key=lambda item: item [1])]

self.orig_words = [self.orig_words[i] for i in
indices]

self.ned = NED(event_loop = event_loop)

[...]

async def app():
logger.info("running %s" % ’ ’.join(sys.argv))

nest_asyncio.apply()

loop = asyncio.get_event_loop ()
app = aiohttp.web.Application(loop=loop)

load_dotenv ()
client_url = os.getenv(’CLIENT_URL ’)
wv_model_path = os.getenv(’W2V_MODEL_PATH ’)
wv_vocab_path = os.getenv(’W2V_VOCAB_PATH ’)
host = os.getenv(’HOST’, ’localhost ’)
port = int(os.getenv(’PORT’, 3000))

aiohttp_cors.setup(app , defaults ={
client_url : aiohttp_cors.ResourceOptions ()

})

server_app = Server(wv_model_path , wv_vocab_path , loop
)
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cors_sgt = app.router.add_route(’GET’, ’/sgt’,
server_app.suggest)

app[’aiohttp_cors ’].add(cors_sgt)

app.router.add_route(’GET’, ’/wsms’, server_app.
ws_most_similar)

aiohttp.web.run_app(app , host=host , port=port)
# return app

if __name__ == ’__main__ ’:
app()

5.3.2 Search-bar

The search-bar is a single Svelte component, called SearchBar.

svelte , that let the user select the target term to search into the
model. The word embedding model only allows to search words that
appeared at least once in the training dataset. Therefore, this com-
ponent calls the back-end to retrieve and display a set of searchable
words, starting with the text typed into the search-bar, to be chosen
by the user from a dropdown list. The component itself is also in
charge of denying to query the model if a word not in this list is
submitted.

Figure 20: FiSHeR Search bar

In particular, the component makes a GET request to the python
back-end endpoint /sgt?term={target_worg} passing the string that
was typed into the search-bar. This HTTP request calls the back-end
suggest method of class Server that returns the first ten words, from
variable orig_words described in 5.3.1, starting with GET variable
term. Moreover, it also returns the number of occurrences of each of
these terms.

When the search button is submitted, App.svelte calls back-end
endpoint /wsms and method ws_most_similar of class Server is trig-
gered. This method queries the word embedding model with target
word just searched by the user. The output of this model is then given
as input to the NED algorithm, whose results, in turn, are displayed

/sgt?term={target_worg}
/wsms
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to the user with some additional computation. App.svelte and ws_

most_similar establish a WebSocket connection as a full-duplex TCP
communication channel, that will be used to share the results of the
Word Embedding and NED models. This is required because the
inference of such models requires a delay of a few seconds that a
standard HTTP call could not handle. WebSocket protocol was stan-
dardized by the IETF as RFC 6455 [12] and was intended to replace
older approaches like Long Polling.

ws_most_similar will be analyzed more in detail later on, how-
ever, it returns a json encoded string with the following tags:

1. st_good: The json-encoded Dataframe of matched entities re-
solved by the NED algorithm described in subsection 4.4.5

2. st_miss: A list of unresolved word embedding terms described
in subsection 4.4.6

3. st_bad: A list of discarded word embedding terms described
in subsection 4.4.6

4. wv_sum_occ: A json-encoded python dictionary with the sum of
the occurrences of each word embedding term matched against
the same entity, plus the occurrences of the not matched terms.

5. wv_dist: A json-encoded python dictionary with the (WEAK)
cosine similarities of each word embedding term.

6. nodes : A json-encoded Dataframe with nodes of the D3 force
graph, more about this is in section 5.3.6

7. links : A json-encoded Dataframe with edges of the D3 force
graph, more about this can be found in section 5.3.6

All the above information are retrieved by App.svelte and passed
to its child components. More details in the following subsections.

Last, the App.svelte component provides some advanced search
filters that are placed just below the search bar. These parameters are:

1. Number of W2V results: The number of terms returned by the
word embedding model

2. Chunk size: The number of terms for each chunk, described in
section 4.4.5

The selectable values for these parameters, as can be seen in picture
21, were empirically set.

Listing 23: Front-end: a piece of App.svelte component

[...]



5.3 web application description 89

Figure 21: FiSHeR advanced search parameters

{#if advanced_flag}
<div class="is−flex advanced−container" transition:

slide >
<div class="field has−addons has−addons−centered mx−3

">
<div class="field−label is−small">
<label class="label">Number of V2W results </label >

</div >
<div class="buttons has−addons is−inline−block">
<button class="button is−rounded is−small is−light"

></button >
{#each nr_tick as tick , i}
<button on:click ={() => nr_idx = i} class="button

is−rounded is−small mx−1 {nr_idx == i ? ’is−
primary ’ : ’is−light ’}">{tick}</button >

{/each}
<button class="button is−rounded is−small is−light"

></button >
</div >

</div >
<div class="field has−addons has−addons−centered mx−3

">
<div class="field−label is−small">
<label class="label">Chunk size </label >

</div >
<div class="buttons has−addons is−inline−block">
<button class="button is−rounded is−small is−light"

></button >
{#each cs_tick as tick , i}
<button on:click ={() => cs_idx = i} class="button

is−rounded is−small mx−1 {cs_idx == i ? ’is−
primary ’ : ’is−light ’}">{tick}</button >

{/each}
<button class="button is−rounded is−small is−light"

></button >
</div >

</div >
</div >

{/if}

[...]
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Listing 24: Front-end: SearchBar.svelte component

<script >
import Icon from ’svelte−awesome ’;
import { faExclamationTriangle} from ’@fortawesome/

free−solid−svg−icons’;
import { createEventDispatcher , tick } from ’svelte ’;
const dispatch = createEventDispatcher ();
let search_term = ’’
let current_terms = []
let tmp_occ = []
let all_terms = new Set();
let hover_index = −1
let input_focus = false
let danger_flag = false
export let isWsLoading = false

$: st_regex = search_term.replace (/[^\w\s&]/gi, ’’).
replace (/[\s]/g, ’_’)

const fetch_ws_sgt = async (e) => {
if (e.keyCode === 13) {
if(all_terms.has(st_regex)){
danger_flag = false
dispatch(’startsearch ’, st_regex)
current_terms = []
tmp_occ = []
hover_index = −1

} else {
danger_flag = true
current_terms = []
tmp_occ = []
hover_index = −1

}
}else if(e.keyCode === 40) {
// ArrowDown
hover_index = (hover_index + 1) < current_terms.

length ? hover_index + 1 : current_terms.length
−1

search_term = current_terms[hover_index]

} else if (e.keyCode === 38) {
// ArrowUp
hover_index = (hover_index − 1) > 0 ? hover_index −

1 : 0
search_term = current_terms[hover_index]

} else {
if (st_regex != ’’){
const res = await fetch(’http :// SERVER_ENDPOINT/sgt

?term=’+st_regex , {
method: ’GET’,
headers: { ’Origin ’ : window.location.host}
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})

let response = await res.json()
console.log(response)
current_terms = response[’wv_sim ’]
tmp_occ = response[’wv_occ ’]
current_terms.forEach(item => all_terms.add(item))

} else {
current_terms = []
tmp_occ = []

}
hover_index = −1

}
}

const select_term = async (e, i) => {
search_term = current_terms[i]
// Fix st_regex reactivity
await tick()
if(all_terms.has(st_regex)){
danger_flag = false
dispatch(’startsearch ’, st_regex)
current_terms = []
tmp_occ = []
hover_index = −1

} else {
danger_flag = true
current_terms = []
tmp_occ = []
hover_index = −1

}
}

const select_submit = () => {
if(all_terms.has(st_regex)){
danger_flag = false
dispatch(’startsearch ’, st_regex)
current_terms = []
hover_index = −1

} else {
danger_flag = true
current_terms = []
hover_index = −1

}
}

</script >

<div class="columns">
<div class="column is−10 pb−0">
<div class="field">
<div class="control is−expanded has−icons−right">
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<input class="input is−rounded is−small {
danger_flag ? ’is−danger ’ : ’’} { isWsLoading ?
’has−text−white’ : ’’}" autocomplete="off"
disabled ={ isWsLoading} type="text" on:focus ={()
=> input_focus=true} on:blur ={() => input_focus=
false} id="search−bar" on:keyup={ fetch_ws_sgt}
bind:value={ search_term}>

{#if danger_flag}
<span class="icon is−small is−right">
<Icon data={ faExclamationTriangle }/>

</span >
<p class="help is−danger ml−4">Word is not in

vocabulary </p>
{/if}
<div class="dropdown {current_terms.length > 0 ? ’

is−active ’ : ’’}">
<div class="dropdown−menu" role="menu">
<div class="dropdown−content">
{#each current_terms as candidate , i}
<a href="#" on:click ={(e) => select_term(e, i)}

on:mouseover ={() => hover_index = i} on:
mouseout ={() => hover_index = −1} class="
dropdown−item has−text−left { i ===
hover_index ? ’has−background−light’ : ’’}"
>

{candidate} [{ tmp_occ[i]}]
</a>

{/each}
</div >

</div >
</div >

</div >
</div >

</div >
<div class="column is−2" id="sbt">
<button class="button is−danger is−small is−fullwidth

is−rounded {isWsLoading ? ’is−loading ’ : ’’}" on
:click={ select_submit} >FiSHeR </button >

</div >
</div >

<style >
@media screen and (max−width: 769px) {

#sbt{
padding−top:0px;

margin−bottom: 20px;
}

}
</style >
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Listing 25: Back-end: method suggest and a piece of method ws_most_similar
of class Server

async def suggest(self, request):
term = request.rel_url.query[’term’]
prefix = gensim.utils.to_unicode(term).strip().lower()
count = 10
pos = bisect.bisect_left(self.orig_words , prefix)
wv_sim = self.orig_words[pos: pos + count]
wv_occ = [self.vocab[res] for res in wv_sim]
logger.info("suggested %r: %s" % (prefix , wv_sim))

return aiohttp.web.Response(text=’{" wv_sim" : %s, "
wv_occ" : %s}’ % (json.dumps(wv_sim), json.dumps(
wv_occ)))

async def ws_most_similar(self, request):
logger.info(’Websocket connection starting ’)
ws = aiohttp.web.WebSocketResponse ()
await ws.prepare(request)
logger.info(’Websocket connection ready’)

async for msg in ws:
logger.info("Message received %s" % msg.data)
print(msg)
if msg.type == aiohttp.WSMsgType.TEXT:
try:
msg_json = json.loads(msg.data)
cs = msg_json[’cs’]
nr = msg_json[’nr’]
st = msg_json[’st’]
logger.info("Start search for %s" % st)

result = self.model.most_similar(positive = st,
topn = nr)

logger.info("Most similar words %s" % result)
terms , terms_cosine = zip ( result)

# IMPORTANT Target word assumed to be in first
position

terms = [st] + list(terms)
terms_cosine = [1] + list(terms_cosine)
terms_occ = [self.vocab[res] for res in terms]

wv_dist = dict(zip(terms , terms_cosine))

df, st_miss , st_bad = self.ned.disambiguate(terms ,
terms_cosine , terms_occ , cs)



94 web application for model querying

5.3.3 Container with details of target word matched entities

This part of the GUI is mainly composed of TargetEntity.svelte

component. It shows the structured information provided by the
matched entity for the target word:

1. The title of the Wikidata Entity

2. A description for the Wikidata Entity

3. Some useful links like: official website, Wikidata and Wikipedia
pages

4. All the word embedding matching terms, that are the target
word plus every other word embedding term that was matched
against the same Wikidata entity

5. The sum of the occurrences of all the above words

The sum of the occurrences is retrieved from tag wv_sum_occ while
all other information from tag st_miss of the output of method ws

_most_similar . The useful links are displayed as high-contrast but-
tons to be immediately recognized by the user and to allow further
investigation for the entity displayed.

Figure 22: Details component for target word eikon

Listing 26: Front-end: TargetEntity.svelte component

<script >
export let entityInfo = {}
export let occ = 0
import Icon from ’svelte−awesome ’;
import { faBarcode , faChevronDown , faGlobe , faMinus }

from ’@fortawesome/free−solid−svg−icons’;
import { faWikipediaW } from ’@fortawesome/free−brands

−svg−icons’;
import { slide } from ’svelte/transition ’;
let show_more = false

</script >

<div class="has−text−left">
<h1 class="is−size−3 has−text−weight−bold">{entityInfo

[’wd_title ’]}</h1>
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<p><span class="has−text−weight−bold">W2V matching
words:</span > [{ entityInfo[’search_term ’].join(", "
)}]</p>

<p><span class="has−text−weight−bold">{#if entityInfo
[’search_term ’].length > 1}Sum of occurrences:{:
else}Occurrences:{/if}</span > {occ}</p>

<p class="has−text−weight−bold">Overview </p>
<p class="has−text−justified mb−3">
{#if entityInfo[’overview ’].length < 530}
{entityInfo[’overview ’]}
{:else}
<span >{ entityInfo[’overview ’].slice(0, 530)}{#if !

show_more}...{/if}</span >
{#if show_more}
<span transition:slide >{ entityInfo[’overview ’].slice

(531)}</span >
{/if}
<a href="#" class="has−text−primary" on:click ={() =>

show_more = !show_more}>Read {#if !show_more}
More{:else}Less{/if}</a>

{/if}
</p>
<a href="https ://www.wikidata.org/wiki/{ entityInfo[’

entity_id ’]}" target="_blank" class="button is−
primary is−small is−rounded">Wikidata &nbsp; <Icon
data={ faBarcode }/></a>

{#if entityInfo[’wp_title ’] != null }<a href="https ://
en.wikipedia.org/wiki/{ entityInfo[’wp_title ’]}"
target="_blank" class="button is−primary is−small
is−rounded">Wikipedia &nbsp; <Icon data={
faWikipediaW }/></a>{/if}

{#if entityInfo[’websites ’] != null && entityInfo[’
websites ’].length > 0 }<a href="{entityInfo[’
websites ’][0]}" target="_blank" class="button is−
primary is−rounded is−small">Website &nbsp; <Icon
data={ faGlobe}/></a>{/if}

</div >

Since the number of occurrences of the target word heavily influ-
ences the quality of the results displayed by the whole system, an
additional component was reserved to print different messages about
the goodness of the search based on the value of this parameter. It is
displayed as a separate box on the right of the screen. Three different
messages are available:

1. OCCURRENCES < 50: The number of occurrences of the searched
term is very low. Most likely, poor quality results will be shown.
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2. 50 6 OCCURRENCES < 500: The number of occurrences of the
searched term is in the average. Please note, the higher the occurrences
the higher the quality of the results.

3. OCCURRENCES > 500: Woah! The number of occurrences of the
searched term is very high. You should get amazing results!

Listing 27: Front-end: OccBox.svelte component

<script >
import Icon from ’svelte−awesome ’;
import {faExclamationCircle , faPlayCircle ,

faCheckCircle} from ’@fortawesome/free−solid−svg−
icons’;

import lang from ’../ public/json/lang_en.json’
export let occ = 0

</script >

<article class="media px−4 py−4">
<div class="media−left">

{#if occ < 50}
<Icon data={ faExclamationCircle} class="has−text−

white" scale="1.5" />
{:else if occ < 500}

<Icon data={ faPlayCircle} class="has−text−white"
scale="1.5" />

{:else}
<Icon data={ faCheckCircle} class="has−text−white"

scale="1.5" />
{/if}

<div style="width :15px; height :15px; margin−top:−25
px; margin−left:5px" class="has−background−
primary"></div >

</div >
<div class="media−content">

<div class="content">
<p class="has−text−black has−text−justified"><strong

>{occ} OCCURENCES: </strong >
{#if occ < 50}
{@html lang[’low_occ ’]}

{:else if occ < 500}
{@html lang[’med_occ ’]}

{:else}
{@html lang[’high_occ ’]}

{/if}
</p>

</div >
</article >

<style >
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article{
border: 1px solid rgba(0, 0, 0, 0);
border−radius: 5px;
background−color: #f5f5f5b0;
}

.media−left{
margin−top:auto;
margin−bottom:auto;
}

</style >

5.3.4 Container of matched entities details

This area of the user interface is built as a list of instances of the
component EntityCard.svelte . A new instance is created for each
entity returned by the NED algorithm, with the exception of the entity
matched to the target word. Each one provides the same information
displayed by component TargetEntity.svelte . Again, useful links
are displayed as easily reachable buttons for quicker external infor-
mation retrieval.

This component also displays a STRONG similarity score computed
as the cosine similarity between the USE embeddings of the current
entity and the target one (see 4.4.5). If however, the NED algorithm
was not able to match the target word, no STRONG similarity can
be computed and the (WEAK) Word Embedding one is shown in-
stead. A dropdown infobox was placed above all the instances of this
component to clarify this aspect and the meaning of ’Named Entity
Disambiguation’ (NED) to the user (image 24).

Listing 28: Front-end: EntityCard.svelte component

<script >
[...]

</script >

<div class="card">
<header class="card−header {hover_flag ? ’has−

background−white−ter card−hover’ : ’’}" on:click
={() => open_flag = ! open_flag}>

<p class="card−header−title" on:mouseenter ={() =>
hover_flag = true} on:mouseleave ={() => hover_flag
= false}>

{#if has_root}
{#if similarity >= 0.60}
<Icon class="has−text−success is−hidden−mobile"

data={ faMinus}/>
{:else}
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Figure 23: List of EntityCard components

Figure 24: Infobox close-up

{#if similarity >= 0.40}
<Icon class="has−text−warning is−hidden−mobile"

data={ faMinus}/>
{:else}
<Icon class="has−text−danger is−hidden−mobile"

data={ faMinus}/>
{/if}
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{/if}
{:else}
<Icon class="has−text−light is−hidden−mobile" data

={ faMinus}/>
{/if}
<span >&nbsp; {entityInfo[’wd_title ’]}</span >

</p>
<span class="card−header−icon px−0">
<a href="https ://www.wikidata.org/wiki/{ entityInfo[’

entity_id ’]}" target="_blank" class="is−round
button has−text−primary is−small is−rounded is−
light"><Icon data={ faBarcode }/></a>

{#if entityInfo[’wp_title ’] != null }<a href="https
://en.wikipedia.org/wiki/{ entityInfo[’wp_title ’]}
" target="_blank" class="is−round button has−text
−primary is−small is−rounded ml−3 is−light"><Icon
data={ faWikipediaW }/></a>{/if}

{#if entityInfo[’websites ’] != null && entityInfo[’
websites ’].length > 0 }<a href="{entityInfo[’
websites ’][0]}" target="_blank" class="is−round
button has−text−primary is−rounded is−small ml−3
is−light"><Icon data={ faGlobe}/></a>{/if}

</span >
<span class="card−header−icon" on:mouseenter ={() =>

hover_flag = true} on:mouseleave ={() => hover_flag
= false}>

{#if has_root}
<span >STRONG <span class="is−hidden−mobile">&nbsp;

Similarity </span ></span >
{:else}
<span >WEAK <span class="is−hidden−mobile">&nbsp;

Similarity </span ></span >
{/if}
&nbsp;{Math.round(similarity 1 0 0 ) }%

</span >
<a href="#" class="card−header−icon" aria−label="more

options" on:mouseenter ={() => hover_flag = true}
on:mouseleave ={() => hover_flag = false}>

<span class="icon has−text−danger">
{#if open_flag}<Icon data={ faChevronUp }/>{:else}<

Icon data={ faChevronDown }/>{/if}
</span >

</a>
</header >
{#if open_flag}
<div transition:slide >
<div class="card−content">
<div class="content has−text−left">
<p><span class="has−text−weight−bold">W2V matching

words:</span > [{ entityInfo[’search_term ’].join("
, ")}]</p>
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<p><span class="has−text−weight−bold">{#if
entityInfo[’search_term ’].length > 1}Sum of
occurrences:{:else}Occurrences:{/if}</span > {occ
}</p>

<p class="has−text−weight−bold">Overview </p>
<p>
{#if entityInfo[’overview ’].length < 530}
{entityInfo[’overview ’]}

{:else}
<span >{ entityInfo[’overview ’].slice(0, 530)}{#if

!show_more}...{/if}</span >
{#if show_more}
<span transition:slide >{ entityInfo[’overview ’].

slice (531)}</span >
{/if}
<a href="#" class="has−text−primary" on:click ={()

=> show_more = !show_more}>Read {#if !
show_more}More{:else}Less{/if}</a>

{/if}
</p>

</div >
</div >

</div >
{/if}

</div >

<style >
[...]

</style >

5.3.5 Container of unresolved terms and container of discarded
terms

In this case, there is not a dedicated Svelte component to display un-
resolved and discarded terms returned by method ws_most_similar

and described in 4.4.6. But they are just injected in the HTML code
by means of two dedicated svelte loops in the main App.svelte com-
ponent.

The unresolved terms are displayed as buttons groups, see picture
25:

1. The left-most button prints the term string, the number of oc-
currences and the WEAK similarity. If pressed, it opens a new
browser window in which the term is searched in the Google
search engine.

2. The button in the middle let the user search back the term into
FiSHeR.
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3. The right-most button opens a new browser window with the
Wikidata page to add a new entity.

A drop-down infobox is printed to explain the meaning of ’unre-
solved terms’ and ’weak similarity’ to the user.

Figure 25: Example of unresolved terms for target word iqfeed

The discarded terms are printed as simple HTML anchor tags with
link name that contains the term string, the number of occurrences
and the WEAK similarity. If the tag is clicked, the term is searched
back into FiSHeR. Again, an infobox is provided to explain the mean-
ing of ’discarded terms’ and ’weak similarity’ (see image 26)

Figure 26: Example of discarded terms for target word iqfeed

Listing 29: Front-end: a piece of App.svelte component

[...]

<div class="column is−6">
<SmallTitle title={ has_root ? ’NED resolved terms [

STRONG Similarity]’ : ’NED resolved terms [WEAK
Similarity]’} snippet ={lang[’resolvable_terms ’]}/>

{#each unrooted_payload as row , i}
<div transition:slide|local class="py−3 entity−

divider">
<EntityCard has_root ={ has_root} entityInfo ={row} occ

={ payload[’wv_sum_occ ’][row[’bst_st ’]]}/>
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</div >
{/each}
{#if payload[’st_miss ’].length > 0}
<div class="has−text−left mt−3">
<SmallTitle title="NED unresolved terms [Occurrences

, WEAK Similarity]" snippet ={lang[’
unresolvable_terms ’]}/>

{#each payload[’st_miss ’] as uterm}
{#if search_term != uterm}
<div class="buttons has−addons mb−2 mr−3 is−inline

−block">
<a class="button is−rounded is−small is−light px

−2" href="http ://www.google.com/search?q={
uterm.replace("_", "+")}" target="_blank">{
uterm}&nbsp ;[{ payload[’wv_sum_occ ’][uterm]},&
nbsp;{Math.round(payload[’wv_dist ’][uterm]
100) / 100}]& nbsp;&nbsp;<Icon data={ faGoogle}
class="has−text−primary" scale="0.8"/></a>

<button class="button is−rounded is−small is−
light px−2" on:click={ ws_send(uterm)}><Icon
data={ faSearch} class="has−text−primary" scale
="0.8"/></button >

<a class="button is−rounded is−small is−light px
−2" href="https ://www.wikidata.org/wiki/
Special:NewItem?label={ firstToUpper(uterm)}"
target="_blank"> <Icon data={ faPlus} scale="
0.8" class="has−text−primary"/></a>

</div >
{/if}

{/each}
</div >

{/if}
</div >

[...]

<!−−Discarded results−−>
{#if payload[’st_bad ’].length > 0}
<div class="has−text−left">
<SmallTitle title="NED discarded terms [Occurrences ,

WEAK Similarity]" snippet ={lang[’discarded_terms ’
]}/>

{#each payload[’st_bad ’] as uterm}
{#if search_term != uterm}
<p>[<a href="#" on:click={ ws_send(uterm)}>{uterm}</

a>&nbsp ;[{ payload[’wv_sum_occ ’][uterm]},&nbsp;{
Math.round(payload[’wv_dist ’][uterm] 100) /
100}]] </p>

{/if}
{/each}

</div >
{/if}
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[...]

5.3.6 D3 Force Graph

D3.js is a JavaScript library for interactive data visualizations in
web browsers. Among the available data representation layouts, a
D3-force graph simulates physical forces on particles (nodes) and we
are going to use it to display the various interlinks between the terms
returned by the word embedding model (figure 27). A D3 force graph
takes as input:

1. Nodes as json objects with id and label fields.

2. Edges as json objects with target and source fields, whose
values are the identifiers of the nodes.

Three kinds of nodes were budgeted for this graph:

1. A yellow node that represents the entity matched against the
target term. It has label equal to the Wikidata title and id

equal to the word embedding term, matched to this entity, with
the highest number of occurrences.

2. Red nodes, that represent all other matched entities. Again,
label is equal to the Wikidata title and id is equal to the word
embedding term with the highest number of occurrences for
each entity.

3. Grey nodes represent unresolved terms. In this case both the id

and the label are equal to the term itself.

Nodes can be both dragged and clicked, in the latter case the id field of
the node is searched back into FiSHeR. An edge between two nodes
means that searching the id of one of such nodes into the word em-
bedding model, the id of the other node would be returned in the list
of similar terms. Therefore, the whole set of edges is found taking all
the resolved and unresolved terms and searching them back into the
word embedding model. This computation is mainly carried out by
back-end method build_graph that is called by ws_most_similar .

Listing 30: Front-End: D3ForceGraph.svelte component

<script >
[...]

let svg;
export let width
export let height
export let nodes
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Figure 27: Example of D3 force graph for target word bloomberg_terminal

export let links
export let has_root
const nodeRadius = 10

const padding = { top: 20, right: 0, bottom: 0, left:
0 };

let transform = d3.zoomIdentity;
let simulation

$: xTicks = width > 180 ?
[0, 4, 8, 12, 16, 20] :
[0, 10, 20];

$: yTicks = height > 180 ?
[0, 2, 4, 6, 8, 10, 12] :
[0, 4, 8, 12];

$: xScale = scaleLinear ()
.domain ([0, 20])
.range([ padding.left , width − padding.right]);

$: yScale = scaleLinear ()
.domain ([0, 12])
.range([ height − padding.bottom , padding.top]);
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$: {
if (simulation != null && simulation.force("center")

!= null){
simulation.force("center").x(width / 2).y(height /

2);
simulation.alpha (0.3).restart ();

}
}

onMount( async () => {
simulation = d3.forceSimulation(nodes)
.force("link", d3.forceLink(links).id(d => d.id))
.force("charge", d3.forceManyBody ().strength(−500))
.on(’tick’, simulationUpdate);

d3.select(svg)
.call(d3.drag()
.container(svg)
.subject(dragsubject)
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended)).call(d3.zoom()

.scaleExtent ([1 / 10, 8])

.on(’zoom’, zoomed));

await tick()
simulation.force("center", d3.forceCenter(width / 2,

height / 2))

});

const fire_search = (search_term) =>{
dispatch(’startsearch ’, search_term)

}

const fill_color = (d, i) =>{
return i == 0 && has_root ? "#F4B400" : d.id == d.

label ? "#b5b5b5" : "#ff4c56"
}

function simulationUpdate () {
simulation.tick();
nodes = [... nodes];
links = [... links];

}

function zoomed () {
transform = currentEvent.transform;
simulationUpdate ();

}
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function dragsubject () {
const node = simulation.find(transform.invertX(

currentEvent.x), transform.invertY(
currentEvent.y), nodeRadius + 5);

if (node) {
node.x = transform.applyX(node.x);
node.y = transform.applyY(node.y);

}
return node;

}

function dragstarted () {
if (! currentEvent.active) simulation.

alphaTarget (0.3).restart ();
currentEvent.subject.fx = transform.invertX(

currentEvent.subject.x);
currentEvent.subject.fy = transform.invertY(

currentEvent.subject.y);
}

function dragged () {
currentEvent.subject.fx = transform.invertX(

currentEvent.x);
currentEvent.subject.fy = transform.invertY(

currentEvent.y);
}

function dragended () {
if (! currentEvent.active) simulation.

alphaTarget (0);
currentEvent.subject.fx = null;
currentEvent.subject.fy = null;

}

</script >

<svg bind:this={svg} width=’{width}’ height=’{height}’>
<g class=’axis y−axis’>
{#each yTicks as tick}
<g class=’tick tick−{tick}’ transform=’translate(0,

{yScale(tick)})’>
<line x1={ padding.left} x2={ xScale (22)}/>
<!−−<text x={ padding.left − 8} y=’+4’>{tick}</text

>−−>
</g>

{/each}
</g>

<g class=’axis x−axis’>
{#each xTicks as tick}
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<g class=’tick’ transform=’translate ({ xScale(tick)
},0)’>

<line y1={ yScale (0)} y2={ yScale (13)}/>
<!−−<text y={ height − padding.bottom + 16}>{ tick}</

text>−−>
</g>

{/each}
</g>

<g class="links">
{#each links as link}
<line x1=’{link.source.x}’ y1=’{link.source.y}’

x2=’{link.target.x}’ y2=’{link.target.y}’
transform=’translate ({ transform.x} {

transform.y}) scale({ transform.k} {
transform.k})’>

</line >
{/each}

</g>

<g class="nodes">
{#each nodes as point , i}
<circle class="hover−node" on:click={ fire_search(

point.id)} r={ nodeRadius} fill={ fill_color(point ,
i)} cx={point.x} cy={point.y}

transform=’translate ({ transform.x} {transform.y})
scale({ transform.k} {transform.k})’></circle >

{/each}
</g>

<g class="is−size−7 has−text−weight−semibold labels">
{#each nodes as point}
<text x={point.x + 15} y={point.y + 5} transform=’

translate ({ transform.x} {transform.y}) scale({
transform.k} {transform.k})’>{point.label}</text >

{/each}
</g>

</svg >

<style >
.tick line {
stroke: #ddd;
stroke−dasharray: 2;

}

.links line {
stroke: rgba(0, 0, 0, 0.2);
stroke−width: 0.5;

}

.hover−node:hover{
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stroke: rgba(0, 0, 0, 0.1);
stroke−width: 5px;
cursor: pointer;

}

</style >

Listing 31: Back-end: method build_graph and a piece of method
ws_most_similars of class Server

async def ws_most_similar(self, request):
logger.info(’Websocket connection starting ’)
ws = aiohttp.web.WebSocketResponse ()
await ws.prepare(request)
logger.info(’Websocket connection ready’)

async for msg in ws:
logger.info("Message received %s" % msg.data)
print(msg)
if msg.type == aiohttp.WSMsgType.TEXT:
try:

[...]

# Contains only terms with highest occurrences
terms_pruned = df[’bst_st ’]. to_numpy ()
# Like terms but sorted differently
map_terms_pruned = np.asarray(df[’search_term ’])
map_terms_pruned_idx = np.array([np.repeat(i, len(

map_terms_pruned[i])) for i in range(
map_terms_pruned.shape [0])])

map_terms_pruned_idx = np.hstack(
map_terms_pruned_idx)

map_terms_pruned = np.hstack(map_terms_pruned)

terms_pruned = np.concatenate ([ terms_pruned ,
st_miss , st_bad ])

map_terms_pruned = np.concatenate ([ map_terms_pruned
, st_miss , st_bad ])

map_terms_pruned_idx = np.concatenate ([
map_terms_pruned_idx , np.arange(
map_terms_pruned_idx[−1]+1, terms_pruned.size)])

wv_sum_occ = {}
for i in range(map_terms_pruned.size):
if map_terms_pruned[i] == st:
wv_sum_occ[’$root$ ’] = self.vocab[

map_terms_pruned[i]]
wv_sum_occ[terms_pruned[map_terms_pruned_idx[i]]]

= wv_sum_occ[terms_pruned[map_terms_pruned_idx[
i]]] + self.vocab[map_terms_pruned[i]] if
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terms_pruned[map_terms_pruned_idx[i]] in
wv_sum_occ else self.vocab[map_terms_pruned[i]]

df_nodes , df_links = self.build_graph(df, nr,
terms_pruned , map_terms_pruned_idx ,
map_terms_pruned , st_miss)

df_nodes = df_nodes.to_json(orient=’table’, index=
False)

df_links = df_links.to_json(orient=’table’, index=
False)

await ws.send_str(’{" st_good" : %s, "st_miss" : %s,
"st_bad" : %s, "wv_sum_occ" : %s, "wv_dist ": %s

, "nodes" : %s, "links" : %s}’ % (df.to_json(
orient=’table’, index=False), json.dumps(st_miss
.tolist ()), json.dumps(st_bad.tolist ()), json.
dumps(wv_sum_occ), json.dumps(wv_dist), df_nodes
, df_links))

await ws.close()
logger.info(’Websocket connection closed ’)

except Exception as e:
exc_type , exc , tb = sys.exc_info ()
logger.error("%s − %s" % (e, ’\n\n’.join(traceback.

format_tb(tb, limit =5))))
await ws.send_str(’{"error": "%s"}’ % e)
await ws.close()
logger.info(’Websocket connection closed ’)

return ws

def build_graph(self, df, nr, terms_pruned ,
map_terms_pruned_idx , map_terms_pruned , st_miss):

df_tmp_links = pd.DataFrame ([])
df_links = pd.DataFrame(columns =[’target ’, ’source ’])
df_nodes = df[[’bst_st ’, ’wd_title ’]]
df_nodes.columns = [’id’, ’label’]

for similar in map_terms_pruned:
child_similars = self.model.most_similar(positive =

similar , topn = nr)
child_np_sim , _ = zip ( child_similars)
# Lo svuoto ogni volta
df_tmp_links = df_tmp_links.iloc [0:0]
df_tmp_links[’target ’] = terms_pruned[

map_terms_pruned_idx[np.in1d(map_terms_pruned ,
child_np_sim)]]

idx = np.where(map_terms_pruned == similar)
df_tmp_links[’source ’] = terms_pruned[

map_terms_pruned_idx[idx [0][0]]]
df_links = pd.concat ([ df_tmp_links , df_links ])

df_links = df_links.drop_duplicates ()
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df_miss_nodes = pd.DataFrame ({’id’ : st_miss , ’label’
: st_miss })

df_nodes = pd.concat ([df_nodes , df_miss_nodes ])

found_bst = df_nodes["id"]
df_links = df_links[df_links[’source ’] != df_links[’

target ’]]
df_links = df_links [( df_links[’source ’].isin(found_bst

)) & (df_links[’target ’].isin(found_bst))]

return (df_nodes , df_links)



6 U S E - C A S E : F I N A N C I A L DATA
P L AT F O R M S

In this chapter, we want to test FiSHeR to see how it performs in
a real-world example. In particular, we want to use this application
to find information data platforms. The financial data industry is domi-
nated by four main applications:

1. Bloomberg Terminal

2. Eikon, by Refinitiv (ex Thomson Reuters)

3. Capital IQ by Standard & Poor’s

4. FactSet

As stated in table 1, together they own 66,3% of the market share.
Since the cost for a single user license ranges from $12000 of FactSet
up to $24000 of Bloomberg Terminal per year [26], organizations can
be interested in identifying alternative applications that could lead to
huge cost savings. Therefore, we want to see how FiSHeR performs
in this scenario.

Before going on, we must clarify that although being similar, these
applications may provide quite different features. Some of them are:

1. Real-time market data

2. Equity research and trading

3. Financial news and insights

4. Investment analytics

We consider a result as correct if it supplies one or more of the
functionalities above. Of course, the word embedding model chosen
for this use-case is m5_s300_cb, since it reaches the highest accuracy
between the models trained (section 4.5.1).

Searching one of the platforms above into FiSHeR, we expect either
to retrieve the name of the other most common platforms, but also to
find the names of less-known software that could be used as alterna-
tives. We want to start looking at the number of occurrences of the
former names into the collected Reddit dataset.

As we can see from table 17, terms of interest can appear multi-
ple times in the dataset with small differences. For this experimen-
tation, we are going to search into FiSHeR either bloomberg_terminal
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term occurrences in Reddit dataset

bloomberg_terminal 2690

bloomberg_terminals 461

eikon 257

factset 1026

capital_iq 167

capiq 314

Table 17: Occurrences for most known financial data platforms

and eikon, which have different orders of magnitude in the number of
occurrences.

6.1 searching: bloomberg_terminal
In this first attempt, we want the application to return the first 20

terms that are similar to bloomberg_terminal. Among these returned
terms, there will be also unresolved and discarded terms. This time
however, we will focus only on matched entities, that will probably be
less than 20, but are shipped by FiSHeR with additional information,
like description and STRONG similarity score.

WD title terms
sum of

occurrences
strong

similarity

Bloomberg L.P. bloomberg 15357 81%
Eikon eikon, reuters_eikon 296 77%
FactSet factset 1026 72%

S&P Capital IQ
capiq, capital_iq,
cap_iq, capitaliq

596 71%

Value Line valueline 123 69%
Wharton Research
Data Services

wrds 79 65%

Yahoo! Finance yahoo_finance 7657 64%
DataStream datastream 70 62%
TradingView tradingview 4688 57%
Quandl quandl 1000 48%

Table 18: Matched FiSHeR results searching bloomberg_terminal

Table 18 contains the matched results. The first four rows refer
to the vendor company of Bloomberg Terminal (which is Bloomberg
L.P.) and to the other platforms that we already know. This is a good
result since it confirms our previous knowledge acquired analyzing
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the market shares of such products [26].

Let’s search the remaining terms online to get descriptions to un-
derstand if they are of any usefulness. FiSHeR already provides de-
scriptions and quick links for the matched term, in order to facilitate
the user in this additional analysis step.

1. Value Line: Value Line [...] (provides) accurate and insightful invest-
ment research on companies, industries, markets and economies. From
the latest data, sophisticated tools and proven ranks to expert analysis
and guidance.1

2. Wharton Research Data Services: WRDS provides the leading busi-
ness intelligence, data analytics, and research platform to global insti-
tutions2.

3. Yahoo! Finance: It provides financial news, data and commentary
including stock quotes, press releases, financial reports, and original
content. 3

4. Datastream: It is an historical financial database4. As of today,
Datastream is also accessible from Eikon itself. Hence this result
does not provide any additional information to our previous
knowledge.

5. TradingView: TradingView is a social network for traders and in-
vestors on Stock, Futures and Forex markets!5

6. Quandl: The premier source for financial, economic, and alternative
datasets, serving investment professionals6

The results with higher STRONG similarity represent platforms
that provide some of the functionalities described at the beginning of
this chapter. The ones with lower similarity, like Datastream, Trad-
ingView and Quandl refer to databases or financial social networks
that are, therefore, different kinds of platforms compared to the ones
we are looking for. This proves the goodness of this similarity score,
as a metric to have a preliminary comparison of the output results.

6.2 searching: eikon
Repeating the same experimentation searching eikon we get the re-

sults printed in table 19.

1 https://www.valueline.com/about/aboutvalueline.aspx
2 https://wrds-www.wharton.upenn.edu/pages/about/
3 https://en.wikipedia.org/wiki/Yahoo!_Finance
4 https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis
5 Meta description tag of https://www.tradingview.com
6 https://www.quandl.com/

https://www.valueline.com/about/aboutvalueline.aspx
https://wrds-www.wharton.upenn.edu/pages/about/
https://en.wikipedia.org/wiki/Yahoo!_Finance
https://www.refinitiv.com/en/products/datastream-macroeconomic-analysis
https://www.tradingview.com
https://www.quandl.com/
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WD title terms
sum of

occurrences
strong

similarity

Bloomberg Terminal bloomberg_terminal 2690 77%
FactSet factset 1026 77%
MetaStock metastock 41 76%
DataStream datastream 70 75%
Intrinio intrinio 108 70%

S&P Capital IQ
capiq, capital_iq,
cap_iq, capitaliq,
p_capital_iq

683 70%

Bloomberg L.P. bloomberg 15357 67%
Thomson Reuters thompson_reuters 77 52%

Table 19: Matched FiSHeR results searching eikon

Among them, we can still find the name of all the well-known
applications previously described. At the bottom of the table, we can
find Thomson Reuters (now Refinitiv) and Bloomberg L.P. which are the
vendors respectively of Eikon and Bloomberg Terminal. In the middle
of the table we can find two additional terms, MetaStock and Intrinio,
that we want to further analyze along the lines of what was done in
the previous section:

1. MetaStock: Market Analysis Tools, in some cases powered by
Eikon product Xenith7. Similarly to Datastream, this result does
not add any valuable information.

2. Intrinio: Real-time, delayed, intraday, and historical market data for
US stocks, ETFs, and options8

6.3 final considerations
In this chapter, we have shown a real example of the usage of

FiSHeR. As we have seen, it outputs results that are consistent with
the well-known market players. We also found out some additional
terms that could prove to be useful alternatives. However, to fully
exploit the capabilities of FiSHeR, we would also have to increase the
number of results returned by the platform and take to into account
unresolved terms. These, indeed, are names that are not in Wikidata
but could still be relevant for our purposes.

Due to the fragmentation of the services offered by these appli-
cations, the competitors found will probably provide only a partial

7 https://www.metastock.com/
8 https://intrinio.com/financial-market-data

https://www.metastock.com/
https://intrinio.com/financial-market-data
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overlap in terms of functionality. Therefore, any meaningful com-
parison of the results returned by FiSHeR, must be out by business
experts that deeply know the needs of the final users.





7 C O N C L U S I O N S A N D F U T U R E
W O R K S

In this thesis we have shown that machine learning is a viable so-
lution to find new financial services. Although not being perfect,
this project leveraged a huge quantity of data, extracting information
that could be difficult to find otherwise. The output of this experi-
mentation is a search engine that enhances the human capability of
discovering less-known products.

Most of the problems faced referred to the difficulty of distinguish-
ing useful results from useless ones. Indeed, among the terms re-
turned by the word embedding model, there may be generic or mis-
spelt terms that are not worth being displayed to the user. This prob-
lem was addressed matching information against Wikidata that, how-
ever, does not provide an adequate classification of items for our pur-
poses.

We could therefore hypothesize the creation of a new Knowledge
Graph for financial services in which items are categorized with an
ad-hoc schema. This schema should be specific for financial products
and standardized among financial institutions. Moreover, it should
provide a finite number of classes, such that it would be possible to
define a complete list of useful classes.

If we assume this Knowledge Graph to be interlinked with (a por-
tion of) Wikidata, FiSheR could either:

1. Exploit additional classification for entities that are in both databases,
to better resolve them

2. Provide wizards to populate the Knowledge Graph migrating
information retrieved by Wikidata, for entities matched only in
this latter database

3. Provide wizards to allow the creation of new entities from scratch,
starting from the unresolved terms of interest

Of course, these migrations wizards should be supervised by the hu-
man, that is in charge of carefully choosing the relevant classification
items for each new entity, from this domain-specific schema.

In this way, we could create an ecosystem of products in which
FiSHeR is both a consumer and a producer of information.
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