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Abstract

The number of Internet of Things (IoT) devices is increasing year over year (about
30 billion devices were estimated by 2020 and about 70 billion devices by 2025) and
consequently, the data traffic is generated and consumed at the edge of the network
infrastructure. As this amount of data grows, current cloud-based approaches
are becoming increasingly inefficient as massive datasets collected by sensors are
moved from the edge to distant machines of the cloud platform. These large-scale
deployments result in a latency that does not fit with time-critical IoT applications
requirements, therefore in recent years innovative edge computing and fog computing
solutions arose that are able to leverage resources along the path between the
end devices and the cloud. At the same time, stream processing frameworks are
become an essential component of an IoT system due to their capability to process
huge amounts of data in near real-time both in well-established cloud computing
architectures and in more recent edge and fog computing ones. In this master thesis,
I propose an edge-based framework over LoRaWAN for processing data close to the
source where it is generated. The location-aware functionality is realized through a
Gateway-Device Coordination Protocol able to associate an end device to the best fit
available LoRa gateway. This reduces the data traffic both at the edge and between
the edge itself and the core of the network for storing ready-to-use historical data.
Furthermore, the framework enhances Quality of Service (QoS) by allowing users
to submit stream processing tasks to define how specific data streams have to be
elaborated and accessing results directly at the edge without the need for a cloud
data transfer minimizing latencies.

The performance of the coordination protocol is evaluated in terms of network
utilization, latency and end devices scalability through gateway resources utilization
and associations load balancing. The evaluation has been conducted by implementing
the Gateway-Device Coordination Protocol in OMNeT++ simulator and revealed
that the protocol can be applied with success to a real deployed LoRaWAN network
since an effective load balancing of associations is achieved, minimal network traffic
at the edge is generated (a mean of 13 LoRaWAN messages per end device are needed
to finish the protocol and to start data sending, including in the count the Join
Request message and 3 retransmissions for early-stage messages to deliver them with
a high probability), a corresponding minimal number of frame losses and collisions
is recorded (also due to the small-sized network deployments analyzed) and minimal
additional storage is occupied on gateways (for storage space of 8GB the increment

results in about 2.5 - 1075% per associated end device).
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Chapter 1
Introduction

T he Internet of Things (IoT) has become a pervasive technology with an increas-
ing number of devices connected to the Internet year over year (about 30 billion
devices at the time of writing [48, 78]). These include connected cars, machines,

meters, sensors, smartphones and wearable devices.

IoT applications involve innovation in multiple areas such as home [89] and
building automation [47], healthcare or Internet of Medical Things (IoMT) [43],

]

[43

Industrial Internet of Things (IIoT) [57], smart grids [84], smart metering [38],

transportation [36] and vehicle communications or Internet of Vehicles (IoV) [97];
most belonging to the general concept of a smart city.

This results in the generation and consumption of unprecedented amounts of

data at the edge of the network infrastructure [4] in contrast with current developing

approaches typically based on cloud services located at the core of the network.

As the number of IoT devices (and the corresponding amount of data they
generate and consume) grows, cloud-based approaches are becoming increasingly
inefficient because data needs to travel the network infrastructure from the edge to
the core (where is processed) and backward. Furthermore, the latencies associated
with such data transfer may not be able to support time-critical (interactive or

nearly real-time) applications [79].

The advent of 5G [1] and its massive deployment in the near future (in Italy the
700 MHz frequency band currently used by the transmission of digital terrestrial
television channels will be free by the end of June 2022 [81, 80]) will represent a
first turning point in the mobile and IoT ecosystems, indeed, the combination of
high-speed connectivity, very low latency, and ubiquitous coverage will constitute a

foundation for realizing the full potential of IoT [73, 87].



In general, IoT devices are battery-powered constrained devices [40] (which
requires a careful power usage profile to extend their battery lifetimes) deployed
on a large area (from hundreds of meters to several kilometers) whose extension
depends on the application and requires a long-range communication at low cost
and low complexity.

Common wireless networking technologies (IEEE 802.11 Wi-Fi and IEEE 802.15.1
Bluetooth) focus on enhancing the data rate rather than power consumption and
more recent protocols (IEEE 802.15.11 Bluetooth Low Energy and IEEE 802.15.4
ZigBee) were proposed focusing on low-power wireless transmissions. However, all
of them are designed to provide short-range communication in Wireless Local Area
Networks (WLANs) and Wireless Personal Area Networks (WPANS).

On the other side, Wireless Cellular Networks (2G, 3G and 4G) proposed so far,
although cover very large areas, do not meet device power consumption and perfor-
mance requirements because were designed for voice and data communication and
not for wireless sensor applications.

In last recent years, Low-Power Wide Area Networks (LPWANSs) technologies (Sig-
Fox, LoRaWAN and NB-IoT) [58] were developed offering low power, long-range and
low-cost transmission and therefore gaining increasing popularity in IoT industrial
and research communities. Nowadays, a large IoT deployment may be only realized
using a LPWAN technology [14].

Stream processing frameworks are revealed to be very effective at processing

large amounts of data in near real-time [18], especially when deployed on cloud
platforms providing seamless elasticity and scalability capabilities.
Conversely, this is challenging for IoT time-critical applications, so, in last recent
years, several frameworks have been proposed to exploit existing and available
resources at the edge. The emergence of edge computing and fog computing started
an innovation process to efficiently develop large-scale IoT applications combining
the aforementioned resources with the ones available in the fog and the cloud [77,
93].

Following this principle, starting from a real-world smart water metering use case,
I designed an edge-based architecture based on LoRaWAN to generate, process and
consume data near to the source without transferring it to the cloud but processed
historical data ready-to-use in further analysis. This can include the development and
deployment of complex machine learning models not suitable for the edge and that
require massive datasets to be trained and/or Big Data or data mining techniques.
In developing the system, I focused on the location of data producers to process

their streams as close as possible to minimize data traffic size and corresponding



networking delays. At the same time, data consumers by accessing processed data
directly on the edge, maximize the Quality of Service (QoS) because there is no
latency due to a data transfer between the edge and the distant cloud machines. The
key idea is to leverage the geographically distributed LoRaWAN gateway resources
to enable edge computing over LoRaWAN. Instead of simply relaying packets as
expected by the specification, gateways move from a passive role to an active one
where they process, employing a stream processing engine, end device measurements
before forwarding them. This involves many adaptations to the LoRaWAN protocol
from security and keys, to lost messages and frame counters and is realized through
the definition of a fully automatic Gateway-Device Coordination Protocol able to
associate each end device of a network to the best fit gateway. End users’ data
access poses issues about authentication and privacy that are carefully considered in
the client connection to a gateway. As multiple sensors may be accessed by multiple
users based on users’ privileges, a scale-out and corresponding scale-in algorithms
are necessary to offload the computation on another gateway to avoid overloading a
peer.

The Gateway-Device Coordination Protocol has been implemented using the
well-known network simulator OMNeT++ and evaluated in terms of correctness,
network utilization, latency and end devices scalability through gateway resources
utilization and associations load balancing. The results collected running a set
of experiments revealed that the protocol can efficiently coordinate end devices
and gateways via a small number of messages (a mean of 13 messages per end
device including OTAA and 3 retransmissions for specific message types to maximize
frame delivery ratio) and performing associations as expected based on endpoints
locations and the amount of work the gateways are carry on to avoid overloading
them. Besides the small size of the network deployments (6 and 13 end devices and
2 gateways), two random wake-ups reduce the number of message collisions resulting
in a 99.28% delivery ratio. Furthermore, the impact of the protocol on gateway
storage of 8GB results in an imperceptible increment of occupied storage of about
2.5-107%% per associated end device suggesting large-scale networks bottleneck will
not be represented by the storage size but the CPU, GPU and RAM availability

according to the processing tasks the gateway has to perform.



Chapter 2

Related Works

In the literature, several frameworks have been proposed in recent years that
leverage resources at the edge and at the fog of the network infrastructure to cope
with emerging aforementioned issues.

Amaxilatis et al. [6, 5] presented a system based on the fog computing paradigm
to facilitate greatly the analysis of fine-grained water consumption data collected
by the smart meters. The authors introduced an intermediate layer of gateways
connected to end devices via a wM-Bus interface and LoRa gateways via a LoRa
interface. Data collected by sensors are processed by the two layers of gateways
where the introduced layer can perform only basic manipulations due to its very
constrained resources. While edge nodes perform a generic data processing based on
a predefined set of functions for data engineering goals (extract useful information
from end device data, clean them, impute missing values, ...), the backend realizes
application-specific processing by offering to users the possibility of specifying tasks
via lambda expressions.

Renart et al. [68] designed an edge-based programming framework that allows
users to define how data streams are processed based on the content and the location
of the data. Authors created an abstraction using a publish /subscribe overlay network
that can discover available computational resources and allocate the computation
in the most appropriated one at runtime (sensors produce data, users produce and
consume data processed by the overlay network of rendezvous points). The system
is implemented through the JXSA P2P protocol, so, all the interactions between
sensors, users and rendezvous points are carried on through this application layer
technology.

Das et al. [20] introduced Seagull, a framework for building large-scale IoT
applications where sensors’ data are distributed on edge nodes based on their
proximity to the source and the amount of processing they can handle. This is

realized as an extension of the Cowbird cloud-based framework [21] using the domain-



specific language SWAN-Song [63]. When a user registers a SWAN-Song expression,
the Seagull manager deployed at the cloud assigns it to the least-busy Seagull Node
(active threads) in the network and the closest available Seagull Node to the IoT
device (euclidean distance between the estimated locations of the IP addresses).

Fu et al. [30] presented EDGEWISE, a new Edge-friendly Stream Processing
Engine (SPE) that redesign the SPE runtime by incorporating a congestion-aware
scheduler and a fixed-size worker pool. The scheduler separates the threads (exe-
cution) from the operations (data) so that a ready thread can be assigned to the
operation with the most pending data. The fixed number of workers moves from
operation to operation as assigned by the scheduler (rather than dedicating a worker
to each operation) to reduce unnecessary overhead on constrained devices.

Corral-Plaza et al. [18] proposed a three-layer architecture for processing and
analyzing data from heterogeneous sources with different structures in IoT scopes,
allowing researchers to focus on data analysis, without having to worry about the
structure of the data sources. The middle layer (between data producers and data
consumers) combines a stream processing engine, that is in charge of transforming
and processing data from the sources to make data ready for analysis, and a complex
event processing which receives the processed data as input and has the role of
detecting situations of interest by evaluating data against predefined patterns and
notifying users of such events.

Zeuch et al. [96] introduced the NebulaStream (NES) platform, an end-to-end
data management platform that enables future IoT applications by unifying sensors,
fog and cloud and by addressing heterogeneity, unreliability and scalability challenges
for state-of-the-art data management systems. NES copes with heterogeneity by
maximizing sharing of results and efficiency of computing to significantly reduce
the amount of data transferred and to exploit hardware capabilities efficiently. NES
addresses unreliability by applying dynamic decisions and incremental optimizations
during runtime to be as flexible as possible. NES enables elasticity by designing
each node to react autonomously to a wide range of situations during runtime. NES
has a centralized three-layers architecture where users send queries to the NES
Coordinator deployed on the cloud and each sensor belonging to the sensor layer is
connected to at least one low-end node in the Fog Layer, which is responsible for
this sensor (entry node). In the fog layer, NES processes data as they flow from
Entry Nodes to Exit Nodes where the data transfer is orchestrated by routing nodes.
After leaving the Fog Layer through an Exit Node, data enter the Cloud Layer that
can apply remaining processing and output the data to the user.

Zeuch et al. [95] analyzed the requirements of upcoming IoT applications and

the supported features of an IoT data management system to outline state-of-the-



art challenges and limitations and highlight how to efficiently use them in IoT
infrastructures and how NebulaStream addresses them.

Gavriilidis et al. [34] presented a potential large-scale application implemented
on top of NebulaStream to showcase how NES addresses the shortcomings of current
cloud-based stream processing engines and thus enables future large-scale IoT
applications.

Tonjes et al. [85] proposed CityPulse, a smart city framework for processing
large-scale IoT data streams by enriching data streams with semantic annotations,
enabling adaptive processing, aggregation and federation of data.

Xhafa et al. [92] presented an edge-computing system focused on semantic data
enrichment and semantic data representation. This is divided into four layers: IoT
Data Sensing Layer where the data is generated; Edge Processing Layer where edge
nodes preprocess sensors’ data and then semantically enrich them; Data Analysis
and Reasoning Layer runs a cloud-based semantic engine that infers knowledge
from semantic data and ontology-based on predefined rules; User Application Layer
deployed on the cloud.

Buddhika et al. [12] designed NEPTUNE, a holistic framework built on top of
Granules cloud runtime that addresses the CPU, memory, network, and kernel issues
involved in stream processing for IoT environments. NEPTUNE makes effective
use of the network bandwidth to achieve high throughput while maintaining the
communication latencies at acceptable levels. To accomplish this, it buffers stream
packets at the application layer and transfers a batch of buffered messages over
the network rather than sending individual messages one at a time. NEPTUNE’s
buffering schemes are streamlined with batch processing to reduce the number of
context switches among worker threads and to improve the use of the instruction
cache. Moreover, the framework relieves memory pressure, through a frugal object
creation scheme that reduces strain on the garbage collector via reuse of objects and
data structures, and supports backpressure, via a flow control mechanism, to cope
with discrepancies between processing rates and data arrival rates at certain stages
of a stream processing job. In the end, NEPTUNE also incorporates a dynamic
compression scheme that selectively compresses portions of a data stream based on
their entropy levels.

Sittén-Candanedo et al. [77] proposed the use of GECA (Global Edge Computing
Architecture), an Edge-IoT platform and a Social Computing framework to build
a system aimed at smart energy efficiency in a public building scenario. Authors
improve CAFCLA [32, 31] by combining it with the GECA architecture which
integrates blockchain technologies to strengthen security on the three levels of its

architecture. The IoT layer is composed of sensors and actuators connected over



Wi-Fi or ZigBee, the edge layer filters and preprocesses the data generated in the
IoT layer in real-time, sending to the cloud the data used by Business Intelligence
applications and the business solution layer is composed of a set of cloud-based
services and business applications.

Amarasinghe et al. [4] devised an optimization framework that aims to minimize
end-to-end latency through the appropriate placement of Data Stream Processing
operators either on cloud nodes or edge devices. The authors represented the
distributed stream processing system which consists of both cloud and edge resources
as a connected graph. Then, they formulate a constraint satisfaction problem to
realize an optimal task allocation aiming to minimize the end-to-end latency.

Cheng et al. [15] designed and implemented Geelytics, a system which can enable
on-demand edge analytics over scoped data sources. It is a stream processing system
that is tailored to IoT systems to enable on-demand edge analytics concerning edge
computing. The entire system consists of three major components: a controller
running on a controller node which is in charge of monitoring the status of the
entire system, presenting them to application developers, and is the entry point of
the system so that has to authenticate all data producers and consumers and also
assigns a nearby worker to them when they join the system, based on the location
proximity calculated from their GPS attributes; a large number of workers running
on geo-distributed compute nodes either in the Cloud or at the network edge; a set
of topology masters, that can run on the controller node together with the controller
or separately on their dedicated master nodes, that has the role of managing task
instances, including generating, configuring and assigning them to currently running
workers aiming to reduce the workload of the controller. Geelytics provides friendly
interfaces, for both data producers and consumers, to interact with the system based
on the MQTT publish/subscribe paradigm.

Teranishi et al. [83] proposed a peer-to-peer-based dynamic data flow platform
that replicates processes and changes the structure of the data flow dynamically on
the distributed computational resources located at network edges and data centers.
Authors extended topic-based pub/sub (TBPS) messaging by adding the notion
of “index” to build a key-ordered overlay network for flexible allocations of the
data stream processes on edge nodes and cloud nodes. To cope with peaks and
troughs in the data stream, they implemented a mechanism for adding one or
more computational nodes (scale-out) or removing the nodes dynamically (scale-
in). Furthermore, the authors designed a peer-to-peer-based data stream routing
algorithm called Locality-Aware Stream Routing (LASR) for dynamic data flow
management such that by sorting entities in order of the network id, entities in

the same edge network are located adjacent on the key-order preserving structured



overlay.

Wang et al. [90] introduced algorithms for solving the online application place-
ment problem in the context of Mobile Edge-Clouds (MECs) by modeling such
environments as hierarchical graphs to optimize the load balancing of the applica-
tions.

Lee et al. [54] presented iEdge, an IoT-assisted edge computing framework that
enables the seamless execution of applications across an edge server and nearby IoT
devices. It decomposes the source code of an application developed for cloud/edge
servers and reconstructs a logically composite application by porting some of the
function-level modules so that they can be independently executed on IoT devices.
The resultant composite application is then executed across an edge server and IoT
devices considering device context. A key element is generating machine-independent
code for each offloadable function by identifying relationships between functions in

an application program in terms of function calls.



Chapter 3

Background

3.1 LoRaWAN

LoRa physical layer is a wireless modulation for long-range (up to five kilometers
in urban areas and up to 15 kilometers or more in rural areas [72]), low-power
(up to 10 years battery-operated devices lifetime) and low-data-rate applications
developed by Semtech and patented in 2014 [50, 9]. Its spread spectrum modulation
technique is derived from chirp spread spectrum (CSS) technology and produces a
chirp signal where all chirps will have practically the same time duration [40]. The
chirp length of a transmitted digital symbol determines the spreading factor (SF) of
a LoRa communication. LoRa modulation has a total of six orthogonal spreading
factors (SF7 to SF12) and the larger the spreading factor used, the farther the signal
will be able to travel and still be received without errors by the radio receiver [72].
The orthogonality property of SFs makes it possible to simultaneously transmit
on the same frequency channel without that two signals modulated with different
SFs interfering because they appear to be noise to each other. Furthermore, LoRa
signals are robust and very resistant to both in-band and out-of-band interference
mechanisms and LoRa modulation also offers immunity to multipath and fading,
making it ideal for use in urban and suburban environments. It operates in the
license-free sub-GHz bands such as the 433-, 868- or 915-MHz frequency bands but
in Europe, only the first two can be used and due to transmission regulations, each
transmission in any of the 868 MHz and 867 MHz sub-bands should comply with a
1% radio duty cycle or implement a listen-before-talk or adaptive frequency agility
mechanism [49].

The LoRa frame structure includes a preamble, an optional header and the data

payload that contains either LoORaWAN MAC layer control packets or data packets.

LoRaWAN is a Low Power Wide Area Networking (LPWAN) protocol that is
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optimized for battery-powered end-devices and is designed for Internet of Things
(IoT) application requirements such as bi-directional communication, end-to-end
security, mobility and localization services. It’s an open-source medium access
control (MAC) protocol standardized by the LoRa Alliance that runs on top of the
LoRa physical layer and enables the communication between LoRaWAN end-devices
and gateways: only a few gateways, configured in a star network topology, are
required to serve a multitude of end nodes so that the deployment cost is relatively
low. Thanks to these characteristics and the Industrial, Scientific and Medical (ISM)
bands [52] in which it operates that allows to deploy LoRaWAN networks without
the involvement of mobile operators, LoRaWAN technology is gaining increasing
popularity and is becoming one of the most valuable and used LPWAN technology
[22].

LoRaWAN packets structure includes a MAC header, the data payload which
contains the upper layer application frame and the Message Integrity Code (MIC).

3.1.1 LoRaWAN Architecture

LoRaWAN architecture is typically laid out in a star-of-stars topology in which
gateways relay transmissions between end-devices and a central network server
located at the backend (but there exist deployments in which the network server
is located at the edge too) [23]. Gateways are connected to the network server
via standard IP connections, whereas end-devices use single-hop radio-frequency
communication to one or many gateways according to how many gateways are
available in their radio ranges. All communication is generally bi-directional, although
uplink transmission from an end-device to the network server is expected to be
the predominant traffic. Communication between end-devices and gateways is
distributed over different frequency channels and data rates and selecting the data
rate is a trade-off between communication range and transmission duration. To
maximize the capacity of the network given a fixed number of gateways, using an
adaptive data rate (ADR) mechanism is essential because, although its main goal is
to save battery power of end devices by having the end-nodes closest to a gateway
transmit using the lowest spreading factor, their time on air is minimized, thereby
prolonging their battery life and minimizing possible collisions. Beyond these three
main components, other two entities participate in the LoRaWAN architecture, so

summarizing all of them:

o End devices: are sensors and/or actuators that communicate with the gate-
ways in their coverage areas by broadcasting messages over LoRa. Sensors
send measurements to gateways via uplink frames while actuators are expected

to only receive commands for reactive behaviors from the network server. The
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manufacturer assigns to each produced end-device a 64-bit Extended Unique
Identifier (DevEUI) that globally identifies it.

e Gateways: are indoor or outdoor devices that act as a transparent bridge
between the end devices and the network server since relay messages from one
interface to the other after the opportune conversion from LoRa frames to IP
packets and vice versa. The IP traffic from a gateway to the network server
can be backhauled via Wi-Fi, hardwired Ethernet or via a Cellular connection
and according to the vendor a gateway may be provided with a GPS sensor,
a variable number of radio channels and different hardware resources (CPU,
GPU, RAM and ROM)

e Network Server: may be deployed at the cloud or the edge and has the role
of managing the entire network (from end devices up to users). As multiple
gateways can receive and forward to the network server the same LoRa frame
from an end device, an essential feature of the network server consists in
detecting duplicates and deleting them to forward uplink frames exactly once
to the Application Server. Furthermore, it ensures the authenticity of every
sensor on the network and the integrity of every message and is responsible

for downlink message routing

e Application Servers: are deployed on the cloud and are responsible for
securely handling, managing and interpreting sensor application-specific data.
Moreover, they generate all the application-layer downlink payloads and send

them to the end devices through the network server

e Join Server: is deployed on the cloud and manages the over-the-air activation

process for end devices to be added to the network.

3.1.2 LoRaWAN Message Definition

LoRaWAN defines uplink and downlink messages, denoting the message transmis-
sion direction [50]. Uplink messages are broadcasted by end devices while downlink
messages are sent by the network server. Nonetheless, packets structures are almost
identical and slightly differ in the bit flags of the frame control field at the application
layer (figure 3.2).

In addition to this first distinction, LoRaWAN messages include other frame
types for initial end device set up and to require confirmation on uplink and downlink
packets. This is achieved through the FType bit field of the data link header where

the last 3 bits are used to distinguish among 6 frame types:
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Figure 3.1. LoRaWAN architecture

LoRa Application Servers

LoRa Network Server
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Figure 3.2. LoRaWAN frame (LoRa modulation)
Application layer
Bits 32 8 16 0-120 8 n
Field Device address | Control Counter Options Port Payload
Data link layer
Bits 8 m 32
Field Header Payload MIC
Physical layer (LoRa modulation)
Size 8 symbols | 4.25 symbols 8 symbols p bits 16 bits
Field Preamble | Sync Word | Header | Header CRC Payload Payload CRC

e 000 — Join-Request

e 001 — Join-Accept

e 010 — unconfirmed data uplink

e 011 — unconfirmed data downlink

e 100 — confirmed data uplink



3.1 LoRaWAN

13

Figure 3.3. LoRaWAN frame (FSK modulation)

Application layer

Bits 32 8 16 0-120 8 n
Field Device address Control Counter Options Port Payload
Data link layer

Bits 8 m 32
Field Header Payload MIC

Physical layer (FSK modulation)
Bits 40 24 8 p 16
Field Preamble | Sync Word | Payload length Payload Payload CRC

e 101 — confirmed data downlink
e 110 — RFU
e 111 — Proprietary

The confirmation is expressed through the ACK flag of the Frame Control in
the Application layer header (a bit that if set denotes the acknowledgment of the

received frame).

The device address field of the application layer of the LoRaWAN frame always
refers to the end device both in uplink and downlink transmissions, so, it is not used

as the destination address.

The port field of the LoRaWAN frame denotes the type of the message and since
port 0 is reserved for MAC messages, port 224 is reserved for MAC compliance
testing and ports in the range 225-255 are reserved for future standardized application
extensions, valid port numbers are between 1 and 223.

In figure 3.2, the LoRaWAN frame payload sizes are not reported with the exact
number of bits because they are region- and data-rate-specific (min 11, max 242
bytes but may be smaller if the options field is not empty) while the physical layer
frame format depends on the modulation used: LoRa™, LR-FHSS or FSK [50, 49].
All formats are similar and the changes mainly concern the size of the preamble and
the header (figure 3.2 reports the LoRa modulation while the FSK modulation is
presented in figure 3.3).
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LoRaWAN defines a mechanism to deal with retransmissions through the Frame
Counter field of the application layer header which contains the least significant 16
bits of the corresponding 32 bits counter. Every end device manages two counters
called FCntUp and FCntDown, one per communication direction, that are initialized

to zero when an end device joins a LoRaWAN network [50]:

e FCntUp is incremented by an end device when a data frame is transmitted to
the LoRaWAN network server (uplink),

e FCntDown is incremented by the LoRa network server when a data frame is

transmitted to an end device (downlink)

The network server has to keep track of the uplink counter sent by a specific end
device, in order to insert in the downlink frame the proper counter. In this way,
duplicates can be easily detected and ignored by inspecting the packet header. The
NbTrans parameter relaxes this constraint for uplink retransmissions having the

same uplink counter.

3.1.3 LoRaWAN Device Classes

The LoRaWAN specification allows end devices to always send uplink frames at
will but, on the other hand, defines three classes of end devices that determine when
they can receive downlink frames, affecting the corresponding energy efficiency of
the device: Class A, Class B and Class C. Since the last two classes are extensions

to class A specification, all end devices must implement class A.

Figure 3.4. LoRaWAN classes

Application

LoRaWAN (L2)

Class A Class B Class C

(all devices) (ping slots) (continuous)

Regional Parameters

EU865 uUs915 CN470 KR920 IN865

PHY (LoRa modulation, FSK)
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Class A

Class A (Aloha) devices spend most of their time in sleep mode and wake up
when have to send an uplink message (e.g. due to a timeout or sensor reading).
After that, they open two consecutive short receive windows to listen for a downlink
message.

This means that such devices can receive frames only if they previously send a
message and are not suitable for receiving multiple messages in response to a single
uplink frame. Indeed, a message can only be received in one of the two receive
windows because if a frame is detected and demodulated during the first receive
window and the device address matches and Message Integrity Code (MIC) is valid,
then the second receive window is not even opened. The first and second downlink
receive windows respectively start by default 1 and 2 seconds after the end of the
uplink transmission but can be changed via a specific MAC command or in the
set up of the join procedure. Class A devices result in the lowest battery-power

consumption at cost of a high downlink latency.

Figure 3.5. Class A receive windows

Transmit RX1 RX2

Transmit time on air Receive Delay 1 Receive Delay 2

Class B

Class B (Beacon) devices extend Class A by opening additional receive windows at
a scheduled time. Gateways send periodic beacons to the end devices to synchronize
their clocks and make devices open receive windows periodically. Class B devices
reduce the downlink latency of Class A devices at the cost of higher battery-power

consumption.
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Figure 3.6. Class B receive windows

Beacon
RX Transmit RX1 RX2
Transmit time  Receive Delay 1 Receive Delay 2
on air
Class C

Class C (Continuous) devices extend Class A by keeping the receive windows
open unless they are transmitting, so never go in sleep mode. So, such devices result

in the highest battery-power consumption but guarantee no downlink latency.

Figure 3.7. Class C receive windows

Transmit RX1 RX2

Transmit time on air Receive Delay 1 Receive Delay 2
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3.1.4 LoRaWAN Device Activation Methods

Before sending and receiving messages on LoRaWAN every deployed end device
must be registered within the network. This takes place through a procedure called

activation method and LoRaWAN specification allows for two types of activations:

o Over-The-Air Activation (OTAA): is the most secure and recommended
activation method for end devices because these perform a join procedure with
the network to be assigned a dynamic device address and to negotiate security

keys

o Activation By Personalization (ABP): is the least secure as it requires
hardcoding the device address and the security keys in the end devices. These
static assignments have the additional downside that for switching network

providers a manual intervention to change end device keys is needed.

Going deeper in OTAA as described in LoRaWAN 1.1.x specification, the join
procedure establishes mutual authentication between an end device and the Lo-
RaWAN network to which it is connected and only authorized devices are allowed to
join the network. Indeed, in LoRaWAN the payload of every message is encrypted
with a unique 128-bit session key shared between the two parties involved in the
communication (either the end device and network server or the end device and
the application server) and AES algorithms are used to provide confidentiality,
data integrity and authentication of packets. Hence, LoRaWAN through the CTA
triad ensures that network traffic cannot be altered, eavesdropped on, captured and
replayed and that only legitimate devices are connected to the LoRaWAN network.
To derive the two session keys (NwkSEncKey and AppSEncKey), two root keys
per end device are securely stored both on the end device and on the join server
(together with the corresponding device EUI) and employed in the join procedure

that consists in:

1. The end device sends a join request message to the join server specifying the
Join EUI, the device EUI and a 16 bits nonce generated on-the-fly,

2. The join server authenticates it and replies with a join accept message including
a 24 bits nonce generated on-the-fly, the 24 bits network ID, a 32-bit device
address (which uniquely identifies such a device within the network it belongs)

and other parameters about the network

3. The end device and the join server derive application and network session
keys locally, based on root keys and fields in the join request and join accept

messages,
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4. The join server shares the two session keys with network and application

servers

The idea of having two session keys (one for the LoRa network server and one
for the application server) is to secure connections between the end device and the
network server and between the end device and the application server such that
neither the network server can read messages encrypted with the AppSEncKey.
This means that in any case, the LoRa gateways cannot read the data traffic they
relay because are not expected to be provided with the session keys since all of
the infrastructure-side cryptography happens in the LoRa network server or the

application server.

Figure 3.8. LoRaWAN OTAA method message exchange

LoRaWAN End Device LoRaWAN Gateway LoRaWAN Network Server LoRaWAN Join Server LoRaWAN Application Server
Stores NwkKey and AppKey Stores NwkKey, AppKey and DevEUI

Join Request Message

Forward Join Request Message

Forward Join Request Message

Processes Join Request
and generates the session
and integrity keys

Success OK

Join Accept Message

Forward Join Accept Message

Generates the session
and integrity keys

NwkSKey Distribution Message

AppSKey Distribution Message

LoRaWAN End Device LoRaWAN Gateway LoRaWAN Network Server LoRaWAN Join Server LoRaWAN Application Server

In details, the session keys are derived from root keys and parameters in Join

request frame and Join accept frame as follows
NwkSKey = aes128 encrypt(AppKey,0x01 | JoinNonce | NetID | DevNonce | padie)

AppSKey = aes128 encrypt(AppKey,0x02 | JoinNonce | NetI D | DevNonce | pads)
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3.2 Edge Computing

The increasing number of connected IoT devices results in a massive amount of
data produced at the edge of the network infrastructure. Moving this on the cloud for
performing data processing, pushes network bandwidth requirements to the limit and
introduces bottlenecks that could congest the network. Despite improvements of the
network infrastructure, distant cloud machines cannot guarantee acceptable latency
for IoT time-critical applications [79]. For this reason, in recent years research
focuses on moving the computation from the cloud (Cloud Computing) to the edge
(Fog Computing and Edge Computing) leveraging on resources deployed close to
data producers, although less performing than the cloud machines [77]. This is
expected to mainly reduce latency and save network bandwidth without neglecting

privacy and security of data [3].

3.3 Stream Processing

IoT sensors produce huge volumes of data and time-critical applications need to
process them in near real-time to perform aggregations (e.g., calculations such as
sum, mean, standard deviation), analytics (e.g., predicting a future event based on
patterns in the data), transformations (e.g., converting a data format into another),
enrichment (e.g., combining the data point with other data sources to create more
context and meaning) and ingestion (e.g., inserting the data into a database) [51].
As the sensors continuously send data at regular time intervals or when triggered
by specific events, the batch processing paradigm which collects and stores data
before processing it all at once in batches based on a schedule or some predefined
threshold, is not suitable for real-time processing and solutions deployed at the edge
due to their constrained resources [74, 65]. On the other hand, stream processing
represents a suitable solution because efficiently performs real-time processing as
soon as new data arrives from the source to the processing node.

In recent years, many frameworks have been developed implementing this computer
programming paradigm such as the famous Apache Flink [25], Apache Kafka [27],
Apache Spark [28] and Apache Storm [29]. Unlike the others mentioned, Spark is
not a native streaming engine but a micro-batching engine that means collecting
data and processing it together every few seconds, thus introducing small delays
[16]. A stream processing engine listens for new task requests and receives in input
a query denoting the operations to apply to a specific data stream. Then, it builds
a corresponding dataflow graph of operations and executes them on the related data

stream.
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Typically, stream processing operations are grouped into four categories [64]:

e Single record operations: process a single event in the input

e Multiple records operations: process multiple events in input through windows
o Join operation: merge multiple data streams into one

e Split operation: separate a data stream into multiple ones

Common single record operations are Filter (removing undesirable data) and Map
(transforming data) while common multiple records operations are analytics such as
Count and Average and apply to data collected in a specified window. A window is
a memory to look back at recent data efficiently.

The join operation is a challenging operation for the streaming framework because
multiple data streams can probably have different timestamps and therefore the
engine needs to align them. This is not surprising since time is a well-known problem
that has been studied by the distributed systems community for decades [33].
From the time of events, it is a natural consequence to derive an ordering, thus stream
processing operations also include the possibility to detect patterns by correlating
events based on timestamps and the "happened-before" relation. This means that
anomaly and fraud detections can be easily implemented without developing complex
machine learning models [70].

However, if the application needs sophisticated predictions, then machine learning

has to be introduced and there exist two main approaches:

e Develop and learn a model on the cloud, based on time series in a classical

way and then deploy it to the edge

¢ Develop and learn a model directly at the edge, based on streaming machine

learning [37]

3.4 MQTT

The Message Queuing Telemetry Transport (MQTT) is a standard lightweight
messaging protocol designed for the Internet of Things. It is based on the client-server
publish /subscribe message pattern and usually works over TCP/IP but can also be
supported by any network protocol that provides ordered, lossless, bi-directional
connections [8].

The server role is performed by the MQTT message broker that routes all incoming
messages from the clients (publishers) to the appropriate destinations (subscribers)

through topics. The MQTT client consists of any device (from a microcontroller up
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to a smartphone or a fully-fledged server) that runs an MQTT library and connects
to an MQTT broker over a network.
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Chapter 4

Framework

IoT large-scale deployments produce huge amount of data and there exist many
use cases such as face detection [54], smart public transportation [35], vehicle
communications [97], smart industry [13] and smart grids [24] that require IoT
processing at the edge to efficiently support these volumes in near real-time. A smart
grid is an electricity network that employs smart meters to realize an advanced
metering infrastructure involving end-users and aiming to ensure energy-efficient
resources with low losses and high levels of quality and safety of supply [17]. In
particular, smart water metering represents a milestone towards future smart cities as
provides accurate measurements about water flows, can detect and react to anomalies
(broken pipes, frauds in bills, ...) and enables the analysis of water demand that
helps to design urban water supply networks [11, 5, 6, 38]. While this analysis is
carried on using historical data and permanent storage, clearly, it is instead essential
to detect anomalies in real-time so that meters and/or actuators can react as quickly
as possible to an alert or show real-time consumption to end-users with low latency.

Starting from an existing smart water metering infrastructure over LoRaWAN

consisting of
e End Devices: smart water meters deployed along the water supply network,
o Gateways: Unidata routers geographically distributed in the city,
e Network, Join and Application servers: deployed on the cloud

I designed an edge-based framework to address well-known issues of latency and
data volumes of a large-scale cloud-based IoT deployment. So, instead of processing
sensors’ measurements through cloud computing, I enabled edge computing over
LoRaWAN through a Gateway-Device protocol that associates every connected end

device to at least a gateway.
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The idea is to realize a layer of Rendezvous Points (RPs) [68, 20] represented
by LoRa gateways (Unidata routers) in which data produced by end devices (water
metering sensors) are processed according to client requests (through stream pro-
cessing engines) at the best fit LoRa gateway for every end device. This is selected
by the sensor itself based on multiple metrics (such as RSSI, CPU-load, GPU-load,
RAM load, storage I/O statistics, network statistics, ...) by running a distributed
algorithm over LoRaWAN. So, data streams are dealt out on RPs based on their
proximity to the source (i.e. sensor) and on the workload they can handle (i.e.
available resources).

To allow users to access them directly at the edge, once an association between a
sensor and a gateway is performed, it is stored, together with the data profile of the
end device, both on the gateway and on the network server, since the latter represents
the entry point for external connections. A data profile consists of a set of attributes
that defines the properties of the related sensor. Hence, in a generic heterogeneous
deployment, it can report the type of the device, its mobility degree, the quality of
its measurements and so on. This means that queries can be submitted at the edge
simply specifying attributes that match the data profile of the end device of interest
and the network server provides the user with the proper IP address of the gateway
to which the end device is connected. Nevertheless, when the user’s client retrieves
the IP address of the LoRa gateway paired with the desired end device, it may be
unable to instantiate a stream processing task on such RP because its available
resources could not be sufficient for executing the query. Therefore, a mechanism
to scale out data streams securely on other gateways than the selected ones and
eventually scale-in is needed to elastically support the demand. Furthermore, to
respect the privacy of people, before accessing data collected by an end device, a
robust authentication method is required.

The contribution consists of the design, implementation and evaluation of the
Gateway-Device Coordination protocol and of the design of the user’s connection to
a LoRaWAN gateway to submit queries and process data according to its needs.

Since sensors are deployed in LoRaWAN, multiple sensors are in the area of
multiple LoRa gateways which relay messages between end-devices and a central
LoRaWAN network server that represents the point of connection between the
LoRaWAN and the Internet. The gateways have two networking interfaces and
communicate with sensors over LoRa and with the LoRa network server and peers

over IP (using either TCP or UDP transport protocols).

In this architecture, I can define 3 main roles:

e data producers,
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¢ data processors,
e data consumers

Producers are represented by the sensors which continuously generate data.
Processors are represented by the LoRa gateways which don’t limit their task to
forwarding data but first elaborate and then relay it.

Consumers are the users that through their clients connect to the gateways (over

IP) and assign processing tasks on generated data.
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Chapter 5

Gateway Activation Method

As described in section 3.1.4, no LoRaWAN activation method provides gateways
with session and integrity keys to decrypt/encrypt uplink and downlink traffic they
relay because all of the infrastructure-side cryptography happens in the LoRaWAN

network server or the application server.

As in the proposed framework gateways need to access the content of end device
frames in order to process them, the LoRaWAN standard poses an issue. To deal
with it, every LoRa gateway can be provisioned with the network session keys
(NwkSKeys) and application session keys (AppSKeys) of the sensors connected to it
and generally used by them to respectively communicate with the network server
and the application server. In this way, the gateway can decrypt incoming traffic,
process it and then re-encrypt and forward on the other connection (like a MITM
attack) if necessary. This implies that every network session key must be securely
stored on at least a LoRa gateway in addition to the expected end device and LoRa
network server and the same applies to the application session key.

Besides a storage problem that can be partially addressed by halving the occupied
bits by only storing the NwkSKeys or AppSKeys used to encrypt data, the overall
security of the LoRaWAN protocol is weakened because the same session key is stored
in multiple actors (at least three) compared to necessary two endpoints involved in
the communication, transferring a key is always a risky operation and the approach
is not compliant with defense in depth principle according to which a system should
use multi-layer protection.

Additionally, this naive approach only works for securing the stream of data sent by
the end device after the binding with the LoRa gateway is performed as it makes
no sense to provide every gateway with all the keys of the end devices when just
a subset of them will be used by a gateway. Moreover, it is also not sufficient to

distribute keys to gateways in the radio range of an end device that forward the
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initial frame to the network server when the end device joins the network because
the sensor can finalize an association with a LoRa gateway of level-1 or higher that

would not have got the session keys to decrypt/encrypt messages.

A better solution consists of a sort of strip MITM attack where the gateway uses
different keys for the two-side connections about an end device of which it takes
part: one with the end device and another with the LoRa network server. Hence,
the gateway should negotiate and store a session key for each association with an
end device and a single one (or multiple ones) for the connection with the LoRa
network server.

Moreover, to enable communication before an association takes place since no
message is sent in cleartext over LoRaWAN and to prevent other possible attacks to
the framework examined in chapter 7, every gateway must be also provided with
two additional key types: one shared among the end device and the LoRa gateways
in its radio range and another shared among the gateway and the peers in its radio
range belonging to the same cluster.

This means that every gateway needs at least two session keys to run the Gateway-
Device Coordination Protocol, which become at least four if it participates in at least
a cluster and covers at least an end device which results in at least 4K available bits
where K is the key length in bits (assuming constant key lengths and encryption,
authentication and integrity algorithms). Then, an additional session key is stored
for each end device that associates with it, and therefore, the first binding occupies
at least 5K bits that using 128 bits session keys and AES algorithms adopted by
LoRaWAN results in 640 bits. On the other hand, each subsequent pairing requires
only 128 bits. In the end, the number of bits required by session keys on a Gateway
is

2K+ cK+4+nK+mK=K (c+n+m-+2) (5.1)

where K is the key length in bits, ¢ the clusters of peers in its radio range in which
it participates, n are the end devices in its radio range and therefore a subset of N
end devices in the LoRaWAN network and m the associated ones.

Due to limited storage resources and the high number of end devices covered by a
single gateway in LoRaWAN); it can be considered to avoid generating a new session
key exclusively shared between the end device and the LoRa gateway to which
it is associated, linearly reducing the bits occupied by session keys and trying to
compromise with the security reasons. However, instead of avoiding generating the
association session keys, a better implementation consists in removing the common
session key about a sensor when it associates with a gateway since henceforth the

common session key is never used anymore. Indeed, in case of a new execution of
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the protocol from the end device, a new common session key is generated, as it
would be if the reboot were far away in time as the key would no longer be valid.
Nevertheless, must be also taken into account that the constrained resources of the
LoRa gateways may be insufficient to also storing the minimum required ¢ + m + 2

session keys.

The negotiation phase of a session key may be inspired to the join procedure
of the OTAA method rather than to Diffie-Hellman or IKE methods that rely on
public key infrastructure.

So, the gateways must be provisioned with root keys and these can either be the
same used by the end devices and the join server (i.e. the AppKey and the NwkKey)
or two different ones. Again the latter option should be preferred as it is reflected in
a negligible additional amount of occupied storage space on the end devices of 2K
bits where K is the key length in bits. Of course, these root keys are shared among
all sensors and gateways as there is no a priori knowledge of where a device will be

located.

Thus, once an end device is activated, it can generate two nonces (and not one
as in OTAA because it has to share the session key with many and not with just
another entity) from which, together with the root keys, can derive the common
session key to be used to provide CIA to data exchanged with neighboring LoRa
gateways. Hence, the end device spreads the newly generated nonces to the gateways
in its radio range via a GENERATE_COMMON_ KEY message encrypted with
one of the two root keys. The gateways will decrypt the message and generate the
common session key in turn.

As with the HELLO frame, to deliver the nonces with a high probability, the message

can be submitted multiple times and ACKs can be considered.

In the discussion about key generation and management, the last element of
the puzzle is the generation of a common session key among nearby LoRa gateways
belonging to the same cluster.

There is a big difference with the other session keys because this time the end device
is not involved in the communication and therefore the messages over LoRa are
exclusively downlinks. This means that if full-duplex radio is not available, then
to handle as many end devices as possible per gateway, the available transmission
time over LoRa for possible messages is reduced to the downlink time window that
may be about 10% of the time. Besides this LoRaWAN limitation, the situation is
completely dissimilar because there are multiple peers and only one should generate
a nonce to be used to derive the session key or they should collaborate in such

generation based on the methods of secret sharing.
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To face these issues, one can think that a straightforward and networking efficient
solution is to take advantage of the nonces generated by an end device and reuse
them with mixed or completely different root keys in a trade-off between security and
resources. However, should be remembered that multiple end devices are covered by
a gateway and a subset of them can run the algorithm in close intervals in time. So,
two gateways covering the same two end devices running the algorithm close in time
can receive different nonces when they receive the first message as a message sent by
the first device could be lost. Furthermore, two gateways having each other in the
radio range can have a different set of devices in their range. So, reusing end device
nonces generated for the other common session key type is not feasible.

Conversely, the solution consists of a gateways key agreement stage in which
nearby peers collaborate to create a session key. This can be achieved by cooperating
to create nonces in a scenario similar to secret sharing or running a key agreement
protocol over IP. Nevertheless, IP does not provide an accurate location, so, to
respect the locality constraint according to which a session key is exclusively shared
with peers in the radio range, gateways can share their IP addresses over LoRa
(instead of actual values to create nonces) and then generate session keys over IP
with one of the two methods aforementioned, thus overcoming LoRaWAN limitations.
In the end, it is reduced to a problem of building a common set of IP addresses
among peers.

The gateway activation procedure can be triggered by the first message broad-
casted by an end device during its activation method. So, in this phase, the gateways
in the end device range send downlinks to spread their IP addresses to nearby peers
and provide the end device with the Join Accept response once received from the
network server. In this way, gateways and at least a device activate simultaneously,
so that the gateway session keys are generated and guaranteed to be used before ex-
piration unlike if the gateway activation happens too before an end device activation.
If gateways and end devices are represented through a graph, all gateways in the
graph connected component to which the end device belongs are activated because
gateways in the range of the end device send their IP addresses to nearby peers in
their range and these do the same when receiving a triggering HELLO__GATEWAY
message. Of course, all gateway outside the graph connected component are not
activated and this is perfectly fine for the protocol objective because they are "in-
visible" to the end device algorithm run as they are out of range also for the chain
of neighboring gateways and therefore is useless to activate them until a sensor in
such a connected component will not be activated to avoid an early expiration of
the session keys. When sufficient retransmissions of HELLO_ GATEWAY message

are met, gateways can share collected sets over IP to detect clusters they belong to
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and run a key agreement protocol per cluster.

Clearly, the gateway activation process takes a longer time than the end de-
vice activation (n messages against two), so, once a sensor is activated, it can
wait some minutes before initiating a Gateway-Device Coordination Protocol run.
If in the elapsed time, a gateway activation is not already finished, the gateway
needs to respond to the end device to wait more before sending again the GENER-
ATE_COMMON_KEY message. In fact, if at least a gateway in the radio range
of the end device has not completed the activation, it does not have a common
session key for at least a cluster, so, it cannot securely forward the sensor’s requests
to neighbors. Additionally, the response may be not received by the sensor and
this situation can represent an issue due to the time uncertainty when the gateway
activation will finish. However, when the sensor needs to explore the nearby network
structure and a gateway is not still activated and its message to wait has been
lost, the gateway can respond again to wait to avoid introducing security risks.
Nonetheless, if multiple gateways belonging to a cluster are in the radio range of the
end device, then it is unlikely that a message claiming to wait will not be captured
by the sensor. Anyway, as stated above, this situation is very limited if the end
device wakes up a sufficient number of minutes (e.g. 5) after its activation to execute
the protocol.

A cluster of gateways is defined as the set of peers that are in each other range.
This property is essential in the common session key generation because it is not
sufficient to include in the collected list of G an IP address of GG3 provided by a
nearby gateway Gg, whose IP address is in the list, to assess that the new peer G3
is also a neighbor of GG1. In fact, even if the IP address of G5 could be not received
due to lost messages (retransmissions until a threshold makes this situation very
unlikely), an equally valid reason is that G7 and G3 are not in each other radio
range. Thus, if this is the situation, it is not correct for a gateway to create a single
session key to communicate with nearby peers because it can have in its radio range
peers that are not in each other range and if the gateways share lists as stated before,
this leads to a single session key where also non in range gateways are included.
Reasoning by induction, in a chain of gateways, a single session key is generated for
all the gateways belonging to a connected component of the graph, making useless
the keys whose objective is to cluster gateways.

So, the cluster property implies moving from a unilateral to a bilateral constraint
when adding a peer to a cluster and, of course, a gateway participated in at least a
cluster. In this way, every gateway needs to create at least a common session key per
cluster to separate the cluster communications. Clearly, this implies that to contact

neighbors, a message must be sent at least once and it is an issue for transmitting
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over LoRa due to its limitations. However, as at this stage gateways have collected
the list of neighbor IP addresses, they can directly communicate with peers over IP,
improving performance at the same time. So, gateways can only rely on what they
collect and should not include in their sets peers from which a message has not been
received. Therefore, each gateway shares the collected set over IP to IP addresses
included in it, and peers that receive the message evaluate the intersection among

the received set and theirs to detect clusters they belong to.
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Chapter 6

Gateway-Device Coordination

Protocol: Design

To minimize data traffic size and data accessing delays (maximizing the QoS)
by achieving the location-aware functionality, LoRa is particularly useful since
as any other radio technology its characterized by a limited range function of the
transmitter location. This is most pronounced in urban environments where the

covered area is close to the transmitter rather than in rural settings.

The idea is to realize a layer of Rendezvous Points (RPs) [68, 20] represented
by LoRa gateways (Unidata routers) in which data produced by end devices (water
metering sensors) are processed according to client requests (through stream pro-
cessing engines) at the best fit LoRa gateway for every end device. This is selected
by the sensor itself based on multiple metrics (such as RSSI, CPU-load, GPU-load,
RAM load, storage I/0O statistics, network statistics, ...) by running a distributed
algorithm. So, data streams are dealt out on RPs based on their proximity to the

source (i.e. sensor) and on the workload they can handle (i.e. available resources).

Has been proved that the traffic generated by an end device and traveling the
network infrastructure till the cloud is reduced a lot (1000x, from GB to MB per
day, in a city deployment of 50000 houses) if processed close to the source [5, 6].

In a large-scale deployment, the end devices can be grouped in multiple LoRaWAN
networks and if geographically extended, a sensor may have in its radio range only a
subset of all LoRa gateways of the network to which it belongs.

Furthermore, as the LoRa gateways in the sensor’s range may not be suitable for the
end device (a good load balancing should be achieved by distributing homogeneously
the sensors over RPs where possible), levels of indirection are needed to explore the

nearby network structure and make better decisions.
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Since the Received Signal Strength Indication (RSSI) parameter (like other
radio parameters) about a LoRa gateway is only available at the end device if the
gateway is in the sensor’s area (min sensitivity -120 dBm, max sensitivity -30 dBm
[61]), outside gateways RSSIs can be obtained through reachable gateways and then
properly calculating an indirect value which estimates the RSSI at the end device.
In the end, a chain of delegation can be built before selecting the best fit RP where
the end device asks reached gateways so far (current level i) to forward its request to

neighbors (next level i41) only if no received response meets the protocol metrics.

A more complex alternative consists in deriving a device position via triangulation
or multilateration of at least three LoRa gateways values which receive the device’s
messages [53]. In this case, more work is moved at the gateway side rather than
before because beyond forwarding frames and processing their contents, gateways
have to collaborate on performing calculations for each end device and LoRa gateway.
However, the perspective can be reversed and the collaboration may be implemented
among end devices. Anyway, LoRaWAN limitations can be a serious issue for such

an implementation.

In the proposed protocol, the decision to start and execute the algorithm on
the end devices rather than on the network server is due to the greater scalability
offered by a distributed version compared to a centralized one. The resulting benefit
is particularly noticeable in a deployment composed of hundreds or thousands of
sensors where centralized management may result in worse performance, even more
pronounced if the network server is not located at the edge.

For this reason and to better distribute end device associations on gateways, the
selection strategy of the best fit gateway is the responsibility of the end device is
running the protocol. Indeed, this allows to explore the nearby network infrastructure
if gateways in the radio range of the end device do not satisfy metrics and that would
not be possible if the selection strategy is carried on by the network server, choosing,
for example, as the best gateway one among the gateways in the end device’s radio
range from which it receives uplinks. Clearly, in such a case, a denser area leads to
overloading the affected gateways because there is no support from the neighbors, as
opposed to the proposed distributed solution. Although the network server strategy
can consider the number of associations performed by gateways by selecting the one
with the fewest bindings, inside or outside the end device radio range, it misses any
information about the location of the end device and the gateway because the IP
address by itself does not provide an accurate location of the device to which it is
assigned, unlike the more reliable RSSI used by the proposed solution to estimate

the distance to the transmitter.
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6.1 Protocol message definition

In the proposed Gateway-Device Coordination Protocol, the following set of
LoRaWAN messages is defined to associate an end device to its best fit RP:

« GENERATE__COMMON_ KEY: sent by a sensor to a RP to generate
a common session key and include two nonces of respectively three and two

bytes to be employed in a key generation process based on the OTAA method,
e« HELLO_ GATEWAY: sent by a RP to a peer to share its IP address,

« HELLO: sent by a sensor to a RP inside the radio range to request information

about its state (may optionally include the device EUI),

o« FORWARD: sent by a sensor/RP to a RP outside the radio range to indirectly
request information about its state (may optionally include the device EUT).
It is intended to be forwarded by gateways that already answered to the end
device in the previous level (or round) of the current algorithm execution while

to be responded by unreached gateways so far,

o STATS: sent by a RP to a sensor/RP in response to an end device request
and include information about the RP itself (such as the CPU-load, GPU-load,
storage I1/O statistics, network statistics) besides the RP’s address (or EUI),

« PATRING_REQUEST: sent by a sensor to the selected RP to associate
with and include the RP’s address (or EUI) and optionally the sensor’s EUI,

o PATRING__ACCEPT: sent by a RP to a sensor/RP in response to an end

device request to accept or refuse a pairing attempt,

« CONNECTION: used both for uplinks and downlinks. Sent by a sensor to
the LoRaWAN network server to notify it of the new association is taking
place and includes the RP’s address (or EUI). Sent by the network server in

response to a sensor to confirm or not the association,

¢« GENERATE__ASSOCIATION_ KEY: used both for uplinks and down-
links. Sent by a sensor to the selected RP with whom it is associating and
include the RP’s address (or EUI) and a nonce (as in the OTAA method).
Sent by a RP in response to a sensor to provide it with the second nonce from

which derive the session key,

« DATA__PROFILE: used both for uplinks and downlinks. Sent by a sensor
to the associated RP to upload the data profile of the sensor on it. The

communication consists of a data transfer where all payload is fit with a
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portion of the data profile that is fragmented in multiple messages. Sent by a

RP in response to a sensor to confirm the receiving of the previous fragment,

DATA: sent by a sensor to the associated RP to provide it with collected

measurements and the timestamp when these are collected.

Every message is therefore mapped to the port field of the LoRaWAN frame as

represented in table 6.1.

Table 6.1. LoRaWAN message mapping

H Port ‘ Message H

1 GENERATE_COMMON_KEY
HELLO_GATEWAY
HELLO
FORWARD
STATS
PAIRING REQUEST
PAIRING_ACCEPT
CONNECTION
GENERATE__ASSOCIATION_KEY
DATA_PROFILE
DATA

OO0 || U =W

—_
)

—_
[

Moving the focus on the IP infrastructure, the following set of messages (to be

sent exclusively over IP) is defined to associate an end device to its best fit RP:

NEARBY_ GATEWAYS: sent by a RP to the set of peers whose 1P ad-
dresses are collected through the receiving of HELLO__GATEWAY messages
spread over LoRa. It includes the whole set of nearby gateways IP addresses

in order to detect clusters by a common set of items,

SYNC__COUNTER: sent by a RP to the network server to update the

frame counters about an end device and includes the sensor’s address (or EUI),

FORWARD_ OVER__IP: sent by a RP to the appropriate destination (peer
or network server) to forward all messages dispatched by an end device over
LoRa except the HELLO message and to send the corresponding replies back
to the RP that contacted the recipient,

CONNECTION_ GATEWAY: sent both by RP and network server. Sent
by a RP to the network server to notify it of a new association between the
RP itself and a sensor and includes the sensor’s address (or EUI). Sent by the

network server to a RP to confirm or not the association,
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« PROCESSED_ DATA: sent by a RP to the network server to provide it
with processed sensor data and corresponding timestamp when was collected
to enable historical analysis on the cloud thanks to the permanent storage

layer

As for LoRa messages, each IP message is mapped to an upper layer TCP or

UDP port as represented in table 6.2.

Table 6.2. IP message mapping

H Port ‘ Transport Protocol ‘ Message H
5000 TCP NEARBY__GATEWAYS
5001 TCP SYNC_COUNTER
5002 UDP FORWARD_OVER_IP
5005 TCP CONNECTION__GATEWAY
5010 TCP PROCESSED__DATA

The choice between UDP and TCP depends on how important is that the
message is delivered as TCP implements retransmissions based on acknowledgments.
Specifically, only forwardings are transmitted over UDP as the burden of managing
retransmissions is entrusted to the sender. Processed data are sent over TCP/IP but
if the data streams represent a continuous massive volume, if the IoT application has
an acceptable tolerance to missing values, then data can be sent using the lighter
UDP protocol. In any case, both the LoRaWAN gateways and the network server

listen on the specific ports for incoming connections.

Due to LoRaWAN constrained networking resources discussed in section 3.1.2,
in order to support any data rate across all region specifications, it is necessary to
minimize the payload size of the LoRaWAN frame (i.e. employ at most 11 bytes).
To accomplish this, if the algorithm run makes use of device EUls, an idea could be
hashing them to at least halve their storage sizes (from 64 bits to 32 or fewer bits)
based on a collision probability influenced by the number of deployed end devices
and the collision resistance of the selected hash function which has to be not too
CPU intensive and therefore compatible with embedded systems. In the same way,
the gateway IP addresses must be hashed if using IPv6 as the addresses are 128
bits in size (16 bytes) while should not be necessary for IPv4 addresses that are 32
bits long. However, while hashing device EUIs may not lead to great optimizations
since the resulting codomain of the hash function should not be excessively less than
the number of deployed devices to avoid collisions with high probability, hashing

gateway IP addresses can provide an effective optimization as a few concentrators
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can cover very large-scale LoORaWAN networks. In any case, it is always a good idea

to minimize the frame sizes to achieve better networking performances.

As the reader may have noticed, the device EUI is optional in some messages of
the proposed protocol (such as HELLO and FORWARD) and is opposed to the device
address (i.e. use one of the two but not both) because the device EUI should not be
necessary in standard LoRaWAN deployments since the device address (included
in the LoRaWAN frame header as described in section 3.1.2) should be sufficient
to identify every sensor is requiring an association with a RP among concurrent
executions.

Indeed, although the device EUI is globally-unique while the device address is unique
only within the network the device belongs, so, the same address is probably received
by multiple devices on different networks [23], the latter represents a necessary and
sufficient condition to achieve the task as any LoRaWAN network runs the algorithm
independently (because an end device looks for a RP to which connect on the current
network where this is executed to accomplish the location-aware functionality). This
statement does not hold anymore in a particular very large-scale deployment where
the limited number of gateways in a network is insufficient to handle the very large
amount of data streams produced by IoT sensors and therefore a gateway capable to
accommodate the stream processing can be searched on a nearby external LoRaWAN

network.

The difference between the HELLO and FORWARD messages is the former is
intended for gateways in the range of the end device while the latter for out-of-area
gateways that are contacted by neighbors whose STATS responses have been already
collected and elaborated in the previous algorithm round.

To avoid already analyzed LoRa gateways to repeat sending the STATS message
during an algorithm execution and hence obtain an exactly once STATS receive
behavior, an idea is to build a blacklist of RPs to include in the FORWARD message.
Since the blacklist of RPs is incrementally created by an end device looking for a
LoRa gateway to pair with, its size (and therefore the payload size of a data frame)
grows over time. As in LoRaWAN frame fragmentation is not natively supported
(extensions are available but not suitable for the association task), a workaround
may be to limit the blacklist size to the available payload size but this may cause

issues or performance degradation that must be carefully evaluated.

Discarding the idea of the blacklist (due to its growing nature), an alternative
approach may be relying on the tuple storage (end device address, timeout) or (end
device EUI, timeout) when a STATS message is sent by a RP. If properly tuned, the

timeout can last for all the algorithm execution (should be short but pay attention
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to duty cycle restrictions), and once expired, the entry in the table can be removed
and the RP can be available again for future executions of the same sensor (for

scale-out tasks for example).

Another solution based on the same approach consists in replacing the timeout
with a request ID and therefore in storing the tuple (sensor address, request ID) or
(sensor EUI, request ID) on the LoRa gateway, where the request ID is included in
the FORWARD message and is unique during an algorithm run. The request ID
can be represented by a simple counter such as to obtain a repetition very far in
time using a few bits (e.g. 1 byte = 256 algorithm runs before a repetition occurs)
or implementing a pseudo-random ID generator.

Thus, it identifies a run of the protocol started by a specific end device and when
changes denote a new execution of the algorithm is fired.

A new run is expected to happen in rare cases such as an end device or gateway
battery substitution, an end device network rejoin, an end device or gateway failure
and similar. However, when the end device reboots, as the device address is
dynamically assigned by the join server, a new address can be received by the end
device and therefore the old request ID has no relation with the new algorithm run,
so, it could also be the same.

In other cases, a new protocol run can be expected to be executed at constant
intervals of time so that the tree structure composed of links (end device, selected
gateway) is regularly changed for obtaining variable node distributions over time
and consequent load balancing. Unlike before, here the end device address does
not change, so there is a relation with the old request ID and must be different to
distinguish among runs otherwise the gateways will not respond to HELLO and
FORWARD messages because they have already replied to such a request.
However, the RPs do not need to persistently keep an entry and perhaps update it
in the future. What matters is that the entry lasts for an entire algorithm run to
obtain the exactly once behavior, therefore, to save storage space a timeout can be
set to remove an old entry when the corresponding algorithm run is surely ended (e.g.
10 minutes, half an hour, 1 hour, ...) like the Time-To-Live (TTL) of a temporary

address.

In the last two proposals (timeout and request ID), the message size is fixed and
always fits the lowest available LoRa frame payload size (e.g. payload of 11 bytes
available and just 1 byte is used for the request ID). Besides, as stated before, small
data frames are always preferable for achieving better network performances.

As the first alternative is timeout-based while the second is ID-based, the latter may

be preferable (although it requires a slightly larger payload size of 1 byte) because
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its substantial temporal independence avoids possible issues related to network ones
by design. Furthermore, two different algorithm runs of the same end device can

always be detected regardless of their execution over time.

In addition to the request ID (which replaces the blacklist of gateways as a

method of obtaining exactly one STATS message receive per LoRa gateway reached
by the algorithm), the FORWARD message expects a sequence number such that
the storage of the tuple (sensor address, request ID, sequence number) or (sensor
EUI, request ID, sequence number) on the RP after sending the corresponding
FORWARD message avoids the creation of cycles between gateways that represent
infinite forwarding loops.
However, as described in section 3.1.2, LoRaWAN already defines a mechanism to
detect retransmissions through the Frame Counter field of the application layer
header of the LoRaWAN frame, so, it is redundant to add a custom sequence number
in the payload of the FORWARD message. Thus, in the proposed framework, the
frame counter management can be only adapted at the LoRa gateways that in the
original protocol is instead performed at the network server. In addition to this,
end devices detect and ignore duplicates as well, so, if gateways transmit messages
using independent downlink frame counters (i.e. each gateway manage a counter
per device) as done by the network server in LoRaWAN specification, the result is
the end device can receive invalid frames, therefore, increasing network traffic and
latency. Indeed, if peers manage counters independently of each other, they are not
aware of other transmissions (two gateways in an end device range may not be in
the range of each other) while actually, multiple entities are communicating with the
end device. Hence, when the gateway receives a message it is expected to respond to
(e.g. a FORWARD or PAIRING message), it replies with its own counter related to
the end device but its value can already be used by a peer in a previous transmission.
An example of this undesirable situation is presented in figure 6.1.

The problem is the communication is no longer 1-to-1, as in LoRaWAN specifi-
cation, but 1-to-n and this must be properly handled.

The proposed solution consists in realizing a shared downlink counter among peers
so that every downlink message will never result in a duplicate. An efficient imple-
mentation for class A devices consists in synchronizing the downlink counter of every
gateway with the uplink counter, as the former will never be greater than the latter.
This is also effective for out-of-range gateways which, although they have never sent
a frame to the end device before, directly include the correct counter value in the
header of the response.

Furthermore, the network server must be kept updated as well about the shared

downlink counter otherwise it cannot send MAC messages while the algorithm is
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Figure 6.1. Gateways independent frame counters example

LoRaWAN End Device LoRaWAN Gateway A LoRaWAN Gateway B

HELLO Message - 1

STATS Message - 1

HELLO Message - 1

STATS Message - 1

Received invalid frame counter (expected 2)

HELLO Message - 2

HELLO already received
from this end device

HELLO Message - 2

STATS Message - 2

HELLO Message - 3

HELLO Message - 3

HELLO already received
from this end device

PAIRING_REQ Message - 4

PAIRING_ACC Message -2

Received invalid frame counter (expected 3)

PAIRING_REQ Message - 4

PAIRING_REQ not intended for me
LoRaWAN End Device LoRaWAN Gateway A LoRaWAN Gateway B

running. So, the only additional traffic compared to the LoRaWAN standard is
represented by SYNC__COUNTER messages sent over UDP to synchronize the

network server downlink counter for a given end device.

Whereas the custom sequence number is not needed, it is necessary a method
for gateways located in the farther level of the algorithm round to decide when
incoming FORWARD frames must be replied to, ignored or forwarded at the next
level. To add this functionality to gateways, the sequence number is replaced by the
level number (or round number) so that the gateways can discover at which level
the current round is collecting STATS messages. Therefore, by keeping the request
ID constant during an algorithm run and incrementing the level number step by
step, the end device can collect out-of-range STATS messages leveraging on nearby
gateway radio ranges.

Of course, this cannot be achieved only using the request ID. Indeed, if only a



6.1 Protocol message definition 40

fixed request ID is used, then gateways do not know when forwarding a frame to
the next level and when it changes from round to round, so, either the gateways will
never forward the message to neighbors but only respond with STATS messages
once or the gateways after a STATS message has been sent, forward the incoming
message from the end device to neighbors without distinguishing between rounds. If
instead, the request ID changes between rounds, then gateways always reply with a
STATS message as if a new run of the protocol was started.

Conversely, if only the level number is implemented, then gateways can handle
with success only a single execution of the algorithm because can distinguish among
rounds but not among runs, so, a new message should be defined to restart the
process.

Furthermore, introducing the level number may be no longer necessary to have
two messages to differentiate between the first level and others; the only motivation
to keep them separated is to halve the payload size from two bytes (FORWARD) to
one byte (HELLO) to reduce traffic in the first round.

Once a pairing is accomplished, the LoRaWAN network server has to be warned
about it in order to update its table of associations. This table is fundamental to
make the network server able to redirect a user client, that wants to access specific
sensor data in real-time, to the gateway that is in charge of the processing. Indeed, as
explained in section 3.1.1, the network server represents the entry point for external
connections. This feature, through which the network server has a complete view
of the LoRaWAN network state and therefore of the current tree of connections
whose links are represented by the associations between end-devices and gateways,
that allows making a service addressable is commonly offered by Software-Defined
Networking (SDN) technologies by disassociating the data plane from the control
plane. This functionality is achieved by sending a CONNECTION_ _GATEWAY
message from the gateway to the network server specifying the sensor address (or
EUI) to which it is associating and storing the mapping in a routing table like storage
structure. Moreover, the network server adds to the new entry the EUI of the device
so that a user does not need to know the underlying LoRaWAN infrastructure to
access its data.

However, before adding a new association to the table, the network server has to
be certain that it is a real and non a fake attempt, so, awaits the CONNECTION
message from the end device for verification. To describe how this is managed in
the details, the reader is pointed to chapter 7 where a security analysis about the

proposed protocol is carried on.
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6.2 Tentative algorithm

In light of these considerations, a tentative algorithm to approximately summarize

what has been discussed so far about pairing a sensor with its best fit RP could be

the following:

1.

The sensor wakes up t € [0, 600] seconds after the OTAA method is completed
and generates two nonces from which it derives the corresponding common
session key. Then, it sends a GENERATE__COMMON__KEY message to the

LoRa gateways in its radio range including the nonces,

. Each LoRa gateway in the sensor’s area that receives the message verifies if it

has valid common gateway session keys (one per cluster). If the check succeeds,
then the gateway derives the common session key with the sensor from the
provided nonces and sends back a GENERATE_COMMON__ KEY message
including an ACK, otherwise, it sends a GENERATE_COMMON_KEY
response including a NACK. Then, the network server is notified about the
uplink and downlink counter values of the sensor via a SYNC_COUNTER

message,

The LoRa network server receives the SYNC__COUNTER message and updates

its uplink and downlink counters for the sensor of interest,

The sensor listens for gateway responses and if one includes a NACK, then it
awaits ¢ € [180, 360] seconds before repeating 1., otherwise it sends a HELLO

message to the LoRa gateways in its radio range,

. LoRa gateways in the sensor’s area that receive the message reply with a

STATS message (at least a gateway should be present otherwise messages from
the sensor will be definitely lost) and store the tuple (sensor address, request
ID, 0) or (sensor EUI, request ID, 0) to keep track that they have responded
to such sensor in the current algorithm execution. Then, the network server
is notified about the uplink and downlink counter values of the sensor via a
SYNC_COUNTER message,

The sensor progressively collects the STATS responses and if a LoRa gateway
satisfies the metrics requirements (i.e. CPU-load, RSSI, ...), then the sensor
selects the best one and goes to 11., otherwise asks to the LoRa gateways,
by sending a FORWARD message specifying the next level of RPs it wants
to access, to contact nearby gateways in their ranges, but out-of-area for the

sensor, in order to evaluate other STATS messages,
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10.

11.

12.

LoRa gateways in the sensor’s area that receive the sensor’s request (level-1)
forward it to their neighbor gateways (level-2). Then, store an entry (sensor
address, request ID, level number), or (sensor EUI, request 1D, level number)
if the sensor EUI is included in the message, to remember that the FORWARD

message for such sensor in the current algorithm run and level has been sent,

The (level-2) LoRa gateways receive the sensor’s request and look for a matching
entry (sensor address, request ID, level number) or (sensor EUI, request 1D,
level number) in their tables. If a match is found, then the incoming message
is ignored to obtain exactly once receive behavior, otherwise, they reply to
the (level-1) gateways with a STATS message and store the pair (sensor
address, request ID, level number) or (sensor EUI, request ID, level number) to
remember that the STATS message for such a sensor in the current algorithm
execution has been sent. Then, the network server is notified about the uplink

and downlink counter values of the sensor via a SYNC__COUNTER message,

The (level-1) LoRa gateways receive the responses of nearby gateways but out
of range for the sensor and if and only if they find a matching entry (sensor
address, request ID) or (sensor EUI, request ID) in their tables (i.e. they have
previously sent a FORWARD message about the sensor), forward the STATS

messages to the sensor itself,

The sensor repeats 6. and in case of unsuccessful, a chain of delegated gateways

is created until a suitable gateway is found,

When a LoRa gateway is finally selected, the sensor requests an association
with it by sending a PATRING__REQUEST message including the RP’s address
(or EUI) and optionally its own device EUI,

The (level-1) LoRa gateways receive the sensor’s request and each one verifies
if the message is intended for it. If this is not the case, the message is
forwarded to the proper IP address via a FORWARD__OVER,_ IP message,
otherwise, the selected gateway evaluates the request and responds to the sensor
confirming or refusing it via a PAIRING__ ACCEPT message, encapsulated into
a FORWARD__OVER,__IP packet if it not in direct contact with the sensor. If
the pairing is accepted, the gateway notifies the network server about the new
association is taking place through a CONNECTION__GATEWAY message
including the sensor’s address. Then, the network server is notified about the
uplink and downlink counter values of the sensor via a SYNC_COUNTER

message,
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13.

14.

15.

16.

17.

18.

19.

The sensor receives the PATRING__ACCEPT message from the selected LoRa
gateway (directly or indirectly) and if the response is positive, then sends a
CONNECTION message to the network server including the selected gateway
address, otherwise repeats 6. to verify if some other gateway in the current

round meets metrics and to eventually explore the next level of gateways,

The LoRa network server receives the CONNECTION__GATEWAY message
from the selected LoRa gateway and stores the possible association (sensor’s

address, RP’s address) in the corresponding table,

The (level-1) LoRa gateways receive the sensor’s request that is forwarded to
the LoRa network server via a FORWARD OVER_ IP message,

The LoRa network server receives the CONNECTION message from the
sensor through a LoRa gateway and compares the newly received association
with the temporary one received from the selected gateway and stored in the
corresponding table. If they match, then the binding is confirmed, otherwise,
entities are alerted that the pairing has been refused. In both cases, the
gateway is notified with a CONNECTION__GATEWAY message while the
sensor with a CONNECTION message,

The LoRa gateway receives the CONNECTION _GATEWAY message from the
network server and if it is positive, then stores the entry (sensor’s address, null)
in the corresponding table of paired devices, otherwise, a negative response
means that the two endpoints do not agree on the pairing and it can only
occur if a session key is compromised and an attack is taking place. Section

7.2 discusses possible countermeasures,

The sensor receives the CONNECTION message from the network server
through a gateway in its radio range and if the response is positive, then
generates a nonce and include it, together with the selected gateway address,
in a GENERATE__ASSOCIATION__KEY message, otherwise, the sensor is
alerted an attack is taking place as an unexpected event occurs involving a
session key is compromised. Possible countermeasures are discussed in section
7.2,

The (level-1) LoRa gateways receive the GENERATE ASSOCIATION KEY
message from the sensor and repeat the check at 12. including the possible
forwarding over IP to eventually redirect the request to the right destination.
When the selected gateway receives the message, it generates a nonce, from
which, together with the other retrieved from the message, derives the rel-

ative session key. After having securely stored it holding a reference with
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20.

21.

22.

23.

24.

25.

26.

27.

the paired device, the selected gateway includes the generated nonce into a
GENERATE__ASSOCIATION__KEY message, possibly encapsulated into a
FORWARD__OVER,_ IP packet if the message was received over IP, and sends
it back. Then, the network server is notified about the uplink and downlink
counter values of the sensor via a SYNC__COUNTER message,

The sensor receives the GENERATE__ASSOCIATION_KEY message from
the selected RP (directly or indirectly) and retrieves the gateway’s nonce
from which, together with the previously generated nonce, derives the relative

session key,

The sensor sends the first fragment of the data profile that fits into the
DATA_PROFILE message to the selected RP,

The (level-1) LoRa gateways receive the DATA PROFILE message and for-
ward it to the correct destination using the FORWARD__OVER_ IP message
but the selected LoRa gateway which stores the fragment of the sensor’s profile
in the entry (sensor’s address, sensor’s profile) of the corresponding table of
paired devices and prepares to receive the next. Then, the network server

is notified about the uplink and downlink counter values of the sensor via a
SYNC__COUNTER message,

The sensor repeats 21. until the entire data profile is uploaded on the selected

gateway,

The LoRa selected gateway repeats 22. and spreads the data profile to the
network server via a DATA_PROFILE message once all fragments are received

and stored in the relative entry,

The LoRa network server receives the DATA_PROFILE message from the
LoRa gateway and stores it in the association entry (sensor’s EUI, gateway

address, sensor’s profile),
The sensor collects measurements and broadcasts them via a DATA message,

The (level-1) LoRa gateways receive the DATA message and forward it to
the correct destination using the FORWARD__OVER_ IP message but the
selected LoRa gateway which processes it and then sends the elaboration to
the network server via a PROCESSED__DATA message. Then, the network
server is notified about the uplink and downlink counter values of the sensor
via a SYNC__COUNTER message,
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28. The LoRa network server receives the message from the gateway and forwards

it to the cloud for persistent storage,
29. The sensor repeats 26. until a LoRaWAN Rejoin takes place,

30. The LoRa gateways repeats 27. until the corresponding message is received

from the sensor,

31. The LoRa network server repeats 28. until the corresponding message is

received from the gateway.

In writing the steps of the algorithm, the continuous updates of the frame
counters about an end device by the network server when a SYNC__COUNTER

message is received, are reported once at 3. to not lengthen the description further.

6.3 Forwarding of messages

When a gateway receives a FORWARD message or messages sent by an end

device when finally selects a RP, any possible forwarding on the two interfaces (LoRa
and IP) of the subsequent packets must be properly managed.
The FORWARD message is the only frame that is supposed to be transmitted by a
gateway to a peer over Lora as nearby gateways but out-of-range for the sender end
device are expected to be contacted. However, as the framework includes a gateway
activation process during which gateways store the list of neighbors, these lists can be
reused to send the FORWARD message to nearby gateways by encapsulating it in a
FORWARD_ OVER_ IP message. Vice versa, for the other messages to be forwarded
there is no reason to work under the LoRa limitations (in terms of range, bit rate,
duty cycle and so on) when IP connectivity is available and allows to achieve better
networking performances. Additionally, LoRa is a radio technology and therefore
the frames are always sent in broadcast while the message can be encapsulated into
an IP packet and forwarded directly to the next hop to the destination.

Even in the proposed framework, the broadcast communication is not suitable
for messages sent by an end device and only intended to be elaborated by the
selected gateway (i.e. PAIRING_REQUEST, GENERATE ASSOCIATION_KEY,
DATA_PROFILE, DATA).

As the end device cannot send the message to the chosen RP in a one-to-one
channel, to express its decision it has to include the RP address (retrieved from
the previous STATS message received) in the PAIRING_REQUEST and GENER-
ATE__ASSOCIATION_KEY messages such that these are only processed by the

gateway of interest. In fact, the gateway can compare its IP address and the one
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included in the payload of the message and if they match it is the selected gateway
and therefore it has to evaluate the request, otherwise, the frame must be forwarded
to the proper gateway by encapsulating it into a FORWARD__OVER_ IP packet.

However, this works until frames transmitted by an end device are encrypted
with the common session key shared with gateways in its radio range as for-
warding is accomplished by looking at the PAIRING__REQUEST and GENER-
ATE__ASSOCIATION__KEY payloads.

Since multiple LoRa gateways are typically in the end device’s radio range, it
is highly probable that duplicates of the message are sent over IP to the right
destination but the selected gateway can easily detect them through the uplink
counter included in the header of the LoRaWAN frame.

When a session key is agreed exclusively between an end device and the chosen
gateway, other gateways cannot inspect packet content anymore, so they need
another method to forward data to the final destination. A solution is to store
associations also in the gateways that are in the end device’s area, so, when a
GENERATE__ASSOCIATION__KEY is broadcasted, they know which is the pairing
is taking place and therefore can add an entry (end device address, gateway IP
address) in an appropriate routing table. In this way, when gateways receive packets
from such end device address, then they know how they must be forwarded.

Alternatively, in a trade-off between storage and security, an option is to suppress
the agreement of an exclusive session key saving n(Agp + Agw) =~ 8n bits where n
are the end devices in the radio range of a gateway and a subset of N end devices in
the LoRaWAN network, Agp the length of the sensor’s address in bits and Agw
the length of the gateway’s address in bits.

Another possibility consists in using the exclusive session key without storing
the associations on level-1 gateways by introducing an additional ARP-like message
exchange over IP to know to which gateway the frame must be forwarded given the

address. Clearly, this results in higher traffic and latency.

6.4 Number of replies & lost messages

An important point of the algorithm regards how many replies a sensor has to
collect before selecting a RP because it doesn’t know how many RPs have been
contacted in the current round. The end device can start a timeout when a STATS
message is received and if no more responses arrive in such time window, it can
select the best RP found so far.

If none, the sensor can send the FORWARD message for starting the next round.

Another approach implies an initial phase in which at each round the RPs send
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a HELLO message in response to an end device HELLO or FORWARD. In this case,
the sensor knows how many messages has to expect and awaits them before making
a decision.

Clearly, in both solutions, a related problem is represented by lost messages. In
the first approach, a lost (or a delayed) HELLO or STATS message may lead to a
sub-optimal choice of the RP to pair with the sensor.

In the second approach, a lost message may lead to a sub-optimal pairing (sensor
HELLO or RP HELLO lost) or to a deadlock (RP HELLO received but STATS
lost), so it must be properly handled.

So, since the protocol has to deal with frame loss, another idea is introducing
ACK messages where the end device after receiving a STATS message acknowledges
the corresponding LoRa gateway. If a RP message is lost, the gateway doesn’t receive
the corresponding ACK in a time window and resends the STATS message. At the
same time, the end device starts a timeout when a STATS message is received. This
increases network traffic and is still susceptible to network delays but if timeouts
are fine-tuned should always lead to making better decisions than not employing
message confirmation (best-effort strategy).

However, it should not be forgotten that the end device communicates in broad-

cast, so, the ACK for a received frame must include the RP addresses (or EUIs) to
which the acknowledgment is referred.
The introduction of a list is subject to the payload size issue discussed in section
6.1 but there is one important difference with the blacklist of RPs: unlike the last
mentioned which persists over rounds, the ACK list is round specific. This means
that such a list covers fewer RPs but may still not fit the payload size of the LoRa
frame. To solve this, a sequence of bits denoting continuation (like an ellipsis) may
be employed such that RPs that do not find their ID in the list, restart the timeout
for the message confirmation without resending the STATS message and waiting for
the next uplink frame. The implementation depends on the LoRa class in which the
end device operates because in class A it is impossible to listen to multiple downlinks
during the receive windows, so, a list is never sent in uplink but just an address.

As described in section 3.1.2, LoRaWAN already gives the possibility to require
confirmation on uplink and downlink data frames via the FType field of the MAC
header. Therefore, as for LoRa frame counters and custom sequence numbers, it may
not be necessary to define custom ACK messages but it should be remembered that
in the original protocol confirmations are managed by the end device and the LoRa
network server while in the proposed framework the LoRa gateway must implement
such verification.

It follows that standard ACKs work with lost STATS messages because represent
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a one-to-one communication where a LoRa gateway sends a frame to a single
destination but don’t work with lost HELLO messages as they are broadcasted by
an end device. Since the message is sent on a one-to-many channel, the ACK can
only ensure that one RP has received the frame but does not say anything about
who sent the confirmation and any possible missed receiving of other RPs.

Abandoning the idea of ACKs, a straightforward fix consists in repeating the
submission of the end device’s message n times to reduce the frame loss rate to a
very small value. The number of repetitions must be derived empirically because it is
influenced by the deployment in terms of the geographical distribution of devices and
morphology of the territory but also by unpredictable events (e.g. cars movement,
flocks of birds, ...).

The ideal situation is such that the probability of missing frames is close to 0 or,
in the proposed framework, the end device knows the number of RPs in its radio
range and therefore the number of expected responses to detect missing ones. As
the first variable is location and events dependent, the system can only deal with
the second to get closer to a perfect delivery of messages broadcasted by a LoRa
end device.

To obtain an always valid solution without adjusting a parameter for each deploy-
ment, instead of elaborating an algorithm to find nearby gateways, the framework
can exploit end device radio capabilities again. Indeed, in the Gateway-Device
Coordination Protocol, the sensor evaluates among metrics the RSSI of the received
STATS message. If the end device already had a list of radio devices (exclusively
gateways is preferable) in its radio range with associated RSSIs before sending the
HELLO message, it could easily check if the number of expected STAT'S responses
is reached. If at least one is missing, the sensor would repeat the sending of the
HELLO message based on a maximum retry value to avoid getting stuck in an
infinite dispatch attempt.

Such a list can be built passively (like a smartphone or a personal computer displays
the available Wi-Fi networks with related signal strengths) if LoRa gateways period-
ically send heartbeat frames that notify the end devices of their presence.

The same applies to the FORWARD message in any LoRaWAN broadcast commu-
nication.

Hence, must be assessed whether a repetition of a frame is preferable in case
of a broadcast transmission or a regular downlink sending to notify that a LoRa
gateway is still operational. As the latter, although very reliable, requires continuous
sending and an initial configuration phase in which the end device must listen for
incoming messages to collect RSSIs of nearby gateways, from a point of view of

battery life, network traffic and LoRaWAN limitations (in case of full-duplex radio is



6.4 Number of replies & lost messages 49

not available, 90% of transmission time is dedicated to the end devices and remaining
10% to the gateways), a probabilistic approximation resulting from simple repetition
of uplink frames may be suitable for the proposed protocol to ensure that all intended
devices are reached with a very high probability.

Furthermore, to improve the probabilistic solution, instead of just repeating
a fixed number of times the same HELLO or FORWARD frame, the end device
can additionally resend it until no reply is received, which means all RPs in the
current round have received the message or some RP has never received the request,
although, it is unlikely after n retransmissions. For class A devices this approach is
essential to collect as many STATS messages as possible but this does not ensure
that a RP response is received because, while the uplink is very likely to be listened
to by a gateway at least once, the corresponding downlink can be lost if sent once.

To avoid this situation, also STATS messages can be repeated multiple times on
the same philosophy of the corresponding uplink. However, this introduces additional
traffic and if the end device operates in LoRa class A, there is still no guarantee
that a message is received with a high probability although retransmitted because
another gateway message can be accepted twice or more and the sending of the
message requires be tuned so that it is received after a possible uplink. To stop a
gateway to retransmit a downlink and give the opportunity to other peers contacted
by the end device to respond to it, custom ACKs composed of the RP’s addresses
are necessary. At the same time, this does not ensure that the gateway will stop
because if the end device does not find a suitable gateway in a protocol execution,
then it sleeps a few hours before beginning a new run and therefore the downlink
can be repeated uselessly. This means that if downlink retransmissions are expected,
these must be upper bounded and since an end awaits just a receive window after
the retransmission parameter is met to make a decision, then 1 or 2 attempts are
sufficient. Indeed, if the messages are not received by the end device, they result in
a small increase in traffic and if the sensor is still active it continues to broadcast
messages and the gateway will probably receive a request to be answered.

In this case, the repetition of the HELLO and FORWARD messages with different
ACKs in the payload, clearly implies that the default frame counter of LoRa frames
is incremented each time because the retransmission includes a different payload.
Even if the payload was not changed, by keeping the NbTrans parameter of the end
device with the default value of 1, retransmissions of the same frame include different
uplink counters, so, the custom sequence number, already excluded in section 6.1, is
never Necessary.

Nonetheless, the last RP response can be missed as the probability of losing a

message from a single gateway is greater than losing two messages from two gateways
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and so on. Therefore, to ensure also the last STATS message is received, the time
window in which the end device waits for a reply before selecting a gateway when
STATS messages are no longer received can be doubled to halve the probability of
losing the response. Of course, this does not apply to LoraWAN class A devices.

6.5 Concurrency

Another important aspect to discuss is the concurrency of the algorithm due
to its distributed nature. Imagine the situation in which a RP is currently free or
sufficiently free to meet the end device’s metrics and multiple concurrent executions
of the Gateway-Device Coordination Protocol select the same RP. It may happen
that the RP does not have enough resources to handle all sensors’ requests and/or if
the sensors had been aware of the other pairing attempts, perhaps the constraints
would no longer have been valid for some of them after the i-th association with

such RP and instead of overloading it, another would have been selected.

The issue is that the sensor may have an old view about the selected RP’s state.
The RP instead is obviously always aware of what happens itself (incoming pairing
attempts) and has the actual and updated view of its state. So, a possible solution
is that an RP accepts pairing requests till a threshold is reached by responding with
an ACK message while further requests are refused and responded with a NACK
message denoting a busy state of the RP itself. Clearly, this requires an extra effort
by the RP itself because it needs to monitor its resources before accepting a pairing
request but allows the protocol to better distribute end devices among nearby RPs.
In fact, the end device which receives a negative response continues the research of

an RP to associate with as if the selected RP had not passed the metrics check.

Unlike the ACK message, NACK is not natively defined in LoRaWAN but the
ACK flag of the LoRaWAN header can be reused together with an additional payload
of one bit denoting the NACK flag. This means sending a PAIRING__ACCEPT
message with the ACK flag set and including in the payload the NACK flag. Anyway,
to make the end device easier to understand, the gateway can avoid setting the ACK
flag of the response and instead only use a bit of the payload to denote NACK (0) or
ACK (1). This makes the message handling easier and more homogeneous against a
payload larger than a single bit.

Nevertheless, this approach is effective only when a gateway is closer to its limit,
so may happen that the load results unbalanced if the thresholds are too high or
during the evolution of the system. A better approach considers detecting variations

of the gateway state between the time ¢ in which the STATS message was received
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by an end device and the time ¢ 4+ when the PAIRING__REQUEST message arrives
at the same gateway. Indeed, the current state of the gateway can differ from the
one in the past on which the end device has based its decision (e.g. new associations
and/or new client connections). To deal with this, the idea is to notify the end device
about the new gateway state when a PAIRING__REQUEST arrives at a gateway
with a timestamp denoting when the STATS message was received such that at least
a variation in the ¢ time interval between the present and the moment in the past
is detected. Of course, this requires logging the timestamp on the gateway when
an association occurs. So, if nothing happened in the time interval, then the end
device decision is still based on a valid state of the gateway and can proceed with
the algorithm as usual. Otherwise, the end device is notified of the new gateway
state via a PAIRING__ACCEPT message including a STATS UPDATE flag and
the content of a STATS message except the IP address because the end device
already collected it. Therefore, the end device can elaborate it, select a new gateway
from the updated pool of STATS messages, send a new PAIRING_REQUEST and
continue as the algorithm states.

Clearly, this last approach replaces the task of the gateway to monitor its
resources with the timestamp comparison because an end device if it is updated
about a state will never choose an already busy gateway.

The additional STATS UPDATE flag further validates the decision of using
custom ACK/NACK flags because in this way the new functionality can be easily
entered into the protocol without any upheaval. Thus, the single-bit flag is replaced
by a two-bits flag to represent the 3 required states: NACK (0), ACK (1) and
STATS_UPDATE (2).

In the end, in a typical LoRaWAN deployment, it is common for end devices to
wake up at different moments in time to initiate the procedure to join the LoRaWAN
network. Of course, this reduces concurrent executions of the Gateway-Device
Coordination Protocol and if the time differences are large the algorithm becomes
almost sequential. The sequentiality implies minimizing the number of messages
that an end device needs to exchange to pair with a gateway because decreases the
potential issues of concurrency.

To have a full sequential distributed algorithm, reducing the number of messages
and increasing the execution time of the entire setup, devices should transmit one
by one. This can be accomplished involving the network server that decides during
the entire setup execution time who can perform the exchange of messages while the
others sleep.

Another alternative to the gateway notification in case of variations about the

gateway state, without converting the algorithm to a sequential one, is to use the
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LoRaWAN Rejoin mechanism to re-run the protocol and thus alter the load balancing.
The number of messages is greater than the introduction of the STATS_ UPDATE
flag but, as explained in section 6.1, such a reboot of the system can be launched
periodically to change the graph of end device distributions over time, obtaining a

dynamic framework rather than a static one.

6.6 LoRaWAN Device Classes analysis

Although class A is preferable due to its limited power consumption as explained
in section 3.1.3, its reception behavior poses a problem for the Gateway-Device
Coordination Protocol because the end device which sends an HELLO message
expects multiple responses but only the first detected and intended for the end

device is received. At this point, two opportunities are remaining in class A:

e to modify the listening behavior of the end device, deviating from the original
protocol intended for a one-to-one communication with the network server, to

support many-to-one communication in receive windows

e to adapt the algorithm to the constraints of the LoRaWAN protocol.

As in the first case, the algorithm can proceed as specified in previous sections but at
the cost that the effort needed to implement it may be high and energy consumption
increased, it is better to follow the second approach. So, in LoRaWAN class A, as
mentioned in section 6.4, the idea of the list of ACKs to include in a repetition of the
HELLO and FORWARD messages to acknowledge the LoRa gateways which sent the
STATS message in response to the reception of a previous HELLO or FORWARD
frame must be abandoned in favour of including just an ACK per message in a
retransmission of the aforementioned uplinks. Of course, this negatively affects the
algorithm performances because if n gateways are reached by the sensor, then n
HELLO messages must be sent to open the relative receive windows, resulting in
increased uplink traffic and execution time rather than the first option in which a

single uplink or m < n uplinks trigger n responses.

However, considering other LoORaWAN device classes as well, there exists also a
third choice in addition to the two just argued since classes are not static and an
end device can switch between them as it prefers through decisions made at the
application layer. So, taking advantage of this, the end device can work in class B
or C while running the Gateway-Device Coordination Protocol and in class A when

completed for data transmission.

Analyzing the algorithm performances, class C is preferable as it is possible to

receive multiple messages while the end device is listening.
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Therefore the end device can switch to class C immediately before starting the
protocol and operate in this class until a LoRa gateway is not selected. When finally
chosen, the end device can switch to class A for sending the PAIRING _REQUEST
message and receiving the subsequent reply.
If a NACK is received and no other RP satisfies the end device metrics in the
current round, then it can come back to class C and continue the search for an RP.
Otherwise, since the communication between the sensor and the associating gateway
is henceforth one-to-one, the end device can continue working in class A to save the
battery.

In conclusion, working in class A minimizes energy consumption at the cost of
a greater number of messages and latency while class C minimizes the latter at
the cost of increased energy consumption. Since latency is essential when an end
device collects measurements and these must be processed by the best fit associated

gateway, working in class A during the set up is acceptable.

6.7 Final algorithm

Based on the above observations, the algorithm to associate an end device with

its best fit gateway needs to be modified as follows:

1. The sensor wakes up ¢ € [0,600] seconds after the OTAA method is completed
and generates two nonces from which it derives the corresponding common
session key. Then, it sends a GENERATE__COMMON_ KEY message to the
LoRa gateways in its radio range including the nonces and the timestamp

when it expires,

2. Each LoRa gateway in the sensor’s area that receives the message verifies
if it has valid common gateway session keys (one per cluster). If the check
fails, it warns the sensor to wait a bit via a GENERATE__COMMON__KEY
response including a NACK, otherwise, the gateway verifies if the message
is expired. In such a case, the gateway ignores the message, else derives the
common session key from the nonces provided by the sensor and sends back
a GENERATE_COMMON__KEY message including an ACK if and only if
a sufficient number of corresponding uplinks have been received to give the
opportunity to the sensor to listen a NACK. Then, the network server is
notified about the uplink and downlink counter values of the sensor via a
SYNC_COUNTER message,

3. The LoRa network server receives the SYNC__COUNTER message and updates

its uplink and downlink counters for the sensor of interest,
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4. The sensor listens for gateway responses and if one includes a NACK, then
it awaits ¢t € [180,360] seconds before repeating 1., otherwise it continues
to broadcast the GENERATE_COMMON__KEY message until a threshold
of retransmissions is reached and at least an ACK is received. When this
condition is satisfied, it sends a HELLO message to the LoRa gateways in its

radio range requiring message confirmation,

5. The LoRa gateways in the sensor’s area that receive the message reply with
a STATS message characterized by the RP’s IP address (or EUI) besides
the gateway resources state (at least a gateway should be present otherwise
messages from the sensor will be definitely lost). Then, they store the tuple
(sensor address, request ID, 0, false) or (sensor EUI, request ID, 0, false) to
keep track that they have responded to such sensor in the current algorithm
execution but they have not received the corresponding ACK. Then, the
network server is notified about the uplink and downlink counter values of the
sensor via a SYNC__COUNTER message,

6. The sensor collects the first response it receives and in the next transmit window
repeats the submission of the HELLO message including the IP address (or
EUI) of the RP to acknowledge based on the listened frame,

7. The LoRa gateways in the sensor’s area that receive the HELLO message for
the first time performs 5. while the others compare the RP’s TP address (or
EUI) retrieved from the frame with their identifiers. If the check succeeds,
the RP takes note that its STATS message has been correctly delivered by
setting the boolean value of the entry to true so that it never sends again the
STATS message in the current algorithm execution, while if the check fails the
RP has not received the ACK in the dedicated time window, so, sends the
STATS message again. Then, the network server is notified about the uplink
and downlink counter values of the sensor via a SYNC_COUNTER message,

8. The sensor repeats 6. and gateways 7. until the repetitions parameter of
the end device is satisfied and no STATS message is listened to in a receive

window,

9. Once no STATS message is captured in the last receive window, the sensor
evaluates collected responses looking for a LoRa gateway that satisfies the
metrics requirements (e.g. CPU-load, RSSI, ...). Then the sensor selects the
best fit one and goes to 19., otherwise asks the LoRa gateways in its radio

range (by sending a FORWARD message including the next level it wants
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10.

11.

12.

13.

14.

15.

to access) to contact some other nearby gateway in their ranges in order to

evaluate STATS messages of out-of-range gateways,

The (level-1) LoRa gateways in the sensor’s area that receive the sensor’s
request forward it to their available gateways (level-2) over IP encapsulated
in a FORWARD__OVER_ IP message. Then, they update the entry (sensor
address, request 1D, level number) or (sensor EUI, request ID, level number)
to remember the round of the FORWARD message for such sensor in the
current algorithm run. This is essential for the last level when a FORWARD
for accessing the next level is broadcasted to discriminate between the round

to send the STATS message and the round to forward the request to neighbors,

The (level-2) LoRa gateways that receive the sensor’s request reply to the
(level-1) gateways with a STATS message as previously done by level-1 neighbor
gateways. Then, they store the pair (sensor address, request ID, level number,
false) or (sensor EUI, request ID, level number, false) to remember that a
STATS message for such sensor in the current algorithm execution has been
sent but no ACK has been received. Then, the network server is notified about
the uplink and downlink counter values of the sensor via a SYNC_COUNTER

message,

The (level-1) LoRa gateways receive the replies of nearby gateways but out
of range for the sensor and if and only if they find a matching entry (sensor
address, request ID) or (sensor EUI, request ID) in their tables, forward the
first STATS message they captured about the sensor to the sensor itself,

The sensor collects the first forwarded STATS message it receives and in
the next transmit window repeats the dispatch of the FORWARD message
including the IP address (or EUI) of the RP to acknowledge based on the

received frame,
The (level-1) LoRa gateways repeat 10.,

The (level-2) LoRa gateways that receive the sensor’s request for the first time
perform 11. while others check the RP’s IP address (or EUIs) included in the
message looking for a match with their own identifiers. If a match is found, the
relative RP takes note that its STATS message has been correctly delivered to
stop sending STATS messages for the sensor in the current algorithm execution
by setting the boolean value of the entry to true, otherwise, the RP has not
received the ACK in the dedicated time window, so, sends the STATS message
again. Then, the network server is notified about the uplink and downlink
counter values of the sensor via a SYNC__COUNTER message,
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16.

17.

18.

19.

20.

21.

22.

23.

The (level-1) LoRa gateways repeat 12.,

The sensor repeats 13., the (level-1) LoRa gateways 10 and (level-2) LoRa
gateways 15. until the repetitions parameter of the sensor is satisfied and no

STATS message is listened to in a subsequent receive window,

The sensor repeats 9. and in case of unsuccessful, a chain of delegated gateways

is created until a suitable gateway is found,

When a LoRa gateway is finally selected, the sensor requests an association
with it by sending a PAIRING__REQUEST message including the IP address
(or EUI) of the RP and optionally its own device EUI,

Each (level-1) LoRa gateway that receives the sensor’s request check if its
IP address (or EUI) matches the provided one. If unsuccessful, the RP
encapsulates the frame in a FORWARD_ OVER,_IP packet and forwards it to
the final destination, otherwise, the RP is the one chosen by the end device,
so, verifies if it has sufficient resources to accomplish the sensor’s binding.
Then, it responds to the sensor confirming or refusing the association via a
PAIRING_ACCEPT message (directly via LoRaWAN or indirectly via IP)
and in the former case spreads the connection event to the LoRa network
server via a CONNECTION__GATEWAY message sent over IP including the

sensor’s address (or EUI),

The end device listens for an incoming PAIRING _ACCEPT response about
the association request. In the case of an ACK, it sends a CONNECTION
message to the network server including the selected gateway address (or
EUI), while in the case of a NACK or STATS UPDATE, the sensor repeats
9. looking for a RP in the current level (including the just contacted but
considering the new state) or in the next. If none is received, then the sensor

repeats the sending at 19.,

The LoRa network server receives the CONNECTION__GATEWAY message
from the selected LoRa gateway and stores the possible association (sensor’s
address, RP’s address) or (sensor EUI, RP EUI) in the corresponding table,

The LoRa network server receives the CONNECTION message from the
sensor through a LoRa gateway and compares the newly received association
with the temporary one received from the selected gateway and stored in the
corresponding table. If they match, then the binding is confirmed, otherwise,

entities are alerted that the pairing has been refused. In both cases, the
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24.

25.

26.

27.

28.

gateway is notified with a CONNECTION__GATEWAY message while the
sensor with a CONNECTION message,

The LoRa gateway receives the CONNECTION__GATEWAY message from the
network server and if it is positive, then stores the entry (sensor’s address, null)
in the corresponding table of paired devices, otherwise, a negative response
means that the two endpoints do not agree on the pairing and it can only
occur if a session key is compromised and an attack is taking place. Section

7.2 discusses possible countermeasures,

The sensor listens for an incoming CONNECTION message from the network
server through a gateway in its radio range and if the response is positive,
then generates a nonce and include it, together with the selected gateway
address, in a GENERATE__ASSOCIATION_KEY message, otherwise repeats
9. to verify if some other gateway in the current round meets metrics and to
eventually explore the next level of gateways. If no response is received, the
sensor repeats the dispatch of the CONNECTION message and awaits the
reply, the sensor is alerted an attack is taking place as an unexpected event
occurs involving a session key is compromised. Possible countermeasures are

discussed in section 7.2,

The (level-1) LoRa gateways receive the GENERATE ASSOCIATION KEY
message from the sensor and repeat the check at 20. including the possible
forwarding over IP to eventually redirect the request to the right destination.
When the selected gateway receives the message, it generates a nonce, from
which, together with the other retrieved from the message, derives the rel-
ative session key. After having securely stored it holding a reference with
the paired device, the selected gateway includes the generated nonce into a
GENERATE_ASSOCIATION__KEY message, possibly encapsulated into a
FORWARD__OVER,__IP packet if the message was received over IP, and sends
it back. Then, the network server is notified about the uplink and downlink
counter values of the sensor via a SYNC__ COUNTER message,

The sensor listens for an incoming GENERATE__ ASSOCIATION_KEY mes-
sage from the selected RP (directly or indirectly) and retrieves the gateway’s
nonce from which, together with the previously generated nonce, derives the

relative session key. If no response is received, it repeats the dispatch of the
GENERATE__ASSOCIATION__KEY message and awaits the reply,

The sensor sends the first fragment of the data profile that fits into the
DATA_PROFILE message to the selected RP,
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

The (level-1) LoRa gateways that receive the DATA_PROFILE message,
forward it to the correct destination using the FORWARD__ OVER,_IP message
but the selected LoRa gateway which stores the fragment of the sensor’s profile
in the entry (sensor’s address, sensor’s profile) of the corresponding table of
paired devices and prepares to receive the next. Then, the network server

is notified about the uplink and downlink counter values of the sensor via a
SYNC_COUNTER message,

The sensor repeats 28. until the entire data profile is uploaded on the selected

gateway,

The LoRa selected gateway repeats 29. and spreads the data profile to the
network server via a DATA__PROFILE message once all fragments are received

and stored in the relative entry,

The LoRa network server receives the DATA__PROFILE message from the
LoRa gateway and stores it in the association entry (sensor’s EUI, gateway

address, sensor’s profile),
The sensor collects measurements and broadcasts them via a DATA message,

The (level-1) LoRa gateways that receive the DATA message forward it to
the correct destination using the FORWARD__ OVER_ IP message but the
selected LoRa gateway which processes it and then sends the elaboration to
the network server via a PROCESSED__DATA message. Then, the network
server is notified about the uplink and downlink counter values of the sensor
via a SYNC__COUNTER message,

The LoRa network server receives the message from the gateway and forwards

it to the cloud for persistent storage,
The sensor repeats 33. until a LoRaWAN Rejoin takes place,

The LoRa gateways repeats 34. until the corresponding message is received

from the sensor,

The LoRa network server repeats 35. until the corresponding message is

received from the gateway.

In the description of the algorithm, it is omitted that the transmission and

receiving of the sensor are compliant with LoRaWAN device class A windows as well

the transmissions of the gateways. Furthermore, as for section 6.2, the continuous

updates of the frame counters about an end device by the network server when a
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SYNC__COUNTER message is received, are reported once at 3. to not lengthen the
text further.

6.8 Performance analysis

Analyzing the performance of the algorithm, the proposed solution assumes
that low-level gateway number is always preferable to high-level gateway number
because level-i RPs are always closer to the sensor (and should be reflected by higher
RSSIs) than level-(i+1) RPs since the possible chain of delegation is shorter. So, the
algorithm can be imagined to be composed of rounds (one per level) and finds the
best fit RP in few rounds as possible without starting the next round if a suitable RP
is found in the current one (i.e. exploring only a subset of all RPs in the LoRaWAN
network).

In the worst case, an end device contacts all RPs within the network, or to
be more precise within the graph-connected component, it belongs and nobody
satisfies metrics requirements. If economically viable, the first and straightforward
fix consists in adding some extra LoRa gateways in denser areas to meet the needs of
end devices and better distribute the load. This also helps future clients’ connections
to RPs. Otherwise, another possibility is to adapt the end device’s metrics to be
gradually more relaxed to meet the constraints easier in a subsequent execution of
the association algorithm. Nevertheless, this may not solve the issue or just delay it
when clients connect to RPs. As mentioned above, the last resort may be represented
by looking for a gateway in an external LoRaWAN network to continue leveraging
resources at the edge.

In general, the number of uplinks and downlinks (including OTAA and gateway
activation) sent by an end device and a gateway to complete a protocol run is

respectively reported in equations 6.1 and 6.2.

!
ng = (1+r)+ (r+ra)+ (Ir+>_ a;i+7r3) + (14 14)+
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where r; refers to the number of unexpected retransmissions per message type
due to bad or loss receiving, r is the retransmissions parameter to maximize message
delivery ratio of a frame, a; are the additional HELLO and FORWARD messages sent
to acknowledge gateways, [ is the number of levels the protocol explored, m <= r+a;
is the number of STATS messages sent (bounded by the number of uplinks sent in
the level), and f is the number of fragments in which the data profile is split. The
gap between uplinks and downlinks is evident because the latter is necessarily upper
bounded by the former due to LoRaWAN class A device and is limited at most to be
compliant with LoRaWAN specifications. This difference is calculated in equation
6.3.

l 5 2
N —na =Ir+Y ai—m+Y (rui—ra:) + Y Tuli (6.3)
=1 =1 =1

When no further HELLO message has to be sent than the expected number
of retransmissions (a; = 0), the selected gateway is in the radio range of the end
device (I = 1), the data profile fits in a single LoRaWAN message (f = 1) and no
retransmission due to losses occurs, the minimum number of uplinks and downlinks
is used to accomplish the association and respectively result in equations 6.4 and
6.5.

minng=1+r+r+14+14+1+1=2r+5 (6.4)

minng =1+r+1+1+1+1+1=r+6 (6.5)

Once a gateway is activated, unless a protocol run takes place far in time so that
the session key needs to be refreshed, subsequent executions before key expiration
do not require sending HELLO__ GATEWAY messages and therefore the minimum
number of downlinks is reduced to 6 per run that represents the lower bound to

accomplish the association.
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Chapter 7
Security analysis

As explained in section 3.1.4, LoORaWAN guarantees confidentiality, data integrity
and authentication of packets by encrypting their payloads and employing a MIC.

As no message is sent in cleartext and therefore any non-encrypted frame is
ignored as well as the frame that fails the MIC validation, an attacker cannot forge a
valid message or eavesdrop a valid one and alter its content by for example increasing
the frame counter, switching the port field of the application layer frame header,
changing the IP address of the selected gateway, inserting a different data profile and
so on. So, to perform the aforementioned operations an attacker needs to compromise
the victim’s keys used for calculating the MIC and encrypting the payload and put
in place a man-in-the-middle attack to intercept, decrypt, alter and re-encrypt a
victim frame or block legitimate messages and send forged ones and more.

Thus, based on LoRaWAN cryptography and the related key management, the
goal of creating fake associations and uploading fake data profiles (perhaps with the

final aim of a DoS) is unfeasible.

7.1 Replay Attacks

Since forged messages are almost impossible as explained above, I should consider
what may happen in case of a pure replay attack of any frame type, both over LoRa
and over IP. In the following sections, the Victim label reports the party whose
message has been replayed, the Target is the intended recipient of the replayed frame

while the Goal and Consequences labels are self-explanatory.

7.1.1 Replay Attacks over LoRa

« HELLO__GATEWAY:
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— Victim: Gateway

Target: Gateway
— Goal: Share the gateways common key with unintended gateways

— Consequences: Increase traffic and radio range of a negligible distance

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates have no effect as the objective is to build a set and it

cannot have duplicates by definition.

A replay attack outside the victim’s range implies that unintended out-of-area
gateways can be contacted and the victim gateway is improperly inserted in
the sets of nearby gateways. So, the victim is then contacted over IP by the
out-of-range gateways and, for each of them, it is provided with a set of IP
addresses whose intersection with the victim set can result in an empty set
or not based on the location of the out-of-range gateway. In any case, this
situation is not effective because the bidirectional constraint is not satisfied as
the victim does not have the sender’s IP address in its set. To succeed, the
attack needs to replay out-of-range the packet sent from G to Gy and vice
versa so that each other are fooled to believe that they are in each other range.
In the end, the common session key that should be exclusively shared among
gateways in the range of each other is instead shared also with out-of-range

gateways.

However, the size of the intersection of the two sets (received and collected)
should indirectly provide a hint about the location of the two peers. So,
obtaining an almost empty set is very difficult when n retransmissions occur
and the two gateways are actually in the range of each other. Hence, the
victim’s gateway could ignore a NEARBY _GATEWAYS message if the size of
the intersection is under a certain threshold, limiting the distance to which
the HELLO__GATEWAY frame can be replayed.

A better alternative to limit the replay range consists in introducing a fine-
tuned timestamp in the message so that the distance reachable by the attacker
is reduced or completely canceled. Furthermore, in such a limited interval of
time, the message cannot be replayed without the victim receiving it because
the attacker cannot change its position before transmitting otherwise the
message will be of course received invalid. Indeed, time on air in LoRa is a
matter of ms (from a few tens needed for SF7 to a thousand for SF12) and
the sender according to the spreading factor used for the transmission decides
the corresponding expiration time to limit the out-of-range replay attack of
HELLO_GATEWAY. As the solution is time-based, this requires an initial
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synchronization phase of the clocks of the peers that must be included in
the gateway activation method. So, before creating the HELLO__ GATEWAY
message, the gateway synchronizes its clock with the server via a well-known

centralized algorithm and then proceeds as described in section 5.

« GENERATE_COMMON_KEY:

— Victim: End device

Target: Gateway

Goal: Share the end device common key with unintended gateways

— Consequences: Increase traffic and radio range of a negligible distance

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
gateways are contacted and, since all the nonces are included in this message,
therefore they generate the same common session key used by the victim end

device to run the algorithm until it associates with a gateway.

To avoid this inconvenience, instead of generating both nonces on the end
device, the key agreement process can be inspired on the join procedure with
the difference that the gateways must also agree on a nonce before sending it
to the end device. However, there is the issue that gateways in the range of an
end device may not be in each other range and therefore in different clusters.
This implies that gateways in the end device range cannot agree on a nonce
easily and neither propose a nonce per cluster is a valid solution because the
sensor must select the first it receives and broadcast it, coming back to the

same situation as before with additional overhead.

A simpler solution than making out-of-range gateways miss a nonce to derive
the session key consists in adopting the same approach of HELLO__GATEWAY
replay prevention by inserting in the GENERATE__COMMON__KEY message
the timestamp denoting its expiration. In this way, the replay range is very

reduced or even completely canceled.
« HELLO:

— Victim: End device
— Target: Gateway
— Goal: Realize bad pairings, DoS
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— Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and duplicates are detected via the frame counter (included in the packet

application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
gateways can be contacted and tempted to respond with a STATS message,
even if would neither reach the victim’s device nor any end device accepts
it because the addresses do not match. Indeed, if a RP receives a STATS
message, it is not forwarded without previously sending a FORWARD and

therefore it is ignored.

Furthermore, the message is encrypted with a session key shared between the
victim’s end device and the LoRa gateways in its range such that other gateways
cannot decrypt it. If not, the attack can have serious consequences because
can lead to a degradation of performances or to an end device incapability to
associate with a RP (DoS) in the current algorithm run, as the subsequent
real FORWARD message would be forwarded to nearby gateways by gateways
already reached by the attacker, assuming their responses are lost, instead
of sending the STATS message. Indeed, without encryption, the frame is
authenticated as from the victim’s device, since it is just replayed, and therefore

accepted.

« FORWARD:

Victim: End device, Gateway

Target: End device, Gateway

Goal: Realize bad pairings, DoS

Consequences: Nothing more than increasing traffic

A replay attack may involve an end device or a LoRa gateway but the analysis
of one of the two applies to both, so I consider the case in which the victim is

an end device.

A replay attack in the same victim’s range can reduce the rate of missed frames
and duplicates are detected via the frame counter (included in the packet

application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
gateways can be contacted and tempted to respond with a STATS message
if it is the first frame they receive from the victim’s device, although would

neither reach the victim’s device nor any end device accepts it because the
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addresses do not match. Indeed, if a RP receives a STATS message, it is not
forwarded without previously sending a FORWARD and therefore it is ignored.
If this is not the first frame they receive from the victim’s device, the message
is detected as a duplicate if the real packet has already been received or vice

versa with no negative effects.

Furthermore, the message is encrypted with a session key shared between
the victim’s end device and the LoRa gateways in its range such that other
gateways cannot decrypt it. Without encryption, the same considerations of
the replayed HELLO hold.

o STATS:

Victim: Gateway

Target: End device, Gateway

— Goal: Increase traffic

Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end devices and gateways are contacted. End devices in receive windows can
be tempted to collect the message but it would be ignored as the device address
does not match theirs. Even if this check is disabled by the attacker through
physical tampering of the end device, the request ID (denoting the current
protocol execution) does not match. Gateways can be tempted to forward it
but it is not forwarded without previously sending a FORWARD and therefore

it is ignored.

Furthermore, if the STATS message is a reply to a HELLO message, then it is
encrypted with the session key shared among the RP, the end device requiring
the information and the RPs in the end device range, so others cannot decrypt
it. Otherwise, the STATS message is a reply to a FORWARD message and it
is encrypted with the session key shared among the RP and the RPs in the

same cluster, so others cannot decrypt it again.

« PAIRING_REQUEST:

— Victim: End device

— Target: Gateway
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— Goal: Create fake associations

— Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end gateways are contacted but the message is encrypted with the common
session key among gateways in the radio range, so, they cannot decrypt it.
Assuming no common session key, the out-of-range gateways would simply

forward the message to the proper IP address as specified in the payload.
« PAIRING__ACCEPT:

— Victim: Gateway

Target: End device, Gateway
— Goal: Create fake associations

— Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end devices are contacted but the message is ignored as the device address
does not match theirs. Even if this check is disabled by the attacker through
physical tampering of the end device, the request ID (denoting the current

protocol execution) does not match.

Unintended out-of-area gateways are contacted as well but they are not ex-
pected to deal with such a frame. Indeed, if the selected gateway is in the range
of the end device the downlink is directly sent to the sensor while if the selected
gateway is out of range of the end device, then a FORWARD__OVER_IP is
sent back to the first gateway who sent the FORWARD__OVER_ IP including
the PAIRING__REQUEST.

« CONNECTION:

— Victim: End device
— Target: Gateway
— Goal: DoS
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— Consequences: Serious if network server routing mechanism is exclusively
based on current RSSI

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end gateways are contacted but this is a standard LoRaWAN message, so, just
decrease the frame loss rate. The attack can have increased latency (till DoS)
consequences if the network server routing mechanism is exclusively based on
current received frames. So, if it selects as a gateway to send back the response
one that is out-of-range for the end device, the answer will never arrive and

the end device will send it again.

Since this message is also sent in downlink by the network server (through the
selected gateway) to the end device to confirm the association is real, the same

considerations of already discussed downlinks apply.

e« GENERATE_ASSOCIATION_KEY:

Victim: End device

Target: Gateway
— Goal: Share the association key with unintended gateways

— Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end gateways are contacted but the message is encrypted with the common
session key among gateways in the radio range, so, they cannot decrypt it.
Assuming no common session key, the out-of-range gateways would simply

forward the message to the proper IP address.

Since this message is also sent in downlink by the selected gateway to the
end device to provide it with the other nonce to generate the key, the same

considerations of already discussed downlinks apply.

« DATA__PROFILE:

— Victim: End device

— Target: Gateway
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— Goal: Upload profiles on unintended gateways

— Consequences: Nothing more than increasing traffic

A replay attack in the same victim’s range can reduce the rate of missed frames
and possible duplicates are detected via the frame counter (included in the

packet application layer header).

A replay attack outside the victim’s range implies that unintended out-of-area
end gateways are contacted but the message is encrypted with the exclusive
association session key, so, they cannot decrypt it. As they don’t know how
to forward the frame to the associated gateway, they just drop the packet.
Assuming no common session key, the out-of-range gateways would simply
ignore the message as they don’t have the device address in the list of associated

end devices

Since this message is also sent in downlink by the selected gateway to the
end device to acknowledge it about the receiving, the same considerations of

already discussed downlinks apply.
« DATA:

Victim: End device

Target: Gateway
— Goal: Send data to unintended gateways

— Consequences: Nothing more than increasing traffic

Observations are exactly the same as the DATA_PROFILE frame but the

downlink that here is not present.

In the end, the proposed protocol is not susceptible to replay attacks of any
LoRa frame type by design since, as presented, consequences are negligible or null
for HELLO__GATEWAY and GENERATE__COMMON_KEY messages and null
for the other message types (CONNECTION included if network server routing
mechanism is not exclusively based on last receive RSSI).

Anyway, the attack feasibility may be hard by itself because, in a context without
replay preventions, to succeed requires location and mobility such that the attacker
collects the message within the victim’s range and replays it out of the area before
the real algorithm reaches outside gateways for example. This means that in a
matter of seconds the attacker intercepts the message, goes outside an area of 2-5

Km and retransmits it. This is easier if the attacker is located at the border of the
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victim’s radio range but, in such a limited time, the attacker’s radio range partially
overlaps the victim’s one, so, its effort may be unrewarded.

As replay attack security is exclusively based on the LoRa frame counter (stan-
dard) and cryptography (proposed protocol), and by its nature, a counter will
exhaust and restart after its maximum value is reached (232 — 1 for the 32-bit LoRa
counters), to prevent the attacker can succeed with a replay attack when the counter
restarts since the replayed frame as counter greater than the current victim one,
proper countermeasures have to be adopted. For uplinks, the end device needs to
rejoin the LoRaWAN network to obtain new session keys so that old ones are no
longer valid. For downlinks, since network rejoin is not feasible as gateways cover
many end devices and they cannot reset each time a downlink counter runs out,
they can instead negotiate new session keys with the same final aim of invalidating
old ones. In this way, any attempt of replay attack is denied, even if the attacker
captures the frame with counter value 232 — 1 and replays it when its value is greater

than the actual one.

7.1.2 Replay Attacks over IP

« NEARBY__GATEWAYS:

— Victim: Gateway

Target: Gateway

— Goal: Mess up nearby gateways sets

— Consequences: Nothing more than increasing traffic
A replay attack towards the network server implies that an unintended recipient
is contacted but is not expected to receive it, so, just drop the packet.

A replay attack towards other gateways rather than the actual destination IP
address simply drops the packet while the opportune destination can detect
it as a duplicate via TCP sequence number (included in the packet transport

layer header).

« SYNC__COUNTER:

Victim: Gateway

Target: Network Server

— Goal: Mess up the protocol, DoS

Consequences: Nothing more than increasing traffic
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A replay attack towards the network server can reduce the rate of missed frames
and possible duplicates are detected via TCP sequence number (included in

the packet transport layer header).

A replay attack towards gateways implies that unintended recipients are

contacted but they are not expected to receive it, so, just drop the packet.
« FORWARD_OVER_IP:

— Victim: Gateway, Network Server

Target: Gateway, Network Server
— Goal: Mess up the protocol, DoS

— Consequences: Nothing more than increasing traffic

A replay attack towards an unintended recipient rather than the actual des-
tination IP address simply drops the packet while towards the opportune
destination can reduce the rate of miss frames and possible duplicates are
detected via the frame counter (included in the encapsulated packet application
layer header). A distinction is represented by encapsulated messages that the
gateway only expects to forward over LoRa. In this case, the packet is dropped
by the end devices either because the device address does not match or the

repetition is detected via the frame counter.

o« CONNECTION_GATEWAY:

Victim: Gateway
— Target: Network Server
— Goal: Mess up the protocol, DoS

— Consequences: Nothing more than increasing traffic
Considerations are exactly the same as the SYNC__COUNTER packet.

« PROCESSED_DATA:

Victim: Gateway
— Target: Network Server

— Goal: Mess up the protocol, DoS

Consequences: Nothing more than increasing traffic

Observations are exactly the same as the SYNC__COUNTER packet.



7.2 Compromised End Device 71

In the end, the proposed framework is not susceptible to replay attacks of any
TCP/IP and UDP/IP packet type by design. Unintended behaviors are prevented
but the system is still vulnerable to a flood attack (both on LoRa and IP) where the
content of the messages clearly does not matter. This can cause serious consequences
on the networking performances which are already limited in LoRaWAN [2] and can
be further degraded in case of an attacker who continuously sends frames over the
network without respecting the duty cycle.

Even worse, possible colliding messages can deny any possible frame sent over
LoRaWAN to reach the destination resulting in a DoS [91]. Similarly, the attacker
can jam and intercept end device frames, alter them and make them unavailable for
recipients as the MIC check will always fail [7]. However, such malicious conducts
are out of the scope of the proposed framework because should be addressed by the
LoRaWAN protocol itself [94].

7.2 Compromised End Device

A different scenario (briefly mentioned above) that has to be analyzed consists
of a fake pairing attempt where an attacker controlling a compromised end device
X performs a fake protocol execution entering the address in the LoRaWAN frame
(and also providing the device EUI if used in the implementation) of an end device
Y in the network with the goal of messing up end device Y associations and possibly
deny other end devices to connect to some RP.

CIA triad implementation again prevents such malicious behavior because authenti-
cation fails since the network server verifies the MIC with the session key associated

with the device address included in the header of the message.

Therefore, to bypass authentication, the attacker needs to compromise the session
key shared between the victim’s end device and the RP in its range and once in
possession of it can completely behave in charge of the victim.

In fact, the RP replies with an encrypted STATS message but the attacker can
intercept and decrypt it. If the RP does not generate a nonce to include it in the
corresponding STATS response together with usual information and to challenge
the next PAIRING message, then the compromised end device X can even ignore

the reply and directly request the association with the RP.

To mitigate these issues and make the attack attempt more difficult, an additional
security control can be added in compliance with the well-known cybersecurity prin-
ciple called defense in depth. This consists of a redundant control that introducing

a small overhead strengthens security because the attack to succeed needs to break
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multiple defense levels.

In this case, a check at the network server-side can be added in which using the
session key exclusively shared with the victim’s end device and therefore different
from the compromised key, it can query the victim for confirmation of the association
with the RP. The network server can use as a relay node the same gateway from
which it received the CONNECTION__GATEWAY message but if the victim’s end
device is not in the gateway range no reply will ever arrive. So, a more robust solution
consists in taking advantage of the network server message routing capabilities to
select the best LoRa gateway to reach the victim’s end device with high probability.
The network server can therefore create a new PAIRING__ACCEPT message speci-
fying the LoRa gateway IP address (or EUI) to which the sensor is trying to connect
and inserting in the downlink frame the device address of the victim’s end device.
As the victim did not request the pairing with such RP, its negative response,
represented by a PAIRING__REQUEST message with one-bit payload denoting
positive (1) or negative (0) acknowledgment encrypted with the key shared between
the end device and the network server, let the network server interpret the previous
CONNECTION_GATEWAY request as an attack with the effect of:

« providing a negative reply to the RP to possibly delete the fake association

e alert the victim’s end device and the RPs in its radio range to generate a new

session key because the current one has been compromised

Therefore, to succeed the attacker needs to break LoRaWAN security but it is
crucial managing keys securely, paying attention when they are generated/shared

between devices and to their lifetimes, refreshing them regularly.

Nevertheless, although such a network server verification prevents fake associa-
tions if the session key between the network server itself and an end device is not
compromised, it can be exploited by the attacker to achieve a DoS of the victim’s
end device due to LoRaWAN transmission limitations. Indeed, if the network server
continuously challenges the end device for checking the pairing attempt, the end
device can either send in a transmitting window the ACK/NACK to the network
server or data as it operates in LoRaWAN device class A.

To avoid this situation, the network server that already has an entry (end device
EUI, RP IP address) can simply ignore a CONNECTION_GATEWAY message
addressing the same end device. This behavior is acceptable because to accept a
new CONNECTION__GATEWAY message the network server must be previously
notified as it could be suspicious. In fact, in case of a gateway failure or disconnection
with the end device, the sensor using the key exclusively shared with the network
server can send a RECONNECTION message to the network server (through another
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gateway in the radio range) to remove the old association and thus expecting to
receive a new CONNECTION__GATEWAY packet from the new possible selected
gateway as a result of a new protocol run.

Indeed, by adapting to the proposed solution the original LoRaWAN specifications
where every ADR__ACK__LIMIT uplink frames, the end device expects to receive a
downlink frame to confirm the network server is correctly receiving the frames, the
end device can be aware of any selected gateway failure or disconnection. On the
contrary, to avoid the RECONNECTION message, a mechanism over IP to detect

the failure of the gateways is needed.

The same issue applies to the scale-out process if the network server does not
store only the main RP association but creates a list of connected gateways because
needs to verify if the additional RP association is real. Instead of contacting the
end device, to avoid DoS, the network server can contact the additional gateway
over IP on a secure channel. In fact, only the main RP sends to the network server
the message that another RP must be added to the list of connected gateways, so

the attacker needs to compromise two keys again instead of just one.

Furthermore, as stated in sections 3.1.3 and 6.6, this solution does not comply
with LoRaWAN device class A specification where a downlink for an end device
must be buffered and sent out after receiving an uplink from the recipient device.
Figure 7.1 represents the just discussed situation and helps to understand why the
described solution is only suitable for class B or class C devices.

Nevertheless, such a solution may be harmful also for class B and class C devices
because if a CONNECTION_VERIFY frame is lost (either over IP or over LoRa),
then the network server transmits a new message increasing the downlink counter,
as expected by LoRaWAN specification. Although this allows receiving the message
at the end device, this breaks the mechanism of synchronizing the downlink counter
with the end device uplink counter as the statement FCntUp >= FCntDown is no
longer valid. So, a loss CONNECTION__VERIFY message increase latency because
subsequent messages need to be retransmitted at least FCntDown — FCntUp times.
As latency must be minimized, this requires designing an alternative more performing
method to create a shared downlink counter in case of end devices not belonging to
LoRaWAN class A.

Considering these observations and the goodness of class A devices (as described in
the aforementioned sections), an alternative verification method for a new association
has been designed. Instead of notifying the network server via the gateway on behalf
of the end device, it can be directly warned by the sensor itself in order to open the

standard receive windows after an uplink transmission. By splitting the previous
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Figure 7.1. LoRaWAN network server verification

LoRaWAN End Device LoRaWAN Gateway A LoRaWAN Gateway B LoRaWAN Network Server
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Forward it over IP

FORWARD_PAIRING_REQUEST Message - i

Received invalid frame counter (expected i+1)

CONNECTION_VERIFY Message - i

Received invalid frame counter (expected i+1)

CONNECTION_VERIFY Message - i+1

FORWARD CONNECTION_VERIFY Message - i+1

CONNECTION_VERIFIED Message - i+1

FORWARD CONNECTION_VERIFIED Message - i+1

LoRaWAN End Device LoRaWAN Gateway A LoRaWAN Gateway B LoRaWAN Network Server

stage into two, the server verification can be accomplished by performing a simple

comparison between information received by the two endpoints. Therefore, the
gateway sends to the network server a CONNECTION_GATEWAY message over a
secure channel when a PAIRING__REQUEST is accepted including the end device
address, and once the end device receives a positive PAIRING__ACCEPT, transmits
a CONNECTION message to the network server including the selected gateway
address through the session key exclusively shared with network server. If the
provided IP addresses match, then the pairing is verified and the two endpoints are
acknowledged, otherwise, they are alerted about a mismatch that can only happen
if one of the two is misbehaving or a session key is compromised. As discussed
above, if the common session key of an end device is compromised, the attacker
cannot send the CONNECTION message without having also the other session
key shared with the network server but the CONNECTION__ GATEWAY message
can be triggered. This means that the victim run will result in a mismatch and
thus in an alert to regenerate keys. Instead of restarting the protocol execution, a
GENERATE_COMMON_ KEY exchange can be performed to update the session
keys and secure communication to complete the association. In this way, the network

server listens and replies to requests as expected in the LoRaWAN standard, without
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actively initiating any communication and thus avoiding to ask verification for an

association to an end device with related issues as explained above.

Nonetheless, a compromised end device may result in a DoS by blocking any
sending, data leak and fake data generation with serious consequences on privacy
and consumption measurements. However, device DoS can be easily detected as no
data about such a sensor is received over time while fake data may raise an alert

about a possible anomaly.

7.3 Compromised Gateway

The opposite situation to the last one discussed concerns a compromised gateway.
The impact is greater than before because can be compared to server tampering as
it handles multiple requests of nearby end devices and is potentially harmful if not
properly managed.

For example, it can start to drop any packet aiming to a DoS that is effective
only for end devices that are not in the radio range of at least another gateway. Since
bad associations can be performed, as a possible neighbor gateway is unavailable,
and peers may be overloaded, this results in negative performance consequences.

Fake CONNECTION_GATEWAY messages to perform fake associations are
detected again due to mismatches occurring when the victim end devices select
their gateways. As explained above, new keys are generated although this is only
successful if the gateway is not physically compromised but exclusively the session
key it uses to communicate with the network server because a compromised gateway
continues to misbehave independently from the session key in use.

In this case, an effective solution consists of a temporary ban of the gateway IP
address after a sufficient number of fake messages is detected to deny its actions
which negatively affects the protocol performance.

Therefore, as for compromised devices, the malicious gateway can be noted both
if no message or fake message is sent and requiring physical access to restore their

state.
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Chapter 8

Gateway-Device Coordination

Protocol: Implementation

The Gateway-Device Coordination Protocol has been implemented using OM-
NeT++ [55], a well-known modular simulation software based on C++ for building
network simulators. It provides a framework based on events where simulation
models are developed by assembling modules, connected with each other through
gates that communicate via message passing. OMNeT++ allows to run a simulation
model using a graphical user interface, provided with animations, or a command-line
user interface and it is available for the most common O.S. (Linux, Mac OS/X,
Windows). Last but not least, it supports parallel distributed simulation and
especially offers a reliable simulation of real-world scenarios and comprehensive,
easy-to-read documentation which, together with simple event programming, enables
fast development.

Since the implementation of the Gateway-Device Coordination Protocol requires
full flexibility as innovations involve both end devices, gateways and the network
server, instead of using a pre-existing OMNeT++ module called FLoRa that simulate
a standard LoRaWAN network deployment, a new simulation model has been realized
from scratch leaving out some aspects that are not essential for the evaluation like
power consumption and radio antenna types. In this way, any component of the
model has been developed according to the needs of the framework without reworking
existing source code.

First of all, the topology of the LoRaWAN network is reproduced in a NED
(Network Description) file. Here, the structure of the simulation model is described
and simple modules can be declared, connected and assembled into compound
modules as networks. Thus, the main components involved in a LoRaWAN network
(the network server, the gateway and the end device) are reproduced by corresponding

simple modules declared in three separated NED files. The Join and Application
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servers are not included in the simulator because they do not participate in the
Gateway-Device Coordination Protocol and therefore are not needed to evaluate
it. For each module, parameters and gates are defined, so, the radio interface
(LoRa) of the end device and gateways is represented through a vector gate able to
communicate with multiple parties as well as the IP connectivity of gateways and
the network server. Modules are then connected in the architecture NED files by
defining networks and specifying gates connections. Two different networks have
been developed to realize real and stochastic LoORaWAN deployments: a network
reproduces real deployments based on values collected in the LoED dataset [10)]
while the other network consists of a random number of end devices and gateways
positioned in a random way. Unlike networks describing real deployments, the
stochastic network only defines IP connections between gateways and the network
servers and among all gateways but nothing is said about radio connections to avoid
creating links between end-devices and gateways not in the radio range.

Once the structure of the simulation model is defined, the simple modules
previously defined and included in it need to be programmed by creating a C++4 class
for each LoRaWAN component participating in the Gateway-Device Coordination
Protocol. In addition to these, custom messages are declared through .msg files to
define the LoRaWAN Join-Request frame, Join-Accept frame and physical, data
link and application layer frames, assuming the minimum payload available of 11
bytes to support any data rate across all region specifications (section 3.1.2), the
IPv4 packet and the TCP and UDP segments.

To evaluate the entire proposed protocol, the initial boot phase including the
OTAA Join procedure is implemented as it triggers the gateway activation. How-
ever, as stated before, the Join server and application servers are not part of the
simulation to focus the implementation exclusively on the new protocol for enabling
edge computing over LoRaWAN. This involves compliance to transport protocol
specifications and LoRaWAN specification, so, TCP and LoRaWAN verifications
and management are also partially implemented (without dwelling on details not
important for the purposes of the simulation) in order to obtain a more realistic
scenario.

Finally, the network that has to be simulated and corresponding input data for
the simulation are specified in a .ini configuration file usually called omnetpp.ini.
This allows to separate models and experiments, therefore, the same model can be
executed several times with different parameters without having to change the model
itself. The input parameters for the stochastic model are the regional parameter
(specified through the plan ID [49] denoting where the LoRaWAN network is deployed

and corresponding bandwidth, channel frequencies, spreading factors, transmission
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powers and duty cycle), the number of end devices and the number of gateways.

Additionally, the input parameters for the real deployment model include the RSSIs

and spreading factors collected by gateways and reported in the LoED dataset.
Going into detail, in the next subsections, the implementation of the three

LoRaWAN components and the evaluation is presented.

8.1 LoRaWAN end device

End devices are mainly provisioned with

e joinEUI, devEUI and networkID identifiers for OTAA,

« NwkKey and AppKey standard root keys,

¢ CommonKey and AssociationKey protocol root keys,

e NwkSKey and AppSKey standard session keys,

¢ CommonSKey and AssociationSKey protocol session keys,
e a unique device address assigned at the end of OTAA,

e fCntUp and FCntDown frame counters for managing retransmissions and

detecting duplicates,
e a variable to store the last generated nonce for deriving session keys,

e a variable to handle the transmission and receive windows of LoRaWAN

class A devices,

e a variable to receive a single message after a transmission of LoRaWAN class

A devices,
« a variable to handle the state of the protocol,

e a retransmissions parameter to repeat sending of some messages to minimize

the loss,
e the request ID and level number,
e a variable to store the selected gateway IP address,
« the data profile that consists of a location identifier string,

e a set of gateway IP addresses denoting the sender of STATS messages to

resend only the ACK in case of a repetition and not process again the message,
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a list of gateway IP addresses to acknowledge in the current round,

a map indexed by the score of a received STATS message and value
the list of tuples (corresponding IP addresses having such score, timestamp at

which the message was received) and sorted by score in ascending order,

three timeouts for handling the transmission and receive windows of
LoRaWAN class A devices,

last message sent and corresponding expected time on air,
the spreading factor to use to transmit frames,

the map of available bandwidths and corresponding transmission powers

according to the regional parameter where the network is deployed,

the map of available channel frequencies per bandwidth according to

the regional parameter where the network is deployed,

the duty cycle limit and total time on air usage together with the duty cycle

time interval begin,

geographic coordinates about the end device location only necessary in the

simulation to respect the LoRa radio range limits,

a set of pointers to neighbor end device modules only necessary in the

simulation for handling interferences,

a set of pointers to neighbor gateway modules only necessary in the

simulation for handling interferences,

a list of neighbor messages sent by neighbor end devices and corresponding
preamble and frame time on airs only necessary in the simulation for handling

interferences.

The end device is the key element of the Gateway-Device coordination Protocol

because it manages all the stages of the algorithm and transitions among one state

and another.

To comply with LoRa radio range limits and simulate a real deployment in every

run of the stochastic model, every end device is placed in the range of at least

a gateway by selecting a random gateway from the corresponding module vector

included in the NED file, obtaining its geographic coordinates and locating the

device in the gateway radio range randomly. Then, based on this position, gates

connections are exclusively created with gateways in the radio range of the device
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by calculating the euclidean distance between the end device and gateway positions.
The previous location mechanism ensures that at least one connection with a gateway
is set up.

On the other hand, since the position of the end devices is not included in the
LoED datasets but the Received Signal Strength Indicator (RSSI) is collected at the
gateways together with the device address, the position of the end devices in the real
scenario models is estimated by deriving the euclidean distances between the end
device and the gateways and calculating the intersection of resulting radio ranges
(simplified as circumferences). With two gateways receiving end device messages,
the intersection consists of two points and the simulator takes one of the two as
both comply with distances from gateways.

When a message is detected by the end device, the Received Signal Strength
Indicator (RSSI) is estimated by leveraging on such a distance regarding the sender

and receiver in the context of the path loss model [86] as described by equation 8.1

where n is the path loss exponent, whose value depends on the environment where
the wireless transmission occurs and the greater it is, the greater the loss of the
environment, d is the distance between the transmitter and receiver and C' is the
received power at one-meter distance. In the simulation, C' is equal to -30 dBm [61]
while the path loss exponent varies from 2.4 to 5 and is specific to the configuration.

Then, to simulate fluctuations due to environment-specific changes and variables
other than the device mobility as it does not fit with a smart water metering scenario,
the resulting RSSI value associated with an input signal is picked from a normal
distribution characterized by a mean value u, equal to the estimated RSSI value
according to the path loss model, and a small standard deviation o, avoiding to make
this environment variability predominant with respect to the location of LoRaWAN

nodes.

LoRa interference is reproduced in a realistic way and is handled by end devices
and gateways modules in charge of the role of the physical medium where the radio
waves propagate but that is not explicitly present in the simulation. During the
initialization phase, the end device collects references to modules of nearby peers in
the interference range and gateways in the communication range.

To achieve this, gateways are positioned first and, as sensors are placed pro-
gressively, the i-th end device can only collect references about already positioned
peers 0, ...,7 — 1 and must share its reference to them at the same time for bidi-

rectionality. As smart water metering application is mainly employed in urban
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scenarios, the communication range is assumed to be about 5 Km [72, 40] while the
interference range covers a larger area that is in particular exactly the double of
the communication range because consists of any overlapping between two radio
transmissions. In picture 8.1 the radio interference is represented by the intersection
of the circumferences and shows why end devices cannot limit to gathering references

of peers in the radio range.

Figure 8.1. LoRa interference

According to the region deployment specified in the .ini file, during initializa-
tion the end device retrieves the corresponding bandwidths, channel frequencies,
transmitting powers, spreading factors and duty cycle. About the spreading factor,
in the simulation models, Adaptive Data Rate (ADR) is always on to improve the
network scalability but the mechanism is not explicitly implemented to speed up
development. In fact, while modules references are collected and shared with nearby
gateways, the end device calculates the appropriate spreading factor that should
be used to communicate with every gateway based on the corresponding distance.
Once a spreading factor per neighbor gateway is collected, the final spreading factor
is derived by computing the median value, similarly to the selection performed
by the LoRaWAN network server in ADR. The associated transmission power is
obtained by the spreading factor following the specific guidelines of LoRaWAN

regional parameters [49]. The relative data rate R is therefore calculated as in 8.2.

4
44+CR

R = SF 25+ 1000 (8.2)
BW
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where SF' is the spreading factor, CR is the coding rate (whose value ranges
from 1 to 4 to obtain the actual coding rate values of %, %, % and %) and BW is the
utilized bandwidth in kHz (this motivates the multiplication by 1000 that is needed
to convert the data rate from bits/ms to bits/s) [40].

When a device sends a message, it calculates the expected time on air of the
preamble (via equation 8.4) and of the entire frame (summing to the previous airtime
the duration resulting through 8.6 equation). Figure 3.2 represents the structure of

a LoRaWAN frame.

2SF
T, =>— .
V= (53)
Tpreamble = (npreamble + nsyncword) Ts (84)

8L — 4SF 4 28 + 16 — 20H
4(SF — 2DE)

Npayload = 8 + max{[ 1CR+4),0};  (85)

Tpayload = Npayload T (86)

where Ty is the symbol duration, 7, eqmble » Msyncword a0d Npayioad are respectively
the number of symbols of the preamble (8), of the synchronization word (4.25) and
of the physical frame payload, 8 is the number of symbols of the LoRa physical
header that is summed up with the number of symbols of the LoRa physical frame,
L is the length of the datalink frame (including the datalink header, the app layer
frame and the MIC), SF is the spreading factor, H is 0 if the header is explicit and
1 otherwise, DF is 1 if low data rate optimization is enabled and C'R is the coding
rate (in the range 1-4) [49, 45].

Then, the end device updates the consumed duty cycle and notifies neighbor
peers by calling a public class method to provide them with the new message and
relative time on airs.

Finally, the end device verifies if its message is transmitted during the time on air
of at least a neighbor message received through the notification mechanism and used
to advise the nearby sensors of a new transmitted message. So, for each possible
interfered neighbor frame, the end device checks if the possible interference occurs
during the preamble transmission of the peer or not and produces a list that is passed
to nearby gateways via the corresponding public class method. From this moment
on, the gateways are in charge of handling the interferences, therefore, the other half

of the interference implementation is explained in the next gateway section.
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To simulate the different awakenings of end devices, they start to run the protocol
with a variable delay randomly picked from a uniform distribution on [0, 600] seconds.

As explained in section 3.1.4, once an end device wakes up, it sends a Join
Request message to the network server to join the LoRaWAN network including the
joinEUI, the network ID and a nonce. It is important to notice that for each message
broadcasted by a sensor, according to regional parameters specifications it choices a
random bandwidth based on the ADR spreading factor selected during initialization
and a random frequency channel on the principle of frequency hopping. Moreover,
the appended MIC to the LoRaWAN datalink frame is implemented as specified in
the LoRaWAN specifications using the C++ OpenSSL library for calculating the
AES-CMAC through AES 128 CBC algorithm. The key involved in the process
depends on the transmitted frame, so, in the case of the Join Request, the message
is authenticated via the nwkKey. On the other hand, in the simulation, the payload
of the LoRaWAN datalink frame is not encrypted since the evaluation is not focused
on security as no attacker or compromised node is included in the model. Thus,
the overhead of encrypting and decrypting messages is currently not considered
although for a maximum 11 bytes payload should be neglectable even for end device
constrained resources.

To reproduce LoRaWAN class A device behavior, every transmission is followed
by two receive windows implemented by firing timeouts at DELAY_RX1 (1 second)
and DELAY RX2 (2 seconds), where the second window is not opened by canceling
the corresponding timeout if a frame is received in the first receive window. To
minimize latency, there is no delay after the last receive window is closed, hence
the duty cycle constraint is not applied between two transmissions but is taken into
consideration in the entire interval of transmission.

The end device message is forwarded by gateways in the radio range to the
destination which, if it accepts the request, replies with a Join Accept message
properly delayed in the first receive window of the sensor. When the end device
listens to the response, it evaluates the MIC for data integrity and authentication
using the nwkKey and the OpenSSL library as mentioned above. If the check
succeeds, the sensor retrieves the network ID, the assigned address and derives the
nwkSKey and appSKey. Then, it cancels the second receive windows and goes to
sleep until the next message is transmitted.

From now on, any subsequently captured frame is evaluated exclusively if the
MIC is valid, the address specified in the LoRa app layer frame matches and the
port corresponds to the expected one based on the protocol stage.

As described in section 6, once activated, the end device wakes up after ¢t €
[180, 360] seconds and starts to transmit GENERATE COMMON_KEY messages
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to generate a common session key with the gateways in its radio range. In the
implementation, the device generates two nonces and shares them with the nearby
gateways as a mechanism to collaborate between gateways has not been implemented.
Furthermore, neither timestamp is introduced in the message because it does not
fit in 11 bytes payload if nonces are elaborated as 32 bits. Indeed, as the message
includes at least a nonce, it is important that the sender and the receiver agree on
the endianness to properly interpret the received bits. Since LoRaWAN transmits
bytes as little-endian [50], the implementation respects this convention.

If a NACK is returned to the end device, it falls asleep for ¢ € [120, 240] seconds
by canceling the timeout related to transmission and scheduling it according to .
When retransmissions of the GENERATE__COMMON__KEY message are exhausted,
the end device begins to send HELLO frames including confirmations for gateways
that reply with a STATS message by removing them from an acknowledgments list
of IP addresses. Clearly, since the end device operates in LoRaWAN class A, the
size of the list cannot exceed one. The gateway confirmation is preceded by the
request ID (randomly generated for each protocol run) and the level number (zero
in the case of HELLO message).

The processing of STATS responses represents the core of the protocol because
the selection of the gateway to which the end device will ask to associate is based on
it. So, for each round of the collection phase (i.e. HELLO and FORWARD) the end
device extracts and inserts received IP addresses in the aforementioned list for ACKs
(always) and in a set for avoiding processing twice a STATS message from a gateway
in case an ACK is loss. Then, the end device takes the rest of the payload and
computes a score, including the RSSI value, if and only if every resource load value
does not exceed its threshold. This means that if a resource value does not meet
metrics requirements, the calculation is aborted and the gateway IP address is not
included in the future selection. The score is calculated as a simple sum where all
resources have the same weight and the RSSI is added using the opposite of its value
for preserving positive values for valid score computations. In this way, lower scores
are preferable as denote low resource loads and good signal strengths that should
map to shorter distances. Based on this score, the IP address and the corresponding
sending timestamp estimated via airtime calculations are joined together in a tuple
that is entered at the head of the list of gateways having the same score which
therefore represents an entry pointed out by the score itself. The decision of entering
the more recent STATS message in the first position is motivated by its proximity
in time because minimizes the possibility of receiving a STATS_UPDATE response
to a PAIRING_REQUEST message.

Once retransmissions have reached a threshold, the end device only continues
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broadcasting the message if a STATS message is detected in the last receive window.
If none, the end device gets the first entry from the map of IP addresses indexed by
the score in ascending order and pops the head of the corresponding list together with
the associated timestamp. Then, includes the retrieved IP address and timestamp
in the PAIRING _REQUEST message and broadcasts it. If no gateway IP address
is present in the map, then no gateway in the current level satisfies the metrics
requirements and the next level is explored via a FORWARD message sent following
the same approach of the HELLO message.

Once a PATIRING__REQUEST is transmitted, the end device awaits a response
and if none is listened to during the receive windows, it repeats the transmission. If
a STATS_UPDATE is returned, the payload after the one-byte flag is elaborated as
a STATS message as mentioned above and a new gateway selection takes place. If a
NACK is received, a new gateway is possibly chosen while in the case of an ACK a
CONNECTION message is broadcasted.

A response is awaited following the same schema of the previous message to move
to generate an association session key with the paired gateway. Here, a procedure
similar to OTAA takes place, therefore a device nonce is created and included in
the payload after the request ID and selected gateway IP address. After possible
retransmissions, from the response, the gateway nonce is retrieved and the session
key derived.

Unlike the last messages that are all transmitted in a simple and similar way,
the DATA_PROFILE frame transmissions need to be properly handled as the data
profile must be fragmented in multiple frames.

As the end device expects an ACK about the receiving of the previous packet
before sending the next and in case of an ACK loss, it cannot send multiple times
the same frame with the same uplink counter otherwise if already received by the
gateway, this will never send the ACK to the device, the receiver needs a mechanism
to know if the incoming DATA_PROFILE packet has already been received or not.
To deal with this issue, the end device includes the starting index from which the
data profile is copied.

In the end, once the final ACK about the data profile is received, the end device
starts to collect sensor data that are sent to the selected gateway with the associated
timestamp.

To have a detailed view of how the end device handles the states of the protocol,

the reader is referred to the code available on the following GitHub repository.


https://github.com/666TheNumberOfTheBeast/LoRaWANGatewayDeviceCoordinationProtocol
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8.2 LoRaWAN gateway

Gateways are mainly provisioned with

devEUI and networkID identifiers for OTAA,

commonEndDeviceKey, commonGatewaysKey and AssociationKey

protocol root keys,

nwkSKey protocol session key for secure communication over IP and different

from the 128 bit key shared between the network server and an end device,
a map of common session keys indexed by an end device address,
a unique IP address dynamically assigned by the network server,

a set of variables for monitoring hardware resources (CPU load, GPU
load, RAM load, occupied storage, network I/O stats),

a variable to handle the activation of the gateway,
a set of IP addresses of neighbor peers,

a map of cluster session keys indexed by cluster session keys and value

the corresponding set of IP addresses included in the cluster,

a map for handling end device messages indexed by end device addresses
and value a tuple composed of:

— last message sent to the address,

— corresponding timeout,

— request 1D,

— level number,

— fCntUp,

— fCntDown,

— IP address of the associated gateway,

— a bool denoting if the data profile has been spread to network server,

— IP address of the peer who forwarded the end device message for retrieving

the cluster session key

a map of associations indexed by end device addresses associated with the

gateway and value a tuple composed of:
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— symmetric session key,
— data profile,

— time at which the association is performed

a map for handling TCP/IP retransmissions,

a routing table,

e three timeouts for monitoring resources, sending the NEARBY__GATEWAYS

message and retransmit packets over TCP/IP,

e geographic coordinates only necessary in the simulation to respect the

LoRa radio range limits

e a set of IDs of neighbor end device modules only necessary in the

simulation to implement interferences,

e a map for handling interferences only necessary in the simulation and

indexed by the message ID and value the tuple consisting of:

— the SINR resulting after applying external noise to the message,

— the probability that the message is dropped

The gateway is the complement part of the end device in the Gateway-Device
coordination Protocol which like a server mainly responds to end device requests.
To comply with radio ranges limits and simulate a real deployment in every run of
the stochastic model, every gateway is placed in the range of at least a gateway by
selecting a random gateway among the already located ones from the corresponding
module vector included in the NED file, obtaining its geographic coordinates and
positioning the concentrator in the peer radio range randomly. Then, based on this
location, gates connections are exclusively created with other gateways in the radio
range by calculating the euclidean distance between positions.

On the other hand, the position of the gateways is not included in the LoED
datasets but the Received Signal Strength Indicator (RSSI) of every collected end
device message together with the end device address. Since in the real scenario models
all end devices are connected to the same two gateways, the first is placed randomly
in the city while the position of the second is chosen after the euclidean distances
between the end devices and the gateways are derived. In particular, assuming the
simplification of radio ranges as circumferences, for each end device the distances
from the two gateways are summed and the module of the difference is calculated
to respectively obtain the max and min distance between the peers and therefore

constrain the position of the second gateway in the interval [|d1 — d2|, d1 + d2] where
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the circumferences intersect. Thus, from a distance value d randomly picked in the
interval and a random angle «, the gateway geographic coordinates are calculated
through trigonometric functions as (x2,y2) = (x1 + d cos a,y; + d sin «).

To monitor gateway resources, a timeout is fired every second to update the CPU
load, GPU load, RAM load, available storage and networking statistics. Based on
the number of devices associated with the gateway the resource loads are calculated
as a sum of values picked from a uniform distribution as described by equation 8.7

1 “ 1

b_a+;b,_a, (8.7)

where a and b parameters depend on which load has to be estimated and represent
the initial interval of values due to run the O.S. and similarly ¢’ and b’ denote the
impact of each device connected to the gateway for a given resource.

While resource loads are approximately estimated without effectively simulating
the number of processes running on the gateway, storage occupancy reflects the
actual state of the gateway assuming the availability of an 8 GB size ROM (e.g.
Raspberry Pi 4) and an initial occupancy equal to 847 MB due to required installed
software such as native Raspberry Pi Operating System (last Lite release January
28th, 2022 has size 482 MB) [66] and Apache Flink stream processing engine (1.14.2
version size is 384 MB) [26]. Every time an entry is persistently stored on the gateway,
its actual bit size is obtained and added to the variable in charge of maintaining the
total number of occupied bits.

In the same way, network statistics in terms of input and output Kb/s are
effectively collected by storing in opportune variables the number of bits received
and sent in the last second.

As described in the end device implementation section, LoRa interference is
simulated in a realistic way and is handled by end devices and gateways modules
in charge of the role of the physical medium where the radio waves propagate but
that is not explicitly present in the simulation. During end device initialization,
the module ID of the end device is shared with gateways in the radio range and
collected in a set.

When an end device notifies the gateway of possible interference, it first verifies
if the module ID is included in the set of module IDs of nearby end devices and
calculates the RSSI associated with the message. Since a LoRaWAN deployment is
not an isolated entity, every transmitted signal is affected by a background noise
due to the environment where end devices and gateways are located. In particular,
the noise components that disturb a wireless transmission are the thermal noise, the

receiver noise and out-band device communication operating on the same unlicensed
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band (e.g. Wi-Fi and Bluetooth can negatively affect LoRa signals) [62]. Thermal
noise is the electronic noise generated by the thermal agitation of the charge carriers
and is therefore present in all electrical circuits. It is directly proportional to the
temperature (regardless of the applied voltage) and can affect the sensitivity of radio
receivers as the noise can drown out weak signals. Usually it is approximated by an
Additive White Gaussian Noise (AWGN) [71] with zero mean and variance its noise
power defined by equation 8.8

P=kTB=N,B (8.8)

where k, = 1.38 1072 J/K is Boltzmann’s constant, 7' is the resistor’s absolute
temperature in K, the resulting product Ny is the thermal noise power spectral
density and B is the receiver bandwidth in Hertz over which the noise is measured.
As signal power is often expressed in dBm (decibels relative to 1 milliWatt), equation

8.8 results as described by equation 8.9

Ny B
ImW

PdBm =10 ].Oglo( ) (89)

and at room temperature (300 K), the thermal noise power is approximately 8.10

Pypm = —174 4 10 log,o(B) (8.10)

where Ny = —174 dBm/Hz is the related thermal noise power spectral density.
Furthermore, in wireless communication, the amplifiers and mixers at the receiver
are noisy and the thermal noise power is therefore increased [62]. This noise
component is called noise factor or noise figure when expressed in dB and represents
the measure of the degradation of the signal-to-noise ratio (SNR) defined by the

following equation
Fyp = SNR;, — SNRyu; (8.11)

where F' is the noise figure and the SNRs are expressed in dB. In particular, a
realistic value for practical applications of the noise figure is F' = 3dB for LoRaWAN
gateways [71].

Additionally, the more considerable noise component is represented by the out-
band device communication operating on the same unlicensed band. For LoRa signals,
this is addressed by calculating an external interference probability determined as
the complement of the probability of all Bernoulli trials not resulting in interference
[88]. The probability takes into consideration the bandwidth of external interference
and of a LoRa transmission that is wider in frequency and in most cases shorter in

time. The probability an external interference occurs is high and its power is based
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on an experimental generalized extreme value (GEV) distribution scaled according
to the ratio between the interference unit and the radio signal.

In the simulation, all these components are applied to the notified message by
retrieving the physical parameters of the message as spreading factor, frequency
channel and bandwidth. Once the thermal power including the noise figure is
calculated, the external interference probability is computed, and if this occurs its
value is sampled by the GEV distribution. Since an implementation of a GEV type
IT distribution is not available in C/C++ but GEV type I and in the evaluation only
Lora collisions are analyzed, the distribution empirically derived is approximated
using a GEV type I distribution defined by a location value of -105 and a scale value
of 1.65.

So, the external interference power is possibly added to the noise power in
mW and the signal-to-interference-plus-noise ratio (SNIR) of the LoRa message
is calculated. Based on this value and a corresponding threshold considering the
message bandwidth, a Bit Error Rate (BER) is calculated if the SNIR is below a
specific threshold [67].

Now, for every possible interfered message communicated by the possible interferer
end device, the gateway verifies if the module ID is included in the set of module
IDs of nearby end devices to only assert possible interference for messages in the
gateway radio range. In other terms, the gateway checks whether it is located
in the intersection of the radio ranges of the two end devices (Figure 8.1). Then,
the physical parameters of the message as spreading factor, frequency channel and
bandwidth are retrieved and if no external interference has been applied to the
possible interfered message, this is enforced, otherwise, the resulting SNIR is retrieved
from the map used for handling interferences. Finally, the bandwidths of the possible
interferer and interfered frame are compared and if they do not match no interference
takes place, otherwise, the gateway checks if the messages are transmitted using
the same channel frequency. If this is the case, the Signal Interference Ratio (SIR)
between the interfered and interferer messages is calculated and spreading factors
are compared. If equals a strong interference is present such that the interferer is
always discarded while the interfered is lost only if the SIR exceeds a threshold based
on the fact the interferer is transmitted during interfered preamble or not [41]. If
instead messages are transmitted using different spreading factors, the interference
is weaker and due to the imperfect orthogonality of spreading factors only if the
second transmission occurs during the preamble transmission of the other signal.
In this case, a SIR threshold and a maximum Bit Error Rate (BER) are assigned
according to the spreading factor. If the SIR threshold is exceeded, then a BER is

calculated based on an experimental curve [19]. When two messages are transmitted
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in different channels, the interference may occur if the interferer is transmitted
during the preamble transmission of the interfered and the spreading factor used by
the former is at least 10. Based on the channels adjacency, the probability of packet
loss is estimated [56].

In LoRaWAN architecture, the gateway is the only device that communicates
on two different technologies: LoRa and TCP or UDP over IP. This means that
the gateway must appropriately process a packet according to the interface where
it is received. During its lifetime, the network server listens for incoming requests
on predefined frequencies channels based on the region parameter specified in the
.ini file and specific UDP and TCP ports. For simplicity, the gateway is assumed
to be full-duplex so that latency is minimized as it can receive and transmit over
LoRa at the same time. When a UDP or TCP segment is listened to, the gateway
verifies the destination address, the port and the TCP sequence number are valid
while security is not implemented as it represents just overhead in the protocol and
is not included among the aims of the evaluation. An encapsulated LoRa frame is
eventually extracted from the packet if the goal is to forward the message to an
end device, otherwise, the message is processed at the gateway. Unlike downlinks,
uplinks are validated in terms of MIC, port and frame counter; again the payload is
not encrypted because confidentiality is not implemented in the simulation. Based
on the LoRa frame application layer port, the gateway knows if the frame must be
elaborated at the gateway or simply forwarded to the network server after being
included in a UDP segment.

The gateway activation is triggered by a JOIN_ REQUEST sent by a nearby
end device; the LoRa frame is forwarded to the network server after having been
encapsulated into a UDP /IP packet, the clock is synchronized with the network server
one and a HELLO__GATEWAY message is broadcasted over LoRa to contact nearby
peers and scheduled to be retransmitted a constant number of times if and only if
the gateway is not already activated or is not activating. Clock synchronization is
not implemented in the simulation as it employs a well-known centralized algorithm
to accomplish this goal. The device address used for the transmitted downlink frame
is 0.0.0.0 which is never assigned to an end device so that no activated sensor can
receive it while the payload includes the gateway IP address and the expiration time
calculated on the expected time on air considering a tolerance. Once the network
server returns the Join Accept frame, this is decapsulated from the upper layer packet
and immediately forwarded over LoRa. When a peer receives a HELLO__GATEWAY
message, the frame is validated based on the current time and the expiration time.
If it is not valid, then the gateway synchronizes its clock with the network server if

not already accomplished in the last seven days, otherwise, IP address is inserted
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in the set of neighbor addresses and if the gateway is not already activated or is
not activating, then starts the transmission of the HELLO__GATEWAY messages
too. Once the message is repeated a sufficient number of times, the gateway
cancels the timeout and awaits two transmission windows before evaluating to send
NEARBY__GATEWAYS messages or not to maximize the collection of neighbor TP
addresses. When this last timeout is fired, if no IP address is received, the gateway
terminates the activation as it participates alone to a single cluster otherwise a
NEARBY__GATEWAYS message per neighbor is sent over TCP/IP including the
list of collected IP addresses. First, the peer that receives such a message checks if
the sender IP address specified in the IP packet belongs to the collected set of IP
addresses to determine if they are in each other radio range. If this is true, the second
step consists in calculating the intersection between the provided set including the
sender and destination addresses, and the collected set. Finally, the gateway verifies
if the intersection is already present among clusters and if not, then it is added to
the corresponding map through a temporary key. Once all NEARBY_GATEWAYS
messages are received, all clusters are detected and the key agreement stage over IP
begins. In the implementation, the key agreement per cluster and with the network
server is not included as a traditional schema is employed and it is not essential for
the evaluation.

As mentioned above, the gateway reacts to end device requests transmitted over
LoRa, and in the simulator, this communication is fully implemented. When a
GENERATE_ COMMON_ KEY message is listened to, the gateway looks up the
map when it keeps track of end device uplinks and if no entry is found, one is
initialized and the device nonces are retrieved from the payload and the related
common session key is derived and securely stored. Then, the gateway checks its
state and if it is still activating, it responds with a NACK otherwise replies with an
ACK only after a threshold of incoming retransmissions is exceeded to give the end
device the possibility to receive a NACK.

For each incoming HELLO message, the gateway looks up the map storing
information about received frames so far and decides if it is valid accordingly. If it is
valid, the frame is processed and if the request ID does not match, then the gateway
infers that a new protocol run is started and prepares a STATS response. Otherwise,
looks for an ACK by comparing its IP address with the one included in the HELLO
payload, and it is evaluated if a new STATS message must be sent back to the device.
Anyway, the timeout for resending the STATS message is canceled. The response
is transmitted in the device receive window that is calculated by considering the
uplink transmission air time that is in the order of ms and delaying the response a

few moments after the start of one of the two receive windows of the end device,
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generally the first. The resource states included in the STATS payload reflect the
monitored values in the last second and are followed by the gateway IP address.
MIC calculations are performed using the common session key previously generated.

Similarly, for each received FORWARD frame, the gateway looks up the map to
compare the received request ID and the stored one. If no entry is found, a STATS
message is sent back over UDP/IP to the peer sender, otherwise, the request ID is
checked as for the HELLO message and if it is valid the next action depends on
the level number. If it is equal to the stored one, then the gateway looks for an
ACK and cancels the timeout for retransmissions, evaluating to send or not a new
frame. Instead, if the level number is greater than the stored one, the request is
forwarded to neighbor peers over IP reusing the set of collected IP addresses since
the sensor wants to access the next level of gateways. In particular, this kind of
gateway updates the level number value to actual-1 to allow relaying of FORWARD
messages including the current level number but not those containing smaller values
while a gateway recruited in the current level stores the level number as it is to
respond with a STATS message. Furthermore, a STATS message is forwarded by
a gateway only if a FORWARD frame has been sent and this is easily achieved by
looking for a matching end device entry in the map of received messages and the
corresponding level number value. When a gateway has to forward a frame, it must
decrypt the message with the proper session key, encrypt it for the other side with
the related session key and recalculate the MIC.

When a PAIRING__REQUEST arrives at a gateway, this compares its IP address
to the one included in the payload and if it does not match, then the message is
encapsulated in a UDP /TP packet and sent to the right destination. Otherwise, the
gateway checks its resources by assessing that all resources variables are below a
given resource threshold. If a threshold is exceeded, then a PAIRING__ACCEPT
with a NACK payload is sent to the device in the corresponding receive window.
Otherwise, the gateway extracts the timestamp from the received message which
denotes an approximation about the time the STATS packet was sent, and verifies
if its status changed by scanning the map of associations performed with the end
device looking for one that occurred next in time. Based on this check, the gateway
sends a STATS__UPDATE or ACK message as specified in section 6.1 and initializes
an entry in the association map. In case of success, a CONNECTION__GATEWAY
message including the end device address is transmitted to the network server.
It is important to notice that the latter message is sent once with possible TCP
retransmissions but not again when a further PAIRING__REQUEST about the same
end device due to possible frame loss is listened to minimize traffic. Furthermore, a

previously accepted request, in case of frame loss and retransmission may be refused
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and in this case, the association stored at the network server must be deleted by
sending a CONNECTION__ GATEWAY message including a NACK for the given
end device address. Again, PATRING ACCEPT messages about an end device
are forwarded by a gateway exclusively if the PAIRING REQUEST has been
forwarded to the destination that is now the sender. When the gateway sends a
CONNECTION__GATEWAY message, it listens for an incoming response to know
if the new pairing is acknowledged or refused and therefore countermeasures need to
take place.

Uplink and downlink CONNECTION and MAC COMMANDS frames are simply
relaid on the other direction as in the standard behavior of the gateway in a
LoRaWAN network, so, unlike aforementioned "more complex" forwarding, the
frames are dispatched as they are.

The uplink GENERATE__ ASSOCIATION_ KEY is forwarded to the right desti-
nation previously-stored if the end device is not associated with the gateway receiving
the frame while the corresponding downlink is only forwarded back if the uplink was
previously forwarded. The associated gateway retrieves the device nonce, generates
a new one, and derives the association key providing the end device with the nonce.

As an association key is now generated, non-associated gateways forward sub-
sequent messages to the selected gateway in the same way they forward frames
between the end device and the network server.

A final remarkable point is represented by the data profile that is fragmented in
multiple packets as described above and that expects an ACK from the associated
gateway for correct delivery. In case of a lost ACK, to avoid collecting a message
twice or more, the gateway must compare the length of the stored data profile with
the index provided by the sender and accept the message only if they match. Once it
is completely received, when the first DATA message is received, the gateway appends
the entire data profile to the common PROCESSED__ DATA payload to propagate it
to the network server. This means that if the sensor does not send the next message
type, its data profile is not communicated to the network server and a task submission
of a client in such a time interval (between last DATA PROFILE sending and first
DATA) through the location string would be rejected. Depending on the needs of
the IoT application, if it is crucial to make immediately available the data profile
on the network server, although nobody can exactly forecast the moment when an
end device will be associated with a gateway due to random delays, an alternative
implementation consists in employing a byte of the DATA_PROFILE payload to
denote its termination and therefore allow the gateway to send it to the network
server as soon as possible. In contrast, current implementation privileges dedicate

such a byte to a character of the location string to minimize the fragments needed
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to transmit it since it is not necessary to immediately propagate the information to
the server.

To have a detailed view of how the gateway logic is carried on in the simula-
tor, the reader is invited to refer to the code available on the GitHub repository

aforementioned.

8.3 LoRaWAN network server

The network server is mainly provisioned with

o joinEUI and networkID identifiers for OTAA (simplification without join

server),

o a map of nwkKeys indexed by devEUIs and value the corresponding standard

root keys (simplification without join server),

« a map of appKeys indexed by devEUIs and value the corresponding standard

root keys (simplification without join server),

o a unique IP address (based on the ID of the OMNeT++ module in the

simulation run),
e a variable to assign addresses to end devices,

o a map of EUIs indexed by end device and gateway EUIs and value a tuple
composed of:
— the corresponding address,
— devNonce included in the Join Request

o a map of nwkSKeys indexed by gateway IP addresses and value the corre-

sponding session keys,

« a map of appSKeys indexed by end device addresses and value the corre-

sponding session keys (simplification without join server),

« a map for handling end device messages indexed by end device addresses
and value a tuple composed of:
— request 1D,
— fCntUp,
— fCntDown,
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— a boolean denoting if the CONNECTION__GATEWAY message from the

gateway was received,

— a boolean denoting if the CONNECTION message from the end device

was received,

— IP address of the gateway to associate with

a map of associations indexed by end device addresses and value the associ-

ated gateway addresses,

» a map of data profiles indexed by data profiles (location strings) and value

the corresponding end device addresses,

a routing table,

a map for handling TCP/IP retransmissions,

a timeout for TCP/IP retransmissions,

Network server work is limited at most in the Gateway-Device Coordination
Protocol as it can be deployed either at the edge or at the cloud and in the latter
case, intensive communication introduces latencies. It has two main roles in the
protocol, one consists in verifying new associations by a mutual verification of the
endpoints statements and the other in redirecting clients to the gateway where the
end device is associated to read and/or process data.

In the implementation, for simplicity, the network server also acts as Join Server
and Application Server, so it stores a network root key and an application root key
per end device EUI besides the network ID and joinEUI to activate end devices over
the air.

During its lifetime, the network server listens for incoming requests on predefined
UDP and TCP ports. When a UDP or TCP segment is listened to, the network
server verifies the destination address, the port and the TCP sequence number are
valid while security is not implemented as it represents just overhead in the protocol
and is not included in the aim of the evaluation. When a FORWARD OVER_IP
packet is received, the encapsulated LoRa frame is extracted and LoRaWAN checks
assert the MIC, the port and the uplink frame counter are valid. During end device
activation, the MIC, joinEUI and devEUI of the Join Request frame are instead
verified. Then, a joinNonce and a unique address are returned to the sender via a
Join Accept message and the corresponding nwkSKey and appSKey are securely
stored.

To mutual verify a new association, the server listens for CONNECTION Lo-
RaWAN messages encapsulated into a UDP packet and CONNECTION _GATEWAY
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over TCP. Usually, the message sent by the gateway reaches the server before the
corresponding message sent by the end device. Anyway, the IP address of the
gateway is retrieved from the first of the two arriving at the server and is stored in
the corresponding map indexed by the end device address. When the message from
the other party is listened to by the server, the gateway IP address is obtained from
the message and compared with the one previously stored in the map about the
same end device address. If matches the server acknowledges both parties, otherwise
alerts of a possible compromised session key as endpoint requests do not match.
Once an association is verified, the network server stores the new pairing in the map
of associations to offer a routing service to redirect clients that require to access and
process data about such a device to the appropriate destination. Furthermore, to
redirect clients which provide the location string instead of the device EUI to the des-
tination, the network server retrieves the data profile from the PROCESSED_DATA
message if any, and stores it in the corresponding map with value the address of the
related end device. The rest of the payload is then forwarded to a database located
on the cloud but this is not implemented in the simulation.

Moreover, the network server listens for SYNC__COUNTER packets in order
to detect retransmissions and be able to communicate with the end device at any
moment of the algorithm execution if MAC commands need to be sent.

For details on how this is achieved in C++4, the reader is referred to the GitHub

repository again.


https://github.com/666TheNumberOfTheBeast/LoRaWANGatewayDeviceCoordinationProtocol
https://github.com/666TheNumberOfTheBeast/LoRaWANGatewayDeviceCoordinationProtocol

98

Chapter 9

Gateway-Device Coordination

Protocol: Evaluation

The evaluation is carried on using two different sets of experiments: a first set
aims to evaluate the correctness of implementation to assert the protocol works
properly or at least as we expect and a second set aims to evaluate protocol
performances. A third possible set to compare the proposed solution with related
works to evaluate improvements is not conducted as the implementation does not
involve stream processing on gateways. However, we can expect that the Gateway-
Device Coordination Protocol reduce latency with respect to current LoRaWAN
cloud computing architectures as the presented solution enables edge computing
and similar works based on the edge and on the fog reduce latency and therefore
improve performances [68, 54, 92].

For each simulation execution, several data are collected such as
e message sent, received, lost and retransmitted by every end device,

o message sent, received and lost by every gateway (also differentiating between

LoRa and IP interfaces and with associated RSSIs for incoming LoRa signals),
o interferences and possible interferences detected by a gateway,
e gateway resources state,
« number of connected end devices to a gateway

where a possible interference is defined as any concurrent transmission of two
LoRa signals received by the same gateway while an interference (or collision) is
recorded only if the two signals meet the conditions described in section 8. This
means that overlapping of multiple signals is not collected as a single possible

interference but multiple times based on the involved pairs (collisions).
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As explained in the above section, end devices and gateways are located based on
the scenario the simulation is reproducing and both stochastic and realistic scenarios
have a set of configurations that result in different input data. Specifically, each
real-world configuration reproduces a day in the LoED dataset and the selection of a
subset of days available in the dataset is made according to the number of end devices
and gateways involved and gateway coverages to simulate different network sizes
and deployments. To speed up the process and remove human error, the selection is
carried on a summary produced by a Python script which elaborates the dataset
and produces detailed info about every day of collection including formatted input
data ready to use in the simulator.

Starting from correctness, an initial evaluation is conducted by setting up simple
stochastic scenarios to demonstrate the protocol properly works in different conditions.
Small LoRaWAN networks composed of n € {1, 2, 3} gateways and m € {1,...,6} end
devices are deployed to speed up the simulation and traceback message exchanges.
Each test scenario is simulated 10 times reproducing different deployments due to the
random location where gateways and devices are placed at each run. A deployment
example composed of 6 end devices and 2 gateways is shown in figure 9.1 where
lines connecting modules denote the possibility of bidirectional communication and
circles represent the approximation of gateways radio ranges.

Figure 9.1. Example of a stochastic deployment execution start - six end devices and two
gateways
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While this figure represents the initial situation in which devices sleep before
activating, figure 9.2 illustrates the opposite situation where the protocol is finished

and end devices are associated with a gateway.
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Figure 9.2. Example of a stochastic deployment execution end - six end devices and two
gateways
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Labels over end devices report the number of messages they have correctly
received (according to receive windows, MIC, device address and port) and messages
they have broadcasted during the experiment while labels over gateways display
the number of associated end devices. According to these, the sensors distribute
over gateways as expected based primarily on proximity to the gateways as their
resources are certainly not so loaded as to choose a gateway further away and the
number of messages sent and received by end devices is similar denoting the absence
of interferences.

Analyzing a sample end device, figure 9.3 presents the distribution over time of
the messages it sent.

The value is constant at one denoting the sensor broadcasts a message at a time
as expected by a LoRaWAN class A device. The first message is approximately sent
after 50 seconds the simulation starts and consists of the Join Request message of
OTAA. After a silence lasting about 400 seconds, a burst of messages is sent at fixed
time intervals consisting of the Gateway-Device Coordination protocol messages.
Such a burst is more evident in figure 9.4 where the line grows over time every time
a message is sent.

On the same approach, figure 9.5 about message receiving reflects the distribution
of sending as expected by a LoRaWAN class A device.

The same applies when the line representing the number of received messages is
plotted in figure 9.6.

Putting the charts together in figures 9.7 and 9.8 the coupling between sending
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Figure 9.3. Single device - LoRa messages sending over time
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Figure 9.4. Single device - number of LoRa messages sent over time
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and receiving is even more noticeable.

Focusing on the number of messages involved in the protocol, figure 9.9 shows
a gap due to the number of retransmissions an end device uses to minimize the
probability of lost messages at the gateways during GENERATE _COMMON_ KEY,
HELLO and FORWARD frames and to possible collisions that deny the sending or

receiving of the response of the gateway if any.
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Figure 9.5. Single device - LoRa messages receiving over time

Received messages (frequency)

1.04 A

1.02 A

1.004 e s eneo

Value

0.98

0.96 A

100 150 200 250 300 350 400 450
Time (s)

Figure 9.6. Single device - number of LoRa messages received over time
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In this particular simulation run, as illustrated in figure 9.10, no message is
retransmitted by the sampled end device due to a miss response by the gateway,
therefore the gap is exclusively composed of expected retransmissions of a protocol
run.

Analyzing one of the two gateways, figure 9.11 presents the distribution over

time of the messages it sent and received on both LoRa and IP interfaces. Unlike



103

Figure 9.7. Single device - LoRa messages sending and receiving over time
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Figure 9.8. Single device - number of LoRa messages sent and received over time
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end devices, the gateway value is not constant as there are both cases of ones and
twos. This is because almost every time it receives a message from an end device,
it notifies the network server besides replying to the sensor as described during
implementation.

The chart in figure 9.12 better represents the exchange of messages where after

an initial phase where sent messages dominate received due to gateway activation,
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Figure 9.9. Single device - number of LoRa messages sent and received
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Figure 9.10. Single device - number of LoRa messages sent and retransmitted
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then the trend is reversed as expected because the gateway should not respond to
GENERATE_COMMON_KEY, HELLO and FORWARD messages in particular
stages of the protocol when a certain condition is met (e.g. a STATS message has
been acknowledged by the sensor).

Figure 9.13 helps to visualize such a gap but to understand the protocol execution

even better, messages at the gateway must be differentiated based on the interface
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Figure 9.11. Single gateway - messages sending and receiving over time
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Figure 9.12. Single gateway - number of messages sent and received over time
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where the frame is listened to or sent.

Such a split is represented in figures 9.14, 9.15 and 9.16. The former clearly
shows an end device activation that takes place about 50 seconds after the simulation
starts while the clusters of points denote the presence of at least three end devices
executing the protocol. Overlapping points are better represented in the second

figure through three peaks occurrences. Again it is important to notice the trend
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Figure 9.13. Single gateway - number of messages sent and received
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reversion of LoRa I/O where after an initial phase where the HELLO _GATEWAY
is broadcasted, LoRa outputs are very limited with respect to other messages. This
remarkable point is made evident in the last graph where LoRa outputs are less than
half of LoRa inputs and it is very important because downlinks must be limited as
much as possible. On the contrary, it is appreciable that the trend is the opposite
over IP because the gap is expected to denote the absence of a response of the
network server that may be very distant if located at the cloud in order to reduce
the latency introduced by a possible cloud communication. Additionally, most of
the messages are received over LoRa denoting a strong propensity towards an edge
solution that is even more evident remembering that IP packets are also used to
redirect a LoRa message to the right destination to minimize frame loss.

Lost messages are reported in figure 9.17 and as we can see a single message
over about 130 is not received that represents about the 0.77% of the total messages
"addressed" to the gateway.

Figure 9.18 let to visually appreciate such a value while figure 9.19 shows that such
a loss regards the IP packet transmissions that has less impact on the performance
of the protocol rather than a LoRa frame loss.

The complementary graphs are presented in figures 9.20 and 9.21 and frame
receive percentage is therefore about 99.23% of all incoming packets.

With such an impressive frame delivery ratio is obvious that in this particular
simulation run no interference affects LoRa transmission as shown in 9.22.

Moving the perspective from the protocol network traffic to the protocol load
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Figure 9.14. Single gateway - LoRa and IP messages sending and receiving over time
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Figure 9.15. Single gateway - number of LoRa and IP messages sent and received over
time
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balancing, as mentioned above it is unbalanced to privilege the proximity of the
source to the machine that will be in charge of processing collected data. Therefore
the number of associated end devices is two as represented in figure 9.23 where the
trend of pairings over time is plotted.

The last discussion regards the gateway resources which should reflect the number

of associations via an increment of the workload. Although no stream processing
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Figure 9.16. Single gateway - number of LoRa and IP messages sent and received

Sent and Received messages

80 1 EE sent LoRa
Il received LoRa
70 A sent IP
received IP
60 A
50 A
40 -
301

20 A

10 A

gatewayO

Figure 9.17. Single gateway - messages lost over time
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task is simulated in the implementation, is legitimate to suppose that as soon as an
association takes place the gateway prepares to receive data and therefore instantiate
a default task with a negative impact on resources utilization. Figure 9.24 shows
resources usage with measurements collected every second the simulation lasts.
The occupied storage space over time is faithfully reproduced in figure 9.25 where

the trend of occupied percentage describes an increment of about 5.5 - 1076% which
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Figure 9.18. Single gateway - number of messages in and lost
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Figure 9.19. Single gateway - number of LoRa and IP messages in and lost
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means the protocol has no negative impact on such a resource since the percentage
is calculated over a total available storage size of 8GB as discussed in section 8.
Therefore, with just 8GB of storage space, the gateway could potentially scale to a
large-scale network composed of thousands of nodes where the bottleneck would be
represented by the other resources affected by stream processing workload.

Figure 9.26 plots the network I/O in byte/s characterized by the 3 bursts analyzed
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Figure 9.20. Single gateway - number of messages in and received over time
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Figure 9.21. Single gateway - number of LoRa and IP messages in and received
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above and the reactive nature of the gateway which exclusively reacts to listened
frames. The number of bytes is considered by excess but values are acceptable as
are recorded in the last second while a LoRa and IP transmission usually last a
little portion of it (ms) and makes no distinction between transmissions on the two
technologies.

A final notice about the distribution of the RSSIs collected at the gateway as



111

Figure 9.22. Single gateway - number of messages in and interferences
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Figure 9.23. Single gateway - number of connected end devices over time
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represented in figure 9.27. Most of LoRa signals have a poor strength as gateway
sensitivity is defined in [-30, -120] [61] but depends on the location of devices and
gateway and the environment where they are deployed. As most of the end devices
are positioned at the border of the gateway radio range, RSSIs values reflect this
situation and enforce to create associations with nearby sensors as in a larger network

such signals can be heavily affected by interferences.



112

Figure 9.24. Single gateway - Resources over time
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In the end, the discussion of the results shows that the protocol run is completed
with success as all end devices connect to the gateways and message exchanges occur
as expected. A more detailed analysis is not reported here but has been carried on
for the entire duration of the protocol implementation to assert actions related to
every single message occur as designed and if any possible retransmissions correctly

happen (by disabling the corresponding receptions). As mentioned above, multiple
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Figure 9.26. Single gateway - Network I/O over time
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Figure 9.27. Single gateway - RSSIs distribution
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runs of similar tests were used for evaluating correctness and therefore demonstrate
the protocol completes with success every time.

To analyze the performances of the protocol, the continuous collection and sending
of data by the sensors is removed in order to only evaluate the protocol messages
and to automatically stop the execution when all end devices have completed their

jobs avoiding introducing additional time delays at the end which would otherwise
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be recorded. The performance analysis is carried on in terms of network utilization
and network scalability (number of messages and collisions, retransmissions, gateway
resource utilization, gateways load balancing and latency).

Figure 9.28 reproduces the real LoED deployment of 2019-03-01 based on collected
RSSIs and spreading factors values at gateways and consists of 13 end devices and
2 gateways. Also in this case multiple gateways are positioned closer to the same
gateway but since this time the focus is on performances, to have a better view, the

results are obtained by the mean of 10 experiment runs.
Figure 9.28. Example of a real deployment - LoED 2019-03-01
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Figure 9.29 shows the distribution of messages of five end devices over time. In
the first 400 seconds, all sample sensors send a Join Request as described in OTAA
at different times and wake up after a random delay. After 500 seconds from the
start of the simulation, 3 sample end devices perform the protocol so we can expect
they may be affected by interferences although also device3 and device4 can since
just a subset of all end devices are plotted in the graph.

However, figure 9.30 show no difference of trends compared to the previously
analyzed scenario, therefore, the 5 devices should not be affected by interferences.

Moving to message receiving, the execution is consistent with LoRaWAN class A
device behavior as presented in figure 9.31.

From 9.32, receiving are not influenced by interferences as well.

As expected by previous graphs, the number of sent and received messages by
end devices is the same of the scenario with the half of end devices as shown in
figure 9.33 and 9.34.

Unlike the previous stochastic scenario, here in figure 9.35 a message is retrans-
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Figure 9.29. Multiple devices - LoRa messages sending over time
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Figure 9.30. Multiple devices - number of LoRa messages sent over time
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mitted once among 10 executions by an end device denoting an expected although
the minimum increasing impact of interferences when the number of end devices is
almost doubled from 6 to 13.

Figures 9.36 and 9.37 help to visualize the single retransmitted message over
the 13 messages sent by the corresponding device in an effective way. Considering

the five sample end devices, the single retransmission over the 65 total number of
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Figure 9.31. Multiple devices - LoRa messages receiving over time
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Figure 9.32. Multiple devices - number of LoRa messages received over time
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messages sent corresponds to a percentage of retransmissions of about 1.54%.
Figure 9.38 confirm the goodness of the protocol in minimizing messages sent by
gateways as they are much lower than those received.
This gap is explicit in figure 9.39 and it is also evident a difference of received
messages between gateways although they are both in the end device ranges. This

may suggest a greater data loss at gatewayl probably due to a greater distance from
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Figure 9.33. Multiple devices - number of LoRa messages sent and received
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Figure 9.34. Multiple devices - number of LoRa messages sent and received

Sent and Received messages

sent received

the end devices and corresponding low RSSIs.

A portion of this difference is certainly due to the slightly greater number of
messages sent by gateway(0 as shown by the chart with the minimum, maximum and
mean values in figure 9.40.

Specifically, figure 9.41 reproducing messages exchanged over LoRa by the

gateways demonstrate that there is a clear difference in messages sent by gateway(
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Figure 9.35. Multiple devices - LoRa message retransmissions over time
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Figure 9.36. Multiple devices - number of LoRa messages sent and retransmitted
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despite the same received messages.

Again, bar charts in figure 9.42 and 9.43 help to quantify such a difference which
may be motivated by a difference in associations so that only the interested gateway
responses over LoRa to minimize downlinks.

This suggestion is confirmed by figures 9.44, 9.45 and 9.46 where the trend is

reversed in favor of gatewayl and the messages received by gateway( reflects the
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Figure 9.37. Multiple devices - number of LoRa messages sent and retransmitted
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Figure 9.38. Multiple gateways - messages sending and receiving over time
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gatewayl sending. This is motivated also by the big difference of listened packets
over IP of the two gateways. This means that messages not intended for the current
gateway are forwarded over IP to the proper destination without using LoRa, as
expected by the protocol to minimize the number of downlinks and frame loss.
About packet loss, in figure 9.47 the frequency is greater than in the previous

scenario but this is expected since the number of nodes is increased. A remarkable
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Figure 9.39. Multiple gateways - number of messages sent and received
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Figure 9.40. Multiple gateways - number of messages sent and received
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point is that gatewayO is affected in the first 200 seconds of the simulation (probably
over LoRa) while the peer starting from the second 450 (probably over IP).
The mean number of lost messages over time is presented in figure 9.48.
Anyway, the greater number of lost messages result in a slightly greater percentage
of frame loss ratio for gateway0 with respect to the previous scenario having the half

of nodes, as represented in figures 9.49 and 9.50 where the percentage of gateway0 is
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Figure 9.41. Multiple gateways - LoRa messages sending and receiving over time
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Figure 9.42. Multiple gateways - number of LoRa messages sent and received
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about 3/340 = 0.0088 = 0.88%. On the contrary, the message loss ratio of gatewayl
is about 1/310 = 0.0032 = 0.32% and their mean is about 4/650 = 0.0062 = 0.62%
that is less than in the previous scenario. However, in this case, we are considering
both gateways while in the previous the focus was on a single gateway and sensor.

As usual, to better understand why losses occur, the messages are differentiated

according to the gateway interface where the frame is listened to. Figures 9.51 and



122

Figure 9.43. Multiple gateways - number of LoRa messages sent and received
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Figure 9.44. Multiple gateways - IP messages sending and receiving over time
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9.52 show that LoRa frame loss percentage is almost zero as it is barely noticeable
at gatewayl.

Unlike LoRa, IP losses are slightly more visible in figures 9.53 and 9.54 confirming
again that most of losses occur over IP because more susceptible to LoRa interference
than the opposite but less problematic than LoRa losses.

Next two figures 9.55 and 9.56 show no LoRa interference takes place and
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Figure 9.45. Multiple gateways - number of IP messages sent and received
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Figure 9.46. Multiple gateways - number of IP messages sent and received
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therefore the few frame losses detected over LoRa were caused by background noise
that the simulator reproduces.

Analyzing the load balancing of the protocol must be remembered that the
protocol aims to associate end devices to gateways based on proximity and workload.
As a small network is reproduced about LoED 2019-03-01, an unbalanced load is
expected. Results of figures 9.57, 9.58 and 9.59 instead present a balanced situation of
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Figure 9.47. Multiple gateways - messages lost over time
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Figure 9.48. Multiple gateways - number of messages lost over time
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7 devices connected to gateway(O and 6 to gatewayl. This may look quite unexpected
but to discover the reason we need to look at RSSIs.

As expected gateway0 receives better signals than gatewayl, so, the motivation of
balanced load is caused by resources workload. In the section about implementation
(8), has been stated that the score is computed assigning the same weights to all

factors that participate in the sum. Therefore, to privilege the RSSI, different weights
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Figure 9.49. Multiple gateways - number of In and lost messages
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Figure 9.50. Multiple gateways - number of In and lost messages
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must be applied. However, an RSSI of about -113 dBm is acceptable for LoRa.

Looking at resources usage in figure 9.61, the CPU, GPU and RAM percentages
of gatewayQ grows faster than those of gatewayl and for this reason, the load is
balanced because these consumptions reduce the goodness of RSSI in a sum where
all parameters have the same weights.

The bad trend of gateway0 in resources utilization is confirmed in the occupied
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Figure 9.51. Multiple gateways - number of in and LoRa messages lost
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Figure 9.52. Multiple gateways - number of in and LoRa messages lost
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storage graph in figure 9.62 while network statistics are very similar throughout
the simulation as described in figure 9.63. Again, the storage utilization is minimal
considering a storage size of 8GB.

Results show that also in a real deployment the protocol completes with success
and the number of exchanged messages is very low as only 13 messages are necessary
where 4 represent retransmissions of GENERATE _COMMON_KEY and HELLO
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Figure 9.53. Multiple gateways - number of in and IP messages lost
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Figure 9.54. Multiple gateways - number of in and IP messages lost
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messages to minimize frame loss. This means the protocol finishes with no delay

because random wake-ups reduce the probability of collisions.
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Figure 9.55. Multiple gateways - number of In and interferences messages over time
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Figure 9.56. Multiple gateways - number of In and interferences messages over time
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Figure 9.57. Multiple gateways - number of connected end devices over time
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Figure 9.59. Multiple gateways - number of connected end devices over time
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Figure 9.61. Multiple gateways - Resources over time
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Figure 9.62. Multiple gateways - Storage over time
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Figure 9.63. Multiple gateways - Network I/O over time
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Chapter 10

Client connection to RP

Once an end device (i.e. water metering sensor) is connected to a LoRa gateway
(RP), it can begin sending data stream periodically. If a client (i.e. user) is interested
in values produced by a specific sensor, it usually needs to access the cloud where
large amounts of data are stored because application architectures are commonly
cloud-based.

However, this is fine for retrieving data in the past, for example specifying a time
interval (last week, last month, last year, ...), and then performing analytics on it
but, on the other hand, querying the cloud is not the optimal solution for accessing
real-time data because I can take advantage of location proximity of the source
and destination to reduce latency and network traffic (e.g. show real-time water
consumption in the building, give direct feedback to actuators and so on).

To realize a framework able to give users the possibility to obtain data at the edge
of the network, the idea is to directly connect to the RP to which the sensor is
associated to read and/or process collected data. To achieve this, I have to keep in
mind that the binding between a sensor and a RP is stored in the LoRa network
server as well as in the RP itself (including the sensor’s profile).

The LoRa network server is the point of connection between the LoRaWAN network
and the Internet, so represents the entry point for an external user: without accessing
the cloud, it may directly access the network server to retrieve the LoRa gateway to

which the sensor is connected to.

In a smart city scenario, an extended geographical area has to be split into
multiple LoORaWAN networks (e.g. north, east, south, west) because the LoRa range
can be up to five kilometers in urban areas [40]. In such a case, there exist multiple
entry points (one for each network) and since the user may not know where the
sensor is located but the device EUI, has to contact all LoRa network servers to

retrieve the associated RP.
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Instead of dealing with multiple IP addresses, a single multicast IPv6 address can
be employed obtaining the same simplicity of a single cloud entry point but a more

efficient solution due to the user’s proximity to the servers.

Hence, the user can obtain the RP to which a sensor is paired by sending a
specific USER-CONNECTION packet over TCP/IP (including the port in the header
and the device EUI in the payload) to the LoRa network servers which will scan
their mapping tables looking for a matching entry (device EUI, RP’s IP address).
Only the server who has the wanted device in its LoRaWAN network will reply
positively (HTTP 200) including the RP’s IP address.

To evaluate performances in contacting LoRa network servers, a test can be
carried out between multicast IPv6 and sequential unicast IPv4/IPv6.
While the multicast version spreads a single packet intended for all network servers
of the application to approach all of them simultaneously, the unicast version
sequentially scans the list of network server IP addresses and contacts the next server
in the list only if the previous one has responded negatively.
In the worst case, the unicast version has to handle n one-to-one communications,
with a delay between each other due to the RTT + the time to build and submit the
next packet. The latency is clearly higher than building a single multicast packet
and spreading it once to receive responses.
In a general case, the advantage of the sequential version is that a subset of network
servers can be avoided to be reached (saving CPU for useless table scans) because
the device EUI entry has already been found.
However, this CPU advantage has to be compared to network delays due to the
creation of multiple single communications and to the performances of the multicast
version via experiments to be demonstrated as a real benefit. Since from a theoretical
point of view the worst case prevails, the multicast version (awaiting tests) is

preferable.

10.1 Stream processing engine

So, when the user’s client has retrieved the IP address of the LoRa gateway paired
with the desired end device, to read and/or process data the sensor is collecting, the
user needs to submit a QUERY-REQUEST message specifying a query and the end
device EUI to the LoRa gateway. The gateway on its behalf needs to run a program
able to interpret and execute the received task.

As the sensors continuously send data at regular time intervals, stream processing

represents a suitable solution because efficiently performs real-time processing as
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soon as new data arrives from the source to the processing node.

In recent years, many frameworks have been developed implementing this computer
programming paradigm such as the famous Apache Flink, Apache Kafka, Apache
Spark and Apache Storm. Unlike the others mentioned, Spark is not a native
streaming engine but a micro-batching engine that means collecting data and
processing it together every few seconds, thus introducing small delays. So, the
stream processing engine listens on a specific TCP/IP port for new task requests
and receives in input a user query denoting the operations to apply to a specific
data stream, builds a corresponding dataflow graph of operations and executes them
on the related data stream.

As usual, each framework has its own advantages and disadvantages and the choice
has to consider the use case [42, 39]. In our particular scenario and solution, since the
data processing is performed on LoRa gateways and therefore the stream processing
engine must not run on the cloud but on every LoRa gateway at the edge, the
constrained resources of the edge nodes take on considerable importance in making a
decision. In fact, gateways have to afford such a complex software that usually runs
over a Java Virtual Machine (JVM) and is particularly CPU intensive but gateways
may not even be able to implement the JVM.

Taking a look at LoRa gateways technical specifications, many manufacturers produce
devices equipped with a processor characterized by a MHz frequency clock, a RAM
size in MB and a ROM size in KB and even the Cisco gateway (one of the best
LoRa gateways at the time of writing) is provided with a 1.33 GHz single-core CPU,
RAM size of 1 GB and ROM storage of 4 GB.

So, it is probable that such hardware does not satisfy stream processing engine
requirements and to remedy this shortcoming, an alternative is to build our own
LoRa gateways starting from more powerful boards (e.g. Raspberry PI 4 is equipped
with a 1.5 GHz quad-core processor and 2, 4 or 8 GB RAM) [30].

Typically, stream processing operations are grouped into four categories:

Single record operations: process a single event in the input

Multiple records operations: process multiple events in input through windows

Join operation: merge multiple data streams into one

Split operation: separate a data stream into multiple ones

Common single record operations are Filter (removing undesirable data) and Map
(transforming data) while common multiple records operations are analytics such as

Count and Average and apply to data collected in a specified window. A window is
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a memory to look back at recent data efficiently.

The join operation is a challenging operation for the streaming framework because
multiple data streams can probably have different timestamps and therefore the
engine needs to align them. This is not surprising since time is a well-known problem
that has been studied by the distributed systems community for decades.

From the time of events, it is a natural consequence to derive an ordering, thus stream
processing operations also include the possibility to detect patterns by correlating
events based on timestamps and the "happened-before" relation. This means that
anomaly and fraud detections can be easily implemented without developing complex
machine learning models.

However, if the application needs sophisticated predictions, then machine learning

has to be introduced. There exist two main approaches:

e Develop and learn a model on the cloud, based on time series in a classical

way and then deploy it to the edge

e Develop and learn a model directly at the edge based on streaming machine

learning

In the end, I decided to use Apache Flink as it is one of the most innovative

stream processing engines with low latency and high throughput [46].

10.2 Scale-out

Nevertheless, when the user’s client retrieves the IP address of the LoRa gate-
way paired with the desired end device, it may be unable to instantiate a stream
processing task on such RP because its available resources could not be sufficient
for executing the query. To reduce network traffic (i.e. number of messages), the
RP itself can decide if the currently available resources are sufficient for the task
and then reply to the client positively (including a UID generated on the fly to be
used as a reference for the query) or not (similarly to the pairing algorithm when a
PAIRING request is sent to a RP). Moreover, this functionality could be directly
made available by the streaming engine itself without requiring additional effort to
implement it.

Thus, if the RP is heavy-loaded and cannot meet the user request, a nearby RP can
be selected to allow the user to still process the sensor’s data through a scale-out
algorithm.

In the proposed framework, a scale-out consists in adding a RP to the set of RPs

to which the sensor is connected, so that the sensor’s data are also read by this
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additional RP. To accomplish it, the framework can reuse the pairing algorithm
and associate the end device with an additional RP. However, in LoRaWAN an
end device sends a message in broadcast once in each uplink window and in the
proposed framework this is encrypted with a session key exclusively shared with the
first paired RP. As a result, the message cannot be encrypted with different session
keys for different RPs.

So, an option is to share the session key (used in the communication with the first
RP) with the additional RP by generating a new session key (as expected by the
pairing algorithm) to forward the other key. Anyway, instead of wasting resources
and time in generating a new session key for a very limited scope, the end device
can be configured to reuse the same parameters used to generate the session key
with the main RP thus avoiding sending the key.

A better solution than sharing the existing session key is to use a variant of the
pairing algorithm where the final stage of generating a session key is removed. Indeed,
as sensor’s data are readable from the main RP, the idea is to create a secure channel
over IP between the two peers (i.e. the main RP and the additional RP) and forward
data there.

This means that as new RPs are added through the scale-out process, more con-
nections the main RP has to set up with those to make them available sensor data.
Due to constrained resources, multiple levels of indirection can be used resulting in
a path of RPs where the number of connections per RP can be limited by an upper
bound.

Finally, the last resort is to send raw data to the client and perform processing on
the client device instead of on a LoRa gateway. In this case, the traffic size over IP
is not reduced by locality processing but the computing power and resources are
potentially infinite since the framework can scale seamlessly over any client’s device.
So, when all RPs have reached their connections limit, this solution can be used

instead of denying the user the possibility to execute its query.

So, a user interested in values produced by multiple sensors or submitting multiple
queries about the same sensor may be connected to multiple LoRa gateways because
either the sensors are associated with different RPs or the scale-out algorithm has
selected other RPs. Obviously, if two sensors share the same RP and scale-out is
not necessary, both data resulting from the relative queries are sent on the same

connection to save resources.

To implement the scale-out algorithm as a path of RPs to forward data over IP,

the framework needs

e a further LoRa port for communicating the end device to start the variant of
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the pairing algorithm (SCALE-OUT message),

e a further TCP port for setting up a new secure connection over IP between
two RPs

The downside of executing the pairing algorithm (although partially) in the scale-out
procedure is that the end device cannot send collected data at the same time. Hence,
when a user causes a sensor to scale out, all the other users connected to the same
sensor no receive data until the algorithm is finished because no data is sent.

To avoid a long blocking time, the sensor can alternate a message for the pairing
algorithm variant and a data message, giving priority to users already connected to
the system in a trade-off between scale-out execution time and old users blocking
time. In order not to lose data, the sensor can queue it with associated timestamps
and then send it in a single message (hopefully LoRa payload size should be sufficient
to accommodate two messages in one as data size should be small).

To minimize the delay due to the alternation of messages and not affecting already
connected users to the same end device, the pairing algorithm for the scale-out can
be revised again towards a sub-optimal choice of the additional RP by delegating
the main RP to search it (i.e. the RP is found among nearby LoRa gateways of
the main RP instead of nearby gateways of the sensor). So, when the end device
is notified about the scale-out process via the SCALE-OUT message, instead of
performing the HELLO stage, it continues to send data to the main RP. Then, in
the next downlink window, the main RP directly sends the FORWARD message to
nearby LoRa gateways and proceeds with the pairing algorithm acting on behalf of
the sensor; only the PAIRING message is sent by the sensor itself introducing just
this delay.

Even better, I can cut off the end device from the scale-out procedure (as in the
building of a path of RPs nothing changes in the messages sent from the end
device) so that data is continuously submitted without any delay. Thus, instead of
performing the association via the PAIRING message sent by the end device, this is
automatically sent by the main RP and once the binding is finished, the sensor is

just notified of the new association as well as the network server.

To secure forwarded data and get a secure IP connection, the possible implemen-
tations are TLS and IPsec. While TLS works at the transport layer, IPsec works
at the network layer, so it is transparent to applications representing a benefit for
the framework. Since setting up Security Associations in real-time is unfeasible
and always error-prone, an IKE daemon is the only real valid option. It is natively
supported in the Linux kernel but also complete packages are available such as

strongSwan and Libreswan.
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Furthermore, a smart-resources usage plans to execute the same query on a
LoRa gateway once in case of multiple users submitting it twice or more and then
send processed data to corresponding clients on different connections. To achieve
this, the proposed framework can take advantage of the stream processing engine
architecture where a data flow resulting from a submitted query can be fed with
multiple data streams as specified in the equivalent queries. Even better, a query can
be decomposed into single operations so that even non-equivalent queries can use
components instantiated once and fed sequentially with different data. Obviously,
in doing this the system needs to find a balance between available RAM and
performances (penalized by reducing parallel computing). This job is expected

among the stream processing engine features.

10.3 Client authentication

From a security point of view, the framework needs to implement access control
to respect the privacy of people whose data is collected by IoT sensors. In fact,
usually in an IoT deployment, sensors send sensitive data that shouldn’t be publicly
disclosed (to avoid pattern recognition about lifestyles and activities [5, 82]), and
therefore a user of the framework must be able to access only resources to which it
is entitled.

To achieve this result and consequently avoid a user’s client can read data not intended
for him/her, I can get inspired by Linux groups and corresponding privileges such
that data collected by a sensor are only available to users in the related group with
execute and read privileges. Clearly, the sensitive part consists in adding users to a
group because the system must verify the real identity of the user before allowing
it to read and operate on the sensor’s data in order to prevent possible leaks and
violations.

To accomplish this, I need to authenticate users and a common approach consists in
deploying a DB on the cloud as a large data storage is needed to face a huge number
of accounts and to verify concurrent login attempts. In the account creation, I have

to be aware of the upsides and downsides of
e Letting users be free to create accounts
e Letting admins create the accounts on behalf of the users

The main difference is that the first is a completely automatic process while the
second is a human process that cannot scale as well but essentially both options suffer

from the same issue mentioned above: trust a user identity. In fact, if anyone can
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create an account, a simple authentication (e.g. email and password) is not sufficient
to assess the real identity of the user and even if admins create user accounts, then
credentials must be provided only to legitimate users, so, a method is still necessary

to verify if the person is requiring such credentials is actually who is claiming to be.

However, to be precise, the validity of this issue depends on the particular context
in which the framework is used and how the sensors are implemented because it
is different if the framework is accessible solely as a web service rather than being
integrated and employed by an organization. to which people subscribe to plans or
purchase items and which therefore involves a physical or digital purchasing process
with the customer (e.g. telephone company, Internet service provider). Indeed,
in this situation, when a customer enters into a contract or buys a sensor from
the organization, it can provide an email address (or some other communication
channel) as a contact to which the company can send future credentials without the
need of the framework of demonstrating the real identity of the client during the
authentication phase because only the proper user will receive the credentials for its
own sensor via the provided contact (their management is out of the scope of this
discussion).

So, the organization can decide between the two account creation options analyzing
benefits and disadvantages without worrying about the identity issue and, as stated
before, the choice may be reduced to put in place either a manual or an automatic
process.

In the first case, the organization admins employed in the framework maintenance
have to associate the customer personal information with the related sensor(s) as
specified in the purchasing process, create a user account, and then send the resulting
credentials to the customer in order to be able to access the system.

In the second case, since it is impossible to have a priori knowledge of who will be
interested in the data collected by a specific sensor, the system needs additional
information to realize the mapping between a user and the related sensor(s). This
info may be represented by a secret for accessing a determined resource which means
shifting the association from person — resource to secret — resource. Therefore,
the organization needs to provide such a secret, that acts as a function to the range
of EUlIs of deployed end devices, to the customer through the given contact. Then
at registration time, the customer will enter the received secret with the aim of
associating the new account to the sensor(s).

The technical implementation for giving the users the possibility of creating accounts
on their own consists of a table of entries (device EUI, secret, user IDs) and of an

inverted indices table (secret, device EUI) automatically populated in two phases:

1. after an end device activation, the network server can request to the cloud to
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add an entry for the current device EUI involved in the process. If there does
not exist an entry for such EUI (primary key), then a record is added to the
table with a corresponding secret (UID) generated on the fly and either one or
multiple user IDs corresponding to the admin accounts for monitoring data
(possible privacy concerns) or a null user ID according to the application. At
the same time, an entry (secret, device EUI) is added to the table of inverted

indices

2. during user’s registration in the application, to add the user ID to an existing
entry of the primary table, the system retrieves the device EUI corresponding
to the provided secret from the inverted indices table and then updates the

record of the primary table

Of course, the secret must be securely stored because if it is compromised, data
leaks can occur as it is used to add a user to the group of a sensor. To prevent
this, the system can run a trigger function to avoid multiple users redeeming the
same secret and, as a last resort, the manual intervention of an admin can change
the secret and contact the proper user through the communication channel to give
the possibility to access its data again. A similar intervention can occur when a

customer unsubscribes to the company.

Nevertheless, considering the framework as not integrated into a similar context
or although integrated designed in another way, to retrieve the real identity of a user
the system can rely on public administration authentication methods (e.g. Italian
SPID) that uniquely bind a citizen to digital identity. In such a way, it is also easier
to traceback illegal attempts via system logs although there is always the possibility
that the digital identity credentials are compromised. However, this is beyond the

scope of the framework because it is a matter of the third-party entity and the user.

However, once the user identity has been verified by a trusted third-party orga-
nization, the framework needs to map this identity to the end devices the user is
allowed to access. So, the situation is similar to the latest analyzed since a priori
knowledge is impossible to have.

As in this scenario, the framework is a web service independent from organizations
that deal with customers, the additional information required for performing the
mapping must be retrieved from a collaboration between the company managing
the framework and these other businesses.

For example, in our specific scenario, sensors are collecting data about water consump-
tion that implies collaboration with the water supplier(s); the proposed framework

can take advantage of the third-party entity and in particular of the contract between
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the physical person and the water supplier. Therefore, instead of generating a unique
secret identifier for every deployed end device (as in the solution explained above),
here an alternative idea is to generate such a secret for each contract associated
with a determined number of sensors that the user must provide at registration time
on the app developed by the company managing the framework. Such an identifier
must be provided by the third party to the user via a given contact granted when
this enters into a contract with the supplier itself. In this way, only the legitimate
person who has this identifier can create an account to access data collected by the
sensor associated with the contract.

Once the user has performed the registration, the system can map the secret to
the device EUIs included in the contract by querying either the supplier(s) web
service(s) through APIs (authenticating and specifying the secret) or an internal
table containing data received from the supplier via a communication channel by
manually creating an internal table with data received from the supplier.

For sure, if available, communicating with the supplier(s) web service(s) represents
the best option because is more flexible than manually creating and continuously
maintaining a table populated with data belonging to an external organization
because additions and updates are immediate since made by the supplier itself and
also the surface for privacy breaches or GDPR violations is reduced.

Moreover, when collaborating with a supplier, the secret can be replaced by the
digital identity resulting in an easier approach for the user and avoiding possible
misuses of the secret itself.

Of course, the smart water metering scenario and the micro-services architecture can
be extended to any other scenario where a supplier or a service provider is involved

in the data measurements of the IoT sensors.

When a user is finally authenticated, it is provided with a session token (either
JSON Web Token or OAuth 2.0 token) [75, 44, 69] denoting which device EUIs
can be accessed; therefore, it has to be attached to every subsequent request issued
by the user’s client to the LoORaWAN networks. So, when a new request from the
Internet comes to a LoRa network server, the first action that takes place consists of
verifying the validity of the token, the corresponding privileges of the user’s request
and the validity of the request itself (i.e. input validation). Only if these steps are
true, then the network server proceeds to look up the table of associations.

Access as an admin deserves a deeper check due to the higher privileges required,
hence, it may be restricted to a range or list of IP addresses (e.g. whitelisting
the admin network) and/or implement an additional authentication (like proxy
authentication) where just a few account credentials need to be stored on the

network server itself.
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Merging the scale-out approach and the privacy motivation, someone can think
the scale-out is not needed because probably a user will access only its own sensor
for which only it has necessary privileges. However, this is true in some cases (e.g.
household utilities) but may no longer be valid in others such as for organizations
having sensors deployed on multiple buildings (e.g. university) where the group
having privileges to access a sensor is not limited to a single person. Furthermore,
each sensor’s group usually contains one or more admin accounts for injecting queries
(e.g. water supplier wants to know customer consumption, detect frauds and so on)

although this may be a source for privacy concerns.

Since in the micro-services scenario the cloud does nothing else than querying the
external organization and generating a session token, an edge computing approach
consists in performing such operation (bound to user authentication and device
mapping) directly at the edge. So, instead of contacting the cloud (central server),
the user can directly reach the LoRa network servers regarding the end device data
it wants to access.

However, T have to consider that the framework can handle multiple LoRaWAN
networks that can be independent of each other (e.g. a subset for each city where
the organization deployed the sensors) and therefore just a subset of all network
servers should be contacted by the user to save resources.

To achieve this, the digital identity is useful again because according to the city
where the person lives or the location where the end device is deployed retrieved
from the third-party supplier, the user’s application can contact exclusively the IP
addresses of the location of interest: either via a multicast IP address per city or via

a list of IP addresses per city.
10.4 Client connection to RP algorithm

After these observations, the task assignment algorithm may consist of:

1. The user’s client sends a QUERY-REQUEST message (including the query
and the end device EUI) to the RP (whose IP address has been retrieved after
being authenticated and communicating with the LoRa network servers) to
which the end device of interest with the required device EUI is connected to,
in order to find out if there’s room for the new stream processing task of the

user

2. The stream processing engine on the RP checks if an instance of an equivalent

task is already running as may happen that multiple clients submit the same
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query (e.g. default query set in the application through which users access

sensor’s data)

If an instance is found, then the RP replies to the client positively (i.e. it sends
an ACK which denotes the client can connect to it since an equivalent task is

already started)

Otherwise, the RP checks if has enough resources to accomplish the new task
(such as CPU-load threshold, storage threshold, network stats, ...)

. If successful, then the RP starts the task and replies to the client positively

(i.e. it sends an ACK so that the client can connect to it since the task has
been started)

Otherwise, the client is notified by the RP (to which the sensor is connected)
that it is currently busy via a NACK. At the same time, the RP starts the

scale-out algorithm

When the scale-out algorithm finishes, the RP sends to the client the new IP

address to which request the execution of the query

The client receives the message and the loop restarts (it should end at 3. or 5.)

10.5 Scale-out algorithm

The scale-out algorithm may be defined as follows

1.

The first (main) RP to which the sensor is connected sends to the requested
end device (in the first available downlink window) the SCALE-OUT message

to notify it the scale-out process is beginning

. The sensor receives the message and continues to send data as usual expecting

to be notified shortly when an association is performed
The main RP sends a FORWARD message to nearby LoRa gateways

Nearby LoRa gateways that receive the message replies to the main RP with
STATS messages

. The main RP selects a gateway among the responses based on resource utiliza-

tion and sends to it a PAIRING request over IP

The selected gateway replies to the main RP positively or negatively
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7. The main RP notifies the end device and the network server about the new

association

An improvement w.r.t. the research phase of the additional RP in 5. can be
that the selection considers the user query load so that the resulting RP has enough
resources to perform it before contacting the client. This improvement minimizes
the network traffic outside the LoRaWAN network and avoids deadlock situations in

which always the same RP is chosen infinitely.

This strategy implies that a sensor can upload its profile on multiple RPs and
the same sensor is mapped to multiple RPs on the LoRa network servers. In this

way, the client does not retrieve just an address but a list sorted by FIFO order.
10.6 Data profile

So far, I have not discussed the data profile included in the PATRING message
once an end device has selected the RP to associate with.
A data profile consists of a set of attributes that defines the properties of the related
sensor. Hence, in a generic heterogeneous deployment, it can report the type of the
device, its mobility degree, the quality of its measurements and so on.
As in the proposed framework, all end devices are static water metering sensors, re-
porting the type of the device is redundant but useful information may be represented
by the location where the sensor is installed (e.g. GPS coordinates) or some related
human-readable identifier (other than the device EUI) of which a client can take
advantage to remotely easy inspect a particular sensor (e.g. sapienza_ building a
can uniquely identify a sensor placed in building A of Sapienza University of Rome).
Furthermore, if the end device location is either represented by GPS coordinates
or identifiers hierarchically organized, a client can also easily address multiple sen-
sors at the same time with a single stream processing query. For example, our
university can have deployed a sensor per building and each one includes in the
profile a different location ID Sapienza/Building/A, Sapienza/Building/B, ...,
Sapienza/Building/I. To address them submitting a single query, the client has
to specify the Sapienza/* location where * is a wildcard for all subsequent levels
(equals to # in an MQTT topic).
If instead GPS coordinates are used, the client can specify a matching range for
the latitude and another for the longitude (e.g. [[41.8 - 42], [12.3 - 12.5]]) for the
devices it is interested in. However, this is feasible if the end devices are provided
with a GPS sensor or if the coordinates are manually entered at deployment or

triangulating every LoRa signal of an end device received by at least three LoRa
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gateway.

As explained above, in a REQUEST-QUERY message the user needs to include the
query to be executed and the device EUI(s) whose data stream(s) is (are) given in
input to the query. Location identifiers are more user-friendly than entering a device
EUI or even worse a list of device EUIs because intuitive strings for humans rather
than alphanumeric codes result in a simpler usage.

To achieve it, the framework needs a mapping between the device EUI and the
location identifier and this is obtained through the data profile. So, when a user
contacts a network server providing a location ID, the server can use a table indexed
by this identifier instead of the device EUI so that an entry consists of (location ID,
device EUI, RP’s IP address). Levels and wildcards are implemented by parsing
a location ID string, in fact, for levels, simple tokenization on the ’/’ character is
sufficient (insensibility to upper and lowercase can be added for simplicity) while for

wildcards a simple character matching is enough for detecting them.

Nevertheless, the end devices associations can be distributed on multiple LoRa
gateways and, although this is not a problem for a query addressing a single end
device, may instead be not suitable for a particular stream processing task where
multiple data streams need to be joined together.

To elaborate them, I can think to work at an upper layer than the RPs and therefore
employ the LoRa network server which receives all data produced by the sensors
but elaborated by stream processing at the RPs.

The client can therefore submit the stream processing task to the LoRa network
server and it can notify the RPs of interest not to elaborate the requested sensors
data but to pass them directly to the network server itself while simultaneously
continuing the previously assigned stream processing tasks.

In this way, as the network server is the gateway towards the Internet, it may receive
the same data twice, once raw and once processed (at least a query addressing
multiple end devices connected to different RPs); the former will be collected until
the last sensor’s data of interest is received and then processed together as asked by
the client, the latter will be forwarded to the cloud or a user for other goals.
Nonetheless, in such a case, if multiple clients connect and submit tasks to the LoRa
network server, it can be overloaded and cannot guarantee scalability at the edge of

the network.

Conversely, a better edge computing solution considers taking advantage of LoRa
gateways and submitting the stream processing queries to them instead of relying on
the LoRa network server, also in case of join queries regarding end devices connected

to different RPs. So, taking up the previous example where the user is interested in
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all Sapienza sensors if multiple Sapienza end devices are connected to multiple RPs,
the freer and with more connected Sapienza sensors can be selected to receive data
also from other Sapienza sensors not connected to it.

The result is similar to a scale-out of the sensor data and as the hierarchical
organization should also imply proximity of sensors (e.g. school, university, business,
condominium), should not degrade performances too much.

So, when a user sends a CONNECTION packet to the framework, the LoRa network
server immediately knows if it addresses multiple RPs or not because when parses the
location ID retrieves the corresponding end device EUls and RP’s IP addresses and
if the number of RPs is greater than one means the end devices are distributed on
multiple RPs. At the same time, the network server can sort the RPs by descending
order of connected end devices in which the user is interested. Then, starting
from the head of the list, the network server runs an algorithm for finding the
suitable LoRa gateway where execute the user query (the choice can be based on
the parameters used by the pairing algorithm since the query is not included in
the CONNECTION packet). Thus, the network server can contact the first RP of
the list over IP and ask it to connect to the remaining peers in the list. Like the
scale-out process, secure connections are set up to receive other end devices’ data
and in the end, the RP replies to the network server which in turn responds to the
user with the IP address of the RP to which submit the query. At this point, the
only issue may be represented by the impossibility of the RP to execute the query
and its will to scale out. As this implies also a migration of secure connections with
other RPs, it is better to carefully choose the RP to avoid a similar situation. An
improvement may be represented by including the query in the CONNECTION
packet so that when selecting the RP the query is forwarded to calculate if the RP
can sustain it. So, the CONNECTION and QUERY-REQUEST should be joined in

a single packet.

Another important aspect of the data profile is that it can be used to filter
incoming messages at the LoRa gateway. In fact, in LoORaWAN the end device
always sends messages in broadcast but, in the proposed framework, they are
encrypted with a session key shared either with the gateways in the radio range or
with the gateway to which it is connected. After running the pairing algorithm and
being associated with the best fit gateway, the gateway needs to store in a table the
associations with the different sensors including the data profile. If no session key is
generated, all gateways in the sensor’s range can decrypt the frame but only the
selected gateway must process the stream of data. This can be achieved by filtering
messages based on the aforementioned table of associations.

Stronger filtering is represented by the generation of a session key between the
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end device and the associated LoRa gateway such that CIA for transmitted data
is ensured. Clearly, this requires a greater effort for the two parties involved in
communication and sufficient device data storage while the overhead is constant

because the common key encryption is replaced with the two-parties key encryption.
10.7 MQTT

An improvement to networking performances may be achieved by replacing
HTTP with MQTT at the transport layer of the OSI model.
The Message Queuing Telemetry Transport (MQTT) is a standard lightweight
messaging protocol designed for the Internet of Things. It is based on the client-
server publish/subscribe message pattern and usually works over TCP/IP but
can also be supported by any network protocol that provides ordered, lossless, bi-
directional connections [8].
The server role is performed by the MQTT message broker that routes all incoming
messages from the clients (publishers) to the appropriate destinations (subscribers)
through topics. The MQTT client consists of any device (from a microcontroller up
to a smartphone or a fully-fledged server) that runs an MQTT library and connects
to an MQTT broker over a network.

LoRaWAN is a Media Access Control (MAC) layer protocol built on top of
LoRa modulation (physical layer), that mainly acts as a network layer protocol for
managing communication between LoRa gateways and end devices, where TCP/IP
is only available for the data exchanged between the LoRa gateways and the LoRa
network server. Nevertheless, the entire network implements mechanism for frame
ordering, acknowledgments and, of course, provides bi-directional communication
between end devices and the network server. So, it should be theoretically feasible
to map the LoRa network server or the LoRa gateways to the message broker(s) and
the end devices to the clients.

However, the MQT'T specification suggests using the version for sensor networks
(MQTT-SN) if devices are deployed on non-TCP/IP networks because it is designed
to extend the MQTT protocol beyond the reach of TCP/IP infrastructure. Therefore,

I can opt for one of the following architectures:

e extend MQTT to end devices through Static Context Header Compression
(SCHC),

e extend MQTT to end devices through MQTT-SN,



10.7 MQTT 149

e limit MQTT to the IP connection between the LoRa gateways and the LoRa
network server without altering the communication between end devices and

gateways.

About the first option, at the time of writing SCHC only supports the Constrained
Application Protocol (CoAP) but maybe in the near future, MQTT will be introduced
and might be compared with the second alternative of the list (i.e. MQTT-SN) [60,
59]. Unlike MQTT, CoAP provides a request/response interaction model between
application endpoints and it is more similar to REST for IoT constrained devices
[76].

The main difference is that MQTT is a one-to-many protocol while CoAP is a

one-to-one protocol, so for the proposed framework, the former is suitable.

Indeed, the idea is to deploy the MQTT clients on the end devices and make the
LoRa gateways or the LoRa network server act as message brokers. However, in the
original SCHC proposal, following the general architecture and mode of operation of
LoRaWAN, compression and decompression of packets are exclusively performed
by end devices and the LoRa network server. So, if MQTT would be supported,
it should be easy to place the message broker on the network server while some
adaptations to SCHC are needed to deploy multiple message brokers on the LoRa
gateways. Careful evaluations may be carried on to justify an eventual effort to such

modifications.

Taking a look at other proposals in the same research field, there are related
works (such as The Things Network, ...) in which the MQTT message broker is
placed at the cloud and the LoRa network server performs the role of the MQTT
client.

Moving to an edge computing solution and leaving out the SCHC idea, I can reflect
on the other aforementioned alternatives for implementing MQTT in the proposed
framework.

Using MQTT-SN, the end devices can implement the clients, the LoRa gateways
the MQTT-SN gateway and the LoRa network server the MQTT broker.

Limiting MQTT to available IP connectivity, the end device can send data over
LoRaWAN to the gateways as usual while the gateways publish it using MQTT. In
this case, I can have the gateways run the MQTT clients and the network server the
MQTT broker again.

In both approaches, a user interested in just reading data produced by a specific
sensor, instead of submitting a query to be executed in a stream processing engine,

can simply subscribe to a topic (denoted by the location ID string rather than the
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device EUI as explained before) at the network server (broker) and receive data
via MQTT instead of HI'TP with the related advantages. The CPU of the LoRa
gateway also benefits from this implementation because an MQTT sending is lighter
than running a stream processing query.

On the other hand, the query is still necessary for stream processing tasks other
than just reading data, so, the user needs to publish it on a specific MQTT topic at
the network server that denotes the location ID and then subscribe to a topic where
the results will be published. The topic and relative message broker is provided by

the network server remembering that a scale-out may be necessary.

Therefore, with this improvement, the network server can open a port for MQTT

and another for the pairing algorithm or just the MQTT one if also the algorithm
is executed over MQTT. For this reason, is probably better to set up MQTT at
the very beginning rather than doing this after the end device association with the
gateway so that the stream of data is immediately published on an MQTT topic.
Although the message broker is able to accept multiple connections by nature, it is
usually deployed on the cloud which provides apparent seamless scalability. Since this
is not the case of the network server, to linearly increase the scalability capabilities
of the message broker, I can deploy multiple brokers at the LoRa gateways. A
comparison can be run out to evaluate the resulting performances.
So, the network server can implement an MQTT client instead of a message broker,
subscribe to all topics generated by the application by using wildcards in order
to receive sensor’s data over MQTT, and forward them to the cloud for enabling
massive storage and performing historical analysis by publishing such data on a
topic addressed to an MQTT message broker on the cloud. The resulting topic
can be the same received at the network server by prepending a level denoting the
LoRaWAN network identifier (e.g. East net/Sapienza/Building/A using location
ID strings).

To avoid the situation in which a user has to subscribe to multiple (or all) LoRa
gateways to receive multiple (or all) sensor’s data within the network, instead of
relying on the broker located on the cloud for performing a single subscription,
privileging the edge scenario the LoRa network server can act as MQTT client and
broker at the same time by running as a bridge.

In this way, the framework has a fine-granularity control on incoming connections
and can decide if allocate a stream processing query in the network server or a LoRa

gateway based on user topics (i.e. location identifiers).
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10.8 Client disconnection and query cancellation

Just as a user can connect to a RP and submit queries for a given end device, it
can also perform the opposite actions: cancel active queries and disconnect from the
RP.

To remove a submitted query, the user can send a CANCEL packet specifying the
ID received when the query was previously sent. The implementation is indeed quite
simple since the RP binds each query for an end device data stream with a session
token, the end device EUI and a corresponding ID (generated when the query is
positively received from the RP) and stores the entry in a table. If the cancel request
matches an entry (session token and query ID), then the RP calls the corresponding
streaming engine API to cancel the task. When removed, the RP sends an ACK
to the client. When a user has no active query, a timeout on the RP is started so
that if the user does not submit queries for a determined interval of time, then it is
automatically disconnected to free resources for other potential users.

If instead, a user wants to explicitly disconnect from the RP, then it must send a
DISCONNECTION packet specifying the device EUI of the sensor or a zero payload
to disconnect from any end device to which it is connected. This is achieved similarly
to the cancel request; since the client provides the session token, then a matching
entry in the table of connected clients (session token, end device EUI, query ID)
must be found. If the user has not explicitly canceled previous queries, then the
RP scans the list of active queries retrieved from the table and calls the stream
processing engine API to remove the tasks. When removed, the RP deletes the entry

from the table of connected clients and sends an ACK to the client.
10.9 Scale-in

Once a query has been canceled or a user has been disconnected, the framework
needs to take care of the scale-in process. In fact, one of the two aforementioned
operations can be subsequent to a previous scale-out. As the framework implements
the scale-out as a path of RPs over IP, then the scale-in process needs to remove
this path; nothing simpler. However, to save resources the same channel between
two RPs can be shared by multiple end devices data, so before deleting it, the main
RP needs to ensure that no other data is sent over this connection. So, the Security
Association is deleted from the corresponding database and the entry in the table to

forward data from a specific end device EUI to a RP’s IP address too.
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Chapter 11

Conclusions

Large-scale IoT applications produce massive data volumes and edge computing
solutions including stream processing represents a suitable solution to efficiently
elaborate it. Low-Power Wide Area Network (LPWANS) is a standard choice to
realize a large-scale IoT deployment able to support IoT application requirements:
low-power, long-range and low-cost transmission.

Starting from a smart water metering use case and the related importance of
implementing data analysis on collected measurements to extract information about
water consumption in order to react in real-time to anomalies, let end users monitor
consumption in real-time and prepare ready-to-use data for further analysis on the
cloud, this master thesis proposes a framework based on LoRaWAN to generate,
process and consume data collected by IoT devices at the edge. LoRa gateways,
geographically distributed in an urban environment rather than in a rural area,
compose a layer of rendezvous points that constitutes the core of the system. Through
an innovative Gateway-Device Coordination Protocol over LoRaWAN, every end
device in the network binds to the most suitable gateway according to location and
resources load where the computational tasks about the generated data stream must
be executed. Many observations have been reported and taken into consideration
throughout the entire writing to design, implement and evaluate the protocol to
the best of my skills acquired in the two-year Master’s Degree study plan. The
contribution includes a gateway activation method based on the LoRaWAN join
procedure that is essential to provide CIA of communications. To enable end users’
data access and processing, two algorithms are presented to directly connect to a
LoRa gateway and submit stream processing tasks.

The implementation of the Gateway-Device Coordination Protocol has been
performed using OMNeT++ and different scenarios are reproduced via two simulation
models: one stochastic and the other based on values collected about a real LoRaWAN

deployment in the city of London throughout several days.
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The evaluation conducted on the implementation of the protocol in terms of
correctness, network utilization and network scalability (gateway resource utilization,
associations load balancing and latency) shows that an effective load balancing is
achieved based on gateway proximity to the end devices and gateway resources
utilization through a small number of LoORaWAN messages (about 13 per end device
to complete a protocol run including OTAA and 3 retransmissions for specific
message types in order to maximize frame delivery ratio) where the network server
contribution is limited to verification of the two entities that are associating in order
to reduce latency. Besides the small size of the network deployments (6 and 13
end devices and 2 gateways), the random wake-ups reduce the number of message
collisions resulting in a 99.28% delivery ratio. Finally, resources utilization suggests
that the storage size of gateways will not represent a bottleneck in large-scale
networks as the impact of the protocol on gateway storage of 8GB results in an
imperceptible increment of occupied storage of about 2.5 - 1076% per associated end
device.

As future works, I would like to implement the protocol in Riot-OS, Chirpstack or
LoRa Basics and then test it in the real world (e.g. using IoT-Lab testbed platform)
to evaluate its actual performance and effectiveness as suggested by simulations.
It is also important to develop a robust alternative to timestamps against out-of-
range frame replays of HELLO__GATEWAY and GENERATE COMMON_KEY
messages, respectively used in gateway activation and in the generation of the
common session key between an end device and the gateways in the radio range.
Additionally, I would like to implement the entire framework to first evaluate the
client connection and scale-out algorithms and then the overall performance of the
system, which is currently focused only on the setup of the associations between
devices and gateways. Then, a final evaluation against existing cloud computing or
edge computing solutions should be performed to compare the results and expected

improvements, possibly through experiments on real IoT application scenarios.
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