
Design, Implementation and Deployment of an
MLOps pipeline for AI-powered Smart Cameras
and Cloud Enviroment over AWS

Faculty of Information Engineering, Informatics and Statistics

Master’s Degree Program in Engineering in Computer Science

Candidate

Alessandro Migliore
ID number 1613614

Thesis Advisor

Prof. Ioannis Chatzigiannakis

Academic Year 2020/2021

Thesis defended on 14 January 2022
in front of a Board of Examiners composed by:
Prof. Alessandro De Luca (chairman)
Prof. Aristidis Anagnostopoulos
Prof. Ioannis Chatzigiannakis
Prof. Roberto Navigli
Prof. Giuseppe Oriolo

Design, Implementation and Deployment of an MLOps pipeline for AI-powered
Smart Cameras and Cloud Enviroment over AWS
Master’s thesis. Sapienza – University of Rome

© 2021 Alessandro Migliore. All rights reserved

Version: January 6, 2022
Author’s email: migliore.1613614@studenti.uniroma1.it

mailto:migliore.1613614@studenti.uniroma1.it

Dedicata a
i miei Genitori

v

Abstract

The centralized Cloud Computing model has been demolished by recent technology
and conceptual advances, which have shifted Cloud services to developing infras-
tructures such as Edge, which are closer to end-users. Because smart devices are
becoming more widespread, powerful, and affordable, conventional Cloud computing
programming approaches are being challenged by the recent expansion of the IoT
phenomena. As a result, services must be located near such devices. In this sense, we
seek to deliver a new cloud computing service based on infrastructure and application
deployment and migration methodologies between Cloud and Edge. In this thesis,
we will propose a Machine Learning Object Detection Model for recognizing gestures
from International Sign Language shown on a webcam-equipped device to facilitate
communication between a speech-impaired individual and someone unfamiliar with
Sign Language. Depending on the infrastructure available, we developed this model
in two distinct contexts to confront different needs and requirements. Indeed, we
were able to develop an Edge and a Cloud Implementation using a variety of tools
and services for the Cloud system, ranging from Amazon Web Services to the li-
braries and dependencies required for the function’s proper execution. The findings
show how different systems respond to different demands in terms of latency, cost,
and simplicity of deployment; it will be obvious later in this work that the Edge
System offers certain advantages, such as faster execution time, but requires a more
sophisticated configuration. The Cloud System, on the other hand, is slightly slower
but has higher scalability and does not require an extra board for processing. Finally,
we make the source code and the development process available to the public to
encourage anybody interested in implementing their project to do so, resulting in
the creation of many more useful services for the consumers. It will be continuously
updated in the future with new devices and functionality.

vii

Acknowledgments

Ho deciso di scrivere i ringraziamenti in italiano per dimostrare la mia gratitudine
verso tutti coloro che mi hanno supportato durante questo percorso.
In primis, un ringraziamento speciale al mio relatore Ioannis Chatzigiannakis, per la
sua immensa pazienza, per i suoi indispensabili consigli, per le conoscenze trasmesse
durante tutto il percorso di stesura dell’elaborato.
Ringrazio il mio collega Andrea che ha condiviso con me gioie e fatiche di questo
percorso trascorso insieme.
Un grazie di cuore ai miei colleghi Daniel, Giovanni, Michele, Lorella, con cui ho
condiviso l’intero percorso universitario. È grazie a loro che ho superato i momenti
più difficili. Senza i loro consigli, non ce l’avrei mai fatta.
Ringrazio la mia fidanzata Noemi per avermi trasmesso la sua immensa forza e il
suo coraggio. Grazie per tutto il tempo che mi hai dedicato. Grazie perché ci sei
sempre stata.
Grazie ai miei amici Vittorio e Alessio per essere stati sempre presenti anche durante
questa ultima fase del mio percorso di studi. Grazie per aver ascoltato i miei sfoghi,
grazie per tutti i momenti di spensieratezza.
Non posso non menzionare i miei genitori e mio fratello che da sempre mi sostengono
nella realizzazione dei miei progetti. Non finirò mai di ringraziarvi per avermi
permesso di arrivare fin qui.
Ai miei amici Luca, Federico, Gianmarco, Federica, Luca, Agata, Michael e a tutti
quelli che hanno incrociato la loro vita con la mia lasciandomi qualcosa di buono.
Grazie per essere stati miei complici, ognuno a suo modo, in questo percorso intenso
ed entusiasmante, nel bene e nel male. Sono così tanti i ricordi che mi passano per
la testa che è impossibile trovare le parole giuste per onorarli. A farlo saranno le mie
emozioni, i miei sorrisi e le mie lacrime che insieme si mescolano in un bagaglio
di affetto sincero e gratitudine per tutti voi. Grazie per aver reso il mio traguardo
davvero speciale.

ix

Contents

1 Introduction 1
1.1 Overall problem . 1
1.2 The approach and goals of the thesis 1
1.3 Structure of the thesis . 2

2 Model Deployment at the Edge 5
2.1 Architectures . 6

2.1.1 Cloud-Centric . 6
2.1.2 Edge-Based . 6

2.2 Cloud-based ML Technologies . 7
2.2.1 Machine Learning . 7
2.2.2 Amazon Web Services . 8
2.2.3 Amazon SageMaker . 8
2.2.4 Amazon SageMaker Ground Truth 9
2.2.5 Apache MXNet in AWS . 9
2.2.6 OpenCV . 9

2.3 Cloud-based Storage Services . 10
2.3.1 Amazon S3 . 10
2.3.2 Amazon DynamoDB . 11

2.4 Cloud-based Access Control and Accounting 11
2.4.1 AWS Identity and Access Management (IAM) 11
2.4.2 Amazon CloudWatch . 11

2.5 Compute . 12
2.5.1 AWS Lambda . 12
2.5.2 Amazon Elastic Container Registry(ECR) 12
2.5.3 Docker . 12

2.6 Edge technologies . 13
2.6.1 Internet of Tings . 13
2.6.2 AWS IoT Greengrass . 15

2.7 CI/CD . 15
2.7.1 GitHub Repository . 15
2.7.2 AWS CodeCommit . 15
2.7.3 AWS CodePipeline . 16
2.7.4 AWS CloudFormation . 16

x Contents

3 Use Case 17
3.1 Background . 17
3.2 International Sign Language . 17
3.3 Model Training . 18

3.3.1 Data Preparation . 18
3.3.2 Labeling with AWS GroundTruth 19
3.3.3 Training with AWS SageMaker 22
3.3.4 Creating Deployable Model 24

4 Cloud-Based Services 27
4.1 Introduction . 27
4.2 Images collection and upload . 28
4.3 The Lambda Function . 29

4.3.1 Lambda with Container Image 29
4.3.2 Lambda Configuration and Trigger 35

4.4 Conclusions and Tests . 36

5 Edge-Based Services 39
5.1 Introduction . 39
5.2 AWS IoT Greengrass Core software and Greengo Deployment 39
5.3 Creating your inference pipeline in AWS IoT Greengrass Core 41
5.4 Lambda Functions . 42

5.4.1 VideoIngest . 42
5.4.2 BlogInfer . 43
5.4.3 DynamoItem . 45
5.4.4 Configure Lambda functions 46

5.5 Install machine learning dependencies on the device 47
5.6 Local and Machine Learning Resources 48

5.6.1 Local Resources . 48
5.6.2 Machine Learning Resources 50

5.7 Subscriptions . 52
5.8 MQTT Test Client . 52

6 Evaluation 55
6.1 Introduction . 55
6.2 Edge and Cloud Implementations . 55

6.2.1 Execution Time . 56
6.3 Cost Analysis . 58

6.3.1 A Private Smart-Store . 58
6.3.2 A National Hotel Chain . 59
6.3.3 Smart Hospital . 59

7 Conclusions and Future Works 63
7.1 Future works . 64

1

Chapter 1

Introduction

1.1 Overall problem

We’re surrounded by social networking sites, online content, and other online services
in the cloud computing era, a precursor to edge computing, giving us access to data
from anywhere at any time. Next-generation applications centered on machine-to-
machine interaction, such as the internet of things (IoT), machine learning, and
artificial intelligence (AI), will shift the focus to "edge computing", which is the
anti-cloud in many aspects. Edge computing refers to bringing the power of cloud
computing closer to the customer’s premises at the network edge, allowing them to
compute, analyze, and make real-time choices. Transporting closer to the network
edge is intended to improve network speed, improve service dependability, and lower
the cost of moving data computation to distant servers, hence reducing bandwidth
and latency difficulties. Over the last two decades, the wireless sector has grown and
new technology has been used, resulting in a rapid movement from on-premise data
centers to cloud servers. With the growing number of Industrial Internet of Things
(IoT) applications and devices, computing in data centers or cloud servers may not
be the most efficient option. Cloud computing necessitates a lot of bandwidth to
transmit data from the customer’s location to the cloud and back, which adds to
the delay. Due to the tight latency requirements for IoT applications and devices
that demand real-time calculation, computing capabilities must be located at the
edge—closer to the data generating source. Because of the numerous benefits in
terms of latency, bandwidth, and security, edge computing has seen increasing
acceptance, with rises in IoT applications and devices. Edge computing, although
ideal for IoT, may benefit any application that would benefit from reduced latency
and more efficient network use by reducing the computational burden on the network
carrying the data back and forth.

1.2 The approach and goals of the thesis

Since the computing capacity of smart devices has substantially expanded, our
research will concentrate on transitioning cloud-centric settings to edge-based con-
figurations whenever possible. In particular, build and deploy a machine learning
model for AI-powered Smart Cameras connected through AWS IoT, bringing what

2 1. Introduction

was previously only feasible in a cloud environment closer to the edge to exploit the
benefits. Furthermore, because this transformation has potential consequences in
multiple areas, including project integration and delivery, we’ll make sure to get to
a point where our system is simple to adapt and expand to new devices brought to
the group. In addition, because all of the logic is stored in one place and uploaded
to hosts that can be accessed nearly infinitely, it is straightforward to update the
code and grow the implementation in the cloud. In an edge environment, however,
the issue becomes more difficult since every new device must be given all of the logic
it requires, which can be time-consuming. However, we can build a repository where
all the functions are stored using services like CloudFormation and CodeCommit,
and we can generate the entire group in a matter of seconds, ensuring a CI/CD
approach to the entire system. To be more specific, in our instance, we wish to build
and create a device that will assist and include all persons with speech impairments
in society by allowing them to cooperate and communicate with anybody using
these new technologies. In the beginning, it will be critical to concentrate on the
model’s building; we must, in fact, train the model using a collection of pictures that
allows us to detect sign language effectively. Because extremely identical motions are
frequently present, a fine differentiation is necessary for an accurate prediction. We
need to make our infrastructure smart in order for this model to work properly. If
we consider the world of business or even your own house, it is clear that replicating
this approach across several devices would be quite difficult. As a result, you may
design and deploy infrastructure from CloudOps to EdgeOps, as we’ll see later using
Amazon Web Service. This will enable us to detect and analyze the strengths and
limitations in both scenarios, giving us a clear picture of the best option for you
depending on your requirements. As a result, our goal was to make the entire project
useful and broad, so that our infrastructure could be used for comparison purposes
with object detection as the key focus. The analysis, design, and implementation
carried out at the code level to allow the changing of these parameters will be
detailed in the next chapters.

1.3 Structure of the thesis

Various components of the project achieved in this thesis work, and therefore the
phases of design, execution, and testing, will be examined in the following chapters,
but also in terms of the technologies and services that characterize the project, to
make the potential of this approach in all of its numerous aspects understandable to
the greatest possible audience. In Chapter 2, we’ll look at cloud and edge designs,
their main features, and implementations, as well as the services that were required.
In Chapter 3, we’ll explain our project’s Use Case, which, while only one of many
conceivable applications, we keep in mind. We describe why we made this decision
and outline the steps we took to get to where we are now while working on this
project. The Cloud-Centric System is explored in further depth in Chapter 4, which
demonstrates how to use deployable machine learning to produce predictions and
store them in a database. Chapter 5, on the other hand, adapts what we built in the
previous chapter to make it deployable in an Edge Environment, as well as all of the
extra processes and needs required to have a fully functional smart device capable of

1.3 Structure of the thesis 3

deploying a machine learning model. Instead, in Chapter 6, we’ll compare the two
solutions, examining both in terms of execution time (from the start of capturing
frames to the upload of predictions to the database) and service costs. Finally, in
the final chapter, the findings and concluding considerations concerning this thesis
project, as well as probable future advancements, will be discussed.

5

Chapter 2

Model Deployment at the Edge

In the following chapters, we’ll create a Cloud-centric architecture using a Smart
Camera to capture frames and a Machine Learning model to make a database
prediction. The next stage will be to convert all of this design into an Edge-Based
architecture, which has its own set of benefits and drawbacks. To make our project
more accessible to anyone that wants to implement it, we have used a lot of different
services that also helped us a great deal during the Design and Implementation
phases. In particular, we used several tools from the Amazon Web Services console,
AWS is one if not the most used platform offering services for cloud computing,
storage, training, and much more. There are more realities out there and they all
work very well with competitive costs, but for clarity and simplicity, we decided to
stick with Amazon’s services for all our needs. Amazon Web Services, Inc. (AWS)
is a subsidiary of Amazon providing on-demand cloud computing platforms and
APIs to individuals, companies, and governments, on a metered pay-as-you-go basis.
These cloud computing web services provide a variety of basic abstract technical
infrastructure and distributed computing building blocks and tools. AWS’s virtual
computers emulate most of the attributes of a real computer, including hardware
central processing units (CPUs) and graphics processing units (GPUs) for processing;
local/RAM; hard-disk/SSD storage; a choice of operating systems; networking;
and pre-loaded application software such as web servers, databases, and customer
relationship management (CRM). The AWS technology is implemented at server
farms throughout the world and maintained by the Amazon subsidiary. Fees are
based on a combination of usage (known as a "Pay-as-you-go" model), hardware,
operating system, software, or networking features chosen by the subscriber required
availability, redundancy, security, and service options. These are paid services, but
AWS provides a free tier you can use to experiment and even implement without
the fear of "wasting" money. More on the costs of these services will be studied later
in this thesis showing some use cases. Following here we will give a brief description
of all the services used for the sake of fluidity later in the paper.

6 2. Model Deployment at the Edge

2.1 Architectures

2.1.1 Cloud-Centric

Cloud computing is the on-demand availability of computer system resources, es-
pecially data storage (cloud storage) and computing power, without direct active
management by the user. Large clouds often have functions distributed over multiple
locations, each location being a data center. Cloud computing relies on sharing of re-
sources to achieve coherence and economies of scale, typically using a "pay-as-you-go"
model which can help in reducing capital expenses but may also lead to unexpected
operating expenses for unaware users. This means that much more bandwidth will
be used and that some latency of transfer on the prediction might be present.

Figure 2.1. Cloud-Centric Architecture

2.1.2 Edge-Based

Edge computing is a distributed computing paradigm that brings computation and
data storage closer to the sources of data. This is expected to improve response times
and save bandwidth. The idea behind our interest in designing an implementation
in an Edge System comes from the fact that to perform machine learning tasks the
data exchanged is typically relatively big in size. This could generate bandwidth and
delay problems when the system will perform real-time execution and invocation of
the ML model. The solution to this could be loading the model on a device that will
acquire all the information needed by the model, manipulate them locally as to send
only the data necessary for the execution of the function which would obviously be
smaller.

2.2 Cloud-based ML Technologies 7

Figure 2.2. Edge-Centric Architecture

2.2 Cloud-based ML Technologies

2.2.1 Machine Learning

The practice of assisting software in performing a task without explicit programming
or rules is known as machine learning. A programmer specifies rules for the computer
to follow in traditional computer programming. However, ML necessitates a different
mindset. Real-world ML is more concerned with data analysis than with coding.
Programmers provide a set of examples, and the computer uses the data to learn
patterns. Machine learning can be thought of as "data programming." Machine
learning is a field that is constantly evolving. As a result, there are a few things
to think about when working with machine learning methodologies or analyzing
the impact of machine learning processes. Tasks are generally classified into broad
categories in machine learning. These classifications are based on how learning is
received and how the system is given feedback on the learning. Supervised learning
and unsupervised learning are two of the most widely used machine learning methods.
Unsupervised learning, which provides the algorithm with no labeled data in order
to allow it to find structure within its input data, and supervised learning, which
trains algorithms based on example input and output data that is labeled by humans,
are two of the most widely used machine learning methods. Deep learning tries
to mimic how the human brain converts light and sound into vision and hearing.
A deep learning architecture is inspired by biological neural networks and consists
of multiple layers in an artificial neural network made up of hardware and GPUs.
Deep learning extracts or transforms data features using a cascade of processing unit
layers. One layer’s output is used as the input for the next layer. Deep learning, the
most widely used and developed machine learning algorithm, absorbs the most data
and has been shown to outperform humans in various cognitive tasks. Deep learning
has become the approach with the most potential in the artificial intelligence area

8 2. Model Deployment at the Edge

as a result of these characteristics. Deep learning algorithms have made substantial
advances in computer vision and speech recognition. A neural network is a pattern-
recognition model that can be trained. It has layers that include input and output
layers, as well as at least one concealed layer. Each layer’s neurons learn increasingly
abstract data representations. For example, we can see neurons identifying lines,
shapes, and textures in this visual representation. These representations (or learned
characteristics) allow the data to be classified. In our case, machine learning will
allow us to create a model that recognizes the Sign Language gesture shown to our
device’s camera, which brings us to our use of IoT. Combining services from AWS in
the Machine Learning (ML) and Internet of Things (IoT) space, training a custom
computer vision model, and running it at the edge has become easier than ever. In
computer vision, image classification tells you what type of objects are in the image.
Object detection, in addition to defining objects, also tells you where the objects are
by producing bounding boxes that mark the location of each object being detected.

2.2.2 Amazon Web Services

2.2.3 Amazon SageMaker

Amazon SageMaker is a fully managed service that provides every developer and
data scientist with the ability to build, train, and deploy machine learning (ML)
models quickly. SageMaker removes the heavy lifting from each step of the machine
learning process to make it easier to develop high-quality models. Amazon SageMaker
helps data scientists and developers to prepare data and build, train, and deploy
machine learning models quickly by bringing together purpose-built capabilities.
These capabilities allow you to build highly accurate models that improve over time
without all the undifferentiated heavy lifting of managing ML environments and
infrastructure. As for any model training, you need lots of data. SageMaker lets
you connect and load your data from sources such as Amazon S3 so that you can
use this data to train your model. Models learn complex and subtle patterns to
let you map inputs to predicted outputs. You can retrieve an entire data set for
training. Once your model is deployed, you can retrieve individual features to make
low latency predictions, such as predicting in real-time. Next, great models can
be used in different situations if they are trained on a balanced set of features and
data. You can use SageMaker Clarify to identify potential bias in your training data.
This will help you ensure your model is trained across a range of genres, leading to
more accurate predictions. You can also use SageMaker Clarify to inspect individual
predictions to understand how each feature plays a role in the prediction. This allows
you to check that the model isn’t overly reliant on features that are underrepresented
in the data. One of the great things about machine learning is that models can
improve over time, not just based on new data as it becomes available, but also
by incorporating the learnings from tools like SageMaker Clarify and SageMaker
Debugger to systematically identify sources of error or slowness and remove them
from your model. With this approach, you can condense hundreds of thousands of
hours of real-world experience into just a few retraining iterations, so your models
can improve quickly. And since you want to continually improve the model by
rebuilding it regularly, you can take advantage of Amazon SageMaker Pipelines,

2.2 Cloud-based ML Technologies 9

which provides continuous integration. This decreases the time between model
improvements and delivers better models more quickly. Amazon SageMaker provides
tools that every developer is familiar with, visual editors, debuggers, profilers, and
CI/CD, all wrapped into the Amazon SageMaker Studio integrated development
environment for machine learning.

2.2.4 Amazon SageMaker Ground Truth

In 2018, Amazon Sagemaker Ground Truth was launched to fully manage data
labeling services for generating high-quality ground truth datasets to be trained into
machine learning models. Ground Truth can integrate Amazon Mechanical Turk(the
crowdsourcing platform) or internal data labeling team or external 3rd party vendors
to get the labeling job done. Workflows can be customized or made use of built-in.
This labeled dataset output from Ground Truth can be used to train their models
or as a training dataset for an Amazon SageMaker model. Sagemaker Ground truth
offers a wide range of services in image, audio, video, and text having features such
as removal of distortion in images, automatic 3D cuboid snapping, and auto-segment
tools to reduce the labeling time. Auto Labelling is possible using semi-supervised
learning, where it learns to label the data. Varied pricing for each labeled object
(image/video frame, audio recording, a section of the text, etc.) whether it’s labeled
automatically by Ground Truth or by a human labeler. If you use a vendor or
Mechanical Turk to provide labels, you pay an additional cost per labeled object. If
you use your employees for labeling, there is no additional cost per labeled object.
The workforce type can be public or private mode.

2.2.5 Apache MXNet in AWS

Model Server for Apache MXNet (MMS) is an open-source component that is
designed to simplify the task of deploying deep learning models for inference at scale.
Deploying models for inference is not a trivial task. It requires collecting the various
model artifacts, setting up a serving stack, initializing and configuring the deep
learning framework, exposing an endpoint, emitting real-time metrics, and running
custom pre-process and post-process code, to mention just a few of the engineering
tasks. While each task might not be overly complex, the overall effort involved in
deploying models is significant enough to make the deployment process slow and
cumbersome. With MMS, AWS contributes an open-source engineering toolset for
Apache MXNet that drastically simplifies the process of deploying deep learning
models. The key features that we can achieve through the use of MXNet are different,
as tooling to package and export all model artifacts into a single “model archive” file
that encapsulates everything required for serving an MXNet model or the ability to
customize every step in the inference execution pipeline, from model initialization,
through pre-processing and inference, up to post-processing the model’s output.

2.2.6 OpenCV

OpenCV (Open Source Computer Vision Library) is a library of programming
functions mainly aimed at real-time computer vision. Originally developed by Intel,
it was later supported by Willow Garage then Itseez. The library is cross-platform

10 2. Model Deployment at the Edge

and free for use under the open-source Apache 2 License. Starting with 2011,
OpenCV features GPU acceleration for real-time operations. OpenCV is a great
tool for image processing and performing computer vision tasks. It is an open-source
library that can be used to perform tasks like face detection, objection tracking,
landmark detection, and much more. The library is equipped with hundreds of useful
functions and algorithms, which are all freely available to us. Some of these functions
are really common and are used in almost every computer vision task. Whereas
many of the functions are still unexplored and haven’t received much attention yet.
OpenCV’s application areas include:

• 2D and 3D feature toolkits

• Facial recognition system

• Gesture recognition

• Human–computer interaction (HCI)

• Mobile robotics

• Object detection

• Segmentation and recognition

• Motion tracking

• Augmented reality

2.3 Cloud-based Storage Services

2.3.1 Amazon S3

Amazon S3 (Simple Storage Service) provides object storage, which is built for
storing and recovering any amount of information or data from anywhere over the
internet. It provides this storage through a web services interface. While designed
for developers for easier web-scale computing, it provides 99.999999999 percent
durability and 99.99 percent availability of objects. It can also store computer files
up to 5 terabytes in size.
It is probably the most commonly used, go-to storage service for AWS users given
the features like extremely high availability, security, and simple connection to other
AWS Services. AWS S3 can be used by people with all kinds of use cases like
mobile/web applications, big data, machine learning, and many more. An object
consists of data, key (assigned name), and metadata. A bucket is used to store
objects. When data is added to a bucket, Amazon S3 creates a unique version ID
and allocates it to the object.

2.4 Cloud-based Access Control and Accounting 11

2.3.2 Amazon DynamoDB

Amazon DynamoDB is a fully managed, serverless, key-value NoSQL database
designed to run high-performance applications at any scale. DynamoDB offers
built-in security, continuous backups, automated multi-region replication, in-memory
caching, and data export tools. With DynamoDB, there are no servers to provision,
patch, or manage, and no software to install, maintain or operate. DynamoDB
automatically scales tables to adjust for capacity and maintains performance with
zero administration. Availability and fault tolerance are built-in, eliminating the
need to architect your applications for these capabilities. It provides capacity modes
for each table: on-demand and provisioned. For workloads that are less predictable
for which you are unsure that you will have high utilization, on-demand capacity
mode takes care of managing capacity for you, and you only pay for what you
consume. Tables using provisioned capacity mode require you to set read and write
capacity. Provisioned capacity mode is more cost-effective when you’re confident
you’ll have decent utilization of the provisioned capacity you specify. For tables
using the on-demand capacity mode, DynamoDB instantly accommodates your
workloads as they ramp up or down to any previously reached traffic level. If a
workload’s traffic level hits a new peak, DynamoDB adapts rapidly to accommodate
the workload. You can use on-demand capacity mode for both new and existing
tables, and you can continue using the existing DynamoDB APIs without changing
the code.

2.4 Cloud-based Access Control and Accounting

2.4.1 AWS Identity and Access Management (IAM)

Amazon Web Services (AWS) cloud provides a secure virtual platform where users
can deploy their applications. Compared to an on-premises environment, AWS
security provides a high level of data protection at a lower cost to its users. There
are many types of security services, but Identity and Access Management (IAM)
is one the most widely used. AWS IAM enables you to securely control access to
AWS services and resources for your users. Using IAM, you can create and manage
AWS users and groups, and use permissions to allow and deny their access to AWS
resources.

2.4.2 Amazon CloudWatch

Amazon CloudWatch is a component of Amazon Web Services that provides moni-
toring for AWS resources and the customer applications running on the Amazon
infrastructure.
CloudWatch enables real-time monitoring of AWS resources such as Amazon Elastic
Compute Cloud (EC2) instances, Amazon Elastic Block Store (EBS) volumes, Elastic
Load Balancing, and Amazon DynamoDB tables. The application automatically
collects and provides metrics for CPU utilization, latency, and request count. Users
can also stipulate additional metrics to be monitored, such as memory usage, trans-
action volumes, or error rates. Users can access CloudWatch functions through
an application programming interface (API), command-line tools, one of the AWS

12 2. Model Deployment at the Edge

software development kits, or the AWS Management Console. The CloudWatch
interface provides current statistics that users can view in graph format. Users
can set notification alarms to be sent when something being monitored surpasses a
specified threshold. The app can also detect and shut down unused or underused
EC2 instances.

2.5 Compute

2.5.1 AWS Lambda

AWS Lambda is a serverless compute service that lets you run your code without
worrying about provisioning or managing any server. You can run your application
or back-end service using AWS Lambda with zero administration. Just upload your
code on Lambda, and it will run your code, even scale the infrastructure with high
availability. The code which you run on AWS Lambda is called a lambda function.
Currently, it supports many languages but what we will use will be Python. AWS
Lambda easily scales the infrastructure without any additional configuration. It
reduces the operational work involved and it offers multiple options like AWS S3,
CloudWatch, DynamoDB, API Gateway, Kinesis, CodeCommit, and many more to
trigger an event. An important feature is you don’t need to invest upfront. You pay
only for the memory used by the lambda function and minimal cost on the number
of requests hence cost-efficient and also AWS Lambda is secure, it uses AWS IAM
to define all the roles and security policies.

2.5.2 Amazon Elastic Container Registry(ECR)

Amazon ECR is a fully managed container registry offering high-performance hosting,
so you can reliably deploy application images and artifacts anywhere. Amazon ECR
stores your container images and artifacts in Amazon S3. This means that your data
is available when needed and protected against failures, errors, and threats. Amazon
ECR can also automatically replicate your data to multiple AWS Regions for your
high availability applications. Amazon ECR stores both the containers you create
and any container software you buy through AWS Marketplace. AWS Marketplace
for Containers offers verified container software for high-performance computing,
security, and developer tools, as well as SaaS products that manage, analyze, and
protect container applications. In our case, ECR is used to contain the function and
model to implement the Cloud Environment System since AWS Lambda does not
allow files of size bigger than 250MB while the libraries needed by the model are
way heavier than that.

2.5.3 Docker

Docker is an open platform for developing, shipping, and running applications.
Docker enables you to separate your applications from your infrastructure so you
can deliver software quickly. With Docker, you can manage your infrastructure in
the same ways you manage your applications. By taking advantage of Docker’s
methodologies for shipping, testing, and deploying code quickly, you can significantly

2.6 Edge technologies 13

reduce the delay between writing code and running it in production. Docker simplifies
and accelerates your workflow while giving developers the freedom to innovate with
their choice of tools, application stacks, and deployment environments for each
project. Docker is the de facto standard to build and share containerized apps -
from desktops to the cloud. In the scope of our project, Docker is crucial since we
need to create a container image of our function in order for it to be deployed in
the AWS Lambda environment. An image is a read-only template with instructions
for creating a Docker container. Often, an image is based on another image, with
some additional customization. You might create your own images or you might
only use those created by others and published in a registry. To build your own
image, you create a Dockerfile with a simple syntax for defining the steps needed to
create the image and run it. Each instruction in a Dockerfile creates a layer in the
image. When you change the Dockerfile and rebuild the image, only those layers
which have changed are rebuilt. This is part of what makes images so lightweight,
small, and fast when compared to other virtualization technologies.

2.6 Edge technologies

2.6.1 Internet of Tings

The Internet of Things (IoT) describes the network of physical objects—“things”—that
are embedded with sensors, software, and other technologies for the purpose of con-
necting and exchanging data with other devices and systems over the internet. These
devices range from ordinary household objects to sophisticated industrial tools;
kitchen appliances, thermostats, weather stations but also cars, and the greatly
discussed industry 4.0. Over the past few years, IoT has become one of the most
important technologies of the 21st century. Now that we can connect everyday
objects to the internet via embedded devices, seamless communication is possible
between people, processes, and things. By means of low-cost computing, the cloud,
big data, analytics, and mobile technologies, physical things can share and collect
data with minimal human intervention. In this hyperconnected world, digital systems
can record, monitor, and adjust each interaction between connected things. While
the idea of IoT has been in existence for a long time, a collection of recent advances
in a number of different technologies has made it practical.

• Access to low-cost, low-power sensor technology. Affordable and reliable
sensors are making IoT technology possible for more manufacturers.

• Connectivity. A host of network protocols for the internet has made it easy
to connect sensors to the cloud and other “things” for efficient data transfer.

• Cloud computing platforms. The increase in the availability of cloud
platforms enables both businesses and consumers to access the infrastructure
they need to scale up without actually having to manage it all.

• Machine learning and analytics. With advances in machine learning and
analytics, along with access to varied and vast amounts of data stored in the
cloud, businesses can gather insights faster and more easily. The emergence of

14 2. Model Deployment at the Edge

these allied technologies continues to push the boundaries of IoT and the data
produced by IoT also feeds these technologies.

• Conversational artificial intelligence (AI). Advances in neural networks
have brought natural-language processing (NLP) to IoT devices (such as
digital personal assistants Alexa, Cortana, and Siri) and made them appealing,
affordable, and viable for home use.

When something is connected to the internet, that means that it can send
information or receive information, or both. This ability to send and/or receive
information makes things “smart." To be smart, a thing doesn’t need to have super
storage or a supercomputer inside of it - it just needs access to it. In the Internet of
Things, all the things that are being connected to the internet can be put into three
categories: 1. Collecting and Sending Information
Imagine a smart farm that uses sensors to collect information useful to the farmer.
Sensors could be temperature sensors, motion sensors, moisture sensors, air quality
sensors, or many more. These sensors, along with a connection, allow us to au-
tomatically collect information from the environment which, in turn, allows us to
make more intelligent decisions. This could give relevant information to who it may
concern so that he may act accordingly to the information received. 2. Receiving
and Acting on Information
It’s not a surprise that we can send commands to devices to trigger their functions;
we can send a signal to a printer to receive our pdf, or with the help of a remote
controller we can change the channel without getting up from our couch. So what’s
so incredible about this? The real power of the Internet of Things arises when
things can do both of the above. Things that collect information and send it, but
also receive information and act on it. The real power of the Internet of Things
arises when things can do both of the above. Things that collect information and
send it, but also receive information and act on it. 3. Doing Both: The Goal of an
IoT System Let’s quickly go back to the farming example. The sensors can collect
information about the soil moisture to tell the farmer how much to water the crops,
but you don’t need the farmer. Instead, the irrigation system can automatically turn
on as needed, based on how much moisture is in the soil. Or maybe if the irrigation
system receives information about the weather from its internet connection, it can
also know when it’s going to rain and decide not to water the crops today because
they’ll be watered by the rain anyways. What if all this information about the soil
moisture, how much the irrigation system is watering the crops, and how well the
crops grow can be collected and sent to supercomputers that run amazing algorithms
that can make sense of all this information? The applications are limitless and can
be easily implemented without great costs thanks to the platform available on the
web. Our application of IoT is to use smart camera devices that will record their
surroundings to collect and send images displaying gestures from the ISL alphabet so
that they can be predicted and stored. Running computer vision algorithms at the
edge unlocks many industry use cases that have low or limited internet connectivity.

2.7 CI/CD 15

2.6.2 AWS IoT Greengrass

AWS IoT Greengrass is an open-source edge runtime and cloud service for building,
deploying, and managing device software. AWS IoT Greengrass provides pre-built
components so you can easily extend edge device functionality without writing code.
AWS IoT Greengrass components enable you to add features and quickly connect to
AWS services or third-party applications at the edge. IoT devices can vary in size,
ranging from smaller microcontroller-based devices to large appliances. AWS IoT
Greengrass Core devices, AWS IoT Device SDK-enabled devices, and FreeRTOS
devices can be configured to communicate with one another.
If the AWS IoT Greengrass Core device loses connectivity to the cloud, connected
devices can continue to communicate with each other over the local network. You
can deploy, run, and manage Docker containers on AWS IoT Greengrass devices.
Your Docker images can be stored in Docker container registries, such as Amazon
Elastic Container Registry (Amazon ECR), Docker Hub, and then used on AWS
Lambda for the device’s logic. Greengrass includes support for AWS Lambda. You
can run AWS Lambda functions on the device to respond quickly to local events,
interact with local resources, and process data to minimize the cost of transmitting
data to the cloud. AWS Lambda functions deployed on an AWS IoT Greengrass
Core can access local resources that are attached to the device. This allows you to
use serial ports, peripherals such as the board camera, or the local file system to
quickly access and process local data as you will see later. AWS IoT Greengrass ML
Inference is a feature of AWS IoT Greengrass that makes it easy to perform machine
learning inference locally on AWS IoT Greengrass devices using models that are
built and trained in the cloud. This means you won’t incur data transfer costs or
increased latency for applications that use machine learning inference.

2.7 CI/CD

2.7.1 GitHub Repository

Through all the exposition of our work, we will often reference several scripts, files,
or configurations that we used in different parts of the project. These are part of
our approach on the implementation, we will make them all available to the public
so as to ease the reproduction or possible changes to better suit your need. Our
GitHub repository containing all the files separated in folders for each "phase" is
published at the following link:
https://github.com/alessandromigliore/TesiObjectDetection

2.7.2 AWS CodeCommit

AWS CodeCommit is a secure, highly scalable, managed source control service that
hosts private Git repositories. It makes it easy for teams to securely collaborate on
code with contributions encrypted in transit and at rest. CodeCommit eliminates
the need for you to manage your own source control system or worry about scaling its
infrastructure. You can use CodeCommit to store anything from code to binaries. It
supports the standard functionality of Git, so it works seamlessly with your existing
Git-based tools. AWS CodeCommit stores your repositories in Amazon S3 and

https://github.com/alessandromigliore/TesiObjectDetection

16 2. Model Deployment at the Edge

Amazon DynamoDB. Your encrypted data is redundantly stored across multiple
facilities. This architecture increases the availability and durability of your repository
data. You can transfer your files to and from AWS CodeCommit using HTTPS
or SSH, as you prefer. Your repositories are also automatically encrypted at rest
through AWS Key Management Service (AWS KMS) using customer-specific keys.

2.7.3 AWS CodePipeline

AWS CodePipeline is a continuous delivery service that helps you automate your
build and deploy stages, which leads to faster product delivery and early mitigation
of issues. AWS CodePipeline sits in a CI/CD setup, it lets you integrate your source
code from multiple sources, such as GitHub, Amazon S3, AWS CodeCommit, etc,
monitor it continuously for any code change, and generate builds when any change is
detected. Just like any continuous delivery service, AWS CodePipeline helps teams
deliver features and updates rapidly.

2.7.4 AWS CloudFormation

AWS CloudFormation lets you model, provision, and manage AWS and third-party
resources by treating infrastructure as code. With CloudFormation you can automate,
test, and deploy infrastructure templates with continuous integration and delivery
(CI/CD) automation. It gives you an easy way to model a collection of related AWS
and third-party resources, provision them quickly and consistently, and manage them
throughout their lifecycles, by treating infrastructure as code. A CloudFormation
template describes your desired resources and their dependencies so you can launch
and configure them together as a stack. You can use a template to create, update,
and delete an entire stack as a single unit, as often as you need to, instead of
managing resources individually. AWS also provides a visual designer, that can be
used if you don’t have familiarity with YAML files, to have a clear view of how all
the different services are connected and interact with each other.

17

Chapter 3

Use Case

3.1 Background

We find that in today’s society, inclusion is one of the most important topics discussed
daily, people live, work and generally feel better when they are not abandoned, when
society thinks about their needs and does everything in its power to help them.
With the aid of Machine Learning and IoT we think we can help, even if just a little,
people to live in a world where they feel they could belong. For this reason, we
decided to create an easily implementable project to convince public and private
businesses to adopt our product in favor of the inclusion of speech-impaired people
since, unfortunately, the vast majority of people don’t know Sign Language as they
do not deem it necessary. In this paper we will show every necessary step in order
to implement completely the project; remember that this is just an application and
is not by any means at its final stage and can be modified to respond to other needs.
We would be happy if we have helped in any way.

3.2 International Sign Language

Sign languages are natural languages that have the same linguistic properties as
spoken languages. They have evolved over years in the different Deaf Communities
across the world and Europe. Despite widespread opinions, there is not one single
universal sign language in the world or even in Europe. Just as spoken languages,
sign languages vary greatly between countries and ethnic groups. Some countries
have more than one sign language or the dialect. Countries that have the same
spoken language do not necessarily have the same signed language (see for example
Germany and Austria). In recent years Deaf people have been traveling extensively,
taking part in international events, which increased the need for a "lingua franca",
much like English is widely used today. Experience has shown that it is difficult to
teach IS to anyone not knowing at least one or more national sign languages. For this
reason, we find useful a way to help deaf people to be understood in everyday life in
a society where not many non-deaf people have any knowledge of Sign Language.
As a simple example, nowadays workers that are required to interface with a lot
of people, like hotel or airport staff, need to have a good knowledge of the English
Language as it is the one most used in a commercial environment but could be

18 3. Use Case

caught off guard if a speech-impaired person tries to communicate with them. It is
important to say that with our project we do not want to force in any way a global
spread of a single Sign Language because it is "better this way". We find it beautiful
and crucial to have differences in all the SLs since are part of the country’s roots
and traditions. Hopefully, our desire to just help is clear.

Figure 3.1. International Sign Language

3.3 Model Training
With these premises, it is important to create and appropriately train a model to
reach our goal in the best way possible. In fact, the project also wants to highlight
the differences and analogies of the implementation of the same Machine Learning
Object Detection Model in two different environments, namely in Edge and Cloud
systems. As we mentioned already, our Object Detection (OD) model will be used
to recognize the gestures shown to our smart camera from a set of gestures coming
from the International Sign Language (ISL) alphabet. So the first step is to train
an OD model since it is the main part of both implementations. Once we have our
deployable model we can use it in a Cloud Environment to infer the gesture from
an image or to create our Internet Of Things (IoT) Device that does all it needs to
perform the prediction.

3.3.1 Data Preparation

The first, and also one of the most crucial, in the creation of any ML model is the
collection, preparation, and selection of the data that will be used for the training
of the model. The quality of the data chosen will influence greatly the performance
of the model, the time necessary for its training, and the reliability of the prediction.
As we said several times now, our model is an Object Detection Model that will
analyze images to recognize gestures from the ISL alphabet, so in order to train a
model that is capable of doing this, we will have to prepare a proper dataset. To
create our images that will form the set we used OpenCV through a Python script
to record a video using our device’s webcam and from the said video we retrieve all
the frames as different images. Keep in mind that this is just a way as any other to
retrieve a group of images with the same characteristics, you can use the method you

3.3 Model Training 19

prefer like just capturing the images one by one and separating them by category.
Obviously, by using this method, we will have several junk frames that cannot be
used cause they, are blurred, bring no value to the model cause it is identical to
other frames, or are just transition frames where no gesture is shown. We have to
get rid of them by performing a selection of the frames that will better carry out
the final job. We repeated this process for each gesture we wanted to have in the
project and ended up having 40 different images for the 30 different signals we agreed
upon. A good practice to use when recording the videos is to have the final images
slightly different from the previous one so that the model will work better even if
you are not holding your hand up in the exact same way you did while training;
we addressed this by slowly rotating and moving our hands during the recording to
show the hand in different angles. Now that we have completed this part, we can
upload all the selected images in a folder of our S3 bucket so that we can create a
Labeling Manifest that will be needed in the next part by GroundTruth to retrieve
the images for labeling.

3.3.2 Labeling with AWS GroundTruth

With all the images in our Bucket, all we need to do to create our Labeling Manifest
is to execute the corresponding script specifying the location of the frames in S3.
This way a new JSON file containing the URI to the images will be created and can
later be uploaded in our Bucket and retrieved by the GroundTruth console. The
JSON manifest will look somewhat like this.

{"source-ref": "s3://signlanguagebucket/frames/frameA (1).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameA (10).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameA (11).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameA (12).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameA (13).jpg"}
...
...
{"source-ref": "s3://signlanguagebucket/frames/frameZ (5).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameZ (6).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameZ (7).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameZ (8).jpg"}
{"source-ref": "s3://signlanguagebucket/frames/frameZ (9).jpg"}

Now we can start with the labeling job. The labeling is a crucial phase of
our model training because we will be saying to our model that a definite image
corresponds to a definite gesture so that our algorithm will learn to discern and
classify different signs. AWS GroundTruth comes to our help during this phase by
retrieving the images referenced in the manifest and providing us with a tool that
allows us to draw a bounding box around the hand making the gesture; let’s see how
to set this task. From the AWS SageMaker Console access the GroundTruth section
and select Labeling Jobs, here you can specify an Input Dataset Location that is
the path to your manifest, and an Output Dataset Location that indicates where
you want your final output to be stored. Then you have to specify the type of task

20 3. Use Case

you want to label; there are several with different characteristics depending on what
you wish to accomplish. In our case, we will select Bounding Box as the Task Type
since we want to classify and annotate the position of the gesture.

3.3 Model Training 21

Figure 3.2. GroundTruth Task Types

The next step is to select the workforce that will label your images. There are
different options available, each with its costs, pros, and cons. You can select an
external workforce that will label your data for you, this will considerably speed
up your job but it is obviously paid and need you to give clear instruction to the
workers if you want a job well done. Alternatively, you can select a private workforce
(which can consist even of you and your friends) and work on your data yourself.
Keep in mind though that labeling is a time-consuming job, and depending on the
number of images that need to be labeled can become obnoxious and can take some
time. With this said, you can add the classes of your images and add some good
and bad examples in case you use an external workforce; when the labeling job is
completed, you will have an output file containing the image name, the box position,
the corresponding class and other metadata used later in the training. A good
practice with this kind of labeling is to draw the box as close as possible to the
object and not to include parts of the object that are overlapping or that cannot be
seen, even though you think you can interpolate the whole shape. Also, you might

22 3. Use Case

want to check the labeling job from the console to see if some misclassifications are
present.

3.3.3 Training with AWS SageMaker

Process SageMaker Ground Truth labeling job outputs for training

The output of the SageMaker Ground Truth bounding box labeling job is in a
format called augmented manifest file. Using an augmented file allows us to gain
numerous benefits from our training input. For example, there is no need for a format
conversion if we use Sagemaker Ground truth to generate data labels, or instead of
the traditional approach of providing paths to the input images separately from its
labels, augmented manifest file already combines both into one entry for each input
image, reducing complexity in algorithm code for matching each image with labels.
Also after splitting our dataset into train/validation instead of re-uploading our file
images into the respective folders in the S3. Once you upload your image files to
S3, you never need to move them again, you can just place pointers to these images
in your augmented manifest file for training and validation. A last important note
about the augmented file is that with its use the training input images are loaded
onto the training instance in Pipe mode, which means the input data is streamed
directly to the training algorithm while it is running. This results in faster training
performance and less disk resource utilization. In our thesis project although our
augmented file is supported by Amazon Sagemaker it may be appropriate to perform
some small processing:

• Join outputs from multiple jobs: To be able to iterate on Ground Truth jobs,
we created several smaller labeling jobs for our dataset instead of a single large
job containing the full dataset.

• Discard any bad labels from visual inspection: this step is optional, you may
manually review the labeled bounding boxes on the Ground Truth console and
mark the image IDs that didn’t pass a quality bar.

• Inject the correct class labels: This step is useful in case the labeler has not
been asked, during the labeling work done on Ground Truth, to choose the
right class when drawing the delimiting boxes. This means that in our manifest
there is only one class_id: 0 because you only specified one class of objects
when you submitted the labeling job.

• Split dataset between train and validation: As mentioned above, Amazon
Sagemaker requires you to split the dataset during training, a train, and a
validation dataset. The training set consists of all frames and all records
used to train the model, while validation is used to validate that the model
can accurately make predictions on previously unseen data, and is also used
to compare accuracy between different training jobs during hyperparameter
tuning.

• Data Augmentation (optional): This simple technique allows us to reach a
higher accuracy quickly and cheaply, through two python scripts in fact we

3.3 Model Training 23

create a copy for each frame rotated on the axis of x and y of 90 degrees. We
found that even simple data augmentation like this can make a significant
difference in accuracy.

Amazon SageMaker Object Detection using the augmented manifest file
format

Now that we have finished with all the required setups, we can start our training jobs.
Using boto3 SDK, by Amazon Sagemaker, we can define input train and validation.

Figure 3.3. Output JSON File

Inserting in S3 URI the link to our bucket contain the input images, and attribute
name for the bounding box annotations. Next, set the hyperparameters. You can
find documentation for all the supported hyperparameters in the Amazon SageMaker
documentation. In this case, we recommend leaving the recommended parameters,
knowing that our algorithm This algorithm uses a base_network, which is typically a
VGG or a ResNet, and changing only the number of classes, according to your choice.

{"base_network": "resnet-50",
"use_pretrained_model": "1",
"num_classes": "30",
"mini_batch_size": "10",
"epochs": "10",
"learning_rate": "0.001",
"lr_scheduler_step": "10,20",
"lr_scheduler_factor": "0.25",
"optimizer": "sgd",
"momentum": "0.9",

24 3. Use Case

"weight_decay": "0.0005",
"overlap_threshold": "0.5",
"nms_threshold": "0.45",
"num_training_samples": "5400",
"image_shape": "512",
"_tuning_objective_metric": "",
"_kvstore": "device",
"kv_store": "device",
"_num_kv_servers": "auto",
"label_width": "150",
"freeze_layer_pattern": "",
"nms_topk": "400",
"early_stopping": "False",
"early_stopping_min_epochs": "10",
"early_stopping_patience": "5",
"early_stopping_tolerance": "0.0",
"_begin_epoch": "0"}

Now we just have to create our own Sagemaker training jobs. To carry out this
last part you need special permissions from the Amazon platform, you can get the
necessary resources by contacting the support and indicating our development region
and the notebook instance that requires the resource. Once the necessary resources
have been obtained we create the SageMaker training job.

Figure 3.4. SageMaker Training Jobs

Once the training job completes, move on to the next notebook to convert the
trained model to a deployable format and run local inference.

3.3.4 Creating Deployable Model

Now we have completed the training of our model, but in order to check its func-
tioning, we need to adjust our model artifact so that it can be deployed.
The trained model parameters along with its network definition are stored in a tar.gz
file in the output path for the training job. We need to download and unzip it to a

3.3 Model Training 25

local disk in order to work on it. Inside the tar file you will find 3 files stored that
together form our trained model :

• model_algo_1-symbol.json: neural network definition

• hyperparams.json: hyperparameters

• model_algo_1-0000.params: trained weights for the neural network

The model output produced by the built-in object detection model leaves the
loss layer in place and does not include a non-max suppression (NMS) layer.
To make it ready for inference on our machine, we need to remove the loss
layer and add the NMS layer. We will be using a script from this GitHub repo:
https://github.com/zhreshold/mxnet-ssd Make sure to execute the script just as we
do in the provided ipynb Notebook because the parameters passed in the function
must correspond to the hyperparameters you used in the training phase or it will
not work. This will create two files that will be uploaded in our S3 Bucket.

• deploy_model_algo_1-0000.params

• deploy_model_algo_1-symbol.json

Now, if we want to, we can perform a test inference selecting an image, deploying
the model, and checking if the classification is coherent with our training. You can
do it by following the mentioned notebook that will guide you in the creation of a
PDF file with the predictions of the selected images of a batch. This is our result.

26 3. Use Case

Figure 3.5. Report Visualization

Now we are ready for the real implementation of the model; we will start with
the Edge Environment where we will create a GreenGrass device to perform the
prediction.

27

Chapter 4

Cloud-Based Services

4.1 Introduction

Our main interest in creating a Cloud Environment implementation is the fact that
you don’t need any personal infrastructure since you will be using services already
present on the internet. In fact, here obviously we don’t have any external device
that can perform the prediction so all the separate images need to be sent to the
function in charge of loading the model, which will later provide the upload of the
recognized gesture on our Database.

Figure 4.1. Cloud Architecture

The system is composed of a local device, external to the environment, that is in
charge of capturing the images. Those images will be first uploaded to an S3 Bucket
and then retrieved by our Lambda that will perform the prediction and will finally
create an item in our DynamoDB. Let’s see all these steps one by one.

28 4. Cloud-Based Services

4.2 Images collection and upload

Since we don’t have a smart device with a camera, we need a computer external
to our system that with a webcam captures the images so that they can be sent
for prediction to our function. The script used to achieve this task will be pretty
similar to the one used in the edge system; the main difference is that the images
retrieved from the video will be uploaded since we need a place where to store them
for later. To do so we will use the boto3 library to connect to our bucket in the
specified region.

1 import cv2
2 import time
3 import logging
4 import json
5 import os
6 import time
7 import boto3
8 from botocore . client import Config
9 from botocore . exceptions import ClientError

10 import numpy as np
11 import urllib
12

13

14 def main ():
15 video_fname = ’#PATH FOLDER /VIDEO NAME ’
16 camera_id = 0
17

18 cap = cv2. VideoCapture (camera_id)
19

20 # Define the codec and create VideoWriter object . For mac mp4v or
avi1 is the best option .

21 # You can also use: 0 x00000021 if this codec doesn ’t work for you
22 fourcc = cv2. VideoWriter_fourcc (*’MJPG ’)
23

24 # Create a video writer , specify the codec as well as the image
widge and height .

25 # cap.get (3) is the width , and cap.get (4) is the height of the
camera in cap.

26 out = cv2. VideoWriter (video_fname , fourcc , 5.0, (int(cap.get (3)),
int(cap.get (4))))

27

28 start_time = time.time ()
29

30 while(int(time.time () - start_time) < 10):
31 ret , frame = cap.read ()
32

33 if ret == True:
34 out.write(frame)
35

36 #if cv2. waitKey (1) & 0xFF == ord(’q ’):
37 # print ("\ nstop signal received .")
38 # break
39

40 else:
41 break
42

4.3 The Lambda Function 29

43

44 # When everything done , release the capture
45 cap. release ()
46 out. release ()
47 cv2. destroyAllWindows ()
48

49

50 # Opens the Video file
51 cap2= cv2. VideoCapture (’#PATH FOLDER /VIDEO NAME ’)
52 i=0
53 while(cap2. isOpened ()):
54 ret , frame = cap2.read ()
55 if ret == False:
56 break
57

58 if i % 10 == 0:
59 cv2. imwrite (’#PATH FOLDER /frame ’+str(i)+’.jpg ’,frame)
60 client = boto3. client (’s3’, region_name =’eu -west -1’)
61 client . upload_file (’#PATH FOLDER /frame ’+str(i)+’.jpg ’, ’# BUCKET

’ ,’images /frame ’+str(i)+’.jpg ’)
62 i+=1
63

64 cap2. release ()
65 cv2. destroyAllWindows ()
66

67 main ()

Listing 4.1. Video Recording Function

Each image uploaded in the bucket will later trigger the Lambda function that
is the heart of our Cloud implementation.

4.3 The Lambda Function
The main part of the Cloud Environment is without a doubt the creation of Lambda
function that by itself needs to receive the images, load the model, perform the
prediction, create an item and finally upload that item to the DynamoDB. All of
this obviously requires a relevant amount of space that the "classical" configuration
of AWS Lambda does not support; in fact, Lambda Functions can only be created
from zip files if the total size between the main file plus any additional layer does
not exceed 250MBs of space. This amount is way too strict since we need libraries
like OpenCV, MXNET, and the model itself that are more than 100MBs each. The
way around this limitation is the fact that Amazon allows the creation of Lambdas
with container images with a maximum size of 10GBs which is more than enough.
This means that we need a container image holding all our files and libraries, let’s
see how to do that.

4.3.1 Lambda with Container Image

Using container images for your lambdas you can easily build and deploy larger work-
loads that rely on sizable dependencies, such as machine learning or data-intensive
workloads. Just like functions packaged as ZIP archives, functions deployed as
container images benefit from the same operational simplicity, automatic scaling,

30 4. Cloud-Based Services

high availability, and native integration with many services. Amazon provides base
images for all the supported Lambda runtimes (Python, Node.js, Java, .NET, Go,
Ruby) so that you can easily add your code and dependencies. So we will use the
Python base image as a start for our container where model and libraries will be
added. The base image for Python can be found at the following link:
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html Before cre-
ating the Dockerfile, we need the main Python script that does what we described
earlier; it will retrieve the item uploaded to the S3 bucket specified, will create an
image from the raw data retrieved, it then calls the script in charge of loading the
model and the prediction, from the prediction result it creates an item that will be
put inside our database. Notice that to access your bucket and database from a
script you need to provide your Amazon credentials that were removed from this
snippet for security. In case you want to reproduce this script functioning replace it
with your credentials.

1 #
2 # Copyright 2010 -2017 Amazon .com , Inc. or its affiliates . All Rights

Reserved .
3 #
4

5 # Lambda entry point
6 from model_loader import MLModel
7 import logging
8 import os
9 import time

10 import json
11 import boto3
12 from botocore . client import Config
13 from botocore . exceptions import ClientError
14 import os
15 import numpy as np
16 import urllib
17 import cv2
18

19 dynamodb = boto3. resource (" dynamodb ", region_name ="eu -west -1")
20 tableName = "# DATABASENAME "
21 predicted_gesture = "none"
22 seven_days_as_seconds = 604800
23

24 s3_signature ={
25 ’v4’:’s3v4 ’,
26 ’v2’:’s3’
27 }
28

29 ML_MODEL_BASE_PATH = ’model/’
30 ML_MODEL_PREFIX = ’deploy_model_algo_1 ’
31 ML_MODEL_PATH = os.path.join(ML_MODEL_BASE_PATH , ML_MODEL_PREFIX)
32 # Creating a greengrass core sdk client
33

34 # client =boto3. client (’iot -data ’, endpoint_url =’ a3gtyikpk9vqi1 -ats.iot
.eu -west -1. amazonaws .com ’)

35

36 model = None
37

38 # Load the model at startup

https://docs.aws.amazon.com/lambda/latest/dg/python-image.html

4.3 The Lambda Function 31

39 def initialize (param_path = ML_MODEL_PATH):
40 global model
41 model = MLModel (param_path)
42

43

44 def lambda_handler (event , context):
45 bucket_name = event[’Records ’][0][’s3’][’bucket ’][’name ’]
46 key = event[’Records ’][0][’s3’][’object ’][’key ’]
47

48 generated_signed_url = create_presigned_url (bucket_name , key ,
49 seven_days_as_seconds , s3_signature [’v4’])
50 print(generated_signed_url)
51 image_complete = url_to_image (generated_signed_url)
52

53 start = int(round(time.time () * 1000))
54 prediction = model. predict_from_file (image_complete)
55 end = int(round(time.time () * 1000))
56

57 response = {
58 ’prediction ’: prediction ,
59 ’timestamp ’: time.time ()
60 }
61

62 if prediction [0][0] == 0:
63 predicted_gesture = "A"
64 elif prediction [0][0] == 1:
65 predicted_gesture = "B"
66 elif prediction [0][0] == 2:
67 predicted_gesture = "C"
68 ...
69 ...
70 ...
71 elif prediction [0][0] == 25:
72 predicted_gesture = "Hello"
73 elif prediction [0][0] == 26:
74 predicted_gesture = "NO"
75 elif prediction [0][0] == 27:
76 predicted_gesture = "YES"
77 elif prediction [0][0] == 28:
78 predicted_gesture = " ILoveYou "
79 elif prediction [0][0] == 29:
80 predicted_gesture = " ThankYou "
81

82 global tableName
83 table = dynamodb .Table(tableName)
84 table. put_item (
85 Item ={
86 " Gesture ID": str(time.time ()),
87 " prediction ": predicted_gesture ,
88 " filepath ": key
89 }
90)
91

92 return response
93

94

95 def url_to_image (URL):

32 4. Cloud-Based Services

96 resp = urllib . request . urlopen (URL)
97 image = np. asarray (bytearray (resp.read ()), dtype="uint8")
98 image = cv2. imdecode (image , cv2. IMREAD_COLOR)
99

100 return image
101

102 def create_presigned_url (bucket_name , bucket_key , expiration =3600 ,
signature_version = s3_signature [’v4’]):

103

104 s3_client = boto3. client (’s3’,
105 aws_access_key_id =#YOUR ACCESS KEY ID",
106 aws_secret_access_key =#YOUR SECRET ACCESS

KEY ,
107 config = Config (signature_version =

signature_version),
108 region_name =’eu -west -1’
109)
110 try:
111 response = s3_client . generate_presigned_url (’get_object ’,

Params ={’Bucket ’: bucket_name , ’Key ’: bucket_key }, ExpiresIn =
expiration)

112 print(s3_client . list_buckets ()[’Owner ’])
113 for key in s3_client . list_objects (Bucket = bucket_name , Prefix =

bucket_key)[’Contents ’]:
114 print(key[’Key ’])
115 except ClientError as e:
116 logging .error(e)
117 return None
118 # The response contains the presigned URL
119

120 return response
121

122 # If this path exists then this code is running on the greengrass
core and has the ML resources it needs to initialize .

123 if os.path. exists (ML_MODEL_BASE_PATH):
124 initialize ()
125 else:
126 logging .info(’{} does not exist and we cannot initialize this lambda

function .’. format (ML_MODEL_BASE_PATH))

Listing 4.2. Container Image Main File

Once our main function file is completed, we can change the example Dockerfile
to fit our needs. As you can see, we are using the public lambda Python 3.8 image
offered by Amazon Web Services so that we have the basic libraries and configurations
already prepared. First, we load both main.py and model_loader.py that we need
for the prediction, then we copy the model artifact in a new folder that we called
model, we install libraries and dependencies and finally, we set the CMD to your
handler.

1 FROM public .ecr.aws/ lambda / python :3.8
2

3 # Copy function code
4 COPY main.py ${ LAMBDA_TASK_ROOT }
5

6 COPY model_loader .py ${ LAMBDA_TASK_ROOT }
7

4.3 The Lambda Function 33

8 RUN mkdir model
9

10 COPY deploy_model_algo_1 - symbol .json ${ LAMBDA_TASK_ROOT }/ model
11

12 COPY deploy_model_algo_1 -0000. params ${ LAMBDA_TASK_ROOT }/ model
13

14 COPY hyperparams .json ${ LAMBDA_TASK_ROOT }/ model
15

16 # Install the function ’s dependencies using file requirements .txt
17 # from your project folder .
18

19 COPY requirements .txt .
20 RUN pip3 install -r requirements .txt --target "${ LAMBDA_TASK_ROOT }"
21

22 RUN yum -y install tar gzip zlib freetype -devel \
23 gcc \
24 ghostscript \
25 lcms2 -devel \
26 libffi -devel \
27 libimagequant -devel \
28 libjpeg -devel \
29 libraqm -devel \
30 libtiff -devel \
31 libwebp -devel \
32 make \
33 openjpeg2 -devel \
34 rh - python36 \
35 rh -python36 -python - virtualenv \
36 sudo \
37 tcl -devel \
38 tk -devel \
39 tkinter \
40 which \
41 xorg -x11 -server -Xvfb \
42 zlib -devel \
43 && yum clean all
44

45 RUN yum -y install libgomp
46

47 RUN yum -y install libquadmath
48

49 RUN yum -y install mesa -libGL
50

51 # Set the CMD to your handler (could also be done as a parameter
override outside of the Dockerfile)

52 CMD ["main. lambda_handler "]

Listing 4.3. Dockerfile

Before building the container image, make sure your function folder configuration
looks like this to ensure the building will go through fine and to have a perfectly
working container since this is a time-consuming process, and re-building many times
cause something went wrong can be annoying.

34 4. Cloud-Based Services

Figure 4.2. Lambda Function Folder

Now that our Dockerfile is complete we can use the Docker CLI to build the
random-letter container image locally. When this step runs without any error we
can continue. To upload the container image, I create a new ECR repository in my
account and tag the local image to push it to ECR. To help me identify software
vulnerabilities in my container images, I enable ECR image scanning.

$ aws ecr create-repository --repository-name lambda
--image-scanning-configuration scanOnPush=true
$ docker tag lambda:latest
123412341234.dkr.ecr.eu-west-1.amazonaws.com/lambda:latest
$ aws ecr get-login-password -region eu-west-1 | sudo docker login
--username AWS --password-stdin
123412341234.dkr.ecr.eu-west-1.amazonaws.com
$ docker push 123412341234.dkr.ecr.sa-east-1.amazonaws.com/lambda:latest

Figure 4.3. Pushing Container Image in ECR

In order to execute some of these commands, make sure you have correctly
configured your AWS CLI. By completing this passage we have successfully uploaded

4.3 The Lambda Function 35

our container image that holds all is necessary to execute our lambda function on
Cloud. So we now need to create the function itself. From the Lambda console in
AWS select the "Container Image" option and browse to find the right image in your
ECR repositories. After I select the repository, I use the latest image I uploaded.
When I select the image, the Lambda is translating that to the underlying image
digest. You can see the digest of your images locally with the docker images –digests
command. In this way, the function is using the same image even if the latest tag
is passed to a newer one, and you are protected from unintentional deployments.
You can update the image to use in the function code. Updating the function
configuration has no impact on the image used, even if the tag was reassigned to
another image in the meantime.

Figure 4.4. Creating Lambda with Container Image

Then we can leave all other options untouched. We can now create our Lambda,
it will take some time. As an important note if you are using AWS Free Tier during
the implementation of this project, uploading a function of this size in an Amazon
Elastic Registry (ECR) will rapidly consume all your free use for this service. We
noticed that after completing these steps, two days of execution had already exceeded
our monthly quota and it started using standard pricing. So, if you want to avoid
unwanted expenses we suggest you give an eye out on the billing section every now
and then to have a clear vision of the cost management.

4.3.2 Lambda Configuration and Trigger

The function is now ready, but we still need to make some adjustments to make it
work properly. First of all, since the function is clearly pretty heavy, we need to grant
more memory and a greater timeout interval or it won’t be able to complete the
work in time. This can be easily achieved by working on the function configuration
in the specific section. Now, what we need is a way for the function the be invoked
on each frame that has been sent from our local Python script. This is the reason

36 4. Cloud-Based Services

why we decided to upload those images in our bucket so that we could add a trigger
to our function to be executed every time a new file with an image extension is
loaded in a specific folder of our S3. To create this just click add a new trigger, se-
lect S3 for the trigger configuration, and set other parameters like shown in the figure.

Figure 4.5. Trigger Configuration

4.4 Conclusions and Tests
Now we have configured all the necessary services to test out the function. We can
now upload a JPG image to the created S3 bucket by opening the bucket in the
AWS management console and clicking Upload. This will invoke the function on the
uploaded frame and its prediction will be uploaded to the DynamoDB specified in
the main.py file we pushed in the container image. If this test works correctly, we
can even test the function as a whole by executing our local video recording script
that should upload images on the bucket for them to be retrieved by the function.
The function will then load the model, recognize the gesture and create a new item
to put in our DB table. With this, we have completed our Cloud Environment
Implementation.

4.4 Conclusions and Tests 37

(a) Images Loaded to the Bucket

(b) Prediction stored in the Database

Figure 4.6. Results of Execution of the Cloud Function

39

Chapter 5

Edge-Based Services

5.1 Introduction

The next step in the building of this project is the actual transposition of the whole
system from a Cloud-Centric implementation to the Edge-Based one. Obviously,
the most obvious difference between the two, at first sight, is that in Edge we need
a smart device that is in charge of the computation closer to the source of data in
order to improve response times. In Edge, the device will take care of recording the
video, retrieving the frames, invoking the function to receive the prediction based on
the frame sent, and finally sending that same prediction to the DynamoDB through
the web.

5.2 AWS IoT Greengrass Core software and Greengo
Deployment

The first step will be to install and configure the AWS IoT Greengrass Core software
on a Linux device, such as a Raspberry Pi, or a Windows device. This device is a
Greengrass core device. For the sake of simplicity, we will use a VirtualBox VM on
a Windows host that mounts an Ubuntu distribution. The instructions on how to
do that can be easily found on Amazon documentation at the following link: https:
//docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html
If you followed the tutorial at the end you will have installed the GreenGrass Core
software and will have provided the AWS credential to execute commands through
the AWS CLI. Then we will create the GreenGrass Group and Core Device. there
are several ways to do so all analogous; you can use the AWS IoT Core console to use
a Graphical Interface to do all the work, you can execute ad hoc commands using
AWS CLI, or you use Greengo. Greengo is an open-source project that uses a YAML
file to describe a GreenGrass group, device, lambdas, subscription, and resources to
have everything created automatically with a simple command. The only problem is
that it works on Python2.7 that was recently removed by Amazon for their Lambdas
Runtime, so you will need to work around that. In the greengo.yaml file, which
defines configurations and lambda functions for an IoT Greengrass Group the top
portion of the file defines the name of the IoT Greengrass Group and IoT Greengrass
Cores:

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html

40 5. Edge-Based Services

1

2 Group:
3 name: GG_Object_Detection
4 Cores:
5 - name: GG_Object_Detection_Core
6 key_path : ./ certs
7 config_path : ./ config
8 SyncShadow : True
9

10 Resources :
11 - Name: MyObjectDetectionModel
12 Id: MyObjectDetectionModel
13 S3MachineLearningModelResourceData :
14 DestinationPath : /ml/od/
15 S3Uri: s3 :// bucketmigliore / deploy_model .tar.gz

Listing 5.1. Greengo YAML

Then by executing the corresponding greengo command we create all Greengrass
group artifacts in AWS and we place the certificates and config.json for IoT Green-
grass Core in ./certs/ and ./config/. In order to perform the deployment to the IoT
Core console, we need to move the group certificates and configurations created by
greengo to the /greengrass/certs/ and /greengrass/config/ directories on the device.
Then we need to download from the web a root CA certificate compatible with the
certificates Greengo generated to the /greengrass/certs/ folder. Finally, we can start
the IoT Greengrass Core daemon on the edge device so that we are able to navigate
back to the greengo folder and deploy. This will deploy the configurations you define
in greengo.yaml to the IoT Greengrass Core on the edge device.

Figure 5.1. GreenGrass Groups

So far we haven’t defined any Lambda functions yet in our Greengo configuration,
so this deployment just initializes the IoT Greengrass Core and the Machine Learning
Resource that takes the deploy_model tar.gz from our S3 Bucket. We will create
and add our Lambda Functions from scratch in the next section.

5.3 Creating your inference pipeline in AWS IoT Greengrass Core 41

5.3 Creating your inference pipeline in AWS IoT Green-
grass Core

We’re ready to put it all together now that we’ve started IoT Greengrass and tested
our inference code on the edge device: create a Greengrass Lambda feature that
starts recording a video by collecting frames from it, a lambda that executes the
inference code inside of Greengrass Core, and a lambda that inserts the value of the
prediction into a Database. We’ll build the following pipeline to test the Greengrass
Lambda IoT functions for inference:

Figure 5.2. Edge Architecture

• When the AWS video/input topic receives a boot message, the Lambda function
VideoIngest is called.

• The frame capture code is contained in the Lambda function Videoingest,
which starts recording a 10-second video and saves each frame per second in
the buffer.

• The AWS IoT topic blog/infer/input will provide the location of the image file
on the edge device for the BlogInfer Lambda function to make inference on.

• The object detection inference logic is included in a Lambda function executing
in IoT Greengrass Core BlogInfer.

• The IoT dynamo/input topic delivers the Dynamoitem Lambda function the
prediction for each frame evaluated in JSON format.

42 5. Edge-Based Services

• Finally, the DynamoItem method connects to your DynamoDB and creates a
new frame entry with the received message’s timestamp and a prediction of
the gesture made in the image.

5.4 Lambda Functions

AWS Lambda, as previously mentioned, is a serverless computing service that allows
you to run your code without having to worry about deploying or managing any
servers. AWS Lambda allows you to execute your application or backend service
with zero administration. Simply submit your code to Lambda, and it will execute
it as well as grow the infrastructure for high availability. As you can see from the
pipeline, we’ll be using three lambda functions, each of which will serve a distinct
purpose.

5.4.1 VideoIngest

Image acquisition will be of interest to the first Lambda. In actuality, we connect
to our smart cameras using Opencv, supplying our camera id as an input resource,
which is set to 0 by default (this parameter varies according to the USB port of our
device). Sending a message to start the Lamba from our IoT Core on the cloud will
start recording a video, which will then be split down into frames (for convenience
we have chosen as the dividing threshold every 5 frames). Each frame is saved in
a buffer and sent to the following lambda via the MQTT protocol. The message’s
payload includes the filepath for each frame stored in the buffer, as well as the
Lambda topic to which the message should be sent.

1 # The cloud system does not need to access the device , so the import
for greengrasssdk is not present

2 import greengrasssdk
3

4 client = greengrasssdk . client (’iot -data ’)
5

6 ...
7

8 if i % 10 == 0:
9 cv2. imwrite (’/ buffer /frame ’+str(i)+’.jpg ’,frame)

10

11 """
12

13 The Cloud Local Script needs to store the images in a bucket
to trigger the main Lambda Function

14

15 client = boto3 . client (’s3 ’, region_name =’eu -west -1’)
16 client . upload_file (’# PATH FOLDER /frame ’+str(i)+’. jpg ’, ’#

BUCKET ’,’images /frame ’+str(i)+’. jpg ’)
17

18 """
19

20 msg2 = json.dumps ({’filepath ’:’/ shared / greengrass / buffer /frame ’
+str(i)+’.jpg ’})

21 client . publish (topic=’blog/infer/input ’, payload =msg2)
22 msg = json.dumps(’video ingest is sending frame ’)

5.4 Lambda Functions 43

23 msg3 = json.dumps(’filepath / shared / greengrass / buffer /frame ’+str
(i)+’.jpg ’)

24 client . publish (topic= OUTPUT_TOPIC , payload = msg + ’ ’ + msg3)
25 logging .info(msg)
26 i+=1
27

28 cap2. release ()
29 cv2. destroyAllWindows ()

Listing 5.2. VideoIngest Function

The main difference with the cloud counterpart is the fact that the created frames
are not uploaded in the S3 bucket, instead they are stored locally and the image
local path is provided to the BlogInfer Lambda for the next step.

5.4.2 BlogInfer

The object detection inference algorithm is contained in a lambda function that runs
in IoT Greengrass Core BlogInfer. The act of passing live data points through a
machine learning algorithm (or "ML model") to compute an output such as a single
numerical score is known as machine learning inference. "Operating an ML model"
or "bringing an ML model into production" are other terms for this procedure. When
a machine learning (ML) model is used in production, it is sometimes referred to as
artificial intelligence (AI) since it performs functions akin to human reasoning and
analysis. The BlogInfer Lambda function will receive input from the AWS IoT topic
blog/infer/input for the location of the picture file on the edge device to conduct
inference on. Once the procedure is complete, the prediction output of the BlogInfer
Lambda function will be sent via MQTT message to the dynamo/input input topic of
the next DynamoItem lambda. The message in JSON format comprises, in addition
to the prediction, the timestamp of when the frame was received and the filepath of
the same frame, since it is important to know which frame the prediction refers to
when saving the message in the database.

1 #
2 # Copyright 2010 -2017 Amazon .com , Inc. or its affiliates . All Rights

Reserved .
3 #
4

5 # Lambda entry point
6 import greengrasssdk
7

8 client = greengrasssdk . client (’iot -data ’)
9

10 OUTPUT_TOPIC = ’dynamo /input ’
11

12 # Load the model at startup
13 def initialize (param_path = ML_MODEL_PATH):
14 global model
15 model = MLModel (param_path)
16

17

18 def lambda_handler (event , context):
19 """

44 5. Edge-Based Services

20 While the cloud implementation needs a reference to the uploaded
S3 object to download the stream of data and subsequently
reconstruct the image from it , the Edge System only need the path
to the image stored locally in order to load it and perform
prediction .

21

22 bucket_name = event[’ Records ’][0][’ s3 ’][’ bucket ’][’ name ’]
23 key = event[’ Records ’][0][’ s3 ’][’ object ’][’key ’]
24

25 generated_signed_url = create_presigned_url (bucket_name , key ,
26 seven_days_as_seconds , s3_signature [’v4 ’])
27 print(generated_signed_url)
28 image_complete = url_to_image (generated_signed_url)
29

30 """
31

32

33 """
34 Gets called each time the function gets invoked .
35 """
36 ...
37

38 if ’filepath ’ not in event:
39 msg = ’filepath is not in input event. nothing to do.

returning .’
40 logging .info(msg)
41 client . publish (topic= OUTPUT_TOPIC , payload =msg)
42 return None
43

44 filepath = event[’filepath ’]
45

46 if not os.path. exists (filepath):
47 msg = ’filepath does not exist. make sure \’{}\’ exists on

the device ’. format (filepath)
48 logging .info(msg)
49 client . publish (topic= OUTPUT_TOPIC , payload =msg)
50 return None
51

52 ...
53

54 prediction = model. predict_from_file (filepath)
55

56 """
57

58 Then , BlogInfer creates a message to send via MQTT to the third
and final Lambda DynamoItem that will put a new item in our table
in DynamoDB .

59

60 """
61

62 client . publish (topic= OUTPUT_TOPIC , payload =json.dumps(response))
63 client . publish (topic=’blog/infer/ output ’, payload =json.dumps(

response))

Listing 5.3. BlogInfer Function

As you can see, the Edge Implementation is somewhat easier with respect to the
whole image retrieval since we have no middle step, represented by the upload in S3

5.4 Lambda Functions 45

in the Cloud. Moreover, since we are already logged to our account in AWS and we
are not accessing it from an external device we don’t need any authentication and
security measures that also often cause unwanted errors.

5.4.3 DynamoItem

DynamoItem via boto3 SDK connects to our Dynamodb, this is because every
time an event from the previous Lambda starts the creation of a new item within
the Database. This item comprises a key called Gesture ID for each value, which
corresponds to the date of the received frame, a second value that provides the
frame prediction, and lastly the filepath of the same. Furthermore, the IoT topic
dynamo/output will broadcast the DynamoItem Lambda function’s prediction output
to the AWS IoT message broker in the cloud.

1 import greengrasssdk
2 import boto3
3 import logging
4 import os
5 import time
6 import json
7

8 dynamodb = boto3. resource (" dynamodb ", region_name ="eu -west -1")
9 tableName = # DYNAMODBNAME

10 client = greengrasssdk . client (’iot -data ’)
11

12 OUTPUT_TOPIC = ’dynamo / output ’
13

14

15 def lambda_handler (event , context):
16

17 logging .info(event[" prediction "])
18 logging .info(event[" filepath "])
19 global tableName
20

21 """
22

23 global tableName
24 table = dynamodb .Table(tableName)
25 table. put_item (
26 Item ={
27 " Gesture ID": str(time.time ()),
28 " prediction ": predicted_gesture ,
29 " filepath ": key
30 }
31)
32

33 """
34

35 table = dynamodb .Table(tableName)
36 table. put_item (
37 Item ={
38 " Gesture ID": str(time.time ()),
39 " prediction ":event[" prediction "],
40 " filepath ": event[" filepath "]
41 }
42)

46 5. Edge-Based Services

43

44 client . publish (topic= OUTPUT_TOPIC , payload =json.dumps(" publish
prediction on DynamoDB " +’:’ + event[" prediction "] + event["
filepath "]))

45

Listing 5.4. DynamoItem Function

This Lambda is almost identical to the use we make in the previous chapter, the
only noticeable difference is the ever-present "greengrasssdk" import necessary for
any lambda for Greengrass devices.

Figure 5.3. Group Lambda Function

5.4.4 Configure Lambda functions

Lambda natively supports a variety of common runtimes, including Python, Node.js,
Java, .NET, and others. If you prefer to use any other runtime, such as PHP or
Perl, you can use a custom runtime. As we’ve seen before, we’ll use Python 3.8 as
our runtime because all of the essential dependencies are already installed. We are
now ready to configure your Lambda function for AWS IoT Greengrass. Choose
Greengrass, Classic (V1), Groups in the AWS IoT console’s navigation pane. Click
the previously formed group under Greengrass groups, then choose Lambdas on
the group setup page, and then Add Lambda. Look up the name of the Lambda
you made in the previous step and copy it. Make the following modifications to the
Group-specific Lambda configuration page: Set the Timeout to 60 seconds to ensure
that this Lambda function rests for 5 seconds before each call. Select the Lambda
lifecycle option, make this function long-lived by allowing read access to the /sys
directory and making it run indefinitely. All other fields should be left unchanged,
and you should pick Update to save your changes.

5.5 Install machine learning dependencies on the device 47

Figure 5.4. Lambda Configuration

5.5 Install machine learning dependencies on the device
If your device has a GPU, check sure you have the appropriate GPU drivers loaded,
such as CUDA. You can still execute the inference if your device only has a CPU, but
it will be slower. MXNet is used to develop the SageMaker object detection model.
You’ll need to install the mxnet library on your device to perform inference on the
edge. The MXNet version that corresponds to the CUDA driver may be found in the
MXNet install manual. For example, on the Ubuntu instance, we installed CUDA
10.1, thus we installed mxnet-cu101.

$ sudo pip install mxnet-cu101 # on a GPU enabled device with CUDA 10.1

Install mxnet if you’re using a CPU-only device.

$ sudo pip install mxnet # on a CPU only device

Because OpenCV is a huge requirement, we’ll also install it on our device:

48 5. Edge-Based Services

$ sudo pip2 install opencv-python

Be extremely cautious throughout these steps, since the dependencies required
for inference execution on the device must be installed within the python directory
that you need to use for Lambda execution, in our instance, python 3.8, so all
packages must be present.

5.6 Local and Machine Learning Resources

5.6.1 Local Resources

To reduce the expense of data transmission to the cloud, you can use AWS Lambda
functions on the device to respond fast to local events, interact with local resources,
and process data. But, to allow the Lambda Function to access shared folders or
even some of the device’s peripherals we need to create through AWS Console the
corresponding resources. With AWS IoT Greengrass, you can author AWS Lambda
functions and configure connectors in the cloud and deploy them to core devices for
local execution. On Greengrass cores running Linux, these locally deployed Lambda
functions and connectors can access local resources that are physically present on
the Greengrass core device. You can access two types of local resources: volume
resources and device resources.

• Volume resources

– Files or directories on the root file system (except under /sys, /dev, or
/var)

• Device resources

– Files or directories on the root file system (except under /sys, /dev, or
/var)

This is extremely important for our implementation because for the execution of
the first Lambda VideoIngest we need to grant permission to access both a shared
folder where the function will save and later retrieve the frames and also the device’s
camera that will record the video of a person making gestures. Let’s start with the
shared folder: to allow the function to access any file in the device’s root file system
we need to declare a Local Resource of Volume type. In this case, we create a shared
folder with path source /greengrass/shared/buffer and destination path /buffer as
shown in the image.

5.6 Local and Machine Learning Resources 49

Figure 5.5. Volume Resource

Then we just need to let it automatically add OS group permissions of the Linux
group that owns the resource and attach it to the interested lambda. Instead, to
give access to the camera, we need to create a different type of Local Resource. In
fact, we need to create a Device Resource specifying the path to the camera in the
/dev path. /dev is the location of special or device files. It is a very interesting
directory that highlights one important aspect of the Linux filesystem - everything
is a file or a directory. Inside this path look for a device that might correspond to
your camera (typically video0 or video1) and create a resource with that path. Then
attach to the interested Lambda, in our case, it’s still the VideoIngest function.

50 5. Edge-Based Services

Figure 5.6. Device Resource

5.6.2 Machine Learning Resources

User-defined Lambda functions can access machine learning resources to run local
inference on the AWS IoT Greengrass core. A machine learning resource consists
of the trained model and other artifacts that are downloaded to the core device.
Local Lambda functions can directly engage with machine learning models that
are deployed to your Greengrass Core. This is where you specify where to deploy
the model locally and how Lambda functions can access it. To allow a Lambda
function to access a machine learning resource on the core, you must attach the
resource to the Lambda function and define access permissions. The containerization
mode of the affiliated (or attached) Lambda function determines how you do this.
First, we need to select from our S3 bucket the tar.gz file of our deployable model
so that the function has access to the model, then we can specify the path where
the model artifacts will be stored. When you need to troubleshoot an ML resource
deployment, it’s helpful to remember that IoT Greengrass has a containerized
architecture and uses filesystem overlay when it deploys resources such as ML model

5.6 Local and Machine Learning Resources 51

artifacts. In the example above, even though we configured the ML model artifacts
to be extracted to /ml/od/, IoT Greengrass actually downloads it to something like
/greengrass/ggc/deployment/mlmodel/<uuid>/. However, to your IoT Greengrass
local Lambda function that you declare to use this artifact, the extracted files will
appear to your lambda code to be stored in /ml/od due to the filesystem overlay.
The OS group and permissions are used by Lambda functions to access downloaded
resource artifacts. You must specify an OS group to attach the resource to non-
containerized Lambda functions. If this resource is attached to both containerized
and non-containerized Lambda functions, containerized Lambda functions should
define read or write permissions that are the same or more restrictive. Notice that,
if you followed the greengo example we did earlier, you will already have a machine
learning resource created (you can check that in the IoT Core console in the resources
tab) identical to the one we just created manually.

Figure 5.7. Machine Learning Resource

We just wanted to show you that usually there are different ways to achieve the
same objective.

52 5. Edge-Based Services

5.7 Subscriptions
A Subscription consists of a source, target, and topic. The source is the originator of
the message. The target is the destination of the message. The first step is selecting
your source and target. We use subscriptions to make the functions communicate
and as a trigger to start the acquisition. We will need to create a connection between
each one of the lambda functions and also a link between to IoT Core system to the
first lambda to start the whole system. When creating the subscription between two
agents, we need to set the topic that must be exactly the one we specified inside the
lambda function to make it listen for new messages in that topic. Here you will see
the whole picture of the subscriptions for our group.

Figure 5.8. Group Subscriptions

5.8 MQTT Test Client
You can use the AWS IoT MQTT client to better understand the bidirectional
communication that occurs between your devices and AWS IoT over the MQTT
protocol. The AWS IoT message broker uses topics to route messages from pub-
lishing clients to subscribing clients. The forward-slash (/) is used to separate
topics into a hierarchy. Devices publish messages on topics to which AWS IoT
or your applications can respond. You can use the AWS IoT MQTT client to
subscribe to these topics to see the content of these messages or publish messages
on these topics to update the device state. In our case the MQTT Test Client also
allows us to start our functions. In fact, just by sending an example message to
the topic specified in the subscriptions step we can trigger the VideoIngest func-
tion that will subsequently start all the others. Also thanks to the messages sent
to the IoT Core target we can see the products of execution of each step of the system.

5.8 MQTT Test Client 53

Figure 5.9. Output of VideoIngest

Figure 5.10. Output of BlogInfer

54 5. Edge-Based Services

Figure 5.11. Output of DynamoItem

In a naive world, we’d have to construct a group, a core, and all the lambdas,
resources, and subscriptions for every device in the network. This is highly time-
consuming and laborious, and it also introduces more potential points of failure where
things may go wrong due to human errors or a system bug. Continuous integration is
a software development approach in which developers merge new code they’ve written
more often during the development cycle, at least once a day, into the codebase.
Each iteration of the build is subjected to automated testing to uncover integration
issues early when they are easier to resolve and to avoid difficulties during the
release’s final merging. Overall, continuous integration speeds up the development
process, resulting in higher-quality software and more predictable delivery times.
We use Amazon Web Services CodeCommit and CodePipeline to overcome this
challenge and to accomplish continuous integration and delivery. Finally, using AWS
CloudFormation, we’ll develop a Stack that, when run via the mentioned service,
will generate all of the elements required for the Edge System.

55

Chapter 6

Evaluation

6.1 Introduction
Project Evaluation is the process of assessing an ongoing or completed project by
gathering data at each stage of the project. The project assessment is carried out
to understand the level of progress in a project: Is it progressing according to the
planned aims and objectives? How many goals have been achieved? What are the
challenges being faced by the team? How is the performance of each team member?
And so on. Project Evaluation is carried out at different stages of a project life cycle,
starting from the commencement of the project to completion. You can use tools
like surveys, to have a complete understanding of your project progress.

1. Project Evaluation during Project Commencement

2. Preliminary Stage Evaluation

3. Project Evaluation during Project Progress

4. Post Project Evaluation

In the scope of our project, we decided to conduct our project evaluation taking
into consideration the differences of the two implementations, the performance of
each, the costs sustained in the creation of the project, some possible case studies,
what was good, what went wrong and what could have gone better.

6.2 Edge and Cloud Implementations
In the implementation of the Edge and Cloud environment for our project the
differences showed themselves very clearly since, after all, they are very different
ways of building a project. In the Edge implementation, while you can use several
services and tools available on the internet, you still need to have a physical device
suited for the task. This as you will better see later implies some cost that might
not be for everyone; on the other hand, keeping the computation closer to the edge
allows to manipulate and change the data before sending it through the internet
connection. The Cloud implementation instead has no need for you to prepare a
group of devices since all of our project logic is uploaded to a virtual machine hosted

56 6. Evaluation

by some service. This lets you avoid the sunk cost of buying the boards but brings
more expenses on the hosting. Moreover, having to upload each image in order to
perform the prediction takes a considerable amount of time and bandwidth.

6.2.1 Execution Time

As the first parameter for our evaluation let’s take a look at the execution time for
each implementation. For the Edge Implementation, the Total Execution Time is
the time needed for the acquisition and detection of gestures on the edge device,
plus the time elapsed for the gestures to be sent via API to the DynamoDB and
finally the time needed to store those gestures on the database.

Figure 6.1. Total Execution Time for Edge-Based System

For the recording, we have set up the script to make it record for ten seconds,
after which it will start sending frame by frame to the lambda function in charge of
prediction. The effective number of frames sent for prediction will depend on the
webcam used for the video recording and by the video itself. This is caused by the
fact that the frames are retrieved from the video product, once every ten frames
(configured statically), which means that a webcam able to record at a higher frame
rate will produce more images in the ten second span. We understand that this
effect might not be desired, which leaves room for improvement in the future of
our project. With this in mind in a sample execution of the Edge System, we have
successfully predicted gestures from 11 different images with the following statistics.

6.2 Edge and Cloud Implementations 57

Figure 6.2. Execution example of Edge-Based System

10 seconds and 270 milliseconds time between starting point and last frame
1 second and 560 milliseconds between getting first frame and last frame
5 seconds and 693 milliseconds between first frame and first prediction
47 seconds and 643 milliseconds between first prediction and last prediction
326 milliseconds between first prediction and first put table in DynamoDB
47 seconds and 392 milliseconds between first put in DynamoDB and last put

So these are the results of execution for a sample test for the Edge implementation,
as you can see, the operation that requires time the most is the gesture prediction
made from the model starting from a single frame, just as we expected. When we talk
about Cloud implementation instead, things are similar but with some important
differences. In fact, in the Total Execution Time for the Cloud System, it is still
present a step for image acquisition, but the detection is not performed on the device
anymore, instead, we send the whole image via API call in step B’ to predict the
gesture in the Lambda function in step C’. Finally, we compute the time for storing
said gesture in our Database. Just as before, the local Python program will record
for ten seconds straight before retrieving the images, then it will start uploading.

Figure 6.3. Total Execution Time for Cloud-Based System

58 6. Evaluation

With the completed execution we have retrieved the following numbers regarding
the system. If you notice, the images were uploaded both in S3 and in DynamoDB in
a seemingly random manner. We decided to order them by the time of the creation
of the Database item since that is the final product of our function.

Figure 6.4. Execution example of Cloud-Based System

1 minute 47 seconds and 940 from first upload on S3 and last put on DynamoDB
32 seconds and 552 from first to last put on DynamoDB
3 seconds and 228 from first to last upload on S3

6.3 Cost Analysis
We understand that in every project one important aspect for the implementation is
the cost sustained in each part of the system. This means that a cost analysis is
crucial when deciding if the system can be employed, to have a better understanding
of where and how the costs are distributed and how to achieve equal or even better
results without influencing negatively the total expenses foreseen for a given period
of time. For this reason, we decided to make use of the Pricing Calculator provided
by Amazon Web Services to estimate the costs of several case studies concerning
different situations that require more or less the same services but in significantly
different quantities. We have prepared 3 different situations that will be briefly
elaborated on here.

6.3.1 A Private Smart-Store

In this first study, we show an estimation of costs that would be sustained by an
entrepreneur that, caring deeply for the inclusion of all her customers, decided to
implement our project in her smart clothing store. In this case, being her store
relatively small and the percentage of her hearing-impaired customer probably on a
single digit, she does not need a lot of edge devices in order to satisfyingly implement
our project. We think that even a single device should be enough. This obviously
means that the usage of each service will be limited, and possibly even covered by
the free tier offered by AWS. Even if this wasn’t the case, considering that she does
not need to train her own model, she doesn’t need to have cloud infrastructure and
considering that the Database usage will be pretty low, the total costs that she
would have to pay in a 1-year usage of our project are small enough to be affordable
by a single private individual. The only upfront cost not considered in the pricing
calculator is the price that needs to be paid to acquire a camera-equipped device.
This is a una tantum cost that we approximated to 30€.

6.3 Cost Analysis 59

Figure 6.5. Costs Estimation for a Smart-Store

6.3.2 A National Hotel Chain

In our second case study we consider a national hotel chain in which most workers,
scattered in different structures across Italy, unfortunately, have no knowledge of
the ISL and, since training them would be very costly and time-consuming, decided
to try and use the product we provide. We imagine a case where deaf visitors
would need to check-in or communicate to the front desk in order to have their
needs met. Cause of the nature of the hotel chain, a single device would not be
enough anymore and more extensive use of the described services is expected. For
this reason, we imagined a case where 10 Greengrass devices are used in the hotel
buildings where more customers are welcomed and thus there is a greater need for
faster detection and recognition of gestures. While in less "popular" tourist spots
a Cloud Implementation would work just fine. Both the Cloud System and the
greater number of smart devices will influence the cost considerably, but not having
to re-train the model lower the expenses considerably.

Figure 6.6. Costs Estimation for a National Hotel Chain

6.3.3 Smart Hospital

Finally, we can locate a comprehensive implementation of all available services in
a hospital, with the whole service being pretty substantial. As seen in the figures
below, developing a full model and keeping it up to date can be costly, but it allows
for higher precision and accuracy in the model. With the approval of the user’s
privacy, it is therefore feasible to track the latter’s movements in order to diversify
the information. Because a significant number of devices are necessary for efficient
operation, the AWS CloudFormation service is a critical resource for deploying the
complete service across the hospital network.
Given the massive quantity of predictions to store, a comprehensive review of the
expenses reveals that Sagemaker, GroundTruth, and DyanmoDB are the most costly

60 6. Evaluation

services monthly.

6.3 Cost Analysis 61

(a) Details of Costs for each service

(b) Costs Estimation for a Smart-Hospital

Figure 6.7. Cost Estimation and Details

63

Chapter 7

Conclusions and Future Works

The main purpose of the thesis is to demonstrate, starting from the design, im-
plementation, and Deployment of an MLOps pipeline from the Cloud to the Edge
environment can be a viable alternative to the advancement of new technologies and
devices. We demonstrated various implementation options and also gave the code
we used to encourage anyone with little knowledge of code and scripts to attempt
to create a system similar to ours. On the other hand, we also emphasized the key
distinctions between our two macro-sections of work. As IoT becomes more pervasive,
edge computing will do the same. The ability to analyze data closer to the source
will minimize latency, reduce the load on the internet, improve privacy and security,
and lower data management costs. However, even when utilizing appropriate services
and tools, its configuration is more complicated, especially when a large number
of devices must be added to the group. We attempted to mitigate these issues by
developing an AWS CloudFormation Stack that just requires the Core Certificate
Arn of the device to be added to the system. In terms of cost, Edge Implementation
necessitates the acquisition of all of the various smart devices, which might be costly
depending on the number of them. The Cloud Implementation is simpler to set
up and does not require the usage of a smart board for execution, but it comes at
the cost of a "slower" forecast and higher costs due to the cloud service utilized to
host our function. Furthermore, although the source code for Edge devices may
be adjusted without much work by producing a new zip file including the Lambda,
updating or changing the Cloud system’s single function is not as straightforward.
Thanks to Docker CLI, the Cloud Function operates as an image container; this
implies that each change, debugging, or update will need creating, building, and
pushing a new docker image for the Lambda service to retrieve. In conclusion,
we can observe that The Cloud will continue to play a key role in accumulating
crucial data and executing analytics on it to extract insights that can be transmitted
back to edge devices, therefore Edge and cloud computing together can enable you
better manage and analyze your data, boosting the value of your IoT initiatives
dramatically.

64 7. Conclusions and Future Works

7.1 Future works
Further development might be directed toward developing a model that identifies
not only static movements of sign language, such as the alphabet but the entire
vocabulary, requiring a more comprehensive study of the entire movement of the
arms-producing gesture. Given the high number of data to analyze, of course, we will
get a reliable model, but relying on the services of AWS will include a high creation
time, and as a result, the costs will also be high. Finally, for future deployments,
we have planned to include an LCD and a speaker in the embedded system. The
end-user will be able to view the system’s reaction in real-time and interact with it
directly by integrating the two devices. We built the entire project on a virtual Linux
system with a camera, but in the future, we’d like to utilize an AIoT-compatible
board. The ESP-EYE is a development board for image recognition and audio
processing that may be used in several IoT applications. It has a 2-megapixel camera
and a microphone, as well as an ESP32 CPU. The ESP-EYE has enough storage
with an 8 Mbyte PSRAM and a 4 Mbyte flash. It contains a Micro-USB port for
debugging and Wi-Fi for picture transmission, as well as AWS-IoT and other AWS
services connectivity out of the box.

Figure 7.1. ESP-EYE Board Detail

65

List of Figures

2.1 Cloud-Centric Architecture . 6
2.2 Edge-Centric Architecture . 7

3.1 International Sign Language . 18
3.2 GroundTruth Task Types . 21
3.3 Output JSON File . 23
3.4 SageMaker Training Jobs . 24
3.5 Report Visualization . 26

4.1 Cloud Architecture . 27
4.2 Lambda Function Folder . 34
4.3 Pushing Container Image in ECR . 34
4.4 Creating Lambda with Container Image 35
4.5 Trigger Configuration . 36
4.6 Results of Execution of the Cloud Function 37

5.1 GreenGrass Groups . 40
5.2 Edge Architecture . 41
5.3 Group Lambda Function . 46
5.4 Lambda Configuration . 47
5.5 Volume Resource . 49
5.6 Device Resource . 50
5.7 Machine Learning Resource . 51
5.8 Group Subscriptions . 52
5.9 Output of VideoIngest . 53
5.10 Output of BlogInfer . 53
5.11 Output of DynamoItem . 54

6.1 Total Execution Time for Edge-Based System 56
6.2 Execution example of Edge-Based System 57
6.3 Total Execution Time for Cloud-Based System 57
6.4 Execution example of Cloud-Based System 58
6.5 Costs Estimation for a Smart-Store 59
6.6 Costs Estimation for a National Hotel Chain 59
6.7 Cost Estimation and Details . 61

7.1 ESP-EYE Board Detail . 64

67

Listings

4.1 Video Recording Function . 28
4.2 Container Image Main File . 30
4.3 Dockerfile . 32
5.1 Greengo YAML . 40
5.2 VideoIngest Function . 42
5.3 BlogInfer Function . 43
5.4 DynamoItem Function . 45

69

Bibliography

[1] International Sign | European Union Of the Deaf. (2012, May
25). URL: https://www.eud.eu/about-us/eud-position-paper/
international-sign-guidelines/.

[2] Oracle | What Is the Internet Of Things (IoT)?. URL: https://www.oracle.
com/internet-of-things/what-is-iot/.

[3] Introduction to IoT | What is IoT. URL: https://www.leverege.com/
iot-ebook/what-is-iot.

[4] Introduction To Internet Of Things (IoT) | Set 1 - GeeksforGeeks.
(2018, August 14). GeeksforGeeks. URL: https://www.geeksforgeeks.org/
introduction-to-internet-of-things-iot-set-1//.

[5] Amazon Web Services - Wikipedia. (2002, July 1). URL: https://en.wikipedia.
org/wiki/Amazon_Web_Services.

[6] Cloud Products. Amazon Web Services, Inc.. URL: https://aws.amazon.com/
products/.

[7] Introducing Model Server for Apache MXNet | Amazon Web Services. (2017,
December 8). Amazon Web Services. URL: https://aws.amazon.com/blogs/
machine-learning/introducing-model-server-for-apache-mxnet/.

[8] Why Docker? | Docker. (n.d.). Docker.URL: https://www.docker.com/
why-docker.

[9] OpenCV - Wikipedia. (2012, November 1). OpenCV - Wikipedia. URL: https:
//en.wikipedia.org/wiki/OpenCV.

[10] Training the Amazon SageMaker Object Detection Model And Running It On
AWS IoT Greengrass – Part 1 Of 3: Preparing Training Data | Amazon Web Ser-
vices. (2019, November 27). Amazon Web Services. URL : https://aws.amazon.
com/blogs/iot/sagemaker-object-detection-greengrass-part-1-of-3/.

[11] Edge Computing - Wikipedia. (2019, May 14). URL: https://en.wikipedia.
org/wiki/Edge_computing.

[12] Hazelcast. What Is Machine Learning Inference?.(2020, September 5). URL:
https://hazelcast.com/glossary/machine-learning-inference/.

https://www.eud.eu/about-us/eud-position-paper/international-sign-guidelines/
https://www.eud.eu/about-us/eud-position-paper/international-sign-guidelines/
https://www.oracle.com/internet-of-things/what-is-iot/
https://www.oracle.com/internet-of-things/what-is-iot/
https://www.leverege.com/iot-ebook/what-is-iot
https://www.leverege.com/iot-ebook/what-is-iot
https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1//
https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1//
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://aws.amazon.com/blogs/machine-learning/introducing-model-server-for-apache-mxnet/
https://aws.amazon.com/blogs/machine-learning/introducing-model-server-for-apache-mxnet/
https://www.docker.com/why-docker
https://www.docker.com/why-docker
 https://en.wikipedia.org/wiki/OpenCV
 https://en.wikipedia.org/wiki/OpenCV
https://aws.amazon.com/blogs/iot/sagemaker-object-detection-greengrass-part-1-of-3/
https://aws.amazon.com/blogs/iot/sagemaker-object-detection-greengrass-part-1-of-3/
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Edge_computing
https://hazelcast.com/glossary/machine-learning-inference/

70 Bibliography

[13] AWS Lambda. (n.d.). Choosing and managing runtimes in Lambda func-
tions - AWS Lambda. URL: https://docs.aws.amazon.com/lambda/latest/
operatorguide/runtimes-functions.html.

[14] AWS IoT Greengrass. (n.d.). Access local resources with Lambda func-
tions and connectors . URL: https://docs.aws.amazon.com/greengrass/v1/
developerguide/access-local-resources.html.

[15] AWS IoT Greengrass. (n.d.). machine learning resources from Lambda
functions. URL: URL: https://docs.aws.amazon.com/greengrass/v1/
developerguide/access-ml-resources.html.

[16] View MQTT Messages With the AWS IoT MQTT Client - AWS IoT Core.
(n.d.). View MQTT messages with the AWS IoT MQTT client - AWS IoT
Core. URL: https://docs.aws.amazon.com/iot/latest/developerguide/
view-mqtt-messages.html.

[17] What Is AWS IoT? - AWS IoT Core. (n.d.). What is AWS IoT? - AWS IoT
Core. URL: https://docs.aws.amazon.com/iot/latest/developerguide/
what-is-aws-iot.html.

https://docs.aws.amazon.com/lambda/latest/operatorguide/runtimes-functions.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/runtimes-functions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/access-local-resources.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/access-local-resources.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/access-ml-resources.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/access-ml-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/view-mqtt-messages.html
https://docs.aws.amazon.com/iot/latest/developerguide/view-mqtt-messages.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

	Introduction
	Overall problem
	The approach and goals of the thesis
	Structure of the thesis

	Model Deployment at the Edge
	Architectures
	Cloud-Centric
	Edge-Based

	Cloud-based ML Technologies
	Machine Learning
	Amazon Web Services
	Amazon SageMaker
	Amazon SageMaker Ground Truth
	Apache MXNet in AWS
	OpenCV

	Cloud-based Storage Services
	Amazon S3
	Amazon DynamoDB

	Cloud-based Access Control and Accounting
	AWS Identity and Access Management (IAM)
	Amazon CloudWatch

	Compute
	AWS Lambda
	Amazon Elastic Container Registry(ECR)
	Docker

	Edge technologies
	Internet of Tings
	AWS IoT Greengrass

	CI/CD
	GitHub Repository
	AWS CodeCommit
	AWS CodePipeline
	AWS CloudFormation

	Use Case
	Background
	International Sign Language
	Model Training
	Data Preparation
	Labeling with AWS GroundTruth
	Training with AWS SageMaker
	Creating Deployable Model

	Cloud-Based Services
	Introduction
	Images collection and upload
	The Lambda Function
	Lambda with Container Image
	Lambda Configuration and Trigger

	Conclusions and Tests

	Edge-Based Services
	Introduction
	AWS IoT Greengrass Core software and Greengo Deployment
	Creating your inference pipeline in AWS IoT Greengrass Core
	Lambda Functions
	VideoIngest
	BlogInfer
	DynamoItem
	Configure Lambda functions

	Install machine learning dependencies on the device
	Local and Machine Learning Resources
	Local Resources
	Machine Learning Resources

	Subscriptions
	MQTT Test Client

	Evaluation
	Introduction
	Edge and Cloud Implementations
	Execution Time

	Cost Analysis
	A Private Smart-Store
	A National Hotel Chain
	Smart Hospital

	Conclusions and Future Works
	Future works

