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Abstract

Today water is near to becoming a luxury resource and at the same time in
Europe the 27% of drinking water fed in a Water Distribution System (WDS) is
lost and in Italy we lost about 40% of drinking water during transportation. For
that reason, smart water management is one of the biggest research topics and much
effort is being made to avoid water loss in WDS. Monitoring a WDS is not an easy
task because it is practically not possible to monitor all its nodes. This is because
a WDS may have thousands of nodes and it can extend across a very large area
including rural areas without an internet connection.

The main goal of this thesis is to design a GNN-based model to make predictions
on the flow in the WDS and the nodal heads for all its nodes monitoring only a
small subset of nodes. Also we want to define a criterion to choose the best subset
of nodes to monitor to obtain the best predictions as possible.

Starting from the promising work of Lu and Sela [4], we have developed a GNN
model to perform State Estimation process using a semi-supervised machine learning
approach and designing the models’ loss function following a physics-informed
machine learning strategy.

The GNN is composed of three main blocks: encoder, processor, and decoder.
The encoder formats the input and initializes the latent variables, the decoder
decodes the processor output as meaningful output, i.e. heads values, and the
processor is where the latent states are updated through message passing.

Since we want to find some dependencies between the performance metrics used
to evaluate the predictions of the model and the centrality measures of the nodes
of the WDS graph model, it is crucial to design an appropriate graph model to
represent the WDS.

To model a WDS as a graph we have designed a graph model that represents not
only the topology of the WDS but also its physical properties like diameter, length,
and roughness of its pipes and demand and head of its nodes. Such a graph model
has the weight of the edges equal to the loss coefficient of the modeled pipe and its
nodes have, as features, the head and the demand of the WDS modelled nodes.

Finding these dependencies means being able to choose the nodes to monitor
just by looking at the topology and the physical properties of the WDS.

In this thesis, all the used algorithmic methods and models are clearly defined
and presented and the most important design choices are discussed. In the end, the
strategy to find the relations between performance metrics and centrality measures
is presented and the observed strength and weaknesses of the model are discussed.
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Chapter 1

Introduction

Water covers 70% of our planet, and it is easy to think that it will always be
plentiful. However, only 3% of the world’s water is fresh water, and two-thirds of
that is tucked away in frozen glaciers or otherwise unavailable for our use. As a
result, some 1.1 billion people worldwide lack access to water, and a total of 2.7
billion find water scarce for at least one month of the year. Because of that, one of
the most important challenges for the cities of the future is smart water management.

One of the big challenges in smart water management is to design, develop,
and deploy a smart water metering system. Most of the developed smart water
metering systems follow a cloud-centric paradigm where all the data are collected and
processed centrally using cloud services. Very interesting is the solution developed
by Amaxilatis, Chatzigiannakis at al. [1] that uses the fog computing paradigm to
provide a system where the computational resources already available throughout
the network infrastructure are utilized to facilitate greatly the analysis of fine-grained
water consumption data collected by the smart meters, thus significantly reducing
the overall load to network and cloud resources.

In the work of Zecchini et al. [2], a smart metering system based on IoT is used
to monitor the water consumption of a building during the COVID-19 restrictions
period. The data collected from a Smart Water Grid are utilized to examine the
impact of human actions on the consumption of water and the performance of the
water distribution network within a university campus.

One of the core problems of water management is the loss of water in the Water
Distribution Systems (WDS). Because of that, one of the most important challenges
for the cities of the future is the smart water management. More in particular one of
the core problem of water management is the loss of water in the Water Distribution
Systems (WDS).

The Figure 1.1, taken from the overview of the European drinking water and
waste water sectors by EurEau [3], shows the percentage of drinking water lost in
WDS by EU countries. In Europe, we lost about 27% of drinking water fed into
a WDS while in Italy we reach 40%. Since we are talking about a loss of 40% of
drinking water lost during distribution in water distribution networks this is a very
huge problem that needs to be solved as soon as possible.
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Figure 1.1. Percentage of non-revenue water of the European countries

The main goal of that thesis is to design algorithmic methods and protocols to
smart manage a Water Distribution System. More in particular we will see how
to model a WDS as a graph and then how to use Graph Neural Networks (GNN)
models to perform State Estimation process on a WDS and we will investigate how
to choose the best subset of nodes to observe in order to have the best predictions.

1.1 Challenges
To reach the final goal to use GNNs to perform State Estimation process on a

WDS represented as a graph observing the best subset of nodes we can follow a clear
and simple path: Modelling the Water Distribution System as a Graph, find the
best nodes to observe to perform State Estimation and use a Graph Neural Network
model with a semi-supervised learning approach.

Each of the three tasks of that path represents a challenge, in particular in this
work we will focus on the following challenges:

• Graph Modelling: We want to model a WDS as a graph representing not
only the topological aspects of the WDS but also its physical properties as
roughness, length and diameter of its pipes.

• Junctions Choice: We want to choose the best subset of observed juncstions
to perform State Estimation. To do that we will investigate the correlation
between prediction results and centrality measures of the graphs nodes.

• GNN Model: In order to perform State Estimation we will use GNN models
using a semi-supervised learning approach and a physics-informed machine
learning to define the loss functions of the model.

1.2 Research Questions
From a research point of view, "smart water management" is nowadays one of

the biggest research topics. In fact, it is considered a core aspect to manage the
smart and green cities of the future.
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As said in the previous paragraph the first thing to do is model the Water
Distribution System, we want to manage, as a graph. To reach this goal we need to
answer the following question:

• What is the best type of graph to model a WDS?

• Is it necessary to assign weights to nodes and edges?

• There exists a way to include the pipes’ physical properties in the graph model?

Now we need to build the GNN model to perform State Estimation process using
a semi-supervised learning approach and insert the hydraulic physical laws in the
models loss functions answering to the following question:

• Which structure to use for the GNN model?

• How can we include physical knowledge in loss functions?

• Which are the best nodes to monitor to perform State Estimation?

In order to answer to this last question we need to answer to the following
question, that is also the main question of that work:

• There exists a correlation between the State Estimation performance metrics
and the centrality measures of the graphs nodes?

Finding an answer to this last question means to find a clear strategy to choose
the nodes to use to perform State Estimation.

1.3 Outline
In the next chapter 2, the EPANET software will be presented as well ad the

its compatible Python package WNTR. In section 2.2, we will see how to model a
Water Distribution System as a graph taking into account its physical properties
and in section 2.3, we will see how to generate a sufficiently large data-set from a
WDS topology to train, validate and test the model. Before proceeding with the
definition and the training of the model in section 2.5, we will resume the most
important features of a GNN explaining its main operations and structure in section
2.4. In section 2.5 we will introduce the concept of semi-supervised learning and
it will be shown in detail how to include the hydraulic domain knowledge in the
models’ loss functions following a physics-informed machine learning approach. The
performance metrics used to evaluate the model predictions we will clearly defined
in 2.6. The practical part of this work is presented and discussed in Chapter 3. At
first the two used WDS, Anytown and ASnet2, are presented in section 3.1.1, and
by showing their main properties. In section 3.2, we will see some statics about
the training phase as well as how the training parameters are set. At the end of
chapter 3, the obtained results are presented and discussed. Finally, in chapter 4
the methods and the strategies used all along this work will be discussed as well as
the obtained results.
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Chapter 2

GNN for State Estimation in a
WDS

In this chapter, all the algorithmic methods and protocols used in this work will
be presented from a theoretical point of view. It will be explained how to create
a sufficiently large data set to train, evaluate and test the model starting from a
WDS. We will see in detail the GNN-based model used to perform SE process and
how we can use it with a semi-supervised learning approach. It will be presented
the technique of physics-informed machine learning and we will see in detail how to
include the hydraulic physics laws into the GNN model loss functions. Finally, the
evaluation metrics used to evaluate the model will be clearly defined.

2.1 WDS digitization
Usually, treated water is conveyed to service reservoirs for distribution to con-

sumers. In urban systems, a water transmission system may also be necessary to
convey water from a treatment plant to several service reservoirs located at different
convenient points in the city. In some cities, there may be many sources and water
treatment plants supplying service reservoirs and water distribution systems. These
distribution systems may be separate or linked [5]. Both water transmission systems
and water distribution systems are networks of pipes. However, water transmission
systems have a tree-like configuration, whereas water distribution systems usually
have loops.

Water distribution systems contain several components. Each network is unique
in source, layout, topography of the service area, pipe material, valves and meters,
and consumer connections. The layout of a distribution network depends on the
existing pattern of streets and highways, the topography of the service area may
be flat or uneven. In uneven terrain, booster pumps may be necessary for pumping
water to high areas within the network. Similarly, it may be necessary to provide
pressure-reducing valves for areas with lower elevation to reduce pressure. Pipes
in the distribution network may be of cast or ductile iron, mild steel, concrete and
prestressed concrete, asbestos cement, polyvinyl chloride (PVC), and high-density
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polyethylene. Pipes may be unlined or lined with cement mortar. Valves are provided
in distribution systems to control flow, isolate pipelines during repairs, and in general
manage the behaviour of the WDS.

In our case, we can think about a WDS as a set of nodes connected by links
where the edges and the nodes can be of different natures and different properties.

2.1.1 EPANET

In order to work with a WDS digital model, we will use EPANET [6] that is is a
computer program that performs an extended period simulation of hydraulic and
water quality behavior within pressurized pipe networks. In particular, EPANET
tracks the flow of water in each pipe, the pressure at each node, the height of water
in each tank, and the concentration of a chemical species throughout the network
during a simulation period comprised of multiple time steps.

EPANET uses various types of objects to model a distribution system, let’s see
these objects and their properties more in detail:

• Nodes

– Junctions: Points in the network where links join together and where
water enters or leaves the network.

j : {junctionID, elevation, demand, demandPattern,
X − Coordinate, Y − Coordinate}

– Reservoirs: Reservoirs are nodes that represent an infinite external
source or sink of water to the network.

r : {reservoirID, totaHead, headPattern,
X − Coordinate, Y − Coordinate}

– Tanks: nodes with storage capacity, where the volume of stored water
can vary with time during a simulation.

t : {tankID, elevation, initLevel,minLevel,maxLevel,minV olume,
volumeCurve,X − Coordinate, Y − Coordinate}

• Links

– Pipes: links that convey water from one point in the network to another.
EPANET assumes that all pipes are full at all times. Flow direction is
from the end at higher hydraulic head to that at lower head.

p : {startNode, endNode, diameter, length, roughness, status}
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– Pumps: Links that impart energy to a fluid thereby raising its hydraulic
head.

pu : {startNode, endNode, curve}

– Valves: links that limit the pressure or flow at a specific point in the
network.

va : {startNode, endNode, diameter, setting, status}

• Time pattern: Collection of multipliers that can be applied to a quantity to
allow it to vary over time. Nodal demands, reservoir heads, pump schedules,
and water quality source inputs can all have time patterns associated with them.

Figure 2.1. Times parameters of an EPANET .inp file to have
a simulation of 168 hours with report each 1 hour

• Curves: Curves are objects that contain data pairs representing a relationship
between two quantities. For example, a Pump Curve represents the relationship
between the head and flow rate that a pump can deliver at its nominal speed
setting and a Volume Curve determines how storage tank volume varies as a
function of water level.

• Controls: Controls are statements that determine how the network is operated
over time. They specify the status of selected links as a function of time, tank
water levels, and pressures at select points within the network.

A complete description of the EPANETs’ objects is available in the paragraph 6
of the EPANET user manual [6].
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2.1.2 Water Network Tool for Resilience (WNTR)

As just said, EPANET is a complete software through which it is possible to
perform all kinds of hydraulic simulations on a WDS. The problem with EPANET
is that it is a stand-alone software, which means if we want to use the output of
a simulation we need to store them into a file and then open this file to read and
manipulate the results.

The Water Network Tool for Resilience (WNTR) [7] is an EPANET compatible
Python package that allows us to perform hydraulic simulations on a WDS, as well
as EPANET, but inside Python software.

Using WNTR in Python software is the same as using any other Python package.
At first, we need to import WNTR, and then we can start building the Water Network
Model that can be created from scratch or built directly from an EPANET inp file.
Once created we can perform different actions on a WaterNetworkModel: Add or
remove nodes and links, modify options, time series and retrieve all the information
written in the inp file. When all the WaterNetworkModel parameters are set we can
perform hydraulic simulation using the WNTR EpanetSimulator. This can be used
The EpanetSimulator can be used to run EPANET 2.00.12 Programmer’s Toolkit or
EPANET 2.2.0 Programmer’s Toolkit. It is possible to perform hydraulic simulation
based on Driven Demand or Pressure Driven Demand analysis.

Figure 2.2. Snippet of code showing how to import WNTR package, create a
WaterNetworkModel importing an EPANET inp file, and perform a simulation
with EPANET 2.00.12 Programmer’s Toolkit

The figure 2.2 shows how to import the WNTR package and build a WaterNet-
workModel from an EPANET inp file and perform a simulation.

Simulation results are stored in a results object which contains:

• Timestamp when the results were created

• Network name

• Node results

• Link results
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The node’s and link’s results are dictionaries of pandas DataFrames. The keys
of the dictionaries are the simulated properties:

• Nodes: [demand, head, pressure, quality]

• Links: [quality, flowrate, headloss, velocity, status, setting,
friction_factor, reaction_rate]

Each key has a Pandas DataFrame, as value, of shape (time_sim/report_time
, n_nodes) for nodes and (time_sim/report_timestamp, n_links) for links. For
example, doing a simulation of 168 hours of a network with a network composed of
51 nodes and a report timestamp of 1 hour, we can access the simulated heads by
results.node[′head′] that will be a DataFrame with shape (168, 51) with the nodes
as column labels where the column n contains the 168 reported heads for the node n.

2.2 WDS as a graph
In the previous paragraph 2.1 we have seen how to create a digital model of a

WDS using EPANET and how to perform hydraulic simulations in Pytho through
WNTR package. The next step is to model a WDS as a graph to be able to exploit
all its topology properties and compute the centrality measures. The challenge here
is to model the WDS as a graph representing not only the topology aspects of the
network but also its physical properties such as the nature of the nodes, roughness,
diameter, and length of the pipes.

2.2.1 Graph Model

In order to create a graph model of a WDS we need at first to build the WDS
WaternetworkModel, as described in figure 2.2, and exploit the WaterNetworkModel
properties to create our custom graph model. We will model the WDS as a graph
assigning the following weights to edges and nodes:

• nodes’ properties

– simulated head
– simulated demand
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• Links’ properties: Loss coefficient cp

– Loss coefficient for a pipe p:

cp = 10.67× lp
r1.852

HW,p × d4.871
p

(1)

– Loss coefficient for a pump p: cp = 0

In equation 1, p is the pipe we are computing its loss coefficient, lp is the length
of the pipe p, dp is the diameter of the pipe p and rHW,p is the dimensionless
Hazen-Williams coefficient.

The final graph model will be a graph G(V,E) where :

• V is the set of vertices representing the WDS nodes where

∀v ∈ V : v = {head, demand} (2)

• E is the set of edges representing the WDS links where

∀e ∈ E : e = {ce} (3)

In equation 3, cp is the loss coefficient of the pipe p that corresponds to the edge
e and in equation 2 head and demand are the ones simulated for the node n that
corresponds with vertex v.

Now that the model is well-defined, we can use the NetworkX Python package
to build the graph model. At first, it is needed to build the WaterNetworkModel
of a WDS using WNTR package, then we can create an empty undirected graph,
perform the hydraulic simulation using EpanetSimulator of WNTR, as shown in
figure 2.2 and then iterate over the WaterNetworkModel.

Figure 2.3. WDS Graph modelling process
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Figure 2.3 shows the graph modeling process for a WDS described above. In
particular, in the image we have the GraphModel which is a custom Python class that
receives an EPANET inp file, builds the graph model, and computes the centrality
measures.

2.2.2 Centrality Measures

As said in the previous paragraph and as shown in figure 2.3, the class Graph-
Model takes as input an EPNAET inp file, builds the graph model of the WDS, and
then computes the following centrality measures on the graph:

• Degree Centrality: The degree centrality for a node v is the fraction of nodes
it is connected to.

• Closeness centrality: Closeness centrality of a node u is the reciprocal of the
average shortest path distance to u over all n-1 reachable nodes.

C(u) = n− 1∑n−1
v=1 d(u, v)

(4)

where d(u, v) is the shortest-path distance between v and u, and n-1 is the
number of nodes reachable from u.

• Eigenvector centrality: Computes the centrality for a node based on the
centrality of its neighbors. The eigenvector centrality for node i is the i-th
element of the vector defined by the equation Ax = λx. Where A is the
adjacency matrix of the graph G with eigenvalue λ.

• Katz centrality: Katz centrality computes the centrality for a node based on the
centrality of its neighbors. It is a generalization of the eigenvector centrality.
The Katz centrality for node i is:

xi = α
∑

j

Aijxj + β with α ≤ 1
λmax

(5)

Where A is the adjacency matrix of the graph G with eigenvalue λ.

• Current flow closeness centrality: It is variant of closeness centrality based on
effective resistance between nodes in a network. This metric is also known as
information centrality.
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• betweenness centrality: betweenness centrality of a node v is the sum of the
fraction of all-pairs shortest paths that pass through v:

cB(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t) (6)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and
σ(s, t|v) is the number of those paths passing through some node v other than
s, t.

• Current flow betweenness centrality: It uses an electrical current model for
information spreading in contrast to betweenness centrality which uses shortest
paths. [8]

• Approximate current flow betweenness centrality: Approximates the current-
flow betweenness centrality within absolute error of epsilon with high probabil-
ity.

• Communicability betweenness centrality: It measure makes use of the number
of walks connecting every pair of nodes as the basis of a betweenness centrality
measure. Let G = (V,E) be a simple undirected graph with n nodes and m
edges, and A denote the adjacency matrix of G. Let G(r) = (V,E(r)) be the
graph resulting from removing all edges connected to node r but not the node
itself.The adjacency matrix for G(r) is A + E(r), where E(r) has nonzeros
only in row and column r. The subraph betweennes sof a node r is:

ωr = 1
C

∑
p

∑
q

Gprq

Gpq
, p ̸= q, q ̸= r (7)

where Gprq = (eA
pq − (eA+E(r))pq is the number of walks involving node r,

Gpq = (eA)pq is the number of closed walks starting at node p and ending
at node q, and C = (n− 1)2 − (n− 1) is a normalization factor equal to the
number of terms in the sum. The resulting ωr takes values between zero and
one.

• Load centrality: The load centrality of a node is the fraction of all shortest
paths that pass through that node.

• Subgraph centrality: Subgraph centrality of a node n is the sum of weighted
closed walks of all lengths starting and ending at node n. The weights decrease
with path length.

• Second order centrality: The second order centrality of a given node is the
standard deviation of the return times to that node of a perpetual random
walk on G. Lower values of second order centrality indicate higher centrality.
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• Harmonic centrality: Harmonic centrality of a node u is the sum of the
reciprocal of the shortest path distances from all other nodes to u.

• Pagerank: It computes a ranking of the nodes in the graph G based on the
structure of the incoming links.

All these centrality measures are computed and returned by the get_centralities()
method of the GraphModel class.

Figure 2.4. Snippet of code of how to use GraphModel to compute and retrieve
the centrality measurures

Image 2.4 shows how to use the GraphModel class to retrieve the centrality
measures of the graph model built on the "ASnet2.inp" file. The centrality measures
are stored in a DataFrame of shape (nNodes, 15) with the nodes’ ids in the first
columns and the centrality measures in the other columns.

2.3 Data Generation
In this section, it will be shown how to generate a dataset sufficiently large to

train, validate and test the GNN model.
Before seeing how to generate the data, let’s clearly define the structure we want

for the data.
Consider a WDS with n nodes and m pipes; let N = (1, ..., n) and M = (1, ...,m)

denote the node set and the pipe set, respectively. We want to obtain three
dimensional vectors A, B, and U such as:

• A: is a three dimensional structure of dimension (nSims× nTime, nLinks, 3)

– A[i][j][0] = Start node of link j ∈M
– A[i][j][1] = End node of link j ∈M
– A[i][j][2] = Loss coefficient Cj of link j ∈M (same of 2.2.1)
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• B: is a three dimensional structure of dimension (nSims× nTime, nNodes, 4)

– B[i][j][0] = Demand indicator of node j ∈ N
– B[i][j][1] = Demand of node j ∈ N
– B[i][j][2] = Head indicator of node j ∈ N
– B[i][j][2] = Head of node j ∈ N

• U: is a three dimensional structure of dimension (nSims× nTime, nNodes, 1)

– U [i][j] = Head of node j ∈ N

The nodes’ features "Demand indicator" and "head indicator" are used to say
whether a node is a junction (demand indicator = 1) and to specify the nodes whose
head is known (head indicator = 0), these last ones are the observed nodes.

To start generating data we need to create a WaterNetworkModel passing as
input the EPANET inp file of the WDS we want to work with. Once having created
the WaterNetworkModel, it is possible to start collecting data by filling in A, B, and
U as described above.

To collect data into A, it is possible to iterate over all the links of the WDS
retrieving the start node, the end node, and the loss coefficient.

In order to obtain the heads and demands to put into B and U, it is necessary
to perform a hydraulic simulation on the WDS. We can perform the hydraulic
simulation through the WNTR EpanetSimulator and then retrieve the output values
of demand and head.

Since we need a large dataset that we can split into train, validation, and test
set, we need to perform multiple hydraulic simulations for a long enough time. In
our application, to have a large enough dataset, we have performed nSim = 256
simulation of 168 hours with a report timestamp of one hour. Since for each
simulation we have an output of nTimes = 168 entries, at the end of the 256
simulation we will have nSim× nTimes = 43264 entries.

Furthermore, we want that each of the 256 hydraulic simulations will not produce
the same outputs. To let different simulations produce different outputs, it is possible
to make some modifications to the WDS topology before starting a new simulation.
The modifications we want to apply to the WDS topology are not such that the
topology will be upset instead we will apply small changes. Before starting the
data generation process, we will find the "removable links" of the WDS, These are
links that are connected to nodes connected with more than one link, and for that
reason, these links can be safely removed. The removable links are placed in an
array of dimension nSim in random order and, during the data generation process,
before starting the ith simulation the ith removable link is deleted. Finally, the nSim
simulation will work on different WDS topologies producing different outputs.
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Figure 2.5. Schema of the data generation process

The schema in figure 2.5 reports all the core steps of the data generation process
described above.

2.4 Graph Neural Networks
One of the core aspects of this work is to use a Graph Neural Network based

model to perform State Estimation process on a WDS.
In the context of Smart Water Management and in particular, for WDS manage-

ment, different neural network architectures have been proposed in the past.
Fully connected NNs were proposed to detect and identify pipe bursts from

transient pressure waves [10]. A fully connected neural network consists of a series
of fully connected layers. A fully connected layer is a function from Rm to Rn

[11]. Each output dimension depends on each input dimension. In fully connected
layers, the neuron applies a linear transformation to the input vector through a
weights matrix. A non-linear transformation is then applied to the product through
a non-linear activation function. A such neuron is called Perceptron.
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Figure 2.6. Structure of a Perceptron unit that transforms the input
vectors as weight matrix, compute the sum of the weights and then
applies a step function as activation function

Convolutional Neural Networks (CNN) models were trained as time-series classi-
fiers to distinguish leaks from normal signals collected by piezoelectric accelerometers
[12]. The goal of a CNN is to reduce the input vectors into a form that is easier to
process, without losing features that are critical for getting a good prediction. To
achieve this goal a convolutional layer performs a convolution that is effectively a
sliding dot product, where the kernel shifts along the input matrix, and we take the
dot product between the two as if they were vectors.

The majority of the previous works focus on anomaly detection and rely on the
supervised learning approach. One of the biggest problems of performing State
Estimation on a WDS is that we are not able to observe the entire set of its nodes
but also a small subsets. Since we have this lack of information, we need to use other
available information and in our case the topology properties of the WDS. Having a
graph model of the WDS is very important because it can be used as input for a
Graph Neural Network.

The main idea of a Graph Neural Network is that nodes in a graph represent
objects or concepts, and edges represent their relationships [13]. Thus, we can attach
a state to each node that is based on the information contained in its neighborhood.
The core process of a GNN is the message propagation process that is performed
by the so called Propagation Module [14]. The propagation module is used to
propagate information between nodes so that the aggregated information could
capture both feature and topological information. In propagation modules, the
convolution operator is usually used to aggregate information from neighbors. The
information exchange mechanisms can be abstracted as a forward path containing
two phases: a message-passing phase, which updates the latent node states based on
messages/information from neighbor nodes, and a readout phase, which decodes the
latent states to the output feature space.
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2.4.1 GNN model for State Estimation on WDS

We want to build a GNN-based model that will be able to make predictions
on the head H at all nodes and flows Q in all pipes of a WDS of which we know
network topology, pipe characteristics, nodal demands, and restricted area head
measurements.

The input of the GNN model is an input interaction graph, GI = (V,E), where

• V = (VI)I∈N with N sets of WDS nodes, and VI ∈ R4, Vi = [dii, di, hii, Hi]
where:

– dii: Junction indicator

dii =
{

1 if i is a junction

0 otherwise
(8)

– di: Demand at node i if it is a junction, 0 otherwise
– hii: Head indicator

hii =
{

0 if i is an observed node

1 otherwise
(9)

– Hi: Head of node i if it is observed, 0 otherwise

• E = (Ep)p∈M withM sets of WDS links, and Ep ∈ R3, Vi = [startNodep, endNodep, cp]

The output interaction graph GO(H,Q) represents the states of the interaction
graph, where H = (Hi)i∈N stands for the heads at all nodes, and Q = (Qp)p∈M

represents the flows in all pipes.
The overall structure of the GNN model is the one of figure 2.7 and consists of

three blocks: Encoder, Processor, and Decoder.

Figure 2.7. Overall structure of the GNN model



2.4 Graph Neural Networks 17

Let’s see more in detail what append in the three GNN blocks:

• Encoder: Transforms input space to an abstract vector space, taking into
account the WDS topology. At first the input vectors are normalized to
obtain data of same order of order of magnitude and then the latent states are
initialized

– Input Normalization: GI = (V,E)← GI = (v, e) where:

∗ vi = Vi−µV
σV

with µV and σV mean and standard deviation of V

∗ ep = Ep−µE

σE
with µV and σV mean and standard deviation of E

– Latent variables initialization: Performs input embedding in latent states,
i.e. nodal heads are embedded in X ∈ Rdx with dx dimension of latent
states. All X0 variables are initialized to zeroes vectors.

• Processor: This is where the message propagation process takes place. The
processor iteratively updates the latent states at each node by passing and
aggregating information to and from neighboring nodes using the input inter-
action graph. In the kth update layer for each node i, messages from incoming
ϕk

in, outgoing ϕk
out and self-loops ϕk

loop pipes are computed based on the latent
state at node i, Xk

i , the latent state of its neighbours, and the properties of its
connected pipes as follow:

ϕk
in =

∑
j∈Ni,j

Φk
in,θ(Xk

i , e(i,j), X
k
j ) (10)

ϕk
out =

∑
j∈Ni,j

Φk
out,θ(Xk

j , e(i,j), X
k
i ) (11)

ϕk
loop = Φk

loop,θ(Xk
i , e(i,j)) (12)

Where Φk
in,θ, Φk

out,θ, and Φk
loop,θ are Multi Layer Perceptron (MLP).

For each node i the three messages ϕk
in,θ, ϕk

out,θ, and ϕk
loop,θ and the node inputs

vi are aggregated using another MLP Ψk
i computing the aggregated message

ψk
i that is added to the latent variable of the previous layer to update the

current layer latent variable as follow:

ψk
i = Ψk

i (Xk
i , vi, ϕ

k
in,θ, ϕ

k
out,θ, ϕ

k
loop,θ) (13)

Xk+1
i = Xk

i + αψk
i (14)

where α is an hyperparameter of the model
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• Decoder: After each processor update, latent state Xk+1 is decoded into the
meaningful output state, i.e., nodal heads Hk+1

i as follow:

Hk+1
i = Dk

θ (Xk+1
i ) (15)

with Dk
θ MLP parametrized by θ. The output state at the last update layer

Hˆk is the final output of the model.

2.5 Training of the GNN model
Until now we have seen how to model a WDS as a graph, and how to build the

dataset to train, validate, and test the GNN model. The GNN model has been
presented explaining its structure, how the information is transmitted among its
nodes, how the latent variables are updated, and finally how the latent variables are
used to produce a meaningful output prediction.

In this section, we will see how to train the GNN neural network to produce
the best predictions as possible considering the fluid dynamic physical laws and the
particular properties of a WDS.

2.5.1 Semi-supervised learning technique

As already discussed, one of the core problems to face to perform WDS manage-
ment is the lack of information due to the fact that we can monitor only a small
subset of nodes. Due to this lack of information, as we have already discussed, it
is convenient to use a GNN model through which we can exploit the topological
properties of the WDS, and it is also necessary to apply a semi-supervised learning
approach.

Semi-supervised learning is an approach to machine learning that combines
a small amount of labeled data with a large amount of unlabeled data during
training. Semi-supervised learning falls between unsupervised learning (with no
labeled training data) and supervised learning (with only labeled training data).
The semi-supervised learning comes from an assumption called semi-supervised
smoothness assumption” which says: If two points x1, x2 in a high-density region
are close, then so should be the corresponding outputs y1, y2 [15]. This assumption
implies that if two points are linked by a path of high density (e.g., if they belong to
the same cluster), then their outputs are likely to be close. In the literature, there
are cases where using a semi-supervised learning approach the accuracy of the model
is better than using a supervised approach.

To perform State Estimation on WDS using a semi-supervised learning approach
is almost the only way since, we cannot observe all the nodes of the WDS and apply
an unsupervised learning technique is very inefficient in this case.

To apply a semi-supervised approach in our laboratory test, we will simulate the
condition to have only a small subset of observed nodes by setting the head indicator
during the data generation process as described in section 2.3. If the head indicator



2.5 Training of the GNN model 19

is set to 0, the node is considered to be observed, and its head is stored in array
B. On the contrary, if the head indicator is set to 1, the node is considered to not
be observed, and its head is not stored in B. Finally, we will have a small subset of
monitored nodes NH ⊂ N , with N set of nodes of WDS, whose dimension nH << n,
from which the model will learn and then it will be able to make predictions on the
entire set of node. This is exactly the definition of the State Estimation process.

2.5.2 Physics-Informed machine learning approach

Traditional data-driven learning approach ignores valuable domain knowledge,
thus failing to satisfy the underlying physical laws and potentially yielding incon-
sistent solutions. To avoid physic inconsistent predictions, it is needed to integrate
physical laws and domain knowledge in the model training process, which can, in
turn, provide physically consistent solutions and avoid overfitting.

This technique to build a machine learning model including physics knowledge is
known as physics-informed machine learning.

The leading motivation for developing these algorithms is that such prior knowl-
edge or constraints can yield more interpretable ML methods that remain robust in
the presence of imperfect data, such as missing or noisy values or outliers, and can
provide accurate and physically consistent predictions, even for generalization tasks
[16].

In the GNN model proposed here, a physics-informed machine learning technique
has been applied inserting domain knowledge into the training phase by customizing
the loss functions. In particular, the loss functions of the GNN model are built such
as to penalize differences between heads and flow simulated using EPANET and the
predicted ones, and to penalize the violation of the hydraulic physics laws.

2.5.3 GNN model loss functions

Now that we know what physics-informed machine learning means, let’s see how
to define the GNN model loss function to include physics knowledge in the model
minimizing the violation of physical laws.

At each update layer k, a loss function lk(GI , Go(Hk)) is evaluated. The loss lk
is composed of two parts:

lk = βlkm + (1− β)lkv (16)

In equation 16, the fist part is the loss of the sum of the squared errors between
model prediction and measured values, and it is defined as follow:
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lkm = Im||Hk −H∗||2 (17)

In the previous equation 17, Im is a vector that indicates the measurements
locations.

The second part of the equation 16 is where the loss lkv , representing the physical
violation, is computed. To define the loss lkv we start from the Hazen-Williams model
that defines the head loss hp for a pipe p in a WDS in steady-state conditions.

hp = Hj −Hi = cpQ
1.852
p (18)

Equation 18 defines the head loss hp of the pipe p as difference of the heads
Hj , Hi of its connected nodes i and j. Exploiting this equation we can express the
flow Qp in the pipe p as:

Qp =
(

1
cp

(Hj −Hi)
) 1

1.852

(19)

Now we can exploit this definition of Qp to define a kind of mass conservation
equation where, for each node i, the sum of the flow of the outgoing and incoming
pipes is equal to its demand di. So iterating over all the neighbors j of i we have
the following equation:

∑
j∈Ni

(
1
cp

(Hj −Hi)
)0.54

(20)

Where i ∈ N with N set of nodes of WDS and Ni set of neighbors of i.
Another important steady-state condition of a WDS is the head boundary condi-

tions at the source.

Hi = Hs,i ∀i ∈ N (21)

The equation 22 says that, in a steady-state, each node of the WDS i has a head
Hi that is equal to the head Hs,i that is the head of the source connected with i.
Now we can combine the two equations 20 and 22 to define the loss lkv as follow:
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lkv =
∑
i∈N

(∑
j∈Ni

(
1
cp

(Hk
j −Hk

i )
)0.54

− qi

)2

+
∑
i∈N

(Hk
i −Hs,i)2 (22)

The first part of the loss lkv measures the difference between the simulated flow
and the simulated ones at each node while the second part measures the difference
between the predicted head at node i Hk

i and the head at the source. It may append
that Hk

i = Hk
j , which made the first term of the loss not differentiable which is a

problem since during the training the loss function will be minimized. To avoid that,
in the case of Hk

i = Hk
j , the term (Hk

j −Hk
i ) is replaced with a very small number.

Finally, we know all the terms of equation 16 bu β that is a coefficient used to
prioritize the first or the second term of the loss definition.

2.6 Model performance metrics
Now that we have clearly defined the input data structure, the GNN model, and

the training design, we need to define the metrics to evaluate the predictions of the
model.

To evaluate the predictions of the model we will compare them with the values
simulated by EPANET. The performance metrics used to evaluate the prediction of
the model are the following:

• Correlation on the Heads measures corrH :

corrH =
∑n

i=1
∑Te

j=1(Hk
i,j − µ(Hk))(H∗

i,j − µ(H∗))√∑n
i=1

∑Te
j=1(Hk

i,j − µ(Hk))2(H∗
i,j − µ(H∗))2

(23)

Where Hk
i,j and H∗

i,j are the head at the ith node and at the jth test sample,
with Te dimension of the test set, respectively computed by the GNN model
and by EPANET. The values µ(Hk) and µ(H∗) are the mean values of all the
heads of the test set computed by the GNN and simulated by EPANET.

• Correlation on the Flow measures corrQ

corrH =
∑n

i=1
∑Te

j=1(Qk
i,j − µ(Qk))(Q∗

i,j − µ(Q∗))√∑n
i=1

∑Te
j=1(Qk

i,j − µ(Qk))2(Q∗
i,j − µ(Q∗))2

(24)



2.6 Model performance metrics 22

Where Qk
i,j and Q∗

i,j are the flow values at the ith node and at the jth test
sample, with Te dimension of the test set, respectively computed by the GNN
model and by EPANET. The values µ(Qk) and µ(Q∗) are the mean values
of all the flow values of the test set computed by the GNN and simulated by
EPANET.

• Root mean squared error of the Heads measures rmseH

rmseH =

√√√√ 1
n

n∑
i=1

(Hk
i,j −H∗

i,j) (25)

This is the root mean squared error between the prediction of the GNN model
of the nodal heads and the simulated ones.

• Root mean squared error of the flow measures rmseQ

rmseQ =

√√√√ 1
n

n∑
i=1

(Qk
i,j −Q∗

i,j) (25)

This is the root mean squared error between the prediction of the GNN model
of the flow and the simulated one.

• Mean absolute error of the Heads measures maeH

maeH = 1
n

n∑
i=1
|Hk

i,j −H∗
i,j | (26)

This is how the mean average error between the prediction of the GNN model
of the nodal heads and the simulated one.

• Mean absolute error of the flow measures maeQ

maeQ = 1
n

n∑
i=1
|Qk

i,j −Q∗
i,j | (27)

This is how the mean average error between the prediction of the GNN model
of the flow and the simulated one.



23

Chapter 3

Experimentation and results

In chapter 2 we have seen how to generate the input data for our model performing
multiple hydraulic simulations and adding noise to the WDS topology. The graph
model used in this work has been properly defined as well as all the centrality we
will measure and compare with the predictions performance metrics. At the end
of chapter 2, the two machine learning techniques semi-supervised learning and
physics-informed machine learning have been introduced and we have seen in detail
how to include the hydraulic laws into the GNN model loss functions.

In this chapter, the two investigated Water Distribution Systems ASnet2 and
Anytown2 will be presented talking about their topology and their nodes and links
properties. Some considerations about the computational time and consequently
about the hardware to use to train the model will be done. We will see how to
set the GNN models’ parameters to start the training phase. The obtained State
Estimation predictions will be evaluated using the performance metrics described
in section 2.6, the centrality measures computed from the graph models of the two
WDS will be presented and then it will be presented the adopted strategy to find
some relation between performance metrics and centrality measures. Finally, all the
obtained results will be discussed.

3.1 WDS ASnet2 and Anytown
To apply the algorithms and the models described in chapter 2 we have worked

with two benchmarks WDS, the first one called ASnet2 and the second one called
Anytown. ASnet2 and Anytown are two WDS widely used in other state of the art
works and that could be helpful to obtain further analytic information about those
WDS and also to better understand our results by comparing them with those of
the other works.
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3.1.1 ASnet2

ASnet2 is a WDS composed of 51 junctions, 65 pipes, and 1 reservoir. Its
topology is reported in figure 3.1.

Figure 3.1. Topology of the WDS Asnet2 where the dots are junctions,
the lines are pipes, and the square symbol represents the reservoir

As we can see from figure 3.1, the nodes of ASnet2 are well distributed and the
reservoir is at the center of the network.

Figure 3.2 shows the table of the properties of the junctions of ASnet2. The
demand values are between 0 and 115, and very interesting we have 5 different
patterns. The patterns have the prefix name "DMA", an acronym used in other
state of the works that stays for District Metered Areas. A DMA is a portion of the
WDS where the nodes have similar properties or similar behaviour, so it seems that
the nodes of ASnet2 can be divided into 5 clusters.

The 65 junctions of ASnet2 have length values between 20 and 1285 meters
and they all have fixed diameter of 508 millimeters and same roughness of 130
millimeters.

Detailed information about ASnet2 WDS can be found in the work "Design of
water distribution system" by Alperovits and Shamir [17]
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Figure 3.2. Properties of the junctions of ASnet2
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3.1.2 Anytown

Anytown is a small benchmark WDS composed of 19 junction, 3 reservoir, 40
pipes and 1 pump.

Figure 3.3. Topology
of the WDS Anytown
where the dots are
junctions, the lines
are pipes, the square
symbols represents
the reservoir, and the
square crossed to cir-
cle symbol represents
a pump

Even if Anytown is smaller than ASnet2, considering the number of junctions, it
more complex from a hydraulic point of view since it has 3 reservoirs and a pump.

Figure 3.4. Tables of properties of Anytown. The table a contains the
properties of the junctions of Anytown, table contains the reservoirs’
properties and table c summarizes the Anytown’s pipes properties
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Figure 3.4 shows three tables each showing different properties of Anytown WDS.
Table a) shows the junctions properties, elevation in meters and demand in m3/h,
in this case, any pattern is specified. Table b) shows the heads, measured in meters,
associated to Anytown’s reservoirs and table c) resumes the properties of the pipes
connecting the diameter, measured in meters, with the correspondent pipe’s length,
measured in meters.

Unlike ASnet2, Anytown’s pipes have different diameters and roughness where
the two physical properties are dependent on each other as shown in table c) of
figure 3.4.

Further information on the Anytown WDS can be found in the description paper
edited by Thomas M. Walski [18]

3.2 Training settings
In this section, we will see how the GNN model and training parameters have

been set. It will be presented also the hardware used for the training and the training
statistics.

3.2.1 GNN parameters

Before starting the training of the model we need to set the parameters of the
GNN model. The GNN parameters are the following:

• Iteration: 70000

• Batch size: 50

• correction updates k: 20

• Latent Dimension: 20

• α: 0.01

• Discount factor γ: 0.9

• Learning rate lr for the Adam optimizer: 0.001

• MLP parameters:

– Hidden layers: 2
– Activation function: Leaky-ReLU
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3.2.2 Training parameters and environment

In this work, we are interested in testing the GNN model described in section ??
adopting a semi-supervised approach, as described in section 2.5.2, but we also want
to define a criterion to choose the best nodes to consider for the State Estimation
process. To reach that last goal, we need to perform n times, where n is the number
of junctions of the considered WDS, State Estimation considering as observed only
the nth junction. In this way, we will have n State Estimation evaluations, one for
each junction of the WDS, and we can finally compare the performance metrics of
the nth junction with its centrality measures to find some relations.

Performing n State Estimation processes means training the model n times.
At first, we have trying to train the model using a GPU Nvidia GeForce GTX
1050Ti, with 4 GB memory, 768 CUDA cores, and 2.138 TFLOPS, and with this
configuration, it took 6 hours and 30 minutes per training. Since we need to perform
50 training for ASnet2 and 19 training for Anytown, it would have taken respectively
50× 6.5 = 325 hours and 19× 6.5 = 123.5 hours, that in both cases is too much.

To speed up things we have looked for a much more powerful setting and we
have found an Amazon Elastic Compute Cloud (EC2) with 4 GPU Nvidia Tesla
T4, with 16 GB memory, 2560 CUDA cores, and 8.141 TFLOPS. With this GPU
a training needs 2 hours and 30 minutes to complete if one training per GPU or 3
hours and 30 minutes running two training on the same GPU. That means we can
launch 8 training at the same time, each of 3 hours and 30 minutes, and since they
run in parallel, 8 training are completed in 3 hours and 30 minutes.

Ttr =
(
n− nmod8

8 + 1
)
× 3.5 (28)

The equation 28 is the general to estimate the time needed to conclude all the
training for a WDS whit n junctions. In our case, we need Ttr,asnet2 to perform all
the training for ASnet2 (50 junctions), and Ttr,anyt to complete all the training for
Anytown (19 junctions).

Ttr,asnet2 = 48
8 × 3.5 + 3.5 = 24.5 hours (29)

Ttr,anyt = 16
8 × 3.5 + 3.5 = 10.5 hours (30)

By the two equations 29 and 30 we have that we need 24.5 hours for the training
phases of ASnet2 and 10.5 hours for training the model on the junctions of Anytown.
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Figure 3.5. Statistics of the 4 Tesla T4 GPU running 8 training phases at
the same time, 2 per GPU

As shown in image 3.5, running two training phases per GPU, the 92% capability
of each GPU is used and the GPUs are not too stressed since the temperatures are
quite low, between 40 and 50 degrees. In practice, all the training for ASnet2 and
Anytown have respected the estimated times to conclude.

To perform the training using GPU computation we have used the TensorFlow
structure and sessions. Very important is to set a constant random seed for all the
training TensorFlow sessions, otherwise, the training on the different junctions will
be affected by the different random seeds.

3.3 Model prediction performances with 1 observed
node

As already said, we want to investigate the impact of each junction of the
considered WDS on the State Estimation prediction performances. After finishing
all the training, we test the model on the test set, we compute all the performance
metrics described in section 2.6 and we store them in a csv file, to make them rapidly
available for the future.

The table in figure 3.6, contains all the statistics of the predictions of the State
Estimation for each junction that has been considered to be observed. The results
are surprising, in fact, for the 11 junctions 18, 22, 19, 17, 9, 8, 24, 7, 16, 4, and 10
we have very high levels of corrH and corrQ, higher than 0.9. For the 5 nodes 18,
22, 19, 17 and 9 the order of order of magnitude of rmseh and maeH is of 10−2 and
the order of magnitude of rmseQ and maeQ is of 10−3
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Figure 3.6. Tables containing the performance metrics of the SE for each
node of ASnet2
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Concerning Anytown there were some problems at the beginning due to the
physical properties of its pipes.

In fact, the first attempts to apply our model on Anytown were not successful,
the model was struggling during the entire training phase, giving very high loss at
each update iteration, and the output values were very bad. Playing with EPANET,
we experienced the warning "Negative Pressure" during the hydraulic simulation of
Anytown. This warning means that the system is unable to meet the given demand
and one of the suggestions to solve this problem was to Reduce head loss en route
to the critical nodes by increasing pipe diameters. We have then increased the
diameters and consequently the roughness of the pipes. After these modifications,
the warning is solved and the model performs much better giving the following
results.

Figure 3.7. Tables containing the performance metrics of the SE for
each node of Anytown
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The table in figure 3.7 contains the performance metrics of the SE performed on
each node of Anytown. The results of the SE process on Anytown are not as good as
the ones of ASnet2. In fact, all the junctions have corrH around 0.46 but junction
20 that has corrH = 0.32. For all the junctions the values of corrq are between 0.51
and 0.85 while the rmseH is around 55, and the maeH is between 13.4 and 17.5.
The maeQ is of order of magnitude 10−1.

The very exception here is junction 20 which has the worst performances. In fact,
it has a rmseH = 790.18 and a maeH = 666.16 that are very high values. Also, its
maeQ is 10 times bigger than the ones of the other junctions. Very interesting is that
junction 20 is the only one connected with a pump, this may be a very interesting
indication that must be thorough to understand if this is a particular exception
or effectively can exclude to consider to observe junctions connected to a pump to
perform SE.

3.4 Centrality Measures - Performance metrics correla-
tion

Now that we have the State Estimation predictions performances we want to
find a dependency between them and the centrality measures of each junction of the
two WDS.

To compute the centrality measures described in section 2.2.2, at first we build
the graph model of the WDS as described in 2.2.1 and then we compute the centrality
measures of each nodes of the two graphs using the Python library NetwokX.

The two tables in figure 3.8 and 3.9 show the centrality measures of the node of
the ASnet2 graph model. The centrality measures of ASnet2 are in general low and
there seem to be no outliers nodes. Particularly low are the values of the Eigenvector
centrality that reach an order of magnitude of 10−7.

Looking at the centrality measures of the nodes of the Anytown graph model
in figure 3.10 and figure 3.11, the first things to notice are the values of the degree
centrality. In fact, for Anytown the degree centrality is of an order of magnitude
10−1 while the degree centrality of ASnet2 has order of magnitude of 10−2. What
stands out is the behaviour of the current flow closeness centrality that is 10−12 for
all the nodes as well as the second order centrality that is 1.0670× 10+6 for all the
nodes.

Also in this case node 20 acts as an outlier. In fact, it is the only one to have
current flow closeness centrality and second order centrality different than 10−12 and
1.0670× 10+6. In particular, the current flow closeness centrality of node 20 is 100
times smaller than all the others and the second order centrality is 10 times smaller.
Furthermore, node 20 is the only one to have betweenness centrality, current flow
betweenness centrality, Approximate current flow betweenness centrality and load
centrality equal to 0.



3.4 Centrality Measures - Performance metrics correlation 33

Figure 3.8. Centrality measures of the nodes of ASnet2 graph model 1/2
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Figure 3.9. Centrality measures of the nodes of ASnet2 graph model 2/2
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Figure 3.10. Centrality measures of the nodes of Anytown graph model 1/2

Figure 3.11. Centrality measures of the nodes of Anytown graph model 2/2
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To find some dependencies between the performance metrics and the centrality
measures we have decided to compute the correlation between them.

Practically we have stored both the performance metrics values and the centrality
measures as columns of the same Pandas DataFrame and then we have applied the
method corr(). The method corr() applied to a DataFrame, computes pairwise
correlation of columns. If the DataFrame has n number of columns, corr() will
return a DataFrame D of dimension n× n where:

D :

Di,i = 1
Di,j = cov(i,j)

σ(i)σ(j) with i ̸= j
(31)

In the equation 31, i and j are two different column of the DataFrame where we
are applying the method corr(), Di,i = 1 since correlation of a column with itself
is 1 and Di,j is the correlation between column i and column j computed using the
Pearson standard correlation coefficient that exploit cov(i, j) that is the covariance
between column i and column j.

From D we have removed the entries Di,j where both the columns i and j are
performance metrics or centrality measures. In this way, we have a DataFrame with
R rows representing the centrality measures, C columns representing the performance
metrics, and Dr,c being the correlation between the rth centrality measure and the
cth performance metrics.

In order to filter the correlations between performance metrics and centrality
measures, we have set a threshold of 0.35. We use this threshold to take only the
performance metrics with at least a correlation with a centrality measure higher
than 0.35 and in this case, the performance metric is inserted as a column c in a
DataFrame Dth and the centrality measure is inserted as a row r in Dth and Dth(r, c)
is the correlation between these measures
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Figure 3.12. Python code used to filter the correlations higher than the fixed
threshold

In figure 3.12 there is the code used to filter the correlations setting a threshold
and take only the couples with correlation higher than the threshold. In this snippet
of code code df_corr is the DataFrame D, described earlier, and df_interr_corr is
the DataFrame Dth described earlier.

The table in figure 3.13 contains the correlation values of the couples of perfor-
mance metric and centrality measure with a correlation greater than 0.35. As shown
in the table, maeH is the performance metric with a higher correlation with the
9 filtered centrality measures. In particular, maeH has a correlation of -0.71 with
close centrality, which could be considered a significant value. A negative correlation
means that the absolute values of the two vectors are dependent on each other for
the 71% but, for example in this case, if we want to find the nodes with the smallest
maeH we need to take the ones with higher close centrality.

The table in figure 3.14 contains the correlation values for the pairs’ performance
metrics and centrality values with correlations higher than 3.5 for Anytown. In this
case, all the performance metrics are very connected with current flow closeness
centrality and second order centrality. In fact, all the performance metrics have a
correlation higher than 0.99 or lower than −0.99 with current flow closeness centrality
and second order centrality. This is not surprising since, as already discussed in 3.3
and earlier in this section, all the Anytowns’ performance metrics do not vary a lot
and second order centrality and current flow closeness centrality are constant for all
the junctions of Anytown but for the junctions 20.
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Figure 3.13. Table containing correlations value between performance metrics
and centrality measures of ASnet2

Figure 3.14. Table containing correlations value between performance metrics
and centrality measures of Anytown
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Finally, in both WDS Anytown and ASnet2 correlation tables, we found second
order centrality and current flow closeness centrality. While in the case of Anytown,
these two centrality measures have the same behaviour and they are really dependent
on all the performance metrics, in the case of ASnet2, these are the second and the
third with higher absolute correlations. In both cases, we found in the set of centrality
measures with correlation higher than 3.5 close centrality, current flow closeness
centrality, current flow betweenness centrality, approximate current flow betweenness
centrality, second order centrality, and harmonic centrality. Interesting is the fact
that in both cases we have current flow betweenness centrality and approximate
current flow betweenness centrality but there is no betweenness centrality. This
could be due to the fact that current flow betweenness centrality uses an electrical
current model for information spreading in contrast to betweenness centrality which
uses shortest paths.
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Chapter 4

Conclusions

This thesis, developed at the end of the Master’s course in Engineer in Computer
Science at Sapienza University of Rome, addresses the issue of smart water manage-
ment and in particular the problem of water loss in Water Distribution Systems.

The biggest difficulties in smart managing a WDS are due to the fact that it is
very expensive deploy existing sensing technologies on each node of the WDS and
it is complicated to keep an eye on the entire network. In fact, a WDS can have
thousands of nodes that can be placed underground or in rural places where it is
difficult to establish an internet connection. These do not make the monitoring of the
entire WDS impossible but very expensive, and often the water supplier companies
cannot invest that much to digitize the entire network.

From this comes the need to make the most of the available resources and to
design sustainable solutions for managing in a smart way a WDS.

In this thesis, we start from the idea of Lu and Sela [4] to find a relation between
the State Estimation performances and the physical and topological properties of
the WDS. In fact, the main goal of that thesis is to find a criterion to choose the
best nodes to monitor to have the best State Estimation performance by looking at
the topological and physical properties of a WDS.

This work starts presenting EPANET which is a very powerful software to create
a WDS digital model taking as input a file containing all the properties of the WDS
and to perform hydraulic simulations on a WDS. We have seen the most important
objects that make up a WDS, and the properties of each different object. Then we
have talked about the need to include hydraulic simulations in a Python software
and how we can do that using the Python package WNTR which is EPANET
compatible and through which we can create a digital water network model and
perform hydraulic simulations through the EPANET engine.

A very important task in this work is to model the WDS as a graph that can
represent not only the topological aspects of the WDS but also its physical properties,
such as the diameter, length, and roughness of its pipes. Such a graph is a graph
where the edges are weighted taking into account the length, diameter, and roughness
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of the correspondent pipes and the nodes are weighted based on the demand and
the head of the correspondent nodes. Once having the graph model we can compute
some centrality measures that we will use to find some relations with the state
estimation process performances.

Then it has been shown how to generate the data to train, validate and test the
model by performing multiple hydraulic simulations and adding some noise to the
WDS structure. The structure of the generated data has been clearly presented.

At this point the GNN-based model has been presented, we have seen the input
of the model, the output, and its structure. The GNN model is composed of three
blocks, encoder, decoder, and processor. The encoder formats the input and initial-
izes the latent variables, the decoder decodes the processor output as meaningful
output, i.e. heads values, and the processor is where the latent states are updated
through message passing. Particular attention has been made in explaining how the
processor works and how the messages are propagated considering the topological
aspect of the WDS.

Semi-supervised learning and physics-informed machine learning have been pre-
sented and it was explained why it is a good choice to use them in our case. In
particular semi-supervised learning fits with the problem of partial observation of
the nodes and physics-informed machine learning includes in the loss functions of the
model the hydraulic physical laws making the predictions of the model more accurate.

At this point, all the models and algorithmic methods have been presented and
we start looking at the practical part of this work. At first, the two WDS used in
this work, ASnet2 and Anytown, have been presented showing their main properties.
Then we discussed the choice to use an Amazon Elastic Compute Cloud to train our
model, strictly related to the training computational time, and how to set all the
training parameters.

Since we are interested in finding a relation between SE performances and central-
ity measures, we have performed N SE processes, with N number of the junctions of
the WDS, considering for the nth SE process to monitor only the nth junction. The
SE performances in the two cases are quite different. With ASnet2 we have good
performances ( figure 3.6), high correlation for both flow and head and low root mean
squared errors and average mean errors. With regard to Anytown the correlation
values are low and the error indicators are quite high (figure 3.7). Furthermore, in
the results on Anytown there is an outlier, junction number 20, whose performance
metrics are much higher than the other. interesting is the fact that junction 20 is the
only one connected with the pump that may be the cause of the bad SE performance
and may represent a criterion to discard a junction from the eligible to be observed
in advance.

The centrality measures of the two graph models of Anytown and Asnet2 have
been computed (Figures: 3.8, 3.8, 3.10, and 3.11 )) and we have computed the corre-
lations between them and the SE performance metrics of the correspondent WDS.
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We have set a threshold to retrieve only the most correlated couples of performance
metrics and centrality measures. Also in this case the obtained results are different
for the two WDS. The absolute correlations for ASnet2 are quite low ( Figure 3.13),
under 0.7, and the best correlated performance metric is the mean average error
on the head with close centrality. With regard to the correlation values of ASnet2
3.14), we have that all the performance metrics are strictly correlated with current
flow closeness centrality and second order centrality with absolute values between
0.96 and 0.99. This is coherent with the fact that all the performance metrics of
Anytown, if we do not take into account junction 20, do not vary a lot but in a small
range and both current flow closeness centrality and second order centrality are con-
stant. In both cases, current flow closeness centrality and second order centrality are
in the set of centrality measures with higher correlation with the performance metrics.

At the end of this thesis, we have learned a lot about how the GNN model
handles a WDS discovering that is very dependent of the goodness on the WDS and
of its hydraulic behaviour. We have seen that a pump can cause a huge decrease in
performance and it may need to be modeled in a different way. With regard to the
dependency between prediction performances and centrality measures, the two WDS
give very different results, in both cases, the used protocol seems to give coherent
results.

All along this work we went through all the challenges described at the beginning
of this work, in section 1.1. Analyzing the obtained results, we can conclude that
the two challenges of modeling a WDS as an appropriate graph model and design a
GNN-based model to perform SE on a WDS have been solved. The third challenge
of find a criterion to choose the best junctions to perform SE has not been solved yet,
however, the protocol proposed in this thesis to find such criterion is a promising
one and deserves to be deepened by testing it on other WDS to confirm strengths
and weaknesses observed during this work.
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