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Abstract

Technological developments in recent years in both hardware and software have led
to an explosion of devices and services in what is often called the Internet of Things.
Today in every home in the US there are 11 "smart" devices with sensors capable
of accurately describing and watching their environment. This trend is expected
to continue further in the future, with this figure rising to 500 in 2022, sharply
increasing the volume of information that can be exported from human activity.
This plethora of data creates enormous potential for developing applications and
services for users to improve their life parameters (from personal comfort to health or
transport). The secure and effective processing of these data is a major problem, for
which no specific solution has been widely adopted so far to address the significant
problems of personal data protection and the efficient management of such data.
Technologies such as IPv6 promote cloud management by directly exposing all
devices over the Internet and thus allowing easy interaction and remote control,
as opposed to Bluetooth LE, where local device management is the only available
solution and selected information is published on the Internet using gateway devices.
Finally, it is particularly important to enrich the data with external data such as
meteorological forecasts or data on traffic and public transport routes.

In this thesis, we are studying the real-time monitoring and organization of
sensing infrastructures according to the changing requirements of applications and
users. The aim is to design, implement and evaluate experimental self-organizing
mechanisms using semantic information to improve the quality of data flows provided
at the Internet level. As part of this process, we also seek to combine flows to more
efficiently share and manage information. The mechanisms we implement are based
on the "semantic entities" model, either as a part of the device network or as part of a
web service aiming at balancing computing and storage requirements at the various
levels of the network hierarchy. The goal is also to study new data processing and

tracking techniques to draw appropriate conclusions, predictions and decisions.






MepiAnyn

O1 teXVOoAOY1KEG eCEAIEELS TV TEAEUTAIDV ETMV TO0O O€ eineS0 UAIKOU 000 KAl O€ ETTIITE-
80 Aoylopikou £€xouv 08nyr)0el O 11 €KP1NEN OUOKEUMV KAl UTPECIOV OTOV XOPO ITOU
anokaleitat ouxva Atadiktuo tov Ipaypdiev. Zhnpepa oe kabe omnitt otig H.IL.A. uro-
Aoyidetat 611 urtapyouv 11 “€Eurveg’ CUOKEUEG Pe A10ONTrPES 1IKAVOUG va TIEPTYPAYOUV
Kdl va TtapakoAoubrjcouv pe onpaviiky akpiBela 1o mepiBardov toug. H taon aut)
untodoyidetatl mwg Sa ouveyiotel akopn mePloooTeEPO OTo PEAAOV pe Tov aplOpo autd
va avépxetat oe 500 to 2022 auidvoviag KATtakopupa tov OYKO IMANPOPOPIDV I0U
propet va e§axBei and kabe avBporuvn dpactnpomrta . Autr) n mAnbwpa dedopévav
apEel tepdotieg Suvatotnieg yid IV avAantudn epappoymv Kal UINPECIOV TIPOG TOUS
XPNoteg yia v BeAtioon nmapapetpev mg {ong toug (amod Tov Topéd g MPOOEITIKAG
aveong PEXPL Vv uyeia 1 tg petagopég). H aopalrng Kat arnotedeopatiky enegepya-
ola TV dedopévav autav eival £va onpaviiko poBAnpa yia to oroio dev €xel pPEXPL
ofpepa PoKp1Oel Pia ouyKeKP1IEVT AUOT TTIOU va ATtavid otd onpavitkd poBAnpata
NG TPOO0TACiaS TOV MPOCKHTIKAOV SEHOPEVOV KAl TNG ATIOTEAEOPATIKNAG S1axeiplong 1oV
b6edopévov autwv. Texvodoyieg onwg 1o IPV6 mpowbouv tnv Siayxeipion oto emninedo
TOU GAOUd pe TV APEOT) EMMKOVAOVIA OA®V TOV CUCKEUMV HE T0 H1ad1KTUO Kal TV aro-
Hakpuopévo toug €deyxo oe avtiBeon 1o Bluetooth LE omou semidéystar i Siaxeipion
T®V OUOKEU®V O€ TOTIKO ertirnedo kat n dnpooieuon povo emAeyHEVOV MTANPOPOPIOV
oto Swadiktuo. TeéAog, 1dlaitepa onpaviikog eivatl 0 ePIMAOUTIONOS TV Sedopévav pe
eCRTEPIKA Hebopéva Orwg Pete®podoyikeg rpoBAeyelg 1) 6edopéva yia twv Kivnon Kat
Ta SpopoAdYld TOV HEC®V PAdlKAG PETAPOPAS.

Zinv napovuoa 61atpBr] PeAETAPE TNV O€ TIPAYHATIKO XPOVO TTapaKoAoubnon kat
opyaveorn S1IKtuev atodntpev avaloya pe tig petaBalAdpeveg anattr)oelg Epappoymv
KAl XpNotov. Ztoxog €ivat o oxedlaopog, vdoroinong Kat a§loAoynorn He mepapatt-
KOUG HINXAVIOHOUG aUT0-0pyAv®ong HE XPLoT TS ONHaAcloAoy1KnG mAnpogdopiag ya
v PeAtinon g MooTNIAg IOV MTAPEXOPEVOV porv dedopévav oto eminedo tou Ala-
Oiktuou. Xta mAaiola autng g Stadikaociag embimdroupe KAt tov ouvbuaopod powv
yla tov arnodotkotepo diapolpacpo Kat dtaxeipion twv mAnpopopiev. Ot pnyaviopot

mou uldormotloupe Baocidovial oto POVIEAO TV ‘ONPACI0AOVIKQOV OVIOTNI®OV’, £ite g Act-



TOUPYIKO KOHHATL TOU H1KTUOU TRV OUCKEUQV €11 0G PEPOG H1aS1IKTUAK®OV UTNPECIOV
otoXeUOoVIag Ootnyv €§100pPOTN 0T TOV UTOAOYIOTIK®OV KAl ATTOONKEUTIKOV ATIAITIOEDV
ota Sagopa emineda epapyiag tou Siktvou. Emiong, otoxog sivat va peAetrjooupie
VEEG TEXVIKEG EMECEPYAOIAG KAl MTAPAKOAOUONO0NG TV TeAkwv dedopévav yia v e&a-

YOV KAtdAANA®V CUPNEPAOPAT®OV, TIPOBALPERDV KAl ATIOPACEDV.
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Chapter 1

Introduction

1.1 Motivation and Aspirations

Starting from Wireless Sensor Networks (WSN) and Future Internet (FI) solutions,
a set of device and service-based solutions have emerged in the past years to form
what is known as the Internet of Things (loT). A Wireless sensor network (Figure 1.1)
refers to a group of spatially dispersed and dedicated sensors for monitoring and
recording the physical conditions of the environment and organizing the collected
data at a central location. Typically WSNs monitored environmental conditions like
temperature, sound, pollution levels, humidity, wind, and so on in hard to reach
environments where wired installations were not feasible. Future Internet refers
to the research topics that intend to resolve the shortcomings of current Internet
related technologies in terms of performance, reliability, scalability, security and

other aspects. The term “Internet of things” was coined by Kevin Ashton of Procter

S

.............. : O
O
Q... .-'.'f'.;:‘ O Sensor Node
......... O @ O Gateway
et Sensor Node

Figure 1.1 An example of a Wireless Sensor Network (source: wikipedia)
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& Gamble, later MIT’s Auto-ID Center, in 1999 [16]. The Internet of Things can
be defined as the network of physical devices embedded with electronics, software,
sensors, actuators and connectivity which enables them to exchange data with each
other and the Internet using their unique identifiers [41]. Such an infrastructure
allows the development of applications and services that facilitate the lives of citizens
and workers around the world and bring us closer to the convergence of the physical
and digital worlds (Figure 1.2). These applications have provided us with solutions in
fields like smart-grids, smart-homes, intelligent transportation or smart-cities. Some
successful examples include, amongst others, Nest and Ecobee for smart-heating,
Phillips Hue for smart-lighting, Smarthings as a provider for multiple smart-home
solutions, Fitbit and Withings for personal fitness trackers, as well as the personal

assistants like Alexa from Amazon or Siri from Apple.

gﬂu' 4

i A Ao
a émm.. o

5

Figure 1.2 A smart and connected home

Despite the huge growth of such loT applications, the usefulness of the data
that originate from these systems is still to be validated and proved. The volume
of data that can be generated from a single sensor device installed in a house or a
wearable device worn by a person can be overwhelming for the device itself and in
most cases needs to be offloaded to a data-processing application from which users
can access it and connect it to a more meaningful use [19]. Taking into account
the rate with which such devices are being integrated into our everyday lives, the
result of offloading so much information in the cloud can create huge volumes of
data. Such data need to be communicated, processed and stored in real time, while
accessing it in its raw format tends to be useless when compared with the knowledge

it can generate (e.g., information about a person’s lifestyle and diet compared with
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their daily step count and trips as latitude-longitude coordinates). As a result, the
need for a holistic solution on the subject of managing the data generated is still
an open subject for research in both academic and enterprise scopes. Similarly,
multiple interfaces for communicating and representing such data formats have
been used, with none getting a clear step ahead of the others in the path for a global

standard, if and when this will be possible.

o @ Y sigfox

N

0 000 0 0 0

Connected Gateway Cloud
Things Device Service

Figure 1.3 Data Streams of the Internet of Things

Another important characteristic of the loT domain is the huge diversity of the
communication mediums, protocols and data representation and exchange formats
used. Figure 1.3 showcases how loT devices communicate the collected data with
cloud services using multiple technologies and protocols for local-only or local-
to-cloud communications. Each protocol offers different capabilities in terms of
throughput, communication range or power consumption, based on the needs for
the application use case. For example, communication protocols with limited range
like Zigbee|[6], Bluetooth LE[34] or WiFi [4] are used to communicate data between
wearables or smart-home devices and local gateways. Zigbee and Bluetooth LE are
better suited for devices that operate on batteries and exchange limited amounts

of data (e.g., wearable fitness trackers or beacons). On the other hand, WiFi is
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more suited for devices that need more real time communication and can exchange
larger chunks of information like smart-plugs or cameras. Such devices are mostly
connected to wall outlets as WiFi needs significantly more power and using batteries
is not feasible on a long-term basis. On the other end, to communicate information
with the Internet, gateways or smart-devices use technologies like xDSL [76] lines, LTE
[1] or LoRa [5] and Sigfox [67]. xDSL and LTE offer a higher throughput when compared
to LoRa and Sigfox but have a higher installation and operational cost as they require
on premises infrastructures, maintenance and recurring costs either as monthly or
pay-as-you-go data plans. LoRa and Sigfox are simpler solutions, with no installations
on the premises of the user, other than the device itself, and minimal (i.e., a yearly
subscription for Sigfox) or no costs (LoRa) but offer significantly reduced throughput.

In all the above cases, the characteristics of the communication module used
defines the sampling rate that can be achieved by the sensing modules of the device.
A general rule followed in most applications or devices currently available is that
devices try to sample and transmit data as fast as possible while maintaining a decent
amount of battery life. This is done to ensure that the phenomena monitored are
well observed and no desired events are missed due to devices sleeping to conserve
power. This behaviour leads to an ever increasing load of data that needs to be
processed in order to extract useful information and conclusions.

This fragmentation in the loT domain presents the main challenge of integration
and interoperability to achieve the desired end result of a unified virtual environment.
For instance, a data analytics solution needs to ingest data streams from multiple of
the sources presented above. Mixing different hardware and technologies makes this
much more complex in order to finally make every device or system “talk to” and
“understand” each other. Finally, there are all the cyber-security and cyber-pivacy
issues for not only wireless communication, but also for the control and operation of
the connected assets.

From the user’s or customer’s perspective, it is a costly and time-consuming
experience to become familiar and maintain multiple solutions from different vendors,
as well as integrating them all together in a single system. Industry standards are
being developed (i.e. as wireless protocols), and continue to evolve through open-
source frameworks that encourage collaborations among solution developers but
global acceptance is hard to achieve due to contradicting interests from the involved

partners.



1.2 Goals 5

1.2 Goals

In order to provide such a holistic solution it is important to be able to integrate
the data that are generated by all of these smart devices in a common base. We
need to be able to process them, view them and operate on them using a common
methodology and also be able to gain common knowledge from them. This is the
most important step towards the unification of the information originating from a
fragmented ecosystem that can lead to the development of next-level applications and
services with significantly reduced development effort. In this direction and in the
context of this dissertation, we study the possible solutions to the aforementioned
problems in an environment filled with loT devices. We focus our work in the following
fields:

e The representation of the loT environment together with its metadata and
semantics in a suitable representation format capable of handling the complex

relationships that are generated in such a densely populated environment.

e The efficient collection and processing of streaming loT data, in real time with
the minimum processing time and latency, using a modular system that
can be extended to support additional data types and devices with limited

interventions.

e The extraction of knowledge from the collected and processed loT data. Raw
data are of limited value to end users in most cases. The real value lies on the

conclusions that can be extracted from them.

Once we have achieved all 3 goals, we will be able to analyze loT data in real time
offering the outcomes of our work to developers that can then build upon our work
and generate a truly intelligent and connected environment.

Generating a common domain where data, metadata and semantics can be
described is a key step towards this result, mainly due to the variety of representation
formats currently used. Some of these formats have been used and tested for quite
some time (e.g., XML), others are too strict and hard to be understood by end users
(e.g., RDF) while some are more flexible (e.g., JSON) and decentralized, but this
flexibility leads to diverse implementations that are not always compatible. Building
on top of this common domain, we need to implement a common processing flow
that can be used over all the data generated. For this part, time-based analysis is the
most prevalent solution and one that better syncs with the human lifestyles; this is

the direction that we will follow as well. Finally, using these two prerequisites, we can
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then build up a system that can offer additional and more meaningful information on
the data received. We can build a system that uses elements like Machine Learning
to generate new and combined observations on the physical world, bridging inputs
from multiple loT devices and describing our surroundings in a much more accurate

way.

1.3 Contributions

Based on the goals set in Section 1.2 in this dissertation we contribute to the field
of data analytics for the Internet of Things in smart environments and the post
processing analysis of the loT data to provide a better understanding of the physical
surroundings. We propose new and extensible methods to store the information
of loT installations and our findings allow for fast look-ups across the whole set
of loT devices in the network. Processing the data generated in real-time becomes
a more streamlined work flow, using a standardized methodology that allows for
changing the data analysis from a single point. Data generated can be easily stored
and retrieved from a specifically designed, reliable and efficient storage engine. Using
the original and calculated data in a feedback loop also allows us to build additional
processing and analysis layers that generate more data and information resulting in
more accurate outcomes.

The results of our work can be categorized in the following points:

1. The first goal of our work was to setup a base set of infrastructures for bringing
the physical world with its digital representations. We wanted to be able to
understand what is where and how it interacts with its environment as well as

what it observes in real time. Our work towards this direction was twofold:

(a) We have developed a graph-based schema to represent loT installations
together with their semantics and meta information. The schema is not
based on the traditional relational databases but builds on the ideas of
graph theory and utilizes a new database model, the a graph database.
Each entity that participates in real world interactions or can be observed
by an loT device is represented as a nodes of a graph, while the interactions
themselves are the vertices of the graph. We therefore build a web of
entities and relations that are easy to visualize and traverse to find
answers to various queries that may arise inside a smart environment.

Such queries can look for the the causes of events observed (e.g., what
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caused the rise of luminosity in room), the available information for an
area (e.g., what information is sensed for the building) or even the social
interactions and connections of individuals (e.g., which people use the

same appliances).

(b) For the analysis of the data we provide a template implementation for
setting up a system that can receive, process and analyze an unbounded
number of input data streams with no impact on its operation. Such data
streams can originate from sources that range from single smartphones
to city wide sensor installations. The system is also capable of handling
data streams that provide unbalanced volumes of information with no
performance drops. The calculation methodology itself is developed as
to be easily customized and extended, based on the data types and
the calculations required in every environment it is deployed to. This
processing engine is capable of identifying the data from each of the
sensing devices routing them to the appropriate processor without any

prior per-device configuration.

Both the database and processing engine presented in (a) and (b) are used
to support a publicly available system that supports over 300 users and
consumes data from more than 20 loT installations with almost 5000 sensing
points. Based on our evaluation the database model can easily respond to
all queries in real time, even in use cases where the database ranges to tens
or even hundreds of thousands of entities. We also performed an extensive
evaluation of the processing engine in real world conditions for more than
2 years achieving sub-millisecond processing times per measurement. We
stressed our system with data volumes that exceed by far the data collection
rates of our real world installation to prove that it is future-proof and scalable.
This work is presented in [7, 9, 10, 51, 52].

2. To better understand the collection mechanisms of data from more distributed
and uncontrolled loT installations we also developed a solution that can collect
data using smartphones in smart cites carried by volunteers in the context
of crowd-sourcing campaigns. This method is used to augment smart-city
installations with mobile and inexpensive infrastructures using the power of
volunteers local activist groups. Such solutions can be deployed with minimal
cost by the officials of a city as a new service that can provide them with

important insights for the local conditions, environmental, social or other. This
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smartphone application was used in more than 10 experimentation campaigns
in cities around Europe (including London in the UK, Santander in Spain,
Patras in Greece and Aarhus in Denmark) by more than 50 users over the past
2 years. Results for this work are presented in [8, 11, 12, 36, 37].

3. Finally, we also present a framework for characterizing the data from all the
above inputs using Machine Learning in real time by taking advantage of the
streaming data mechanism developed in the data processing engine described
above. This framework was used to analyze real world data from smart-city
loT infrastructures as well as the data that originate from smaller scale loT

installations. This work is presented in [26].

The outcomes of this dissertation mentioned in this chapter are used in the heart
of two EU-funded Horizon 2020 research projects: GAIA! and OrganiCity? that focus

on energy efficiency and smart cities respectively.

e GAIA aims to promote positive behavioural changes within communities re-
garding energy consumption/awareness using the gamification of real-time,
IoT-enhanced energy consumption metrics in trial schools located in Italy,

Greece and Sweden.

e OrganiCity is a service for experimentation that explores how citizens, businesses
and city authorities can work together to create digital solutions to urban
challenges using a set of tools experimenters can use to test and develop their

own ideas into viable smart-city application.

1.4 Thesis Organization

The rest of the dissertation is organized as follows:

In Chapter 2, we start by presenting state-of-the-art work in the field of loT
applications, data analysis and data processing. We also present a selected list of
research applications that leverage loT technologies in the areas of Smart Buildings and
Smart Cities focusing on data collection, as well as the challenges in analyzing and
validating such data.

In Chapter 3, we showcase our solution in the context of representing the loT

ecosystem in the digital world. We present a graph-based storage engine that

Thttp://gaia-project.eu
2http://organicity.eu/
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can store all the information related to an loT installation. The data are easily
queried through the database’s interface and an appropriate programming interface.
Chapter 4 builds upon this data storage and contains our design of a streaming
data analytics engine designed for the loT ecosystem. We present the data that
can be introduced in our system in Section 4.1, the architecture of the system in
Section 4.2 and the customizable modules that process the data based on their
metadata presented in the previous chapter in Section 4.2.2. Our work is applied and
tested against the data originating from a fleet of buildings. Finally, in Section 4.3,
we showcase the evaluation of the system during its real world operation over a
period of more that 2 years and a selected set of observations to point out and prove
its efficiency.

Chapter 5 focuses on how the aforementioned technologies can be used when
the loT installation scales from a small number sensors inside one building to one
or even multiple cities. We present this case of a large scale installation, where the
sensor devices are no longer controlled by a single entity or organization but include
data from multiple, even untrusted sources or entities raising concerns about their
quality, validity or trustworthiness. In this context, we present in Section 5.2 a
framework that can be used to crowdsource data using volunteers in a city and
how we can validate and annotate them in an automated manner in Section 5.3.
Section 5.2.1 presents the evaluation of the crowdsourcing platform in a real world
environment as part of an EU research project. Similarly Section 5.3.3 presents
a number of evaluation applications that showcase how the implemented solution
can provide annotations over the collected data originating from a two different loT
installations. Both applications are tested in the context of OrganiCity, an EU funded
project that explores how citizens, businesses and city authorities can work together
to create digital solutions to city challenges.

Finally, in Chapter 6 we present conclusions from the work performed in all the
above scenaria, lessons learned and possible extensions that need to be investigated

in the future.






Chapter 2

Background and Related Work

In this chapter we aim to provide In this chapter present basic concepts and
definitions that we will use in the rest of this dissertation. We define what is
described as Internet of Things, its characteristics and base application domains
together with main usage examples that provide us with incentives for building such

applications.

2.1 The Internet of Things

The Internet of Things (lo7) is a system of interrelated computing devices, analog and
digital machines, objects, animals or people that are provided with unique identifiers
and the ability to transfer data over a network without requiring human-to-human
or human-to-computer interaction. A thing, in the Internet of Things, can be a
person with a heart monitor implant, a farm animal with a biochip transponder,
an automobile that has built-in sensors to alert the driver when tire pressure is
low - or any other natural or man-made object that can be assigned an IP address
and provided with the ability to transfer data over a network. Experts estimate that
the loT will consist of about 17.6 billion objects by 2020, a number far less than
the original predictions of 1 trillion or 50 billion devices, but still quite high! (when
compared to the number of devices currently connected to the Internet). It is also
estimated that the global market value of loT will reach $7.1 trillion by 2020 [40].
The loT allows objects to be sensed or controlled remotely across existing network
infrastructure, creating opportunities for more direct integration of the physical world

into computer-based systems, and resulting in improved efficiency, accuracy and

1 https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-
50-billion-devices-by-2020-is-outdated
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economic benefit in addition to reduced human intervention. When loT is augmented
with sensors and actuators, the technology becomes an instance of the more general
class of cyber-physical systems, which also encompasses technologies such as smart

grids, virtual power plants, smart homes, intelligent transportation and smart cities.

2.1.1 Streaming loT Data

The data generated in the context of the loT do not follow the typical characteristics
for data processing technologies and methodologies used in past computer science
use cases as their volume usually exceeds the size a single machine can process
in real time. The first attempts to harness such data were made using big data
technologies like Hadoop [75]. Such systems use a set of processes that can be run
in rounds one after the other and reduce the actual volume of data available to a
small and usable information, and were capable of overcoming the original problems
encountered in loT systems. However, they lack a viable solution in the most recent
use cases of loT, where the actual data are not a priori available to the system that
will process them. Such data are called streaming and are becoming a more and
more common example of how the information from loT installations will arrive to
the processing system. Streaming Data is data that are generated continuously by
thousands of data sources, which typically send in the data records simultaneously,
and in small sizes (order of Kilobytes). Streaming data includes a wide variety of
data such as log files generated by customers using your mobile or web applications,
ecommerce purchases, in-game player activity, information from social networks,
financial trading floors, or geospatial services, and telemetry from connected devices
or instrumentation in data centers.

This data needs to be processed sequentially and incrementally on a record-by-
record basis or over sliding time windows, and used for a wide variety of analytics
including correlations, aggregations, filtering, and sampling. Information derived
from such analysis gives companies insights into many aspects of their business
and customer activity such as service usage (for metering/billing), server activity,
website clicks, and geo-location of devices, people, and physical goods -and enables
them to respond promptly to time-critical situations. For example, businesses can
track changes in public sentiment on their brands and products by continuously
analyzing social media streams, and respond in a timely fashion as the necessity
arises.

Streaming data processing is beneficial in most scenarios where new, dynamic

data is generated on a continual basis. It applies to most of the industry segments
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and big data use cases. Companies generally begin with simple applications such as
collecting system logs and rudimentary processing like rolling min-max computations.
Then, these applications evolve to more sophisticated near-real-time processing.
Initially, applications may process data streams to produce simple reports, and
perform simple actions in response, such as emitting alarms when key measures
exceed certain thresholds. Eventually, those applications perform more sophisticated
forms of data analysis, like applying machine learning algorithms, and extract deeper
insights from the data. Over time, complex, stream and event processing algorithms,
like decaying time windows to find the most recent popular movies, are applied,
further enriching the insights.

When comparing such streaming data with batch processing, we need to note
that the latter can be used to compute arbitrary queries over different sets of data.
It usually computes results that are derived from all the data it encompasses, and
enables deep analysis of big data sets. MapReduce-based systems, like Hadoop,
are ideal for such batch jobs. In contrast, stream processing requires ingesting
a sequence of data, and incrementally updating metrics, reports, and summary
statistics in response to each arriving data record. It is better suited to real-time
monitoring and response functions.

For managing large data streams produced by the Internet of Things, several
research prototype implementations and some more commercially-oriented solutions
have been presented. There is a large set of requirements, like publishing/subscribing
on data streams, interfacing with various technologies and performing real-time
analysis that makes it crucial to build systems extending a lot of classical RDBMS
systems. One of the fist options made available in this area was Xively[77] (previously
known as Cosm or Pachube). It is a secure, scalable platform that connects devices
and products with applications to provide real-time control and data storage. Other
enterprises, that focused more on offering computing services, like Amazon and
Microsoft also offer solutions for loT data processing with AWS loT [14] and Azure loT
Suite [50]. Both systems focus on helping device manufacturers collect and send
data to the cloud, while making it easy to load and analyze them.

At the core of all similar solutions lies the concept of message exchanges using
normally a central service that plays the role of a Message Broker. A Message
Broker, in the general case, maintains a list of available topics on which client
applications can publish updates while other application can subscribe for updates.
This design concept allows the development of asynchronous system designs that can

be developed independently without any restriction on the hardware or software used.
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All data exchanges are done over a set of well-defined interfaces that can be available
simultaneously on the same system. Typical examples of such message brokers are
Apache Kafka, RabbitMQ@, Mosquitto or VerneMQ that implement one or multiple
messaging protocols like ActiveMQ or MQTT, which offer similar functionality with

trade-offs in features based on the requirements from the application in question.

2.2 loT applications

2.2.1 Smart Home

Smart Home is one of the most discussed and trending terms in relation to the loT
domain in web searches according to Google Trends as presented in Figure 2.1,
reaching “Big Data” in popularity. It refers to the introduction of multiple loT devices in
a residential or office building that extends the boundaries of the traditional Building
Management solutions and offers more personalized information on the operation and
the parameters of the building itself, as well as its occupants. Recent publications
like [46] identity the essential technologies for successful loT solutions as radio
frequency identification, wireless sensor networks, middleware, cloud computing and
software for application development. They also identify the enterprise applications
sectors in monitoring and control, big data and business analytics, and information
sharing and collaboration. [47] presents the solution to developing such systems
in the use of a middleware that can envelop older and new components to support
common naming, addressing, storage and look-up services. Some of the work
available [66], differentiates on the physical location where the analysis of the data
takes place, either in house or on centralized services.

In the general case of a Smart Home, household devices become equipped with
interfaces for wireless communication, forming up a home network. Each home has
one or more such networks, and the sensed data from each device are forwarded
to central stations, which can be referred as gateways or smart hubs. Nodes of
this network are device that have moderate or limited computational power and
communication capabilities. The gateway is the one device that has some additional
data storage capacity and can perform local processing or simply communicate with
devices in the outside world. In the case of larger smart buildings, the gateways may
have additional capabilities based on the amount of devices that depend on them.
Gateways also play an important role in achieving interoperability across devices of

multiple technologies and communication protocols.
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m—Smart Home Intem et of Things Big Data Smart City

Figure 2.1 Google trends data on Smart Homes, Smart Cities, Big Data and Internet
of Things.

2.2.2 Smart Cities

Recent studies [17] have predicted that, by 2050, 70% of the world population
will live in urban areas, while more than half of the world’s population already
lives in cities. In this context, different stakeholders (city planners, politicians,
researchers, etc.) implement policies that aim to improve the quality of life in
urban environments, also developing initiatives contributing to more efficient and
sustainable cities. The fact that cities represent a strategic meeting point between
citizens and technology provides an additional dimension that can be exploited for a
collaborative and continuous crowd-sourced creativity. This is what we categorize as
societal innovation: human beings are immersed in a context which, based on loT
technologies, stimulates the conception of new ideas and solutions addressing the
problems that are related to cities. To facilitate the adoption of such solutions, loT
experimentation under real world conditions is crucial to their validation.

In recent years, experimentation with Future Internet (FI) technologies has been
led by commercial companies and research centers, with less involvement from
external stakeholders like citizens or decision makers. Due to the slow uptake, it
is evident that a more holistic approach is needed, where all the relevant actors

are involved in order to produce more useful and engaging applications. In this
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sense, loT technologies are contributing to the creation of innovation ecosystems,
where the FI provides an opportunity to the research community to modernize the
existing solutions and adopt new ones, validated through the involvement of multiple
stakeholders. Deployment, testing and evaluating solutions in cities under real
conditions enables the possibility to conceive new or improve existing urban city
services, such as waste or transportation management. Furthermore, the access
to the vast amounts of urban data, generated from numerous sources, enables the
design, implementation and ability to assess new techniques and algorithms that
have the potential to outperform existing ones.

Recently, experimentation with loT-related technologies in urban environments
has attracted quite a lot of attention, especially in Europe. In this context, many
research projects have been conceived to experiment with large scale infrastruc-
tures, developing different pilots that evaluate the proposed use-cases in the urban
landscape. In such initiatives, the reader can find how different smart-city applica-
tions, outdoor deployments, and indoor installations in buildings targeting energy
efficiency have been carried out. SmartSantander [62] is probably a characteristic
example of how a massive deployment of loT devices is used within an loT facility
to allow experimenters to conduct research using innovative solutions in the city
context. The experimentation of smart city architectures, services and applications
in real-world urban environments has essentially been pioneered, deployed over a

very large-scale loT infrastructure in the city-center of Santander.

2.2.3 Crowdsourcing and Experimentation-as-a-Service

Projects like loT-Lab investigate crowdsourcing and loT services for supporting multi-
disciplinary research tasks [42]. However, relatively little attention has been given to
combining both an urban loT infrastructure, comprising stationary and mobile loT
nodes, with a crowd-sensing component utilizing “transient” loT resources contributed
by citizens. The area of participatory sensing using crowdsourcing and harnessing
ubiquitous technologies is discussed extensively in [35], where authors provide both
the theoretical background and a review of a number of approaches currently utilized.
However, although a number of technical advancements were made in these projects
with respect to making such loT infrastructures available to the research community
and the industrial sector, there is still a lot of issues that need to be solved in a more
coherent and holistic manner. The most relevant one can be considered as how to
empower citizens or other stakeholders to participate in the societal change of the

smart city innovation ecosystems. In this sense, the Experimentation-as-a-Service
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(EaaS) paradigm has been conceived to achieve this goal, although depending on
the project, it has been implemented using different approaches. In [63], EaaS
is a federated platform that provides reconfigurable on-demand access to a set of
resources, allowing researchers to rapidly deploy experiments based on services
belonging to different smart city domains. Although the user stands as the key
actor of the experimentation, an integral framework and tools have not been defined
allowing them to be part of the co-creation process. On the other hand, in [45]
the EaaS concept is based on the creation of an Application Program Interface
(AP]) that enables executing experiments over multiple existing loT testbeds. In this
case, the EaaS uses semantic-based technologies to provide an agnostic layer that
enables federating the several loT experimentation facilities. However, they have not
designed the mechanisms to actively engage citizens in both defining application
scenarios and participating in their conception, usage and therefore validation. The
implementation of EaaS solutions has recently grown in relevance, catching the
attention of large companies and organizations. As an example, IBM (Armonk, NY,
USA) provides an EaaS cloud-based platform that enables users to demonstrate and
verify new products and technologies [61]. Also, in the city of Bristol (UK), a joint
venture company provides a digital infrastructure that can be used by companies
and developers to build and test a wide range of applications and smart city services
[55].

2.2.4 Extracting Knowledge from loT Data

As mentioned before, a central question concerning such streaming big data orig-
inating from loT installations is whether or not the generated data can be trusted.
And when the data can be trusted, how do we make sense out of them by extracting
knowledge, i.e., something actually useful, going beyond a technology demonstrator?
Moreover, how do we provide usefulness to the owners of the data and how do we
involve them in the whole process? Essentially, such questions get to the point of
understanding how do we actually make the analysis of the data smarter to achieve
what we need in the level of a smart city itself. Part of the answer to this question
lies in creating more "useful" information out of raw sensors or other kind of data
representing observations of the urban environment. For example, certain events
generate data reported by the city sensing infrastructure, but are, more often than
not, missing an appropriate description. Consider the case of a traffic jam inside
the city center; it generates sensed values in terms of vehicles’ speed, noise and gas

concentration. Moreover, in most cases, multiple devices or services, while missing
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useful correlations in the data streams, report such values. Adding data annotations
to such smart city data through machine learning, or crowdsourcing mechanisms,
can help reveal a huge hidden potential in smart cities.

Although there have been pioneering studies and applications on combining
human and machine intelligence, research in this field is still at its infancy stage. [35]
presents a vision on the potential of combination patterns of human and machine
intelligence, identifying three possible patterns sequential, parallel and interactive.
Moreover, in [18] authors present a crowd-programming platform that integrates
machine and human based computations. Their system integrates mechanisms for
challenging tasks like human task scheduling, quality control, latency due to human
behavior etc.

SONYC [69] is an example of a project with a very specific use-case, employing
machine-learning algorithms to classify acoustic readings into various types of noise
encountered inside an urban environment. Similarly, learning from the crowds,
by using the crowdsourced labels in supervised learning tasks in a reliable and
meaningful way is investigated in [60, 73]. In the above cases, each system builds
what can be described as a taxonomy that is to be used for the process of knowledge
extraction on top of the available datasets. Taxonomies are ubiquitous in organizing
information, by grouping digital objects/content to categories and/or mapping
them to abstract concepts expressing meanings, entities, events etc. Most of the
modern social networking applications (like Flickr) or online collaborative tools (like
Stack-Exchange) are relying heavily on an underlying taxonomy. Building and
curating a taxonomy is a challenging task that requires deep knowledge of the data
characteristics. Taxonomies are usually created by small groups of experts and
target a very specific application domain. Folksonomies, on the other hand, are quite
popular in online applications and they are categories of tags collectively organized
by the users of the applications. Such taxonomies usually have weaknesses like
double entries, misclassified tags, entries with typos or ambiguities in the categories,
but with simple processing in the background, it is possible to normalize them and
map their content to better established knowledge bases (like Wikipedia or WordNet).
In [24], the authors propose a workflow that creates a taxonomy from collective
efforts of crowd workers. It uses a feedback loop that suggests multiple categories
to each part that needs to be categorized and then uses a different set of workers
(or volunteers) to reduced the proposed categories to a single best-suggested choice.

This loop can later on be used to eliminate duplicate and empty categories, and
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to nest related categories in an iterative process. Such an approach can produce

results that are similar in cost and quality to the ones generated by experts.

2.3 Making use of loT Data

2.3.1 Building Energy Efficiency using loT

In general, about 75% of buildings in Europe are residential [30] and cause a
significant amount of greenhouse gas emissions (in 2009 residential buildings were
responsible for 68% of the total energy usage in buildings [31, 48]).Keeping this
in mind, we can acknowledge that systems that provide real-time monitoring and
actuation on multiple buildings over loT infrastructures are going to be used in a
highly increasing rate. Such systems can focus either on energy consumption or on
environmental parameters monitoring, but can also be tailored in order to support
other applications, like smart storage or manufacturing.

In recent years, the European Union has been aggressive in promoting energy
efficiency in buildings, through a multitude of small and large-scale projects and
initiatives. Build Up [32] is a EU-specific portal for gathering all sorts of resources for
energy efficiency in buildings, e.g., energy-saving research project results, national
regulations and legislation. ICT4SaveEnergy [64] was a large-scale multinational
research project that involved energy efficiency in multiple types of public buildings -
theaters, enterprise offices, stadiums, schools, universities. Its continuation, [21],
focuses on 4 public university sites located at Helsinki, Lulea, Lisboa and Milan.
SMARTSPACES [68] is another similar large-scale project, taking place at 11 pilot
sites, also researching energy efficiency in public buildings of various types. More
focused on school buildings are the VERYSCHOOL [71] and ZEMEDS [78] projects,
with the latter further focused on Mediterranean countries and targeting retrofitting

of energy-saving components.

2.3.2 Behavioural Change in Education using Energy Efficiency
IoT Data

Affecting the behavioral characteristics of the citizens’ interaction within the buildings
where they live, learn and work will have a great impact on the overall reduction of
energy consumption [48]. In the last few years there has been a wealth of activity on

facilitating exactly this kind of goals. A small part of it focuses on the educational
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community, i.e., faculty, staff, students and parents. It should come as no surprise
that raising awareness among young people and changing their behavior and habits
concerning energy usage is key to achieving sustained energy reductions. Specifically
in the EU, people aged under 30 represent about a third of the total population [27].
In addition, young people are very sensitive to the protection of the environment so
raising awareness among children is much easier than other groups of citizens.

As we are now rapidly approaching 2020, it is as important as ever to address
the skills that will enable all citizens to make informed and well-thought choices.
Also, another ubiquitous fact should also come to mind: we cannot manage what
we cannot measure. It is necessary to monitor the impact of our current behavior
or the effect of potential behavioral changes in order to have a clearer picture with
respect to e.g., our everyday energy consumption. Furthermore, environmental
education, as part of the broader issue of science, is an important component
of the EU cultural heritage [57]. In fact, EU considers environmental education
one of the most prominent instrument to influence human behaviour towards
more environmentally sustainable patterns [54]. Hence, associating environmental
education and game-based learning will lead to students taking over a leading role
in the educational process, setting questions, investigating the possible answers and
looking for alternative explanations to come up with a fitting model.

Several software products for monitoring sensor data exist, able to capture sensor
data from proprietary data formats or protocols and visualize them. Regarding
visualisation, [33] discusses the most common approaches with respect to feedback
design in eco-conscious work for the past decade, from the perspective of both
ICT and psychology, providing insights to their strengths and weaknesses. [72] is
an example of a typical engineering-focused approach, that utilises a number of
skeuomorphic metaphors to enable smart home feedback creation on smartphones.
While such systems provide end-users and developers with powerful tools and
front-ends, we believe they should also be paired with multiple approaches, offering
multiple possibilities to interact with the system. [29] are examples of large-scale
smart metering deployments that used Web portals (for electricity and water) and
other visualization tools to support the system and engage end-users to participate.
Their findings support the notion that the use of multiple approaches, with respect
to visualization and feedback, serves such purposes well. We have followed a similar
line of thought while implementing our own user interfaces and will continue to

evolve our approach in future revisions of the system.
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Regarding similar work carried out in Europe, a related action was [44], in the
context of the GENG6 research project. We build upon such results and have already
integrated aspects of this specific project into our own. Other projects like [21] and
[68] target the educational sector as well, but focus mostly on a university level while
we target students of younger age. They also mostly leave out the environmental and
health part of building monitoring, which is a major component in our work. Projects
like [22] have instead focused more on providing educational material and game-
focused activities to promote learning aspects of sustainability and energy efficiency.
We embrace such methods as well, but we chose to build an loT infrastructure to
utilize the actual environment of school buildings; we believe that by using this
infrastructure and the data it produces, it will be easier and more effective to build
tools that better reflect the everyday reality in school life and provide more meaningful
feedback, with respect to the impact of any potential changes in the behavior of
students and school staff. [71] uses a similar approach to our own, however, we
utilize a larger number of installations and target a broader audience.

Recently, several works introduced such concepts in the curricula of schools
participating in research projects. [65] produced several guidelines and results
regarding good energy saving practices in an educational setting, [71] also produced

certain related results.

2.4 Graphs
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Figure 2.2 Example of a Graph.

Graphs are the basic subject studied by graph theory. The word "graph" was first
used in this sense by James Joseph Sylvester in 1878. In mathematics, and more
specifically in graph theory, a graph is a structure amounting to a set of objects in
which some pairs of the objects are in some sense "related". The objects correspond
to mathematical abstractions called vertices (also called nodes or points) and each

of the related pairs of vertices is called an edge (also called an arc or line) [70].
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Typically, a graph is depicted in diagrammatic form as a set of dots for the vertices,
joined by lines or curves for the edges. Graphs are one of the objects of study in
discrete mathematics. An example of a simple graph is available in Figure 2.2, with

6 vertices:
(1,2,3,4,5,6)
and 7 edges:
((1,2),(2,3),(3,4),(3,5),(4,5),(2,4),(2,6)) is available in

Edges in a graph may be directed or undirected. A directed edge represents a
relationship that is expressed from the starting to the ending node of the edge. For
example, in a family tree a directed edge can express that a person “is the parent of”
another person. In a more strict mathematical definition it is written as an ordered
pair G = (V,E) with V a set whose elements are called vertices, nodes, or points; E a
set of ordered pairs of vertices, called directed edges. A directed graph similar to the
on presented in the previous figure is available in Figure 2.3. This time the graph

has again 6 vertices:
V=(1,2,3,4,5,6)
but 7 directed edges:
E=((1,2),(2,3).(3.4).(3,5),(4.5).(2,4).(2,6).(1,6).(6,1))

As we can see from the figure, edges can exist in both directions between two edges.

Q%@C%@

Figure 2.3 Example of a Directed Graph.

A Property graph, builds upon the concept of a directed graph and allows for the
vertices and edges of the graph to have names or labels. These edges are always
directed and both edges and vertices can be associated with additional properties
as key/value. Figure 2.4 depicts an example of a property graph. This graph,
contains 6 vertices (named bob, john,alice,bike,car,hoverboard) and 5 edges
(e.g., bob-drives—>bike). Also vertices can contain additional properties in the
format of key/value pairs like for example the vertice car has a brand property
with value of BMW.
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Figure 2.4 Example of a Property Graph.







Chapter 3
Representing the IoT

In order to interact with an loT installation, an appropriate representation for it in
the digital world is required. Each installation comprises multiple elements that
produce, consume or transfer data. Every element in this ecosystem potentially has
multiple relations with other ones creating a complex schema that can be hard to
understand or visualize as the scale of the installation increases. To overcome this
problem and simplify our interaction with this digital image representation, formats
more appropriate than the traditional relational databases need to be applied. At
the same time, these formats need to be easy to understand and be used by non
tech-savvy users like artists or activists in their work with this, now accessible, living
part of our environment.

In this chapter, we focus on a simple case of a building populated with loT devices
for monitoring and limited actuation use cases to extract information about all the
involved entities and their possible interactions. This information will help us define
a representation schema that best fits our requirements, while it is suitable for use

in a high performance computation system.

3.1 A Typical Smart Building IoT Installation

As mentioned before, we focus on a building-wide installation. Such an installation
is used as the basis for a number of EU funded research projects that target energy
efficiency in public school buildings. It is based on the installation of custom
(Figure 3.1) and off-the-self loT devices in a number of Greek public school buildings
to monitor energy consumption and environmental parameters (Figure 3.2).

The generated information, supplemented by a set of software tools aims to

help educate students on energy and environmental matters while achieving better
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Figure 3.1 Custom loT device containing temperature, humidity, noise, luminosity
and gas concentration sensors based on the Adruino™ micro-controller.

energy efficiency in the buildings in question. By focusing on increased energy
awareness and behavioral transformation within students and teaching staff, the
projects “Greenmindset” and “GAIA” envisage multiple benefits apart from the savings
to be achieved in terms of energy consumption. Historically, energy expenses in
schools have been treated as relatively fixed and inevitable. However, evidence shows
that a focus on energy use in schools yields an array of important rewards in concert
with educational excellence and a healthy learning environment [25]. Educational
buildings constitute the 17% of the non-residential building stock (in m?) in the
EU [30]. Since energy costs are the second largest expenditure within school district
budgets, exceeded only by personnel costs [3], significant savings can be carved out
for reallocation to needed services, if energy consumption can be reduced.

The educational sector presents a very interesting and important case for the
problem monitoring and managing of a very large number of loT installations situated

in a very fragmented and decentralized manner. In national educational systems
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we have literally thousands of buildings spread throughout a country, usually, with
very different characteristics in terms of construction, age, size, etc. It is reasonable
to expect a diverse set of device providers working under the same interoperability
framework. Due to this, the tools that interact with such an environment need
to be hardware independent, supporting elements from multiple manufacturers
that inter-operate under the same framework and are commonly represented and

interacted with.

Figure 3.2 Example of two devices installed in a school building (an environmental
meter on the left and a power meter on the right)

The goal of the GAIA platform is direct it to allow users directly compare the
collected data of their school to other similar buildings participating in the project, by
carefully taking into account environmental parameters like the time of year, location
or weather. The final platform needs also to support multiple end-user groups that
inherently exist in the educational sector: students, educators, building administra-
tors and other administrative staff. In such a building, a typical installation based

on the learnings of the GAIA project is comprised of:

e a power meter device installed in the main junction box of the building
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e 5-10 environmental meter devices, installed in the a subset of the building’s

classrooms and common areas.

e a weather station device installed on the roof of the building (if easilly accessi-
ble).

Weather Station

Figure 3.3 An example of a typical installation inside a school building with a
weather station, 4 environmental meter and one power meter devices.

3.2 Key Elements

Based on the previous discussion, we can summarize the involved elements in the

following categories:
e Users: Users are people that will interact with or live inside the installation.

e Sensing devices: Sensing devices are loT devices that are installed and have
the role of data producers. Their information can be transferred, consumed or

collected for future use.
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e Actuator devices: Actuator devices are loT devices that can be controlled to
invoke change in the physical world. They include elements like light switches

or the set value of the thermostat in an HVAC system.

e Gateway devices: Gateway devices are loT devices that simply have the role
of transferring information between the installation and the Internet. Their
role is crucial in installations where the other loT devices installed are not

Internet-enabled and cannot communicate directly with the rest of the system.

e Observed Phenomena Observed Phenomena refers to the physical phenomena

that can be observed from a digital sensing or actuator devices.

e Units of Measurements Units of Measurements refer to the convention used

to quantify an observed phenomenon.

e Locations Locations refer to the physical and logical groupings that can be
applied to any of the elements presented above. They can describe a building,
a school unit or a classroom but also a more abstract grouping of a set of users

inside multiple school communities.

In a similar manner there are relationships between the elements presented

above that are defined as follows:

e Ownership Ownership defines the relation in which users have the full control
and permissions on a set of sensing, actuator or gateway devices and physi-
cal locations. This relationship is important for administrative and security

purposes and can be used for the management of the whole installation.

e Access: Access defines the right of a user to view the information produced by
a set of sensing devices or physical location or control an actuator device. Such
rights can be limited based on the type of the user as for example teachers
and students may need access to detailed information only about their own
classroom while they are allowed to view only limited data on the rest of their
school building. Similarly, students may not be allowed to control actuator
devices even in their own classroom as elements like the HVAC system is
configured only by their building managers or an authorized teacher (e.g., the

principal).

e Membership: Membership refers to the fact that each one of the sensing

actuator and gateway devices as well as users are part of a physical or logical
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location. For example sensing devices are part of a physical classroom that
is part of a building, while they are also part of the local educational branch
(i.e., the prefecture the school belongs to). Similarly users also belong to user
groups that are tied either to their actual physical location or study groups

that may be defined withing their schools.

e Sensing Attributes: Sensing attributes refer to the sensing and actuator
devices and are used to define what type of information each one of the devices
generates, or what type of device it controls. The can be information about
the physical phenomenon or the measurement unit that is measured or even
whether the data generated are raw values or need a post processing to be

valid.

3.3 Digital Representation

To provide a digital representation of what we described before we choose to use
a graph database. Such a database is more appropriate to our use case as it can
easily bind elements and their relations to vertices and edges of the graph. It also
provides as with a common representation and storage mechanism for each element
or relationship using key-value pairs for their attributes and simplifies searches

inside the graph in the form of graph traversals.

3.3.1 Graph Databases

We base our design in the Neo4j Graph Platform'!. The Neo4j native graph database
is an enterprise grade solution for creating transactional applications. Neo4j comes
bundled with the Cypher graph query language allows for expressive and efficient
operations on the database both in terms of time and computing resources. Using
a graph database we are able to leverage complex and dynamic relationships in
use-cases with highly connected data to generate insight and a better understanding
of the relationships between the entities of our application. Graph databases are the
best way to represent and query data of any size or value. Based on the usage of the

data from the graph we can separate graph databases in two separate spaces:

e Transactional, persisted online graphs, typically accessed in real time inside

the context of an application.

1 https://neo4j.com/product/
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e Offline graph analytics applications, that are composed of a series of batch

steps executed over a set of collected data.

The fist one mostly refers to applications that include social or user interactions
while the second one refers mostly to statistical and data mining applications.
Formally, a graph is just a collection of vertices and edges-or, in less intimidating
language, a set of nodes and relationships that connect them. Neo4j, follows the
Property Graph Model, a simple yet powerful enough model to describe the vast

majority of graph use-cases. A property graph has the following characteristics:
e It contains nodes and relationships
e Nodes contain properties (as key-value pairs)
e Relationships are named and directed, and always have a start and end node
e Relationships can also contain properties

Querying graph data in Neoj4 is possible using Cypher. Cypher is an expressive
(yet compact) graph database query language. Although currently specific to Neo4j,
its close affinity with our habit of representing graphs as diagrams makes it ideal
for programmatically describing graphs. Cypher is arguably the easiest graph
query language to learn, and is a great basis for learning about graphs. Other
graph databases have other means of querying data. Many support the RDF query
language SPARQL [59] and the imperative, path-based query language Gremlin [39]
but Cypher is a lot easier to learn and use allowing even non-experts to express
simple queries in a matter of minutes.

The Neo4j database runs on top of the JVM in two modes: as an embedded
database, that is stated as part of an application but remains persisted on the disk of
the application’s host, or as a standalone database server. Based on the application’s
use-case the developers are able to select the best mode that fits their case. Using
Neo4j as a standalone server allows for clustered, sharted and replicated setups like
the ones presented in Figure 3.4.

Neo4j stores graph data in a number of different store files on disk. Each
store file contains the data for a specific part of the graph (e.g., there are separate
stores for nodes, relation-ships, labels, and properties). The division of storage
responsibilities -particularly the separation of graph structure from property data-
facilitates performant graph traversals, even though it means the user’s view of

their graph and the actual records on disk are structurally dissimilar. Figure 3.5
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[ Write Load Balancer ] [ Read Load Balancer l

Figure 3.4 Neo4j clustered setup using read/write load balancers to direct requests
to a different database instances.

describes the physical storage of the Neo4j data by depicting the structure of nodes
and relationships on disk. The node store file stores node records. Every node
created in the user-level graph ends up in the node store, the physical file for which
isneostore.nodestore.db. Like most of the Neo4j store files, the node store is a
fixed-size record store, where each record is nine bytes in length. Fixed-size records
enable fast lookups for nodes in the store file. If we have a node with id 100, then
we know its record begins 900 bytes into the file. Based on this format, the database
can directly compute a record’s location, at cost O(1), rather than performing a
search, which would be cost O(logn). Correspondingly, relationships are stored in
the relationship store file, neostore.relationshipstore.db. Like the node
store, the relationship store also consists of fixed-sized records. Each relationship
record contains the IDs of the nodes at the start and end of the relationship, a pointer
to the relationship type (which is stored in the relationship type store), pointers
for the next and previous relationship records for each of the start and end nodes,
and a flag indicating whether the current record is the first in what’s often called
the relationship chain. Figure 3.6, shows how the various store files interact on

disk. Each of the two node records contains a pointer to that node’s first property
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Node (15 bytes)

inUse
nextRelld nextPropld labels extra

IIIIIILIIILIIIILI

Relationship (34 bytes)

inUse firstPrevRelld secondPrevRelld nextPropld
firstNode  secondMode relationshipType firstNextRelld secondNextRelld firstinChainMarker
1 5 9 13 17 21 25 29 3334

Figure 3.5 Neo4j node and relationship records as they are stored on disk.

and first relationship in a relationship chain. To read a node’s properties, we follow
the singly linked list structure beginning with the pointer to the first property. To
find a relationship for a node, we follow that node’s relationship pointer to its first
relationship (the LIKES relationship in this example). From here, we then follow
the doubly linked list of relationships for that particular node (that is, either the
start node doubly linked list, or the end node doubly linked list) until we find the
relationship we’re interested in. Having found the record for the relationship we
want, we can read that relationship’s properties (if there are any) using the same
singly linked list structure as is used for node properties, or we can examine the
node records for the two nodes the relationship connects using its start node and
end node IDs. These IDs, multiplied by the node record size, give the immediate

offset of each node in the node store file.

3.3.2 The GAIA Graph Database Schema

In our case we developed a schema that contains the aforementioned elements and
their relationships and applied it to the information of the installation of GAIA project.
We used and embedded instance of Neo4j to persist the data of the system on disk
due to some performance and stability issues we faced with the initial versions of
the Neo4j server distribution. This did not limit the development of the different
applications and services of our system as all functionality and operations on the
actual database are handled through a single point, secured web-based application
programming interface (API).

Listings 3.1 and 3.2 contain the generated schema for two of the described

element and a single relationship between them in Java. Figure 3.7 shows an
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Vo

previous relationship for
start node end node

l 1

LIKES

|1

next relationship for ]
name: “Bob" start node end node name: “Alice”

v

age: 25

Figure 3.6 Neo4j nodes and relationships as they are physically stored on disk and
how they point to each other.

example of how tow of the core entities of the GAIA schema are stored on disk and
connected with each other. The final list of entities in the production version of the

GAIA schema contains the following:

e User: for storing user related information

Site: for storing schools and classrooms,

Resource: for storing sensing points,

Gateway: for storing gateway nodes that communicate with sensing devices,

e Property: for storing sensing capabilities and metadata
Also the GAIA schema contains the following relationships:

e ResourceProperty: to link a Resource entity with the Properties showing
its sensing parameters,

e GatewayProperty: to link a Gateway entity with the Properties showing its
connectivity capabilities

e IsPartOf: to link a Resource entity with the location it physically resides in,
e ShareWith: to provide Site access to Users of the system,

e SubSite: to easilly describe the structure inside school buildings.
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NodeEntity
public class Resource implements Serializable {
GraphId
private Long 1id;
private String uri;
private String name;

private long creationDate;

RelatedTo (type = "providedby")
private Gateway gateway;

RelatedTo (type = "ispartof")
private Set<Location> locations;

private Set<String> tags;

Listing 3.1 Example of a node entity in the graph database

RelationshipEntity (type = "ispartof")

public class IsPartOf implements Serializable {
GraphId
Long id;
StartNode

private Resource resource;

EndNode
private Site site;

}

RelationshipEntity (type = "property")

public class ResourceProperty implements Serializable {
GraphId
Long id;
StartNode

private Resource resource;

EndNode
private Property property;

private String predicate;

Listing 3.2 Example of a relationship entities in the graph database
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Figure 3.7 Neo4j nodes and relationships for the GAIA project as they are physically
stored on disk and how they point to each other.

3.3.3 Comparing the Graph and Relational Database Schemas

In this section we are going to present how some of the entities and relationships
presented above could be implemented in a traditional relational database. Based
on this implementation we will show how the respective implementation in a graph

database compares with the relational one.

Resource
Gateway id
id uri (V) ‘_\\
creationDate creationDate Resourcelocations
uri W) name resource id  (FK)
name tags location _id  (FK)
gatewayld  (FK)
SubLocations )
parent location id (FK) — g Location
child location id (Fk) ==
- creationDate
name
latitude
longitude

Figure 3.8 Entity Relational Diagram for the GAIA schema.

Figure 3.8 shows part of an Entity Relationship diagram for the GAIA schema. This
implementation follows the principles of relational databases like MySQL, MariaDB
and PostgreSQL. It contains 3 entities (Resource, Gateway and Location)

together with one helper table needed to represent the many-to-many relationship



3.3 Digital Representation 37

between Resources and Locations and one for the recursive relationship of the
Locations to express hierarchical structures. The diagram also contains the many-
to-one relationship between Resources and Gateways expressed with a single
foreign key in the Resource table. Out of hand we can observe that in this case we

need to store two new tables to express some of the relationships of our schema.

hasGateway

.

resourceLocation

T

Resource : 2

subLocation

hasGateway
resourceLocation

Resource : 5 Location : 6

Figure 3.9 Entity Diagram for the GAIA schema in as a graph.

On the contrary, to express the same schema in a graph database we need a
schema similar Figure 3.9. This schema contains the 3 entities and the relationships
between them. As we can see, we do not need additional storage for any relationship,
as the graph database stores each edge separately and therefore we can describe each
relationship of our graph as an additional entry in a single “relationship” schema, as
we described in Section 3.3.1. Properties of the vertices and edges are stored in a

similar manner to the relational databases.

3.3.4 Real World Application

Thus far 18 school buildings (Table 3.1) have been involved in the project, spreading
in 3 countries (Greece, Italy, Sweden), covering a range of local climatic conditions
and educational levels (primary, secondary, high school and university). Electricity
consumption meters are installed in all of these buildings, along with sensors
monitoring indoor and outdoor conditions as described above. The vast majority of
the rooms monitored are used for teaching purposes and the rest for other activities

like teacher/staff rooms, etc. The year of construction of these buildings ranges from
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1950 to 2000. To represent all the information of the GAIA project the graph database
contains a total of 7332 vertices and 47864 edges in total for the deployment and
uses a total of 113 MB in disk space. From those vertices, 4749 are sensing points,

are 1012 locations, 681 are sensing properties and 300 are users of the system.

Parameter # Description

13 Greece
Educational Buildings 18 4 Italy

1 Sweden
Sensing Points 1000 > five sensors per device
Students 5500 students in all levels
Teachers 900 teachers in all levels
Sensing Rate 30 s classroom sensors

Table 3.1 Data of the GAIA deployment.

Multiple queries on the data have been defined. Some of them are presented in

Listing 3.3 and the average times for executing them is presented in Table 3.2.

Query Result Size Time (ms)
List all School locations 18 6.7

List all Classroom locations 180 12.6

List all devices 1000 5.4

Find Classrooms of School 10 1.8

Find devices of Classroom 5 1.4

Table 3.2 Execution times of typical queries for the graph database.
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//List all School locations
MATCH (n:"School") WITH n RETURN n

//List all Classroom locations
MATCH (n:"Classroom") WITH n RETURN n

//List all Sensing and Actuator devices
MATCH (n:"Resource") WITH n RETURN n

//Find all Classroom locations inside a School location

MATCH (n:"School")-[r_cl:"IN"]-(cl:"Classroom")

WHERE n."id" = { "XXX" } WITH n RETURN cl

//Find all Sensing and Actuator devices in a Classroom location
MATCH (n:"Classroom")-[r_rl:"PLACED IM"]-(rl:"Resource")

WHERE n."id" = { "XXX" } WITH n RETURN rl

Listing 3.3 Graph query examples in Cypher

A snapshot of the graph If we could isolate a subset of the graph that describes a
single school building we would end up with a graph similar to Figure 3.10. In this
graph we see the owner of the installation, the User 8gym. The school building is
called 8" HighSchool and we can identify in the figure the ownership relationship
between the User and School entities. The school building is in our case composed
of 3 Classrooms (1.2,3). The Classrooms are connected to the School with a
relationship called in. This relationship is directed, and points from the smaller
location to the one that encloses it, physically or logically. On the other side of
the graph, we can see the Gateway node (with the name 1) that is similarly owned
by the User. Connected to this Gateway we can find 3 Resources (012,022,032).
These Resources are also connected with the Gateway in the graph with a of
relationship. These Resources are also part of a physical location and collect data
for them. As a result they are also connected to these Classrooms with the placed
in relationship.

In each of these entities and relationships we also have stored also a set of
properties that contain the parameters of the entity like the password for the User
or the location of the School. We do not represent this information here to provide
a more clear picture about how the graph is built. A more complex snapshot of a

school generated from the Neo4j database is available in Figure 3.11.
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User : 8gym 8" High School

Figure 3.10 Snapshot of a part of the GAIA graph.
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Figure 3.11 Snapshot of a part of the GAIA graph taken from the Neo4j database.






Chapter 4

Data Collection

The next milestone, after managing to represent the complex structures of an loT
deployment is to build a system that is capable of receiving all the data that such a
deployment will produce. This system needs to cover a set of basic requirements to

be successful future-proof (easy to maintain and extend):

e openness, to support a number of different loT ecosystems,

e versatility, to support different application domains, e.g., energy efficiency

and educational scenarios,

e scalability, to support a very large number of buildings and loT sensing end-

points,

e up-to-date support of modern practices in the design of the system, i.e.,

cloud-based solutions, easy deployment, etc.

To provide such a solution, we base our work on the use of open-source, well
established application frameworks that are used by many software developers
around the world. These technologies are also easy to extend and support new
technologies and function over multiple infrastructures reducing the chances of
vendor lock situations. Also, we base our work on services that can easily be scaled
vertically or horizontally to support the increasing needs of the deployment that will
grow over time, minimizing the need to redesign any part of the system.

In the rest of this chapter, we present how we designed a system that is destined
to analyze the data from a large scale loT deployment in real-time and offer them
to different users in the context of the EU project GAIA. Our design was based on
the needs of the specific deployment but was also focused on the scalability of the

platform in the future to support new hardware and new requirements as they arose.
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4.1 Devices

In each of the buildings participating in the GAIA pilot installations, we deployed
sensor devices that measure (a) the overall power consumption of the building, (b) the
environmental comfort within each individual class (see below for more details), and
(c) the weather conditions and air pollution levels in each building. These devices
can be split into three different categories based on their origin and operation type.
In general, we use (i) custom made IoT devices that communicate using an IEEE
802.15.4 local network[58], (ii) proprietary off-the-self IoT devices that communicate
using IEEE 802.11 and 3G in areas that we cannot easily connect to, and (iii) sensors
from legacy Building Management Systems (BMS) that are already installed in a
number of school buildings. Most indoor IoT nodes form IEEE 802.15.4 networks
(Zigbee or plain) and communicate with their respective edge devices by establishing
ad hoc multihop bidirectional trees, set up at the time of the deployment and
maintained throughout the network lifetime. The outdoor nodes are connected via
Power Over Ethernet cables to transfer both electricity and maintain communication
over a single cable, while in some other cases we also used IEEE 802.11 and supplied
the weather stations with batteries and solar panels to harvest energy from the sun.
On the transport and session layers, the devices communicate using either a custom
protocol or Zigbee for the discovery of resources and transmission of measurements.
In the rest of this section, we provide some more details on the categories of devices

we have integrated.

4.1.1 Custom IoT Devices

Environmental Comfort The environmental comfort meters measure various as-
pects affecting the well-being of the building’s inhabitants, such as thermal (satis-
faction with surrounding thermal conditions), visual (perception of available light)
comfort and overall noise exposure. We also monitor room occupancy using pas-
sive infrared sensors (PIR). These devices are also equipped with XBee wireless
transceivers, in order to access an IEEE 802.15.4 network and transmit the mea-
surements to the cloud services via our custom-made gateways. For more details
regarding the design and technical specification of the devices, see [58]. Images of

the device and its installation are available in Figure 4.1.

Power Consumption The power consumption meters installed measure the appar-

ent power and the electrical current drawn from the network by each school building.
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Figure 4.1 A custom Arduino-based environmental comfort meter device installed in
school buildings.

Regarding the electrical setup, 3-phase electric power installations are a common
practice for most public and private non-housing buildings, such as schools, in
Greece. Three separate single-phase supplies, with a fourth neutral connection,
provide a constant voltage to power most common single-phase appliances. In order
to measure the total power consumption of such an installation, it is necessary
to independently measure the power consumption of each phase and add up the
total consumption, as if the installation consisted of three separate lines. Meters
are situated on the main distribution board of each such building to measure each
one of the three-phase power supply of the building. These devices are equipped
with XBee wireless transceivers, in order to access an IEEE 802.15.4 network and
transmit the measurements to cloud services via the custom made gateway nodes.
For more details regarding the design and technical specification of the devices,

see [58]. Images of the device and its installation are available in Figure 4.2.

Weather and Atmosphere Stations These provide information on the outdoor
atmospheric conditions including precipitation levels, wind speed and direction. The
atmospheric meters monitor atmospheric pressure and the concentration of selected

pollutants, to provide insights on the pollution levels near school buildings. These
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Figure 4.2 A custom Arduino-based power meter device installed in school buildings.

devices communicate with our system directly via Ethernet or WiFi and are powered
using Power-Over-Ethernet or are plugged into the sockets of the building when
available. For more details regarding the design and technical specification of the

devices, see [58]. Images of the device and its installation are available in Figure 4.3.
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Figure 4.3 A custom Arduino-based weather station meter device installed in school
buildings.

4.1.2 Proprietary Devices

Meazon In certain locations where the installation of our custom devices was not
feasible due to connectivity or other restrictions, we have installed a number of
Meazon'! power meters and sensors. These sensors communicate with Meazon’s
proprietary data infrastructure and their data are then pushed to our platform. On
the hardware side, these devices communicate using Zigbee to a central gateway
device that is either connected to the Internet via Ethernet or use 3G in order to
communicate directly with Meazon’s proprietary cloud services. Images of the device
and its installation are available in Figure 4.4.

Thttps://meazon.com/
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Figure 4.4 A Meazon power meter device.

synField Similarly, in some of the buildings instead of our custom weather stations,
we used some off-the-self synField? weather stations that offered us WiFi connectivity
to avoid installing additional cables on the roofs of the buildings, as well as energy
harvesting via solar panels. In this case, the weather stations communicate via WiFi
directly to proprietary cloud services. Images of the device and its installation are

available in Figure 4.5.

4.1.3 Legacy installations

BMS In one of the schools involved (a large technical high school/college) a BMS
was already in place, utilized by the building manager and other technical staff
to monitor and control several aspects of the day-to-day business. However, this
system provided little to none standard interfaces to external systems. To integrate its
infrastructure to our system, a custom application was developed to poll periodically
the collected data directly from the application’s database and transmit the data to

our platform.

4.2 Architecture

Our goals it to build a system that is capable of handling an unlimited amount of
data in real-time without any delays or outages. A graphical representation of the

components used in the actual implementation that handles all the data originating

thtp: / /synfield.synelixis.com/
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Figure 4.5 synField weather stations installed in school buildings.

from the educational buildings of GAIA is presented in Figure 4.6. The system
is designed based on the microservices 2 approach. It is therefore comprised of
a set of loosely connected services that communicate using web interfaces and a
central message exchange service. This central point of our architecture is a message
broker service that allows all other services to publish updates or subscribe to data
streams and receive notifications as they appear. Its role is to merge the various
data inputs from the loT devices and feed information to the a central processing
service that analysis the data and reintroduce them to the message broker for further
processing or storage. The Continuous Computation Engine that will be presented in
the rest of this section subscribes to updates on the broker and publishes the final
calculated results back to the broker for storage and distribution to other attached

services. As we will showcase in the next chapters this is allows us to easily add new

3https: //en.wikipedia.org/wiki/Microservices
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services to the system and gives us the freedom we need to implement each service
in the best suited environment using the best tools available each time. Appropriate
Application Programming Interfaces are provided to retrieve information from the
system (historical data or schema information) to build user-facing applications that

appear on the right hand side of Figure 4.6.
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Figure 4.6 Educational building-specific IoT architecture

We also include in the architecture diagram the different data input services
on the left hand side of figure and the Data Warehouse service that collects all the
analyzed data and stores them in an internal database. Our platform provides a
unified API for retrieving data from multiple sites and multiple hardware platforms
with transparency. Each hardware device integrated in the platform is mapped to
a resource. Resources are self-described Entities and are also software/hardware
agnostic. The Data API acts as a wrapper function and hides much of the lower-level
plumbing of hardware specific API calls for querying and retrieving data, providing a
common API for retrieving historical or real-time data from resources.

To facilitate integration between the existing hardware and software technologies,
the exchange of the information occurs through API Mappers. The API Mapper
acts as a translation proxy for data acquisition and it is responsible for polling
the devices infrastructure through proprietary APIs and translating the received
measurements in a ready to process form for the platform. In general, the API
Mapper transforms data to and from the API. The data input type can be, based
on each device’s capabilities, either poll based and/or push-based. In more detail,
the API Mapper is capable of receiving data from the IoT devices but also of sending

messages/commands to the devices. Furthermore, according to the system design,
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the API Mappers introduce scalability and modularity in the platform. Our solution
offers two separate types of API Mappers for integration with external services and to
retrieve 10T sensor data: (a) Polling API Mapper and (b) Message Queue API Mapper.
Both solutions were used to integrate with data originating from the IoT installations

that originate from different devices provided by different manufacturers.

4.2.1 Gathering data from the installations
Polling API Mapper

The first solution (Polling API Mapper) is based on polling of remote APIs that contain
the collected data. The API mapper does not poll the actual loT devices put an
interface made available by their manufacturers. The loT devices themselves forward
their data to the manufacturers’ backend using proprietary protocols that were not
publicly available.

A usage example is the following: weather stations are installed in a subset of the
school buildings of GAIA. Data produced by such stations are accessible through
a field manager application that provides historical information through both a
dedicated web interface (Figure 4.7) and a secured RESTful API. To integrate them
into our system, the weather API Mapper was implemented based on the RESTful
API provide by Synfiedl. The loT devices update the backend every 5 minutes and our
applications queries it every 5 minutes for updated data. When new data is found,
it is formatted to the internal format of our system and forwarded for processing
and analysis. The data is then processed and can be accessed by the users of
the GAIA platform. A similar implementation, based on the Polling API Mapper, is
used to integrate legacy data provided by a web-based building management system
(Figure 4.8) installed in one of the schools of the project. This system does not
offer any kind of programming interface to retrieve data. In that case, we used
the HtmlUnit * GUI-Less browser for Java programs to simulate accessing the
data of the web-interface inside the API Mapper. Once we access the pages of the
building manager system we extract the latest measurements and format them to
the internal format of our system as before. Then the data are ready to be forwarded

for processing and analysis and finally available to the users of GAIA.

“4http://htmlunit.sourceforge.net/
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Figure 4.7 The synField Web Interface.

Push-based API Mapper

The second solution is used when the loT devices themselves or the backend of the
device manufacturer is capable of offering publish/subscribe capabilities. In that
case, either the devices or an external service is capable of pushing the loT data
(generated or gathered) to a provided endpoint. The API Mapper is then able to
receive the new measurements asynchronously and format them to the internal
format of our platform. The data is then forwarded for processing and analysis and
made available to the GAIA users. In our case, we use this option on a set of custom
loT devices that are installed inside the schools and provide the main volume of data
for our system. Each device installed forwards its data every a few seconds (typically
30) to a local gateway device placed in each building. The gateway then forwards the
data to a configured MQTT broker in a text based format: the topic of the message
refers to the device and sensor that generated the message while the actual payload
represents the value generated. For example, if a sensor with a hardware (MAC)
address 124B00061ED4 66 publishes a temperature value of 20 degrees Centigrade,
the topic is 124B00061ED466/temperature and the message is 20. All sensors

forward their measurements periodically (every 30 seconds) or based on events (i.e.,
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Figure 4.8 The web-based building management system installed in one of the GAIA
buildings.

when motion is detected) and the API mapper receives, transforms and forwards

them to the processing engine so that they are available for the GAIA users.

4.2.2 Data Processing

Our target for the analysis of the data retrieved from the devices is to implement
an engine that is capable of handling the data streams originating from the devices,
as presented above, in real time with minimum latency. To achieve this, we need
a framework that is scalable and can operate using a messaging mechanism to

5 is a free and open

exchange data between its sub-components. Apache Storm
source distributed real-time computation system that we use to guarantee this
behaviour. It allows us to split all the steps of the processing of the data into tasks

that are executed asynchronously but with the correct order, forming a pipeline of

5http: //storm.apache.org/
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transformations that are applied in the original data entering the processing engine.
An abstract view of that schema is presented in Figure 4.9. This flow is called a
processing topology in the context of Apache Storm. In it we can spot the tasks
that feed data into the system (called spouts) presented as faucets, the tasks that
transform the data (called bolts) presented as water drops and the arrows that show
the flow of data from each task to the next in line. Data are always transferred on all
exchanges using tuples. Tuples are indexed key value pairs that can be serialized

on the sender’s end and deserialized upon receipt.
0 - C - C

Figure 4.9 Abstract view of an Apache Storm processing topology.

0

Spouts Spouts are tasks that are polled with high frequency and have the role of
picking up or receiving new data from external sources. In our case they maintain an
open connection to the available message broker, receive updates asynchronously an
add all new messages to an internal queue. This queue is then polled by Storm and
all the objects found in it are forwarded for processing. A simple spout is available in
Listing 4.1. In this listing we can identify two methods. receive is the one called
when a new message arrives from the external message broker and the payload of the
message is appended to the end of the queue. nextTuple is polled continuously by
Storm to discover new payloads and forward them for processing as tuples.

public class StringSpout extends BaseRichSpout ({

Queue<byte[]> queue = new Queue<>();
SpoutOutputCollector collector;

Override

public void receive (byte[] body) {
this.queue.offer (body);

}
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Figure 4.10 Graphical representation of a Storm Spout.

Override
public void nextTuple () {
// Pop latest thing off the queue
byte[] nextObj = this.queue.poll();
if (nextObj == null) {
// Silent return & sleep to avoid spamming the CPU
Utils.sleep(5L);

} else {
String message = new String(nextObij);
Values outTuple = new Values();

outTuple.add (0, message);
collector.emit (outTuple);

Listing 4.1 A simple Storm Spout

Bolts Bolts are tasks that are executed based on a received tuple. The goal of Storm
is to break up every calculation needed into smaller tasks that can be specifically
tuned and independently scaled for better performance. In Listing 4.2 we present
an example of a simple bolt that calculates the maximum, minimum and average
value of all the values received so far. Once the values are calculated the bolt creates
an array of them and emits them for possible further processing or storage. In a
slightly different implementation, this bolt could be replaced by 3 individual bolts
that calculate the maximum, minimum and average value respectively. In that case
and as the averaging is the most complex operation we could assign more instances

running in parallel to this bolt in order to increase its throughput. Finally, a special
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type of bolt is what we call a “data sink” and is placed in the end of the processing
topology. Its role is to receive the final tuple as a result and forward it to an external
service for storage or further use. Such sinks are implemented or provided by Apache
Storm for common databases such as MySQL®, MongoDB” and others.

public class StatisticsBolt extends BaseBasicBolt {
List<Double> values = new ArrayList<>();
Double min=Double.MAX_VALUE, max=Double.MIN_VALUE, avg=0;

Override

public void execute(final Tuple tuple,
final BasicOutputCollector collector) {
if (max < value) { max value; }
if (min > value) { min value; }
values.add (value) ;
avg = avg(values);

final Object[] output
= new Object[3] { max, min, avg};
collector.emit (new Values (output));

Listing 4.2 A simple Storm Bolt

Time-based data analysis

That calculation engine needs to provide us statistics for different rolling timespans.
In our case, we decided that we need statistics for each observed parameter for 5
minute, 1 hour and 1 day intervals in order to provide data in different granularities.
We choose those values as they are the most appropriate for generating useful
end-user visualizations and additional statistics. In each stage of the data analysis
we maintain a buffer that contains the received values and uses them to re-calculate
the aggregated values once a new value is received. This buffer, is actually a double
ended queue where we add on the one side the latest value received and remove from
the other side the oldest values that are now our of scope for the timespan we are
interested in. Such a strategy provides us with 12 5 minute intervals for every hour
(minutes 0-5, 5-10 etc.) and 24 hour intervals in each day. The final outcome of our
calculation engine for each observed parameter is therefor a set of multiple queues
with 48 values on each granularity. The 48 values were selected to provide a more
extended view on the level observed that is meaningful in a visualization and a yet
not memory consuming. An example of the resulting outcome from our caluclation

engine is presented in Listing 4.3.

6https: / /www.mysql.com/
7hup$//vnmwxnong0dbcon1
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keyName: "0013a20040b55ff0/0xed4/cur/2",

latestTime: 1525335805765, //timestamp in unix time

latest: 1836.4736842105262,

minutes5: [
1836.4736842105262,
13241.596159571429,
12218.473685185187,
12009.260433888889,
11984.854856666669,
18481.245200307698,
16743.183172,

//48 values

1,

minuteso0: [
51290.65881952271,
192838.42803524583,
219732.656716715,
71440.66035250713,
57744 .96627651688,
72314.904621487¢6,
74556.74366975091,

//48 values

day: [
809954.4193813745,
1778599.4514102784,
1505638.3105379613,
3287908.3959045573,
1639454.896280735,
1551001.504456223,
1414542 .523241626,
//48 wvalues

Listing 4.3 An example outcome of our caluclation engine

Forming a processing topology

Using the building blocks described in the previous section we are able to easily build
a processing topology that is capable of handling all the data originating from the
GAIA installation. We have implemented multiple topologies that focus on calculating
aggregated values for different kind of data. Specifically we use topologies for power
measurements, environmental data, weather data and events. For each of those

data types a different kind of aggregation is required:

e Power Consumption needs to be totaled in each of the timespans we are
interested in. The power meters provide us with an absolute value of power

consumed every 30 seconds in Watt-hours. To calculate the total power
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consumed we need to calculate the sum of all values received in each timespan

(e.g., in 5 minues or 1 day).

e Environmental data needs to be averaged in each of the timespans we are
interested in. When we want to provide feedback for the temperature or
relative humidity inside a building we are interested in the average value
observed during time window, reducing the effect of momentary extreme values.
Calculating the average value per 5 minutes throughout the day gives us the
option to later on calculate also other metrics like the maximum or minimum

values inside a day via simple calculations over much smaller data sizes.

e Weather data like the height of rain or the amount of radiation received from
the sun requires also to calculate the total amount in each of the time period

inspected.

e Event data are typically boolean values that indicate a certain condition inside
the building. For example, motion detection sensor provide us with information
about whether a room is occupied or not. Similarly, piezoelectric sensor can
provide similar information for persons sitting on a chair. Such data can be
handled in two different ways. The first option is to calculate the number of
times such an event was recorded in each timespan as an absolute number.
The second option is to calculate in what percentage of the timespan this event
was observed. In our case, we choose to follow the second approach in order
to have a common comparison level as all aggregated values will range from O
to 1, with O indicating no events observed, 0.5 indicating the event appearing

50% of the time and 1 describing a constant event.

data

<
processing output
step
N

Figure 4.11 Graphical representation of a calculation spout.

data

processing
step
1

processing
slep
2

processing
slep

To easily achieve these processing methodologies we use a set of interchangeable
aggregation components in each Storm bolt that differentiate the final aggregate
computed. These modules bind with the bolts on the setup of the topology as
presented in Figure 4.12 resulting in a final topology that is presented in Figure 4.13.
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Figure 4.12 Processing bolt with the aggregation module.

An example of the resulting topology is available in Listing 4.4. As this is a production
level topology need some additional components to be able to cleanup data (delete
sensor spout) or adjust the in-memory data inside for timezone changes (time-shift
spout and time adjuster bolt).

g g Seg

5 min 60 min 1 day 1 month

Figure 4.13 Final view of the calculation topology.

spout] sensor measurements input

spout] delete sensor input

spout] time-shift input

bolt] time adjuster

] aggregation bolt 5 minutes + aggregation type
] aggregation bolt 60 minutes + aggregation type
bolt] aggregation bolt 1 day + aggregation type

] summary bolt

] data sink bolt

Listing 4.4 The final structure of a calculation topology



60 Data Collection

4.2.3 Data Storage

Once the calculated data are available they need to be stored in an appropriate
storage schema that will allow for fast data retrieval and efficient storage. The
options to implement such a solution we need to investigate the capabilities of the
state-of-the-art solutions for data storage. What is available ranges from traditional
SQL databases that provide strict and well defined schemas but tend to suffer when
the data volume increases beyond a certain limit to NoSQL databases like Cassandra
remove the issues of big data storage but may severely degrade the access times
of time based queries. Another important solution that was introduced during the
past years is the use of timeseries databases, like InfluxDB® and KairosDB? that are
designed for loT data and use in their backends NoSQL solutions for storing the raw
data.

In our case, we implemented a two-stage storage engine that is designed to target
both requirements. We use a MongoDB as the raw data storage and store an instance
of the provided summary and the historical data for time-based requests. The first
stage stores the summary that is extracted from the analytics engine as a single entry
that can be directly retrieved upon request. This method gives as fast responses in
the simplest queries that are requested by the majority of the users of the system.
The summary presented in Listing 4.3 is what is used for this kind of storage.

The second stage decodes each summary received and stores its data as key-value
pairs for each of the time interval they concern. This method allows use to easily
query the historical data of our system by providing a set of keys that can be accessed
in constant time from the database. In terms of scalability, MongoDB offers use
the option to run on sharded clusters where data can be split and replicated for
security and accessibility reasons. Listing 4.5 presents how the data are stored in
the database. Each entry has a key value the is comprised of the unique identified
for the sensor and a suffix that refers to the timespan in question in the format of
year-month-day-hour-5minute interval indexes (YYYY/MM/DD/HH/M). Based on
the depth of the second index we can understand in what timespan each entry refers

to.

//entry for the average electrical current consumption
//on the 3rd May 2018 08:20:00-08:24:59
{
key: "0013a20040b55ff0/0xed4/cur/2/2018/5/3/8/5",
value: 1836.4736842105262

8https: //www.influxdata.com/
Shttps:/ /kairosdb.github.io/
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}

//entry for the average electrical current consumption
//on the 3rd May 2018 08:00-08:59

{
key: "0013a20040b55ff0/0xed4/cur/2/2018/5/3/8",
value: 51290.65881952271

}

//entry for the average electrical current
//on the 3rd May 2018 00:00-23:59

{
key: "0013a20040b55ff0/0xed4d/cur/2/2018/5/3",
value: 809954.4193813745

}
Listing 4.5 Examples of historical data entries in the MongoDB storage

4.3 Evaluation

The evaluation of the system’s operation focuses on the following areas: (1) data
processing, (2) data access, and, (3) data analysis and statistics. These areas can
adversely affect the performance and perception of a system since users need rich
data, easily and quickly accessible and real-time information to better understand
how their actions affect the building usage. This is more crucial when the data is

used in the educational context, i.e., during courses.

4.3.1 Data Analysis

To better present the operation and capabilities of the system, an analysis of the
average weekly occupancy of 4 distinct school buildings during May 2017 is presented
in this section. Remark that this analysis is similar to the work presented in [15].
Figure 4.14 (a) depicts the occupancy levels of the whole building, as an aggregated
occupancy of all the rooms in which a smart motion sensors is installed. All four
buildings are elementary schools that follow the same academic schedule with
activities starting from 08:00 until 13:30. Remark that the building of “School 1” is
also used by a technical school that is used in the afternoon. The data presented are
ranged from O (no motion detected during this time interval) to 1 (constant motion
was detected during the whole time period). This graph shows the actual active
hours of the schools that are commonly ranged between 7:00 and 15:00 during
weekdays. It also depicts the clear differences between schools of different levels,
e.g., the case of School 1 where a Technical school operates also in the afternoon
for classes. Similarly, Figure 4.14 (b) presents the average power consumption of a

school as it is measured by our system, versus the occupancy of the building. From
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the graph, it is clear that the school building consumes power mainly when it is

occupied during the weekdays.
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Figure 4.14 (a) Four-week (May 2017) average occupancy levels in four differ-
ent school buildings. (b) Four-week (May 2017) average power consumption and
occupancy levels in a specific school building.

!f—o)liaz\elﬁ A:;uean:::;o



4.3 Evaluation 63

4.3.2 Data Access

Accessing historical data is crucial for building monitoring applications, e.g., when
comparing historical data from different time spans and building areas. In such
use cases, it is important that an IoT service is capable of providing these data
without delays, independently of the targeted time interval. As discussed in [23],
application response times larger than 10 s tend to make users lose their attention
in the given task, while a 1 s response time is considered the limit for users that
are freely navigating an application without waiting for the application’s response.
In that context, when presenting power consumption statistics, e.g., over the past
year, it is important to be able to retrieve and present the stored values within one
second, independently of the requested interval (latest values versus older values).
Figure 4.15 and 4.16 present the average retrieval times for accessing historical data
of a one month duration for the past 12 months, observing minimal differences in

the access times independent of the period requested.

900
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Average Response Time (msec)

Starting time of 1 Month requested data

Figure 4.15 Average Response Time for accessing one month data for the past year
(daily aggregated values).

Note that, based on the data available from the graphs, the system’s response
time is independent of the actual time interval while it is actually dependent on the
amount of data requested. This is more clear in Figure 4.17, where response times
tend to increase as the response times increase when time periods of more than 9

months of data are requested.
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Figure 4.16 Average Response Time for accessing one month data for the past year
(hourly aggregated values).

4.3.3 Data Processing

Another important characteristic for evaluating the system’s performance is the
load of data that the system is able to process at any given time. With the current
setup, the fleet of buildings in the system produces an average of 25 measurements
per second. The data processing topology currently runs on a single core virtual
machine (on an Intel@®)Core™i5-3340 CPU running at 3.10GHz) with 4GB of RAM.
With this configuration and setup, the system is capable of processing up to 500
measurements per second. To increase the number of measurements, the system

can support two different options:

e Increase the computing power of the virtual machine, by assigning it to a more

powerful host or giving it access to more resources from the host machine.

e Deploy a second instance of the processing topology that is capable of consum-
ing the same number of measurements to reach the required data processing

rates.

Based on the nature of sensors deployed, the input data require three different
types of aggregation: (1) averaging for sensors such as temperature or relative
humidity, (2) total for sensors such as rain height levels, and (3) power consumption

estimation based on the electrical current values received from the installation. Each
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Figure 4.17 Average Response Time for variable time periods ranging from one to 12
months.

Aggregation Type Execute Latency (ms) Measurements (%)

Average 0.608 86.4
Total 0.799 0.9
Power Consumption 0.329 12.7

Table 4.1 Execution Latency statistics for the three different aggregation types used
in our system.

type of processing requires a different type of aggregation processing and as a result

has a different average execution latency, presented in Table 4.1.

4.3.4 Data Retrieval

The rationale behind the splitting of the storage service implemented in two distinct
storage mechanisms lays in the fact that user interfaces are built using a very specific
and predictable set of data that can be pre-calculated and pre-formatted, reducing
the processing time needed to provide such data upon request. In our case, usage
data shows that 90% of the requests arriving to the storage service concern the short
summary that we are providing while only 10% of them require access to the full
historical data storage. Table 4.2 shows how data requests for a single day of usage

of the system are distributed on historical data and summary information.
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Request Type Requests (#) Requests (%)

Summary 398705 90%
Historical 41374 10%

Table 4.2 Data Retrieval Statistics.

4.3.5 Data Representation

The final outcome of the GAIA project is based on providing a web-based building
management system provided to all the schools participating in the project as well
as teachers and students. This application was developed by a partner of the project
based on the APIs provided from our system. A screenshot of the application is
presented in Figure 4.18. The application offers a interface for users to browse the
locations of their school building and show the historical data collected from the
sensors. The data can be presented in 4 different granularities (5 minutes, 1 hour, 1
day, 1 month). The interface allow allows for the comparison of data from multiple

sensors by retrieving the data from the provided data storage backend.
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Figure 4.18 The GAIA building manager application Web Interface.



Chapter 5
Collecting Crowd-sourced Data

Keeping in mind what was presented in the previous chapters, we now need to step
back and observe how such an installation could behave when the target is not to
monitor a limited amount of buildings, but a whole city or even clusters of cities. Such
an installation comprises potentially tens of thousands of sensors and can potentially
monitor much more variable data types than the ones described so far. Additionally,
in a direct comparison to the previous use case, we need to note that the sensor
installations are now not owned by a single entity but by the different public services
of the city or private entities, are probably heterogeneous by design and deployed
in a much larger area than a single building or building complex. Based on this
fact, different networking technologies need to be employed for the communication
between the sensing devices and the central platform. Communication needs to
be long range and in many cases over low power channels that operate on limited
battery life ruling out solutions like WiFi or TEEE 802.15.4. Also, due to the
large area that needs to be covered, mobile devices need to be included into the
picture. Such devices could be installed on public buses, municipality vehicles or
taxis, as well as be used by volunteers that move around the city.

In this chapter, we will study one large scale loT installation that federates loT
infrastructures of multiple cities in Europe, OrganiCity and compare its architecture
with the loT installation of GAIA. OrganiCity is a Horizon2020 project started in 2015
that builds on existing Future Internet installations to build sustainable future city
infrastructures and services in collaboration with local communities and enterprises.
In this context, we investigate the behaviour of our system and showcase a platform

for collecting data using volunteered Android Smartphones.
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5.1 OrganiCity

Traditionally, cities have been the meeting point between societal challenges and
technological innovation. The main ambition of OrganiCity is to “make the creation
and design of technologies and services for cities more inclusive for any user of the
smart city”. It tackles the aspects of how smart cities can grow organically with the
involvement of different stakeholders (citizens, communities, policy makers, activists,
scientists, researchers, developers, city service and technology providers), and not
be driven solely by engineering visions.

OrganiCity has developed an Experimentation as a Service facility, as a research
and innovation environment for the co-creation of Future Internet enabled urban
knowledge and services. The facility leverages emerging tools and technologies to
provide mechanisms that allow users to extract knowledge from different cities, based
on the data streams that are generated in the diverse urban ecosystems. To make
this more inclusive, the facility delivers a set of tools and enablers to empower any
user to be part of the co-creation process. Moreover, the facility provides various
means for the engagement of the citizens participating in their validation.

Taking into consideration the resource constraints of cities in times of austerity, it
is difficult to create new city infrastructures and/or develop new experiments. Setting
up the OrganiCity facility on top of existing city web services permits city makers
and service providers to address not only the exploration of new pathways for their
services, but also to understand any societal implications in a rapid and more

iterative manner.

5.1.1 The Experimentation as a Service model

As mentioned before, OrganiCity offers a flexible Experimentation as a Service (EaaS)
framework, allowing researchers and developers of urban infrastructures to imple-
ment services by exploiting emerging Future Internet technologies. Research and
experimentation on top of the facility should lead to the creation of sustainable,
effective, and replicable smart-city solutions and urban technology developments
that are successfully adopted by citizens, local communities and society as a whole.

To answer such goals, the design phase of the facility considered questions
like how to provide data generated within the cities in a more public domain,
whether existing infrastructures are reliable enough for data scale collection with
citizens’ devices, how creation of actionable knowledge from urban sensors can be

scaled, how we can give incentives to and technically facilitate effective citizen-city-
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academia-industry co-creation. Different stakeholders such as developers, data
analysts, loT solution manufacturers, urban service providers, activists, sociologists,
economists, and citizens were involved, in order to extract requirements for the EaaS
facility. As a result, OrganiCity has implemented a set of tools [20, 13] that empower
citizens to be part of the co-creation process at different stages of the urban service

life-cycle and provide different means for their participatory engagement.

Stakeholders

In this context, the OrganiCity facility supports different types of users, permitting
them to manage the whole experiment life cycle [36] and offering a set of tools and
enablers that make the co-creation and validation of new solutions more inclusive.
It can be used remotely by any stakeholder within smart cities.

Depending on the activity that they intend to do, users can request different
permissions, supporting the following roles: experimenters, participants, providers,
site managers and facility administrators. Experimenters can implement their own
solutions using a set of co-creation tools and conduct the corresponding experiment.
To validate the solutions, they can invite other participants within the scope of the
experiment (e.g., using an application developed by the experimenter). Providers
are users who do not belong to any experiment, but want to contribute with crowd-
sourced data to the facility (e.g., feed data from their own weather stations). Facility
administrators deal with the management of the entire platform, being able to
federate new urban ecosystems within the cities, assigning permissions and roles to
other users, configuring the facility parameters and monitoring its activity. Finally,
site managers are users belonging to the federated cities that can configure the
information related to the urban services, the tags that can be used for annotating
the data assets, and so on.

The use of the facility and its tools within the urban ecosystems will guarantee
that communities of users can grow around emerging experimental technologies.
Experimenters and service providers can leverage active contributors and early
technology adopters. These communities will not only inform and contribute to the
design of technology, but also provide a basis for exploring new business models

derived from the emerging solutions.
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5.1.2 Architecture

The OrganiCity platform uses the Microservices Architecture pattern [49]. Each service
deployed in the context of OrganiCity is a standalone application that uses a central
authentication service [56] (based on OAuth2.0) and provides either a user interface
for end-users or a programmatic API (usually RESTful). This allows for different
applications to be developed using tools, programming languages and frameworks
that best suit each case (i.e., node. js for frontend applications, Java for back-end
services). Additionally, the microservices pattern allows for better fine-tuning of the
different parts of the infrastructure based on usage and thus provides better user
experience and responsiveness to any number of clients, a major requirement for big
cross-city loT applications.

The overall architecture of the OrganiCity platform is presented in Figure 5.1. This
figure presents the three layers of the OrganiCity architecture: (i) the Federation
API that aggregates the data from the various smart-city installations, (ii) the core
OrganiCity platform that is built around a central publish-subscribe service called
Orion Context Broker and (iii) the services layer that communicates with the core
platform with the EaaS API and contains both tools provided by OrganiCity as well as
services developed by external users.
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If we compare directly with the solution presented and developed for the processing
of the data originating from the GAIA project in Section 4.1, we can identify a similar

pattern:

e The API mappers that are responsible for collecting the data from the sensing in-
frastructures of GAIA are called Sites in OrganiCity. These Sites are responsible
for aggregating all information provided by the various sensing infrastructures
and formatting to the internal data structures used by OrganiCity. To add a
new data-source to the system a new Site has to be deployed feeding the data

to the system as expected.

e A publish-subscribe broker is used to exchange the information of the platform
between the various services of the platform. This broker does not only
exchange the data collected in this case but also contains the metadata and

context information we described in Section 3.2.

e Historical data and context information are stored in different infrastructures
in both cases. This is done (in both cases) to reduce the strain of historical
data queries to the context database, and thus increase the throughput of the

system in total.

e External services and developed tools use well defined APIs to communicate with
the core platform together with the a central Authentication and Authorization

provider.

While the architecture of OrganiCity shows a great deal of similarity with our
own design, some differences do exist that are mainly justified by the different

requirements of the two projects:

e The entities stored in the Context Broker are organized in a flat single level
domain using only their unique identifiers to differentiate them. This option was
used inside OrganiCity as the different groups of resources are not of the same
size and applying any kind of relational grouping could create non-balanced

data groups that could affect the quality of services offered to its users.

e The latest value received for each attribute monitored is stored inside the Orion
Context Broker. This was done to avoid the development of an additional Data
Storage service in the context of the project as the historical data were stored
in the original infrastructures of the federated Sites and the OrganiCity facility

had no ownership on the data to replicate them.
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From all the above, we can summarize that the design we followed in the develop-
ment of our own service is valid and could support the operation of a platform even

in the scale of OrganiCity.

5.2 Crowdsensing

While a number of research projects, like SmartSantander, focused on building large
loT infrastructures inside city centers and offering researchers and companies with
a testbed to develop and test their systems and applications current mainstream
smartphones can easily provide equivalent alternatives. Smart-phones currently are
equipped with a number of integrated sensors and necessary networking interfaces
to communicate with each other and with additional loT devices like smartwatches,
fitness trackers (i.e., Bluetooth LE, NFC, etc.) or custom made hardware (i.e., Arduino-
based!). Also, the use of smartphones can be volunteer based, with participating
citizens volunteering their devices to run simple tasks in the background while
they commute inside the city during their everyday activities. Such a choice can
significantly reduce the costs for a pre-deployed infrastructure or for a data-collection
mechanism based on technologies like 4G or drive-by scenaria.

Using volunteers in such experiments and tasks can be tied with activist and
citizen groups in order to provide a platform that investigates the human aspects
of life inside modern cities and show a more human-centric experimentation inside
metropolitan environments. The benefit for the volunteers can be incentive/prize
based or based on a self-rewarding mechanism where citizens achieve personal goals,
like walking (e.g., reaching a step goal each day), learning their city (e.g., visiting
new areas in their city) or competing with their friends in game-like hunts for data.

In the rest of this section, we present a system that leverages volunteered
smartphones to perform data collection experiments inside Smart-Cities in the

context of OrganiCity, called Sensing-on-the-Go.

5.2.1 Sensing-on-the-Go

Following the concept of loT experimentation testbeds, where sensing devices execute
applications and collect data results, in our case, smartphones participate in
campaigns, which produce measurements that are then made available through

OrganiCity ’s services. As described before, citizens participate in these experiments

1https: //www.arduino.cc/
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transparently during their commute or leisure activities. The overall goal of the
platform is that utilizing their smartphones does not cause them any disturbance
in their everyday life; like reducing the battery life of the smartphones or engages
them in any continuous activities that may distract or annoy them. To build such a

system we utilize two discrete components:

e A server/portal component dedicated to submitting, monitoring and managing
the execution of data collection campaigns that is used by users that want to

experiment inside a smart city.

e A smartphone component dedicated to the execution of the campaigns on
smartphones and the collection of the results to be sent back to the server

component.

The portal component is designed for users that intend to organize and run a
campaign inside the city. This portal offers them the basic interfaces to create and
organize their campaigns. The can use it to define the type of data they wish to collect,
information that is going to be used to promote their campaign, time and spatial
restrictions on the execution of the campaigns as well as any incentivization schemes
that may be used. Once submitted, the campaign appears on the smartphone of
each volunteer and is available for participation. Collected data are automatically
gathered and stored in the back-end of the service without any further action needed
by the volunteer or the experimenter. Volunteers also have the ability, at all times, to
stop or pause the execution of a campaign, or even opt out of the entire process. The
organizers of the campaign can view the final results from the same portal in near
real-time, in a fully anonymized format without any critical personal information
being revealed for the participating users.

The Smartphone component is based on a application used in the SmartSantander
EU project project [53]. Its functionality was redesigned and extended to support
newer Android versions and functionality. It takes advantage of the the ability to
dynamically launch and register new Services inside an already installed Android
application. These new Services do not necessarily belong to the application itself, but
are available as third-party applications installed separately on the same phone via
official application stores. In other words, the functionality of the main smartphone
application can be dynamically updated/augmented by downloading and installing
new Service Applications directly from the Google Play Store™(Figure 5.2) similarly
to the way plugins can be installed inside modern web browsers. Each new Service

Application is based on native Android code that is signed by and distributed by
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its developer. The use of this multi-application schema allows us to run different
campaigns on demand using a single central application that orchestrates the
experimentation without the need for constant updates every time new functionality
needs to be added to the system. Also, functionality that is not provided by the main
application can be implemented by the users of the platform and be distributed
by its original developers for security, privacy, and intellectual property protection
reasons.

To gather data, experimenters can use all the available sensor components
available in current Android smartphones, while also maintaining a certain degree
of transparency, in order to allow volunteers understand what kind of data they
are collecting. Such sensors include (but are not limited to) temperature, humidity,
noise, walking steps, location or data generated by accessing interfaces like WiF'i,
Bluetooth or NFC. A number of basic sensor components are provided by Sensing-

on-the-Go as template Service applications for experimenters to use, but additional
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ones can be implemented based on the specific needs of a campaign. The overall
architecture of the system is presented in Figure 5.3. In it we can see how the
application’s components in the smartphones of the volunteers and the cloud interact
with each other and the Google Play Store™ to have access to the sensing modules
needed, as well as the services of OrganiCity. The OrganiCity services are used to
manage the general information of the data collection campaigns and to store the

collected data and present them on the tools of the project.

Experiment
Management

Google Play Store

Rest API

Sensing-on-the-Go
Backend

Rest API

Sensing-on-the-Go

Portal -

Phone
Sensars

Figure 5.3 Sensing-on-the-Go overall architecture

Defining a campaign

To begin with the setup of a campaign, experimenters need to provide some basic
information that describes the main goals of the campaign, the usage intended for
the data collected and a link to the outcomes of the campaign. All data provided
in this step are made available to volunteers, so that they clearly understand what
is executed on their phone and what data are collected and made available to the
experimenter.

The next step concerns the designation of the spatio-temporal characteristics of

the experimentation. This includes the following restrictions:

e on where the campaigns are going to be executed.
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e on when the campaigns are executed.
e on the amount of data needed for the success of the campaign.

The experimenter firstly defines the areas in which the volunteers are asked to
move and collect data. The experimenter freely designs polygons of interest without
any limit on the number, size or location (Figure 5.4). The polygons can also overlap
with each other as the user can later on place restrictions on data collection that
create different data characteristics. For example, an experimenter can select the
whole city as a big polygon and then draw inside smaller areas of major interest or

set different time constraints.
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Figure 5.4 View of area polygons defined for a campaign in the city of London.

Based on the areas defined, the experimenter now can define date and time
constraints on the data acquisition. Apart from the basic time period of the whole
campaign (start and end date), experimenters are able to define discrete time periods
of interest during the day (i.e., there is little interest in values between 2-6 a.m.).
This is used for example to focus the data collection during office or commute
hours, ignoring post midnight periods when traffic in the city in lower in a campaign
interested in commute information.

Similarly, data volume restrictions can be defined on each area. Such information
can be then used to mark them as complete and encourage volunteers to move in
the rest of the areas defined, especially when incentives or rewards are provided.

All these restrictions help in a more homogeneous execution of the campaigns

as not only is the geographical area of execution important, but the temporal and
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data volume plain is also taken into account. Apart from the ability to define these
restrictions, the system provides feedback options and interfaces to monitor the
progress/current state of execution of the campaigns and the degree to which the
constraints are fulfilled during the execution; e.g., the percentage of the requested

data already gathered.

Writing the code In order to develop a new sensor plugin, users of the platform
need to develop a new Android application based on the provided template 2. In
this application, they need to edit only a single Android Service that collects the
data from the smartphone and prepares them for the platform. This service, uses a
provided SDK (called OrganiCitySDK) to communicate with the base OrganiCity
smartphone application. Listing 5.1 showcases a service for collecting temperature
sensor measurements, from the integrated temperature sensor, and forwarding them
to the Sensing-on-the-Go application. The code required to develop the application
is pure Android, and in most cases limited to a less than 100 lines.

public class TemperatureSensorService extends Service

implements SensorEventListener ({

Override

public void onCreate () {
mSensorManager = (SensorManager)
getSystemService (Context.SENSOR_SERVICE) ;
mSensor = mSensorManager.getDefaultSensor (

Sensor.TYPE_AMBIENT_TEMPERATURE) ;
}

Override
public int onStartCommand (Intent intent, int flags, int id) {
if (mSensorManager != null) {

mSensorManager.registerListener (
this, mSensor, SensorManager.SENSOR_DELAY_NORMAL) ;
}
return START_STICKY;
}

Override
public void onDestroy () {
if (mSensorManager != null) {

mSensorManager.unregisterListener (this);

}

super.onDestroy () ;

}

Override
public void onSensorChanged(SensorEvent sensorEvent) {
temperature = sensorEvent.values[0];

}

2 https://github.com/OrganicityEu/sensing-on-the-go/tree/master/sensors/ExampleSensor
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public void publishResults () {
JsonMessage info = new JsonMessage();
info.setState ("valid") ;
List<Reading> r = new ArrayList<>();
JSONObject jsonObject = new JSONObject ();
jsonObject.put (CONTEXT_TYPE + ".Temperature", temperature);
r.add (new Reading (
Reading.Datatype.String, JjsonObject.toString(),
CONTEXT_TYPE + ".TemperatureSensorService"));
info.setPayload(r);
mRemoteCallbacks.handlePluginInfo (info);
}
}

Listing 5.1 A Template Sensor for Sensing-on-the-Go collecting temperature mea-
surements

Participating in a campaign

Volunteers are able to install the Sensing-on-the-Go smartphone application through
the Google Play Store™ as all other Android smartphone application. Once installed,
the application prompts them to register for the Sensing-on-the-Go platform through
OrganiCity in order to take advantage of all the benefits of a registered user, and
potentially receive rewards from the data collection process if incentives are used.
This option is not mandatory, as they can also continue as anonymous users
without any personal information provided to the system. Selecting, enabling and
participating in crowdsourcing campaigns is done with the touch of a single button.
Participants have a list of all the available campaigns along with the descriptions the
organizers provided in the setup of the campaign presented before. By clicking the
start button, the applications notifies them of any additional Service applications
that need to be also installed from the Google Play Store, and redirects them there to
complete the installation. Once all the pieces are available, the campaign can start
and data collection is done in the background. Additional data on statistics for the
data collection procedure are available in the home screen of the application in real
time (Figure 5.6). These statistics concern both the current campaign executed and
the overall statistics for this specific volunteer, if an account has been connected to
the phone.

For a higher level of privacy, volunteers can at any time disable the data collection
or their participation in all campaigns, using a “power-off” button available on the
phone. This button kill all services running in the background and any access to

the location of the device or the other sensors of phone.
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Figure 5.5 Sensing-on-the-Go Android application views: login screen, home page,
sensors view and campaigns view. The home page show the current location of
the volunteer, the area of interest and statistics on the data contributed. The
sensors view shows a list of all the available sensor plugins to be installed, while the
campaigns view shows the active campaigns the volunteer can participate in.
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Monitoring a campaign

After launching a new campaign, experimenters can monitor the progress of a
campaign in near real-time using the Sensing-on-the-Go portal. The term near
real-time is used to define that data are not made available upon receipt, due to
the fact that they need to be anonymized. This is done in batches, to reduce the
chance of any personal data (like the location of the user) being exposed. Therefore,
the experimenter can view any time aggregated data for the parameters monitored
over two main visualization methods, using graphs and on-map markers.

The graphs mainly refer to the coverage of the targets set by the experimenter on
the campaign. The coverage can be spatial or temporal, as the experimenters can
view how the data collected are distributed over the days of the experimentation or
the hours of the day. This quantitative analysis of the data received is intended not
to analyze the actual data of the campaign but to give the experimenter a better idea
of how volunteers collect data and participate in the experimentation.

Similarly, the portal offers the option to display the collected information on
top of maps, either as points or as a heatmap. The map view offers the option
to visualize the amount of collected data based on location. In the first option,
points, the experimenter can view for each point of the map the data of the specific
measurement, if only one, and the average value, if it is possible, for multiple
measurements. For the heatmap view, experimenters can view the hot-spots for data
collection as areas with more measurements are painted with a color closer to red
while areas without any measurements are painted with blue.

Examples of both visualization methods are provided in figures in the Evaluation
section. Options to export the data collected are also available to experimenters
in multiple formats, like JSON or CSV so that they can be parsed later on for the

appropriate analysis as an outcome of the campaign.

Real World Evaluation

Sensing-on-the-Go was testing in the wild during the two open calls for experimen-
tation of OrganiCity. It was used by 4 independent experimenter teams to perform
data collection over these open calls and by volunteers that participated in these
campaigns. Also, to verify the operation and performance of the system, we also
conducted internally a number of campaigns prior and in parallel with the OrganiCity
open calls mainly in the cities of Patras, London and Santander. We here present

one of these campaigns that was organized simultaneously in the 3 cities to collect
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data for the WiFi access points that can be detected in the city streets. Such data
can be used to develop a system that provides localization information without the
use of GPS inside the city or assist GPS positioning as proposed in recent literature
like [43] or [74].

To organize this campaign we used the following Service applications provided by
the Sensing-on-the-Go platform:

e Location Sensor provides the coordinates of the smartphone at the time of the
data collection. Such data are provided in latitude, longitude format based on
any source that is already available on the smartphone (GPS, network provided

or fused).

e WiFi Sensor scan periodically for WiFi Access points and provides a list of them
together with information about their type (2.4G or 5G), security if available
and SSID.

Both data points are merged in a single measurement and uploaded to the
back-end of Sensing-on-the-Go in regular intervals of 60 seconds.

The campaign was available in all 3 cities for a total of 5 days. Participants
were mainly members of the OrganiCity development team as this was one of the
first campaigns performed to validate the behaviour of our system. A total of 14
smartphones provided data during the campaign in all 3 cities and contributed a
total of more than 7500 measurements.

For the experimentation process 13 regions were defined in all 3 cities. Figure 5.4
shows the areas defined for the city of London. As London is the largest of the 3
cities, 8 areas were defined. 3 more were defined in Santander and 2 in Patras.
Figure 5.6 show the areas where data were collected in the city of Patras. Based on
the view of the map, the data were mainly collected around the central streets of
the city and coastal area that citizens use for walking and jogging. The heatmap on
the other side available in Figure 5.7 show that there are two cells where the most
measurements were collected, with both being city sqares with shops and pedestrian
alleys.

Each participant contributed an average of 500 measurements to reach a total
of 7634 measurements. Some of the points were gathered outside the areas of
interest defined in the campaign. The application is not too strict in enforcing
the spatial limits of the data collection and allows for some data to be collected in
the borders of the areas. These data are made available to the experimenters in a

separate view to assist the organizers in fine-tuning the spatial limits of the campaign.
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Figure 5.7 Heatmap view of the measurements for the WiFi campaign.

Table 5.1 briefly presents the statistics of the campaign as they are extracted from
Sensing-on-the-Go.

5.3 Extracting Knowledge from IoT Data

Although technologies like the ones presented so far in this thesis allow us to collect
data from loT installations and smart-city environments, essential answers are yet to
be found revolving around two central questions:

¢ what do we do with all of these data collected?

e and how can we easily make sense out of them?
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Cities 3
Participants 14
Regions 13
Experimentation Days 5
Measurements 7634

Average Completion Rate 40%

Table 5.1 Statistics for the WiFi Experiment performed for the evaluation of the
Sensing-on-the-Go platform.

One answer to both questions is the extraction of knowledge. The term knowl-
edge refers to something actually useful, going beyond a technology demonstrator.
It could be vaguely described as something that provides usefulness to citizens with
or without their involvement in the process. Essentially, the questions lead us to as
ourselves how do we actually make a city smarter, and what is the definition of a
smart city itself.

Part of the answer to this question lies in creating more useful information out
of raw sensor data or other kind of data representing observations of the urban
environment. For example, certain events generate data reported by the city sensing
infrastructure, but are, more often than not, missing an appropriate description or
annotation. Consider the case of a traffic jam inside the city center; it generates
sensed values in terms of vehicles’ speed, noise and gas concentration. Moreover,
in most cases, multiple devices or services, while missing useful correlations in the
data streams, report such values. We believe that adding data annotations to smart
city data through Machine Learning technologies, or crowdsourcing mechanisms,

can help reveal a huge hidden potential in our path towards real smart cities.

5.3.1 Annotating Collected Data

Data annotation in smart cities presents us with a set of key challenges that need
to be addressed before such solutions are used at large. In this context, privacy
and overall security issues are a central challenge. Consider the case of a volunteer,
annotating noise level measurements along his daily commute in a smart city based
on proximity to certain events. Even in such simple scenarios, anonymization
techniques should be used to ensure that neither personal data, nor the volunteer’s
interactions are revealed.

Another important issue is the correlation of different types of smart city data that

can potentially point to the same event. In other words, how to facilitate knowledge
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extraction through such data. We currently have data produced by loT infrastructure
installed in cities, however, there is relatively small research focus on discovering
relations between these data, e.g., if noise level readings are related to social data
referring to a live concert or some other event.

Moreover, smart city data are unreliable by nature either they are supplied
by humans or loT infrastructures. In some cases, they can even be malicious, as
the sensing infrastructure could be easily accessed and influenced or suffer from
hardware failures and malfunctions. In most cases, the hardware utilized aims for
large-scale deployments (i.e., has to be cost-effective), thus being not so accurate
or hard to re-calibrate after the initial installation. Additionally, environmental
conditions, e.g., excessive temperature or humidity, may have an effect on the
sensitivity of the sensing parts.

End-user engagement in the process of data annotation and knowledge extraction
is another major challenge. Users’ contribution is twofold: end-users can contribute
to a smart city system by crowd-sourcing or by adding annotations. Although most
current crowd-sourcing platforms utilize a desktop or web interface, it should not be
limited to that. It can also be performed through smartphones and be incorporated
to the user’s everyday life. The interaction of end-users through such a tool could
help relate in a more personal way and help maintain the interest in continuous
participation. Moreover, annotation of events or sensed results could be more
interactive and focus at users, or even user groups, near the actual space of the
event in question. Smart city facilities usually integrate a large number of data
sources of various types sharing observations for environment, air quality, traffic,
transport, social events and so on. These data sources might be static (they are
not streaming data and have a fixed value until they are updated by an offline
process) or might be dynamic (streaming data constantly). Building a taxonomy
on this multithematic environment is not straight forward as some subcategories
of tags might be shared between different types of data sources and other might
be orthogonal. Moreover, as the dynamic data sources have a temporal dimension,
annotations might characterize the overall behavior and observations of the data
sources or observations falling into a specific time interval.

Furthermore, as data sources might be mobile (e.g., an loT device on a bus or a
smartphone) an annotation might characterize a specific location inside the city and
for a specific time interval. Embedding in the taxonomy such spatiotemporal char-
acteristics introduces new requirements and extensions to the traditional methods.

Standards like W3 Web annotation data model and protocols do not cover sufficiently
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these requirements. Finally, implementing machine learning algorithms suited to
smart city data and real-time processing is another major challenge. Handling
citywide data introduces additional complexity, especially when considering relations
between different data types and sensing devices. Current mobile devices have
enough processing power to handle a broad set of use-cases, especially when dealing
with data from integrated sensors (e.g., [19] uses on-device processing to classify
urban noise sources). This could also be utilized as a means to enhance privacy,
since processing would be performed locally, without requiring sensitive data to be
uploaded to the cloud.

In the rest of this section, we present the design and implementation JAMAICA
(JAva MAChine Annotation). JAMAICA is a service destined to aid smart city data
annotation through crowdsourcing and machine learning techniques, like classifica-
tion and anomaly detection. It is currently part of the OrganiCity project ecosystem,
operating in real world conditions, analyzing the data submitted to the platform. On
the one hand, it aims to simplify the creation of more automated forms of knowledge
from data streams, while on the other hand it serves as a substrate for crowdsourc-
ing data annotations via a large community of contributors that participate in the

knowledge creation process.

5.3.2 JAMAICA

JAMAICA is composed of two distinct software components. The first is an annotation
taxonomy and storage engine with the appropriate programming interfaces to create,
update and delete annotations of smart-city assets. The second component is a
streaming data processing engine that is capable of analyzing incoming data using

machine learning techniques and store the results in the first component.

Annotation Component

The Annotation Component is responsible for maintaining a directory of all possible
annotations in the form of tags. Tags are simple indicators of the annotated
parameter, similar to the way tagging is performed in photos in social networks, or
the use of hashtags in social status updates. Tag domains are created as collections
of tags (e.g., high, normal and low) with a similar contextual meaning. Tag
domains can be generic as those mentioned before or more application specific (e.g.,
the tag contains a beach for images). Users of the system can either select

one of the tag domains already available, or create their own specifically for their
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application. Annotations are stored with additional information like numeric or
text values. These entries can be user comments, a number that describes the

abnormality of an observation, or a confidence indicator.

Model The underlying data model of the Annotation Component and the relations
between its entities are described in the rest of this section. The schema is comprised

mainly of the following entities:

e Tag: Tags represent the actual annotation labels to be used by end-users for

the annotation process. The entity is described in more details in Table 5.2.

e TagDomain: TagDomains represent collections of tags. Usually a tag domain
is associated with a user or a real-world phenomenon that can be identified by
the data (e.g., temperature) specifying which tags can be used to characterize

it. The entity is described in more details in Table 5.3.

e Annotation: Annotations are relationships between the assets of a smart-city

and tags. The entity is described in more details in Table 5.4.

e Asset: Assets are sensor points of a smart-city that can be annotated. The
assets are not stored in the internal database of the Annotation Service but
referenced by the added annotations. This is done in the context of OrganiCity

but in a general version does not to be the case.

The parameters of each entity are available in more detail in the following tables.

Figure 5.8 shows visual examples of tags and tagDomains.

(a) Fields

Name Data Type Required Description

id numeric Y The unique id of the Tag in the internal DB
name string Y A user friendly name for the Tag

urn string Y The unique id of the Tag available to users
user string Y The id of the user that added the Tag

(b) Relationships

Name Target Description

HAS TagDomain Every Tag must be a member of a TagDomain
TAGGING Annotation Every Tag can characterize one or more Annotations

Table 5.2 Tag entity fields (a) and relationships (b).
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Figure 5.8 Visual representations of tags (blue), tagDomains (green),
annotations (orange) and their relations. (a) TagDomain: Luminosity levels -
Tags: Overcast Night, Overcast Day, Sunlight (b) TagDomain: Simple 3 level catego-
rization - Tags: High, Medium, Low (c) TagDomain: Traffic Levels - Tags: Light or no
traffic, High traffic, Assets: urn:oc:e...:1, urn:oc:e...:2

Implementation The Annotation Service is implemented as a standalone Java
web application. It is built using the Spring Boot framework and internally uses an
SQL database to store the tags, tagDomains as well as the annotations added.
SQL was used as it is capable of bot the storage of the annotation taxonomy as
well as the annotations added by end users. Queries are implemented using the
Spring Data HATEOAS (Hypermedia as the Engine of Application State) and helped
us develop queries on the system data with minimal code requirements resulting in
a standardized API. The Annotation Service has itself no actual user interface but
allows other services of the OrganiCity platform to develop their own flexible interfaces
for data annotation. For example, the most clear interface developed is available
in the main OrganiCity web interface. Using this interface, users of OrganiCity can
view the data collected the loT devices and add their own annotations on top of them.
This is implemented by a simple question-response schema that presented to each
users based on the type of data presented. An example of this interface is available

in Figure 5.9. In this interface, we can see that bellow the data of the loT device a Ul
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(a) Fields
Name Data Type Required Description
id numeric Y The unique id of the TagDomain in the internal DB
description string Y A user friendly description for the TagDomain
urn string Y The unique id of the TagDomain available to users
user string Y The id of the user that added the TagDomain
(b) Relationships
Name Target Description
HAS Tag Every TagDomain can contain one or more Tags
Table 5.3 TagDomain entity fields (a) and relationships (b).
(a) Fields
Name Data Type Required Description
annotationId numeric Y The unique id of the Annotation in the internal DB
assetUrn string Y The unique id of the OC Asset
datetime string Y The time of the Annotation
numericValue numeric N A number concerning the Annotation
textValue string N A text message concerning the Annotation
user string Y The id of the user that submitted the Annotation

(b) Relationships

Name Target Description

TAGGING Tag Every Annotation characterizes an Asset with a Tag

Table 5.4 Annotation entity fields (a) and relationships (b).

slice is dedicated to the Annotations Service and the reputation that is based on the

functionality of the Annotations Service. In it we can view the following:

e On the left hand side of the user interface, we observe knowledge that the

platform has for the given asset that the time of viewing. This is either

information about the loT device added by users or information that is generated

by the machine learning component to be described bellow.

e The middle part, contains information about the reputation of the loT device

inside OrganiCity. This information is generated as a calculation on top of all

the annotations added by users.
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Figure 5.9 Annotation user interface in OrganiCity. It contains the geographical
location of the loT device along with the knowledge available in the platform, the
reputation of the device in the platform and the interface through which users can
submit their own knowledge on the device

¢ Finally, the right hand side part of the user interface contains a set of questions
addressed to the users concerning the data that are presented above. Each
question, concerns a specific tagDomain of the annotation service and each
response is translated as a tag. When a user selects one of the answers, the

respective annotation is stored increasing the knowledge of the system.

Machine Learning Component

The Machine Learning Component orchestrates the machine learning process, in-
cluding managing the executed jobs, training the instances with provided or retrieved
data, and the exchange of real-time city data. Our system is capable of performing
both anomaly detection and classification jobs over the streaming data. In both
cases, after annotation jobs are added to the system the initial training data need to
be submitted. After the initial training data are submitted, the annotation job starts
with each data point examined and the result posted to the Annotation Component.

The system is designed to be agnostic of the actual machine learning implementation,
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as it capable of using multiple libraries to run the classification or the anomaly
detection on the data. This gives us flexibility to experiment with different machine

learning algorithms and the ability to provide extra functionality in the future.

Model The underlying data model of the Machine Learning Service and the relations
between its entities are described in the following tables (Table 5.5 and 5.6). The

schema comprises mainly the following entities:

e Classification Configuration: An entity that is stored for each classification
job to be executed. Each job concerns a subset of the assets of the OrganiCity
platform. The selection of the assets is performed using the Orion Context
Broker’s subscription API. For each subscription we need three parameters: a
pattern on the Asset’s id, a pattern on the Asset’s type and the attribute to be
classified. Each subscription on the Orion Context Broker is identified by a
subscription id that is also stored to identify expired subscriptions. Additionally,
each entry contains the tagDomain that the classifications results in and an
indicator to disable the process temporarily. The entity is described in more
details in Table 5.5.

e Classification Training Datum: Data supplied by the user in order to train

the classification model. The entity is described in more details in Table 5.6.

Name Data Type Required Description

typePattern string Y A pattern based on the OrganiCity Asset Model for
asset types to enable the subscription for data updates

idPattern string Y A pattern based on the OrganiCity Asset Model for
asset Ids to enable the subscription for data updates

attribute string Y The attribute that needs to be classified based on the

OrganiCity Asset Model used to enable the
subscription for data updates

subscriptionId string Y The id of generated subscription for data updates
from OrganiCity

tags string Y The tagDomain of the Annotation component used in
this classification job

enable boolean Y An indicator to disable the classification process

on demand

Table 5.5 Classification Configuration entity fields.
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Name Data Type Required Description

id numeric Y A unique identifier for this training datum

classificationConfigId string Y A foreign key to the Classification
Configuration this datum refers to

tag string Y The tag of the tagDomain of the
Annotation component

value numeric Y The training datum to be used

Table 5.6 Classification Training Data entity fields.

Machine Learning frameworks As the underlying implementation of the machine
learning component we have experimented in the context of this thesis with two
different frameworks: Jubatus [38] and JavaML [2].

Jubatus is designed to run as a standalone service that is setup and executed as
a service in a Unix or Windows based system and can be accessed using as an RPC
server. The advantage of such an execution is that the same instance can be used by
multiple services to execute classification on a specific model. Unfortunately, each
instance of Jubatus needs to be configured using a specific dataset and assigned to
a specific job. In our case, as we need to instantiate multiple different jobs for each
different user of the service, this cases a large waste of resources, due to the need
for an instance management layer to be able to dynamically spawn new Jubatus
processes. JavaML on the other side, operates as a library inside another application.
This helped us easily and dynamically spawn new processes that can be handled in
a much resource efficient way.

Both frameworks are used in the same way. Once an instance for both is
setup, it needs to be trained using the training data provided by the user. These
data are supplied to the framework and the internal model for the classification is
generated. Once this is setup, the system is ready to receive the new data from
the loT devices. For each update, the machine learning framework is queried and
the resulting classification is returned. The respective tag is then found using
the internal database of the machine learning component and the annotation is
published back to the Annotation component. The instance of the machine learning
framework is kept in memory to speedup consecutive updates to the values of an loT

device.
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5.3.3 Real World Evaluation

To verify the performance of our system, we setup a classification job for analyzing
atmospheric pollution in London, based on data for the particulate matter concentra-
tion (PM;0). As training data for our test case, we used data of the same area from
the past 12 months (1000 nominal, erroneous and error data points). We then let
the system operate for 20 days, analyzing more than 40000 sensor measurements
(translated to an average of 6 measurements every 15 minutes). The distributions of
the values for the training data and the sensor data are presented in Figure 5.10
and Figure 5.11. A big part of the sensor measurements received is —1, pointing
out a malfunction in the sensor devices, while another part of the measurements
is greater than 50 pg/m3, the level the European Union considers dangerous when
exceeded for more than 35 days in a year. Our system was able to detect all values
that were either negative or greater than the 50 ig/m? limit and record the time and

date these values were abnormal.
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Figure 5.10 Distribution of training data for the PM10 experiment.

These 20 experimentation days helped us show that the data generated by smart
city installations are not always trustworthy. A big number of the deployed sensor
devices proved to be malfunctioning during our experiment (negative values), while a
small number of measurements provided by the rest of the devices differed from the

expected levels. The system performed without any problems for the whole duration
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of the experiment, on a virtual machine with limited resources (8GB of hard disk,
2GB RAM and 2 CPU cores) proving the system’s scalability.
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Figure 5.11 Histogram of actual sensor data received during the 20 experiment days.
Negative values indicate malfunctioning sensors.

A second experiment was conducted using data from loT devices that are placed
in the streets of Santander, Spain. These devices are equipped with magnetic loop
sensors that count the number of cars passing over in fixed periods of time. We
use the data from those sensors to estimate the usage of the streets and a possible
congestion, thus estimating the traffic levels inside the city. We defined a total of 3
categorizations for the traffic levels: 1ow, normal and congestion. In this case
we experimented with two different strategies. In the first strategy we added to the
system a single value that represented each classification category as training data,
while in the second run we defined multiple values. The distribution of the training
data in both cases is presented in Table 5.7. The resulting classifications are in both
cases the same. This is due to the fact that the training data in the second case are
equally distributed in the three segments (0-15, 15-55, 55-100). As a result, we
realized that in cases where the data in each classification category do not follow
a non-normal distribution, using a much smaller dataset is equally effective as a
larger dataset.

In cases where the classification domains of a physical phenomenon are more

complex, like for example the classification of a received temperature in good,
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Experiment Classification Category

Training Data # Data

low 1 0

1 normal 1 30
congestion 1 80
low 100 0-15

2 normal 100 15-55
congestion 100 55-100

Table 5.7 Classification Training Data for the street traffic experiment.

acceptable and extreme values our classification data can extend to more than one

“buckets”. The histogram of the data used as input for this use case is presented in

Figure 5.12. For our next test case, we use the relative humidity data collected from

sensors placed inside school classrooms of the GAIA project.
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Figure 5.12 Distribution of data in the given categories for the relative humidity

inside school classrooms.

Such, data are collected by the infrastructure presented in Chapter 4 and are

fed directly to the JAMAiICA machine learning component for analysis. We base

our analysis in established regulations by the European Union or other global
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organizations like ASHRAE®, where we can read that controlling relative humidity is
important for children’s comfort and for the prevention of moisture accumulation,
which can lead to mold growth. In general, relative humidity shall be between 30%
and 50%[28]. From our work, we see that the data from the Greek public schools are
well within the acceptable limits, with only a few measurements (17%) moving away
from the acceptable parameters. It is also important to note that when we focus on
the office hours (8-15) the conditions inside the classrooms improve significantly,
with the measurements exceeding the acceptable values reduced to a 6%. In both
cases, the recommended conditions are met at the 66% of the time with the rest being
conditions that can be characterized as comfortable but not perfect. The resulting

annotations are presented in Figure 5.13 for both office hours and the whole day.
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Figure 5.13 Distribution of classifications in the given categories for the relative
humidity inside school classrooms.

3 American Society of Heating, Refrigerating and Air-Conditioning Engineers https://www.
ashrae.org
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Chapter 6
Conclusions & Future Work

This chapter presents the main conclusions from our work in the context of this

dissertation, the lessons we learned and possible future extensions.

6.1 Conclusions

In the context of this dissertation we dealt with the problems that arise from
the introduction of more and more smart and connected devices in our everyday
environments. This increasing use of such devices is what makes an improved data
analysis methodology essential for making use of the data that are generated.

Our work was based on two real-world use cases concerning a fleet of educational
school buildings and a federation of European cities as part of two EU funded
research projects, providing us with a testing ground to apply and validate our
solutions. As a result, we can now showcase applications that are capable of
efficiently collecting and analyzing data from those two sources and providing them
to end-users and application developers in near-real-time. We are also capable of
generating additional knowledge from the raw data generated by loT installations
or from crowdsourcing. We also proved that our system architecture is capable of
handling various data types and inputs with minimal changes based on its modular

design while remaining salable and efficient under any level of traffic.
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6.2 Lessons Learned

During our work and interaction with the loT domain, we were also presented with
some important lessons that should be taken into account in any future work on the
same or similar fields.

loT devices tend to be extremely unreliable especially when installed in the
wild outside of our control. Some of the users tend to distrust the devices and
cause problems, intentionally or not, to the installation, thus causing problems
in maintaining the data streams from the installations. Also, hardware sensor
failures or connectivity issues are a common case and will appear in any installation
independently of their cost or manufacturer.

Finally, in the case of crowdsensing, it is important to note that the user interfaces
developed are extremely important in order to keep interest on the application. In
the case where the user interface is even a little more complex than what is required,

users tend to lose focus and will to use any kind of application.

6.3 Future Work

An important extension to the work presented in this dissertation would be the
pursue of the possibility of splitting the analysis of the collected data in more than
one layers. In this case, some of the processing could happen on the premises of
the user, thus reducing the need for data transfer over the Internet. This case will
also help us reduce any possible data loses from networking and connectivity issues,
which are quite common with commercial internet connections. This trend, called
edge or fog computing is a highly interesting and promising field of research that can
significantly increase the efficiency of the system. More extensions could be focused
to adding more data types in the analysis modules of our system like video or audio
as their nature could reveal more complex requirements that were not investigated

here.
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Appendix B

Extended Summary in Greek

Arnodotikn draxeipion cdopévwv ota mAaioia tou Awa-

S1KTU0U TV AVULREIPEVOV

Elwcayoyr)

O 6pog Awadiktuo v Avukelpévov (Internet of Things) exel epgaviotel ta tedevtaia xpovia
ot BBAoypadia kat v kabnpepvr) {®r) ekatopupiov avlponev. Amnotedel v QUOIKY OU-
VEXELA NG EPEUVAG TIOU TIPAYHATOTIONONKE Ta IIPONyoUpeva Xpovid OTOV TOHEd TV ACUPUATROV
Siktuwv alobntpav (Wireless Sensor Networks) kat avagépetat, ouppava kat pe tov Kevin
Ashton g Procter & Gamble [16] rtou mpeto-¥pnotponoinoe tov 0po, oty EvOeor NAEKIPO-
VIK®V OUOKEUOV He atofntr)peg, evePYoronteg Kabig Kat duvatdtnteg EMmKoOveaviag oe QUOIKA
avukeipeva pe anotédeopa v dnpoupyia evog Siktuou aviaddayrg dedopévav kat mAnpo-
POPIOV Y1a TtV aAAnAemidpacn TOU @UOIKIOU Katl Tou yndilakou repiBailoviog. Mia t€towa
UTodopr EIMTPETTEL TV AVALTIUET £VOg PeydAou apBpol urnnpeotwv oe roAAardd nebia epap-
poyng onwg ta £Surva-diktua, ta €gurnva ortitia, Tig epueig petapopég kat dAda. Mepikd tétola
napadeiypata eivat petaiu ddAev ot ouvbedepévol Seppootateg twv Nest kat Ecobee, ot £§u-
vol Aaprfpeg @otiopou g Phillips, ot cuokeuég tng Smarthings yia pa peyddn ykapa
£PAPHOYOV AUTOPATION®V orutiou adAd kat ta Fitbit kat Withings yia tv mapakoAouBnor) tng
KaBnpepvr)g AoKNong Kat {®ng IOV XpnoI®v 1 ot mpoonriikoi Fonboi Alexa tng Amazon kat
Siri tng Apple.

[Tapd Vv tepdctia avartudn oV ePApHoy®V, 1 Xpnotuotta v Sedopévev mou mpo-
€pyovtatl and autd Ta CUCTHHATA IIPETEL akoun va emkupmBel kat va artodeiyBei. O 6ykog 1oV
b6edopévav rmou prmopouv va dnuioupynBouv and pia ouokeun alodnIp®v mou eivatl eyrate-
otnuévn og éva OTUTL ] J1d @OPINT] CUCKEUN £VOg ATOHROU UItopel va eival e§@viotkn yia v
161a T OUOKEUT KAl OTIG TIEPLOCOTEPES TIEPUTTOOELS MPETIEL va PeTapepOel o pa epapioyn

enegepyaoiag 6edopévav Péow g oroiag Propei va yivel Imo anoteAeopatiki) XpHon v Se-
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dopévav. Kabwg o ap1Bog autog t@v 0UOKEU®V TTOU XP1O1H10IT010UE otV Kabnpepivn pag {er)
AUEAVETAl ONPIAVIIKA PEPA HE T HEPA 0 OYKOG TRV Se80EVOV AUTOV AUSAVETAl 11E AKOWD HE-
yaAutepoug pubpioug. Auto €Xel 0av ATOTEAECIA, TV AVAYKI] Y1d Pid OAOKANP@PEVI] avAAuon
Tou dépatog g Staxeiplong TV He8011EVOV AUTOV ITOU ITAPAYOVIAL ATTO £§UTTVEG CUOKEUELS, £va
avolyto dépa yla v €peuva 1000 o akadnpaikda 000 KAl 0€ EMXEPNPATIKA mAaiola.

'Eva dAAo XapaKInplotiko autev TeV SIKTUV OUOKEU®V, £ival 0 PEYAAOG KATAKEPHUATIONOG
TOUG, 1000 OT0 TeHi0 TV KATAOKEUAOTOV 000 KAl OTIS TEXVOAOYieG CUAAOYTG, PETadOpAg, EIte-
Sepyaoiag kat napouciaong v dedopévev rou curAéyovrat. Kuplog Adyog yia auto 1o sivat
TO00 TO Veapo TS NAKIAG TV TEXVOAOY1I®V 000 KAl 1] EAAEYP] 10XUP®V IIPOTOKOAA®V Kat die-
9veV PoTUn®V 1ou va akoAouBoUv o1 Kataokeuaotég. O KatakepPatiopog autog odnyet otnv
aAvarnopeUKT avaykn yla v dnuoupyia Sopodv kat pebodoAroyiov diacuvbeong 6Amv autwv
TOV TEXVOAOYIRV Of £va KEVIPIKO OUOCTIHIC TO OIOi0 UITOPEl va IIPAYHATOIOW0EL OAEG TS a-
apaitnteg EMmMKOW®VIieg KAl va mpoodEpet TG S1aouvbioelg Katl Slenageg Petail arnoKopuEvav
TOPE®V TOU AlaS1KTU0OU TV AVUKEIIEVQV.

Z1ox0g autng g Atdaktopikrg AtatpiBng (AA), sivat n pedétn tou mAaiciou Asttoupyiag tou
Ala81IKTUOU TV AVIIKEIPEVOV KAl OA®V TOV TEXVOAOYIOV ITOU autd meptAapBavel yia tov oxe-
81aopo epappoywv rmou yedpupavouv rmbava rmpoBAnpata 61aAe1toupyKotitag Kat AS1Toupyouv

AIMOTEAEOPATIKA OE QUTO 1O VEO TeP1BAAAov. 110 CUYKEKPIPIEVA EMIKVIPOVAONAOTE Otd e8G:

e Trnv amodotikn PnPlakr avarnapdotacn g dopng tou Alad1KTUoU TV AVIIKEIPIEVRV e

Baon o6Aeg 11g 181attepodtnTeg IOV autr) SrabEtet.

e Tnv arodotiky enedepyaoia tewv debopévav rmou mpokunouv and eykataoctdoelg Atadi-
KTUOU TV AVIIKEIPEVQOV aveSdptnta P 10 1éyebog g eyKAtdotaong Kat TovV TUIo TV

6edopévav rmou autr) napayet.

e Tnv e§aywyr mAnPodopiiv XPHOoIHNKV Yid TOUG XPIOTEG TV CUCTNHATOV Alad1KTuou Tev
Avukelpévev pe Baon 1000 1a mpetapXikda dedopéva mou mapdyoviat and auvtég aild

Kat g dtaouvdéoelg petadu toug.
TMa v eniteudn autov v otdxev vdoroldnkav ota rmiaiola auvtng g AA ta e§ng:

e 'Eva oxrfjpa anobnkeuong Kat avanapdotaons TV MANPopopiidv Kat peta-dedopévav -
yKataotdoemv Atad1ktuou 1oV AVTIKEIPEVOV e XPH 0T YPAPnPATeV. e aviifeon pe 1a Tig
napadoolarég oXeOo1aKES BAoelg Se60EVAOV TIOU XPNOLPOITOI0UVIAL 0TV ITAEIOVOTTA TOV
dladiktuakemv epappoyav, ta ypaenpata pag divouv v duvatdtnva va dnpioupyrnoou-
HE €va €UEAMKTIO KAl EIMEKTACIHNO OXNHA IOU IIPOCPEPEL M0 EKPPAOTIKA KAl ATTOTEAE-
opatTika epepata. H xprion avutov 1oV epatnpdiov anodEpel ONPaviika PKPOTEPOUS

XPOVOUG ardvinong Kat anaitroslg anobnkeuong dedopéva.

e 'Eva cuotnpa avaduong 6edopévav mpooaplooPEVo OtV CUVEXT] PO1 TTANPOPOPIRV ATtd
eykataotaoetg Aladiktuou Avukeipévav. To ovotpa auto prnopel va snegepyadetat po-

£¢ 6ebopévav e TI0AU peyaloug pubpoug os e§alpetikd XapnAoug XpOvoug aroKpiong.
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Ermiong, 81aBétetl peydin sueAdiia oty avaduon v 6edopéve Kabog eival mapaperpo-
OO0 Y1a va priopet va dexOel kabe iBavo turo debopévav adAd kat oe kKaBs Badbpo

XPOVIKIG 1] TUTO OTATIOTIKLG AVAAUOTG.

e Eva ouotnpa ouldoyrg 8e6opévav amod KIvnTég OUOKEUEG €0eAOVIOV Yia TV KAAUTEPT)
Katavonor tev pebodwv Kat tov poBANPIAT®V TTOU TIPOKUIITOUV ATIO TNV ATTOKEVIPOUEVT

Kat avapyn dopn evog 1€1o10u HiKkTUOU.

e Télog, pa dopr) avadluong 6edopévav e XPrion TEXVOAOYIOV HNXAVIKNG pabnong os
TIPAYHATIKO XPOVO yia Vv e§aymyr) rnepetaip® minpogopiev and ta arkatépyaota edo-

HEéVa TRV EYKATACTACERDV.

IMa v kadutepn duvatr) eKTiPINOo 1@V SUVATOTTOV KAl T@V ATOTEAECHAT®V THS XPONG au-
TV TRV TEXVOAOYIOV TG ePpappooapie otny rpdln ota mAaiola 2 ¢peUVNTIK®V IIPOYPAPHATOV TG
Euponaixng ‘Eveoong, 1o GAIA! xat to Organicity2. To épyo GAIA anooxkorel otnv rmpo®Onon
Sek®V POTUTIOV CUPTIEPIPOPAG EVIOG KOWOTI®V 000V adopd v Katavdadweorn / ouveldnto-
O1N o1 NS KATAVAARDONG EVEPYELAG HE TN XPL)0T TV HPEIPHOE®V TG KATAVAA®ONG EVEPYELAG OF
TIPAYHATIKO XPOVO, EVICXUHEVAV A0 EYKATACTACELS AlaSIKTUOU AVTIKEEV®V, OF ETUAEYEVEG
OXO0AKEG KON teg g ItaAiag, tng EAAGSag kat tng Zoundiag. To Organicity eivat pa vrnn-
peoia MEPAPATIONOU TTOU S1EPEUVA TIOG 01 TTOAITEG, Ol EMIXEIPIOEIS KAl O1 APXES HITOPOUV va
OUVEPYAOTOUV Yla 1 Snpioupyia Pnelakov AUCERDV OTI§ AOTIKEG TIPOKATCELS XP1OIH10TIOIOVIAS
£€va ouvolo gpyaleinv Atadiktuou AVUKEIEVOV Y1ia va SOKIIACOUV KAt va avartuouy tg S1keg

T0UG 16€eg O ETUTUXNHEVEG EQAPPOYES ESUTIVOV TTOAERV.

BaolKEG £VVOLEG KAl OXETIREG EPEUVINTIKEG EPYACLEG

Baowkoi 6pot pe toug oroioug acyxolovpaocte ota rmiAaiowa autrg g AA sival petagn dAdev ta

egng:

e 'Eturtvo Avuikeipevo: propei va avagépetal oe €éva Atopo, {®Wo 1 QUOIKO AVIIKEIPEVTO
010 011010 €xel epputeudel 1) TOoroOeTNOel Pia PIKPOU PeYEO0UG UTIOAOYI01KY] CUOKEUT) 1)
ortoia propet va cuAA£get ta artattoupeva Sedopéva arod 1o Appeco rep1BAaiAov tou aild

KAl va Ta £MeSePYAOTEl 1] va Ta arooteilel 0 YEITOVIKEG OUOKEUEG Kal 010 S1aduKtio.

e Poég 6edopévav: Kabmg ta Aviikeipeva mou avapEpape mMPonyoupeveag OUAAEYOUV OU-
vexwg dedopéva dnuioupyouv pia ouvexn porn mAnpodopiag yia Ta QUOIKA PeYEDn mou
apakoAoubouv. Ot poEG auUTEG PITOPOUV va £X0UV JiI otabepousg puboUg amooTtoArng
pe anotédeopa va eival aduvatov ek TV IPoTEP@V va rpoBAedOel o akpiBrg Toug OyKog

Kl 1] CUPIeP1popda toug.

! https://gaia-project.eu
2https: //organicity.eu



114 Extended Summary in Greek

e Emefepyaocia Porg kat Enefepyaocia Iaptibag: H enelepyacia autov tov Sedopévav
TOU TEplypAyape mpilv prnopel va yiver pe 2 tportoug. Eite oeplakda kabwg ta debo-
péva @bavouv oto ouotnua (Enefepyaocia Porjg) aAdd kat ouvoAlkd, avd TaKtd Xpovika
Sraotpata pe Paon 1o oUVoAo v SeboPEVEOV TTOU £€X0UV OUYKETP®Oel péxpt tote (Ere-
Eepyaoia IMaptidag). H Seutepn mepirtoon £xel pedetnBei apketd ta tedevtaia xpovia
HE Vv vdormoinorn cuotnNHATeV Peyadav-6edopévav Kal Kuplo ekppaotr) to Hadoop. Ze
autr) v repinmeorn xprnowpornoteitat pia adAndouyxia kata {euyn enefepyaoiag yia v
otadlakn peinon tov dedopévev oe pa n eva PiKpo ouvodo Tipwv. To pelovéktnua
H1ag Teétolag TEXVIKNG eival Kuping n kabuotépnon g eneiepyaoiag Kabag anatteitat
1 OUYKEVIP®ON OA®V TOV TGOV [PV v ektédeon tg. Aviibeta oy Enefepyaoia Po-
S Ta OTATIOTKA €§AYOVIAL 08 MPAYHATIKO XPOVO KAl AVAVEDVAVIAL HE TV ANYn VE@V

bedopévav.

e Teyvoloyieg 'Efunvov Zruuov: ‘Evag amd toug rmo oudnupévoug kat Snpogileis 6poug
ot oxéon pe ug avadnmoelg oto d1adiktuo ta tedeutaia xpovia cUupdpeva Pe TS TACEIS
g Google (Zxnpa B'.1). Avagépetat otnv £10aymyr) MOAAATA®V CUOKEUGOV OE OIKIAKO 1)
ypageio Tou emeKIeivel Ta Opla TV ITAPAS001aK®V AUCE®V S1aXe1plong KTpimVv KAl TIpo-
OQEPEL TTI0 ECATOPNIKEUPEVEG ITANPOPOPIEG OXETIKA HE T Aettoupyia Kat Tig rapapérpoug

TOU KT1piou, Kab®g Kal 1oV KATOiK®V Tou.

m—Smart Home Intem et of Things Big Data Smart City

Zxnpa B.1 Ztoikela dnpotukdintag opwv anod my epappoyn Google trends yia toug
opoug Smart Homes, Smart Cities, Big Data Internet of Things.
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e Teyvoloyieg Egurvav ITodswv: kabng cuupeva pe ripoodateg pedéteg 1o 2050 to 70%
TOU TAyKOOoW10U TIANOUoHoU Sa {1 08 AOTIKEG TEPIOXEG, EVO TEPIOOOTEPO ATIO TO HHI-
OU TOU TAYKOOH10U TANOUopou {et 1181 otig moAelg ot S1apopot eviiapepopievol Qopeig
(TtoAe0601101, TIOATTIKO1L, EPEUVNTEG K.ATL.) £PAPHOJOUV TIOAITIKEG TIOU OTOXEVUOUV Otr| PeA-
Tiwon g mowotntag {wng ot actika rneplBaldovia pe Xprion texvoloylov Atadiktuou

AVUKEIEVQV.

o Efaywyn I'voong: Mia Kevipiki] epdtnon oXeUKA e v culdoyn debopévav arod ESu-
rmva avukeipeva Kat pogg §edopéve eival 1o Katd oo PIopel va undpel epPmotoouvn
ota napayopeva dedopéva. Kat otav to edopéva dewpouvial adiormota, neg pPropoupe
va e§dyoupe yvoOor aro autd, O¢ KATL XPrO10 IEPA ATT0 £vaV TEXVOAOYIKO EITiteUyHa.
EmnAéov, nog map€xoupe otoug 1610KTATEG TOV §e60PEVOV AUTO KATIOA H1EUKOANVON
otV Kabnuepwvotnta Kat m {@n toug. X1y oucia, TET01EG EPWOTNOELS POAVOUV OTo ore-
10 va Katavorjcoupe g MPAyHatika KAvoue v avdduon tov Sedopévav 1o éSurtvn
yla va emuxoupe auto nou xpewalopaote. IMapadeiypatog xapn, oty mepimeon Ku-
KAOQOPLaKIG OUPPOPNONG OTO KEVIPO TG IMTOANG Iapdyetovial Tjeg dedopévav ya tv
Ta)UIa IOV AUTOKIVIT®V, T0U Y0pUBoU KAl TG CUYKEVIPOONG AEPI®V ATT0 TIG EKTTOUTIIEG
1OV OXNPATeV. L& autd ta 6edopéva Aeimouv XPrjo1101 CUCXETIONOL OTIS POEG TOUG Kat
Bev eval eUKOAA EPIKIOG O CUCYKETIONOG Toug. H mpooBrikn emonpavos®v Kat CUCKETL-
op®V ot Této10u £iboug ggurva edopéva péom PNXAvVIoROV UNXavikng pdbnong 1 pe
xpnon €Beloviov prnopet va Bonbrjoel va armokaAUupoupe piia tepdotia Kpudrn Suvapike)

ota ebopéva mou cuAAEyoule.

Avanapaotaocn tou Ata81KTU0U AVTIKEIPEVQV

[TpokreEvou va aAAnAemdpAcoupe 1€ Pld £yKaATtaotaot Aladiktuou Avukelpévay, anatteitat
Pla KataAAnAn avanapdotaocr) yi auto otov Prnelako koopo. Kdbe sykataotaon rmepthapBavet
moAAd oto1Xela ou mapdyouv, KatavaA®vouyv 1) petapépouv dedopéva. Kabe otoixeio oe auto
10 olKooUOT A €Xel TIOAAATIAEG OXEOELS P AAAOUG, Snioupy®vIag £va MePITAOKO OXIHa ITOU
propet va sivat SUokoAo va katavonBei 1) va aneikoviotel Kabog 1 KApaKa g yKATaotaong
augavetat. Ta va ernepaotei auto 1o mpoBAnpa kat va ardoroindei n aAAnAenibpaot| pag pe
auTr] TV AVIIITPOO®ITEUCT] TOU PrP1aKoU, TIPETIEL VA EGAPLOOTOUV HOPPES 0 KATAAANAEG amo
11§ tapadoolareg oxeolakeg Baoelg Sedopévav. Tautdypova, autd ta PopPOTUTIa TIPETEL vV
eivatl eUKOAA KATAVONTA KAl va XPNOTHOTIO0UVIAL ATtO TOUG XPTOTES HE TIEPLOPIOHEVT] aVTIANY
G TeEXVoAoyiag, OT®G KAAATEXVEG 1] AKTIBIOTEG 1] AITAOUG TTOA{TEG.

Ta v avarrtudn autig tng avanapdotacng XPNOooIIoI0UHE Ti§ TTANPOodOopieg Tou éxoupe
arnd 1o epeuUvNTIKO £pyo GAIA kat eotiadoupie ot 60Pn Pag EYKATACTAONG ITOU EKTEIVETAL OE Eva
0AOKANPO OXOAKO TO KTIP1O Yid TNV IIAPAKOAOUONON g KATAVAADONG EVEPYELAS KAl TV ITE-
PBAAAOVTIK®V TTAPAPEIP®V. ZTOX0G NG ITAATPOpHag ival va H1eUKOAUVEL AlEcA TOUG XPHOTES

va ouyKpivouv ta ouyKkevipepeva dedopéva 1ou oxoAeiou toug pe adda rmapopola Kripla rmou
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OUPPETEXOUV OT0 £py0, AapBdavoviag MPOoEKTIKA UTIoWn NeP1BAAAOVIIKEG TTAPAPETIPOUS OTING
1 €MOYXI ToU Xpoévou, 1 torobeoia 1) o Kaypog. H mdatpoppa mpérnet emniong va urootnpiet
TTOAAEG OABEG TEAIKOV XP1OT®WV TTIOU UIIAPYXOUV OTOV TOopEA NG eKnaibeuong: pabniég, exmat-
deutikoug, S1axe1PploTEG KTIPIV KAl AAAd S101KNTIKA OTeAEXN. Xe €va TETO10 KTiP1o, Pid TUITIKY)

£yKatAaotaor Pactopévn) oTig YV@OELS TOU £pYOU aroteAeital ano:

® 1110 OUOKEUT HPETPNTY] 10XU0G EYKATECTNEVI] OTOV KUP10 NAEKIPOAOYIKO ITivaKa TOU KTl-

piou,

e 5-10 OuOKeUEG PETPNONG TEPIBAAAOVIOG EYKATECTNUEVEG OE £vd UIMTOOUVOAO TV TASEMV

KAl TOV KOWOXPNOT®V XOP®V TOU KTipiou,
® 1110 OUOKEUT PETE®POAOYIKOU OTAO0U EYKATECTNHEVE OV 0pOPI] TOU KT1PioU

Me Baorn autr) tv avaAuon, PIopouUHe va CUVOYIoOUHE Ta EPITAEKOPEVA PEAT OTIG AKOAOU-

Oeg katnyopieg:

e Xproteg: O1 xprjoteg eivat avBpwrot rou Sa addnAermdpouv 1| Sa {ouv péoa oty eyka-

taotaon.

e TUOReUEG aviyveuong: Ot aobnu)peg eival 01 CUOKEUEG TIOU €X0UV eykataotabel kat
£€X0UV TOV POAO TOV Mapayny®v dedopévav. Ot MAnpodopieg TOUG PUIIOPOUV va petadep-

Souv, va katavadwbouv 1] va cudAexBouv yia tr Xpron 1oug

e TUOKEUEG EVEPYOMOLNTAOV: O1 CUOKEUEG EVEPYOITOUTE) £1VAL Ol CUOKEUEG ITOU PITOPOUV
va edeyxBouv yla va dieyeipouv v addayn otov guolko koopo. IleptdapBavouv otot-
Xela OMwg G1aKOIIEG PROTOS 1) TV Kaboplopévn tir) Tou deppootdtn o €va cuotnpa

KAtpatopou

o TuoReUEG MUANG: Ot CUOKEUEG MUANG €1val OUOKEUEG TTOU £XOUV AIrA®G TO POAO Trg
petagopdg rminpodopiev petady g eykatdotaong kat tou dadiktuou. O poAog toug
eival {@TIKAG onpaociag oe £yKAtaotaoelg OTIOU Ol AAAEG EYKATECTNEVEG OUOKEUEG Hev
etvat ouvdebepéveg oto H1adiktuo kat dsv Pmopovv va €MmMKOVEOVOUV areubeiag 1e 1o

urdAorto cuotnud.

e IMapatnpnOivta @aiwvopeva: avad£povial otd PUOIKA @AtvOlEvVa IOU UIopouv va

napatnenbouv ard CUCKEVUES YPNOLAKEG AViXVEUONG 1] EVEPYOTIONOG.

e Movadeg pétpnong: avapépovial ot oupBaot) IoU XPNOTIOoLEitatl yia v ItoooTKo-

oinon €vog mMapatPOUHEVOU (PATVOHLEVOU.

o TomoBeoieg: avadEpovial Ot QPUOIKEG Katl AOYIKEG Ol1aBOIOI0E1g TTOU PUITOPOoUV va
XpnowporonBouv epappootnKe o€ OAd TA OTOIXElAd TOU MAPOUCIACINKAV MAPATIAVE.

MrtopoUv va TEPIypapouv €va KTiplo, Pia oX0A1Kr) povada 1) €éva epyaotriplo, aAAd Krat
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pla mo adnenpévn opadornoinon evog oUvVOAOU XPNotoV PEoa Ot TIOAAATIAEG OXO0AIKEG

KO1VOTITEG.

Me mapoo10 TPOI0 UMAPX0UV OXE0ES METASU TV OTOIXEI®V TOU rmapouctadovial mapartave

rou opidovral wg €&Ng:

H oxéon 1droktnoiag kabopilet ) oxéon pe v oroia o1 XPrioteg £X0Uv TOV IMATPY
€AEYX0 Kal TIG AMOOTOAEG O €va OUVOAO alofntrpev, EVEPYOIIOUTI®V 1] CUCKEUGMV TTUANG

Kdl (PUOIK®V TOTI00e010V.

Ta Sikaidpata evog Xpr ot va £xet MpooBacn otig IANPOoPOopieg IOV MAPAyovIal aro va

OUVOAO OUCKEU®MV OTIyHAtog 1] T QUOIKY 9€on 1) va edéyxet pia 81atagn evepyorountr).

O@£01 TOV CUCKEUGOV a100NTHP®V KAl EVEPYOIIOINTOV 0§ HEPOS H1AS PUOIKIG 1) AOYIKNG
9¢ong. Ta mapddeypa, o1 cuokeueg cUAAOYNG TEPIBAAAOVIIK@V OUVONK®OV AroteAouv

HE£POG H1AS PUOIKTG TASNG ITOU AVAKEL 08 £va KTip1o

Xapaktnplotika avixveuong: Ta Xapaxkinploukd aviXveuong avagepovial otlg ou-
OKEUEG AVIXVEUOTG KAl EVEPYOTTOINONG KAl XPNOHIOMO0UVIdL yid TOV OPlOH0 TOU TUIIOU
mAnpogopiag mou mnapdyet 11 KABe OUOKEUN 1) TOU TUITOU NG OUOKEUIG ITOU €AELyXEL.
Mropei va untdpxouv ANPopopieg OXETIKA HE TO (PUOIKO @AIVOLEVO 1] T povada petpn-
ong IOU HETPATAl 1] akopud KAl av ta 6edopéva mou mapdayovial €ival p®Ieg THES 1)

Xpeladoviatl pia PETAyEVEDTEPT) EMEegepyacia yla va eivat €ykuprn).

[Tpokre1EvoU va TapEXOURE Pid PnPLaKY avanapdotaor] auteVv TOV OTOXEI®V, ETNAEYOUNE

va xpnotlpornowjooupe pa Paon dedopévav ypadpnuatev. Mua t€towa Baon dedopévav sivat

Mo KatdAAnAn yia v nepimoon pag, kabwg propet eUkoAa va avilotolyicoupe ta ototxeia

KAl TI§ OXEOE1S TOUG HE TIG KOPUPEG KAl TIS AKHEG £vOg ypapnuatog. Ilapéxet ermiong wg Evav

pnxaviopo mpoBoAng Kat anobrjkeuong yla Kabe otoixeio 1 oxéon xpnotpornoloviag {euyn

KAE1810U-T1IIG Y1a Ta XAPAKTINPLOTIKA TOUG KAl AMAOTIOLEL TI§ avadnthoelg Péoa OTo ypadnpa e

) popdr] epOINUIATOV ypadpnpdtev. H vlonoinon autng g avanapaotaong yivetatl pe Xpnon

g mMAatpoéppag Neodj piag AUong EMXEPNIATIKLAG TO0TNTAS yia I Snpioupyia epappoyov

uYnAov anattrjoemv. To teAko oxnpa 6e80EveV ITOU XP1OOIIOI0UHE £XEL TIEPIEXEL TG £ENG

oVIOTNTEG MG KOPBOUG TOU ypadratog:

Xprjotng: yla v anobrkeuorn minpodopiiv OXETKMV HE T0 XP10T)

TomoBeoia: yia arobrKeuorn OX0AEi®V KAl OXOAKOV XHP®V

IInyn: yia mv anobrnkeuvor onpeiov avixveuong

ITVAR: yia v arnobrjKeuor KOPB®V MUANG IOV EMMKOIVEOVOUV 1€ CUOKEUEG AVIXVEUOTG

I816tnTa: yia arnobrjKeuor tov duvatot|tev avixveuong Kat tov petadedopévav
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Avtiotolxa epléxel TG £E1G OUCKETNOL1G TOG AKHEG TOU YPAPINATOG :

e ResourceProperty: yia tr oUvdeorn piag oviotntag mopev pe 1ig 1010T1eg mou spda-

vidouv 11§ 100N pleg TAPAPETPOUG TNG

e GatewayProperty: yia i ouvdeorn plag oviotntag nuAng pe tg 1810t)1eg mou spda-

vidouv T1g duvatotnTeEG CUVEECTHOTNTAS NG
e IsPartOf: yia ) ouvdeon piag oviotntag mop®yv pe ) 9€on oty onoia Ppioketal pUOIKA
e ShareWith: yia v napoyn nmpooBaong oto Zite OTOUG XP1OTEG TOU OUCTHIATOS
e SubSite yia sUkoAn neptypadn g dopng peoa ota oxXoAKa Kripla

Méypt otypng €xouv ouppetdaoyet oto £pyo GAIA ouppetéxouv 18 oxodikd Ktipla oe 3
xwpeg (EAAGSa, Itadia, Zoundia) kal KAAUITIOUV H1d O£1pd ATIO TOTUKEG KATPATOAOYIKEG OUV-
9nkeg kat emineda exknaibevong (mpwroBadiia, deutepoBddia, yupvdaola Katl AVETOT ).
O1 petpntég Katavalwong NAEKIPIKNG evépyelag eykabiotavial oe 0Aa autd ta Ktipta, padi pe
a100nTr)peg MoOU MAPAKOAOUBOUV £0MTEPIKEG KAl ECHTEPIKEG OUVONKEG Aettoupyiag Oneg rmept-
ypagetal apandave. H cuvipinuikr) mAe1ovotntd 1oV EMITNPOUHEVROV SOUATIOV XP1OT0TIoEiTat
yla eKatdeuTikoUg OKOTTIOUG Kat Ta UTIOAOLa yia dAAeg dpaotnpiotnteg onwg n aibovoa 1da-
OKOVIQV, TIPOOKITKOU K.AM. To £10G KATAOKEUNG AUTOV TV KTpieov Kupaivetatl arto to 1950
€wg 10 2000. T'a va avurnpoowrievouv 0Aeg Tig MMANPodopieg Tou £pyou 1 Paon dedopévav
YPAPNUAT®V TEPIEXEL CUVOAIKA 7332 kOpBoug Kat 47864 aKpEG OUVOAKA Yld TV AvAITtudn
Katl xpnotpornotelt ouvodika 113MB oto xodpo tou Siokou. AmMO AUTEG TIS KOPUPEG, ta 4749

onpeia ouykévipwong eivat 1012 toroBeoieg, 681 18101n1eg Kat 300 XPr|0TeG TOU CUCTHHLATOG.

ZulAdoyn Kat Avaduorn Aedopévav

To £mOPEVO 0POCTIO HETA TV AvVAIApAcTtaoh Tewv 8ebopéve eivatl n avartudn evog CUCTIATog
OV va propet va enepyadetat 6Aa ta debopéva mou nmapdyet pia i€rold eykatdaotaocn Atadikiou
Avukepévov. To ouotnpa autd IMPEnel va KAAUITIEL £va OUVOAO BACIKGOV AMAlTHOE®V Yid va
elval emMTUXNPEVO, OMWG va €ival €MEKTAOIII0, E€UEAIKTO, AVOIXTO KAl AOPAAEG ®G IIPOG TNV
1010TKOTNTA TRV 6eboPEVR.

IMa va erutuyoupe pa t€towa Auon, Baci{oupie ) douleld pag ot Xpron MAAd1oiov avotyto-
U KOO1KA, KAOEPOPEVOV £PAPIIOYROV, TIOU XPNOOIIOI0UVIAL Ao MTOAAOUG TTPOYPAIATIOTEG
Aoy10p1KOU o€ OA0 TOV KOOPO. AUTEG 01 TeXVoAoyieg eival ermiong eUKoAo va enektabouv Kat
va urootnpi§ouv 11§ véeg TeEXVOAOYieg KAl va AE1TOUPYHO0UV Ot TTOAAAITAEG UTTOBONEG PEIOVO-
viag TG rmbavotnteg Snpoupyiag maAaidv cCUCTNHATEV IIOU KANPOovVopouvidl Xopig Suvatotnteg
aMayov. Eniong, Bacidoupe tnv vdomoinor) pag os UInpeoieg Imou PItopouv eUKOAA va KAtHaA-

K®BoUV KkABeta 1) 0p1ddvTIa yia va urnootnpifouv 1ig audavopeveg avaykeg rou Sa avartrtuxbouv
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pe mVv 1dpodo tou Xpovou AdYe avdarttuing g £yKAtdotaong, EAaX10Toroloviag IV avaykr)
EMAVAO0XES1A0110U OITO10USAIIOTE THIIATOG TOU CUCTHATOG.

'Onwg avapépape mpv, oe KABe Eva aro ta KIipla g £yKataotaong eykataotdnkav ou-
OKEUEG TIOU PETpave (a) T GUVOAIKY KATavAA®or 10XU0G Tou Ktpiou, (B) tv mepiBalAoviiky
gueli§ia kaBe katnyopiag (BA. [Mapakde yia replocodtepeg AeTtopépeleg) Kat (y) Kat ta erineda
ATPOOPALPIKIG PUTIAVONG 08 KABe KTiplo. AUTEG O1 OUOKEUEG PITOPOUV VA X®PLOTOUV OF TPELS
S1aPOPETIKEG KATNYOPieg avadoya e TOV TUIIO MPOEAEUONG KAl AE1TOUPYiag ToUG. Xe YEVIKEG
YPAUEG, XP1OIHOITO0UE (a) IIPOCAPHOOHEVEG CUOKEUEG TTOU EITIKOLVOVOUV XPIOLLOITOIWVIAG
éva toruko Siktuo IEEE 802.15.4, (B) £1011€G OUOKEUEG TIOU EMTIKOIVEOVOUV PEC® ACUPHUATOU
S1KTUOU 1 TNAEPOVIKOV SIKTU®V O ATIOPAKPUOHEVEG TTEPIOXEG, Kat (y) aioBninpeg amnd ma-
Aawdtepa ouothpata daxeiplong Krpiewv mou €xouv ndn eykataotabei o oplopéva oxoAka
Ktipla.

Ztoxog pag eivatl va owkodoprjcoupe €va cuotnpa 1mou va eivat oe 9€on va yepidetat eva
arneploploto apopo dedopévav amo auteg TI§ EYKATAOTACELS O TIPAYHATIKO XPOVo X®Pig Kabu-
oteprioelg 1 daxkoriég. To ouotnua £xel oxedlaotel Pe TV POCEYYIOn TOV PIKPO-EPAPHIOYOV.
Qg ek tOUTOU, arotedeital arnod pa oelpd and XaAapd ocuvdedepéveg ePapOYEG ITOU EIMTIKOL-
VOVOUV XPIOTHOIToI®VIag S1EmadEg 10ToU Kal Pl KEVIPIKI) UMNpeoia aviaAAayng pnvupatov.
AUTO 10 KEVIPIKO ONpEio NG APXITEKTOVIKNG Hag ival pila unnpeoia ‘peoitn’ pnvupdtev mou
EMMITPETIEL O OAeg TIG AAAeg urnpeoieg va dnpootevouv pnvupatd 1) va eyypdgovial oe poég Se-
dopévev kat va AapBavouv edormorjoetg and auvtég. O podog tou eival va ewoayet ta dedopéva
aro 1g S1dpopeg poég edopévmv Ao TG eyKATACTACEIS OtV KEVIPIKT] UTPEoia ernegepyaciag
rou avaluvet ta dedopéva kat rpowbeia avda rpog tov ‘pecitn)’ PNVURATtey ta anoteAéopata yia
nepattépw eregepyaoia 1) anobrkevon. To ocuotpa autd ovopdletat Mnyaviopog Zuvexoug
Yriodoyiopou. KatdAAnAeg dienagég rmpoypapplatioploy epappoy®v IapEXoviat yia v avAaktn-
o1 AN POYOPWV Ao T0 cuotnpa (1otopikd dedopéva 1) mAnpodopieg tng doprg tou Atadiktuou
Avukelpévav) yia ) Snpoupyia TeEAKOV epapioy®v Ipog toug Xproteg tou GAIA(Zxnpa B'.2).

TMa v avdduor v §edopévav Xpnotonolove 1o ouctpa enegepyaciag powv debopiéve
Apache Storm, €éva Se@pedv Kal avorXtoU KOd1Ka KATAvePnNPEVO ouoTnla UTIOAOY10HoU yia de-
dopéva mpaypatikou xpovou. To cuotnpa autd pag ermIpenel va Xopiooupe 0Aa ta Brjpata g
ene§epyaoiag tov debopévav oe andég epyacieg mou ektedouvial acuyxpova aidd pe ) 00otr)
oelpd, oxnuati{oviag éva aymyo HETAoXNHUATIOPR®V ITTOU epappodovial ota apXika dedopéva
IoU €10€pY0VIal 010 oUoTNUd pag. Autdg 0 oxnuatiopevog ayoyog ovopddetal tonoloyia
enedepyaoiag. H avaluon rou ektedovpe oe kaBe Pripa yiveral pe Bdor tov xpovo yia v e-
Eaywyr) otatiotKeV anoteAeopudtov oe S1aPpopetikég XPovikeG replddoug (5 Aertd, 1 wpa, KAT).
Y& KAOe pa anod autég TS XPOVIKEG TIEPIOH0UG PITOPOUHE va EKTEAECOUIE U1d 1] TIEPIOCOTEPES
OTATIOTIKEG AVAAUOELS OIS £§ay®YT] HNECOU OPoU, aBpolopdteyV, eUPECT] PEYI0T®V/sAaxiotev
KA.

To Baokoé otoixeio yia v a§loAdynon evog TET010U OUOTHIATOG €ival 0 XpOVog artdoKpior|g

TOU KAl €§AYWYNG TV AMOTEAEOPATOV PETA TNV AN TV TGOV Ao 11§ poég debopiévav. v
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Zxnua B.2 ApXltektoviky) ocuotipatog ocudAoyrg kat ene§epyaciag 6edopévav tng
eykatdotaong Atadiktuou Avuikeipevav GAIA.

S81kr) pag nepintwon yua v avaluon oykou 8edopévav mou avépyetat pexpt kat oug 500 pe-
TP 0l avd SeUTEPOAETTIO ATIAITOUVIAL XPOVOL PIKPOTEPOL TOU £VOG X1A100TOU TOU SeUTEPOAETTTOU

(0.6ms yia egayoyr péoev opev kat 0.3ms yla avdAuon g KatavaAl®ong evépyetlag).

ZulAAoyr Sedopévav pEéow £0edovtav yra £§unveg MOAelg

Zta mlaiola plag moAng 1) €yKAtaotaor €KTeEVEV S1IKTU®V CUOKEUMV IMAPAKOAoUOnong rmept-
BaAloviikeVv 1] AAA®V CUVONKAOV £ival APKETEG POPEG AVEPIKTO €101KA 08 TIEP1OSOUG ATOTNTAG.
Zta mAaiowa autig g AA Kat PEo® T0 eUPEIIAIKOU epeutnTikoU ¢pyou OrganiCity otoxevou-
pe ov dnuoupyla pag vninpeoiag cuddoyng Sedopévev amo eBeAoviEg pe Xpron QopnTeV
OUOKEU®MV 0TS Kvntd mAépova. H dadikaocia autr ovopaletal aiobnon minboug kat Ba-
otdetal otnv avadeorn epyacidv oculdoyrg Sedopévev oe Eva ANO00G e0eA0VI®OV TTOU TIG EKTEAOUV
Kata ) Sidpkela g KabnuePIVHg ToUg PETakivnong péoa oty moArn, eite pe otdxXo v avi-
O1o0tedr] Poodopd TPOG TG KOWOTNTIA TG MOANG TOUG, €11 PE OTOX0 TNV d1ekdiknon Kamowag
aviapoBrig mou UIpoel va mpoodepet o evbiadepopevog yia ta dedopéva. Ta éurva Kvna
mALPeva eivat ofjpepa eSormAiopéva pe évav aplbpod evoopatopévoy atodnupev kat diena-
PG HIKTUMONG Y1a va EMKOWVOVOUV HETASU TOUG KAl PE OUOKEUEG AlaSIKTUOU AVUKEIPIEVVR
onwg smartwatches, 1(xvnAdieg QUOIKAG KATAOTAONG 1] £161KA KATAOKEUAOHEVEG OUOKEUEG (TTX.
Baolopéveg o pmikpoedevkiég Arduino).

IMa tov okoro autd vdomojoape v epappoyr Sensing-on-the-Go, pla epappoyn ya
£tunva kivntd tnAépwva Android(Zxnpa B'.3). H epappoyr) autr) akodoubei tig 16éeg tov epap-
poywv Alad1KTuou AVUKEIPEVQVY, HE Ta £CUTTVA KIVITA TNAEPVAV va CUPHETEXOUV OF EKOTATEIEG
ouAdoyng 6edopévav ou PBpiokovial 61ab€oipieg otV MEPLOXT] TOUG PEO® TV UTPECIHOV TOU

OrganiCity. ITépav tng epappoyng Kivniev tTNAepovev £xel vdomondel kat pia dradiktuakn)
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epappoyn n oroia rpoodpipel poéoBaon ota dedopéva mou cUAAEyovial arod TG EKtEAOUNE-
VEG KAUTIAVIEG AAAA KAl TIPOCPEPEL TIPOYPAPPATIONIKEG SEMAPES V1A TNV EPAPHOYL] KIVNTOV
TNALPOVOV TIPOKEPEVOU va artootédovial ta Sedopiéva rmou cudAéyovat.

Emergency calls anly = &2 PRI F D100% w1145 aM B Emergency callsonly®® < (@ $RIY F D 100% Wi 1145 AM

€ Q

f

. Sensing On The Go . OrganiCity Noise Level
Dimitrios Amaxilatis n_ngmclr'v Experiment
; H reci3 j Dimitrios Amaxilatis
E PeGi3

INSTALL

0

Tools Similar

INSTALL

OrganiCity Sensing-on-the-Go Application

OrganiCity Noise Level Experiment for
READ MORE ;
Sensing-on-the-Go

EEE SN Cp READ MORE

Zxnpa B'.3 Anpooieuon epappoyng Sensong-on-the-Go oto Google Play Store.

H vlornoinon g cuddoyng dedopévav yivetal pe Baon tig Suvatdtnieg ou PooPEPEL TO
Aettoup1ko ouotnpa Android yia v ektéAeon eERTEPIKOV Slepyaoiav péoa and pia ave§aptnn
epapypoyr). Ot e§otepikég auteg diepyaoieg, avadlapBdavouv ) ouddoyr) v 6edopévev Kat v
AITOOTOAT)] TOUG KAl TV AITOOTOAN TOUG OTNV KeVIPIKY epappoyr). H doun avtn, pag divet
duvatomta va ePrmAouTi{oupe TV AEITOUPYIKOTNTA TS EPAPHIOYNS Yia TV oUAAoyr 0Ao Kat
TIEPLOCOTEP®V TUTIOV HETIPNOEDV XOPIG va xperaldpaote addayeg otnv Baciky pag epapuoyr).
Emiong &ivel tnv duvatdinta, o e§RTEPIKOUG XPTOTEG KAl IIPOYPANHIATIOTEG VA UAOTION)0OUV pid
61k1) Toug diepyaoia cuddoyrng dedopévev Kat va Xpnotpornoirjoovy to Sensing-on-the-Go yua
va ArmoKIroouv npdoBaocr) og 0An v urodor) cuddoyrg Sedopévev Kat oto AR 006 TV eBgAo-
viov tg. H avanngn wov Siepyaciov ouddoyng dedopévav yivetatl oe riepiBailov Android pe

anotédeopa v 600 1o duvatdv mo ardn Sadikaocia vAoroinong kat SoKNG ard toug 161oug
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toug npoypappatiotes. H epappoyn eivatr drabéon oe 6doug péown tou Google Play Store
Katl n ouAdoyn tev dedopévav pnopet va yivel eite P€0® £vog MPOOMITIKOU AOyaplaopoy otV
mAatgpoppa tou OrganiCity eite avovupa, §ixwg v anaitnorn yia v arnootoAr) ornolovinnote
IIPOCKITKGOV OTOLXEIDV.

Zta mAaiowa tou ¢pyou OrganiCity n epappoyr) autr) xpnotpornofnke arno 4 S1adpopetikég
opdadeg eBedoviwv ol oroieg avérmugav §1kéG Toug Kaurmavieg ouldoyng Sedopévav katl g
TIPAYHATOOINoaV OT1§ TTOAEIG TOUG O€ TIPAYHATIKEG OUVOTKEG 1€ T CUNBOATL) €BEAOVIOV TTOALTGOV.
Ye pla arnod auvtég Tig Kapndavieg ouykevipabnkav dedopéva arod ta Swabéopa WiFi access
points yia 3 euponaikeg modelg (Ilatpa, Aovdivo kat Zaviaviep) péoa oe 5 nuépeg kat aro 14
Srapopetikoug xprioteg. To ouvoro twv edopévev ou ouykevipmOnke nrav 7500 petprioetg

Kat yla g 3 moAeig (katd péoo 6po 500 peTpriosig avd ouppetexovia).

E§ayoyn yvoong anod dedopéva Atad1ktiou AVTIKEIPEVQOV

Ta 2 Baoikdtepa epOTPATA OXETIKA PE T OUAAOYT] TV dedopévav anod eykataotaocelg Atadt-

KTUOU AVIIKEIPEVQOV gival ta eEhg:
e Ti kdvoupe pe 6Aa auta ta dedopévar
e [Iwg prpoupe va paboupe npaypata amo auvtd ta dedopéva:

Mua artdvinon kat otg U0 epwtroetg ivat 1 e§ayeyr) yveoong. O 0pog yveorn avapepetal os
KATl TIPAYHATIKA XPHOHO0, SEMEPVAOVIAG KATola arAd voupepd. ®a propouce va reptypadet
€TTONG KAl O KATL TTIOU TIAPEXEL AANO1vr] XPNoOTNTA OTOUG XP1OTEG EVOG ouotrpatog. a ma-
padetypa, oplopéva oupBavia propouv va napdyouv dedopéva anod v vrodopr) Atadiktuou
AvVuKelPéVEV p1ag OANG, aAAd Xwpig adlomoteg ermonpuavoelg nave and auvtd eivat aduvatov
Va EVIOITIOOUIE TO EVOEXOPEVO KUKAOPOPIAKI)G OUNPOPNOLG OTO KEVIPO TG TIOANG. Mrmopoupe
va TapainProovpe XAapndeg THEG yia Ty TaXUTnId TV AUTOKIVIT®V, ToU YopuBou Kal Ing
OUYKEVIP®ONG EKIMMOPNIOV pUNIOV aAAd Xwpig Tov ouvduaopo toug eivat aduvatov va 10 evio-
miooupe pe BeBaintnta. O1 emonpavoelg auteg pag divouv tnv duvatotnta va rpoonabrjcoupe
va KataddBoupe Tt eival auto 1mou KpuBetal Mmio® aro Tig aplOpnukeg Tipeg rmou PAEnoupe
apxkda.

Zta mAaiola autrg g AA vAdomolrjoape éva ouotnpd T0 Oroio PIopsl pe nui-autopato
TPOII0 VA avayvepiosl Kal va £§Ayel autég TG ermonudvoesig ano ta aplopnukda debopéva pe
XPTO1] TEXVIK®V HUNXAVIKNG P1abnong to oroio ovopddoupe JAMAICA. To cuotnpa auto propet
va extedéoel 2 S1aPpopetikég Katnyopieg avaluong debopéva: elpeon avopaliwv kat tadt-
vOUNon ®otoco 1 o111 ToU CUCTHATOG £1val TIAPAPETPOTIO O £101 MOTE VA PIOPEL EUKOAA
va urnootnpigel neploodtepeg epyaoieg. Ta tnv exktédeon v alyopiOpeov pnxavikng pabn-
O1g XPINOTHOMooUe 2 MAATPOPHES ITOU ECUITNPETOUV AUTOV Tov oKord: to Jubatus kat v
JavaML.
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Ta v agloddynon tou cuctrpatog Jubatus exkteAéoape oAAarmAd rmepdpata e Xpron
6edopévav katl anod g 2 nnyeg rmou gixape oty 61abeor) pag (OrganiCity kat GAIA). Ta v
MPAOT MEPIN®OT], avaduoape reploodtepeg artd 40000 PETPII0ES CUYKEVIOOE®V HIKPOO®LATL-
6iwv PM;0 péoa oe pia xpovikn riepiodo 20 nuepov. To cuotnpd pag riav 1Kavo va eViorioet
0€ TIPAYHATIKO XPOVO TIPOBANIATIKEG TIHEG (TIHEG EKTOG ETTITPEMIAOV OPl@V, Kal TIHEG IIpoBAnpa-
KOV alo0ntpev) Xepis mpoBAnpata. 'Eva dAdo neipapia sxktedéotnke pe Baon ta dedopéva
tou ¢pyou GAIA pe okorod v Katdatagn twv ouvOinkav oe aibouoeg oxoAeimwv Tou rmpoypdppatog

oe 4 ratnyopieg pe Paon tpég Yeppokpaoiag Kat uypaoiag rmou eixav oudAexBel yia auvtég.

Tupnepaopata

Z10 mAaiolo ng napouoag AA avupetorioape ta mpoBAnpata mou IPOKUIIIOUV Ao TNV £10d-
YOV 0Aoéva KAl MePIOOOTEPWV EEUTIVOV OUVEESEEVOV CUOKEUMV 0TO0 KAONUeEPIVO pag Tept-
BdAdov. Autr n auiavopevn Xprion €010V OUOKEUMV KAVEL EMITAKTIKY TV AVAYKI £UPEOHS
plag PeAtiopévng pebodoroyiag avadluong tev dedopévaviiou rmapdyovial aro TG OUOKEUEG
autég. H Soulerd pag Paciotnke og §U0 paypatikeg MEPUTIOOEIS XPNONG £yKATAOTAOE®V Ala-
SIKTUOU AVUKEIIEVOV OG PEPOG 2 EPEUVITIKGV IIPOYPAPHAT®OV NG EUPOITAIKNG £veong. Ta
mpoypappata pag napeixav éva medio SoKI®V yia TG ePpappoyEg PNag o€ MPAYHATIKEG OUV-
9nkeg. Qg anotédeopa, @uadape epappoyEg Iou eival Kaveég va GUAAEYOUV Kat va avaAuouv
6edopéva arnotedeopatika Ao AUTEG TIG TYEG KAl va Td TIAPEX0UV OTOUG TEATKOUG XP1OTEG Katl
TOUG MPOYPAPHATIOEG EPAPPOY®V 08 0XedOV mpaypatiko xpovo. Eipaote emiong oe 9éon va
Snuoupyriooupe pdodetr yvoon arod ta npetoyevr) dedopéva nou AapBavovrat. Arnodei§ape
£TTI0NG OT1 1] APXITEKTOVIKY] TOU OUCTHILATOS 1AG €ival 1kavr] va xeipiletat S1apopoug TUToug Kat
oykoug debopévav kat pe edayioteg addayeg oe eminedo vdoroinong, pe v apbpatr) oxediaor

Tou. Ao v evacxoAnor] pag autr] AaBaye ta €§ng pabnpata:

e O1 ouokeuég AladiKtuou AvuRelpévav Tetvouv va eival e§alpetkd ava§lormoreg, 181ka
otav eykadiotavial oe eERTEPIKOUG XDPOUG £€E® artd Tov apeoo Aeyxo pag. Mepikoi arnd
TOUG XPr)oteg Telvouv €miong va MPoKadouv MPoBAnpata oTlg OUOKEUEG, HE TIPOBeon 1)
0X1, poKaAwviag €101 rmpoBAnpata otr d1ath)pnorn IOV powv dedopévav amo 11§ eyKata-

otaoelS.

e Emiong, ot amotuyieg 1oV aiofntipev 1) 1a npoBAnpata ouvdéeootntag eivat pia ouvn-
Sopévn nepimoon kat 9a sppavidovial oe omo1adnIote £yKATACTACT AVESAPTTA ATIO

TV MOWOTNTA TV UALKGOV 1] TOV KATAOKEUAOTY| TOUG.

e TéAog, otnVv rmepint®on 10U g oUAAoy1 G 6edopévav P€owm eBedoviav, eival onpaviko va
onueEOel 0T 01 HiemaPeg XPr ot IOV AvVATTTUoooVTIAl eival e§AIPETIKA ONIAVIIKEG Yid TV
ETTITUX1A TOU OUOCTHHIATOG. XNV MEPIT®OoT Tou 1) Slemadr) Xproty eival mo mepimAoKn
and 6, T anatteitat, ot Xprjoteg teivouv va xavouv 1o evdiapépov kat v S¢Anorn va v

XP1 OO0 )COUV TIEPIOCOTEPO.
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M1ia Oonpavtiky) enéKtacr oto £pyo Iou rapouotddetal os auty) ) AA Sa ftav n embdingn
g Suvatotntag Siaipeong tng avAAuong TV CUAAEYOHEVROV §e601EVOV O TIEP1O0OTEPA ATIO £va
otpopata. Linv nepirnmeon autr], KAroa enegepyacia propet va oupBel oTig eyKATaoTACELS TOU
XpPHotn, pewvoviag £Iol TV avaykn petadopdg dedopévav péom tou Aladiktuou. Autr) 1) Ite-
pimtwon Ya pag Bondnoet emiong va pelidooupe Tuxov anwieleg Sedopévav amo mpoBAnpata
S1KTUWOoNG KAl ouvleo1nOTNTAG, TA OTola €ival APKETA KOWA HE TS EPUMOPIKEG HladIKTUAKES
ouvdéoelg. Autt 1) TAoT), TTIOU OVOPAZETatl UMOAOY10TIKY AKp1 1 OpixAn, eivat éva e§aipetika ev-
Srapépov kat eArmdodpodpo medio £psuvag Imou PItopet va aughost onpaviika v anodoukotnta
ToU ouotrpatog. Ot reP1oo0TEPES EMTEKTAOELS Ya PITOpoUoav va emKevipeBouv oty rpoobrKrn
TIEPLOCOTEPOV TUTIOV SEGOPEVOV OTIG EVOTNTEG AVAAUOTG TOU CUOTIIATOS HaAG, OTIOG TO BIVIED 1)
10 1X0, KaOwg 1 @Uon toug Ya PIoPOUsE va ATIOKAAUWPEL IO TEPITTAOKEG ATIATNOELS TTOU Hev

SdiepeuvnOnkav.
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