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Abstract

Technological developments in recent years in both hardware and software have led

to an explosion of devices and services in what is often called the Internet of Things.

Today in every home in the US there are 11 "smart" devices with sensors capable

of accurately describing and watching their environment. This trend is expected

to continue further in the future, with this figure rising to 500 in 2022, sharply

increasing the volume of information that can be exported from human activity.

This plethora of data creates enormous potential for developing applications and

services for users to improve their life parameters (from personal comfort to health or

transport). The secure and effective processing of these data is a major problem, for

which no specific solution has been widely adopted so far to address the significant

problems of personal data protection and the efficient management of such data.

Technologies such as IPv6 promote cloud management by directly exposing all

devices over the Internet and thus allowing easy interaction and remote control,

as opposed to Bluetooth LE, where local device management is the only available

solution and selected information is published on the Internet using gateway devices.

Finally, it is particularly important to enrich the data with external data such as

meteorological forecasts or data on traffic and public transport routes.

In this thesis, we are studying the real-time monitoring and organization of

sensing infrastructures according to the changing requirements of applications and

users. The aim is to design, implement and evaluate experimental self-organizing

mechanisms using semantic information to improve the quality of data flows provided

at the Internet level. As part of this process, we also seek to combine flows to more

efficiently share and manage information. The mechanisms we implement are based

on the "semantic entities" model, either as a part of the device network or as part of a

web service aiming at balancing computing and storage requirements at the various

levels of the network hierarchy. The goal is also to study new data processing and

tracking techniques to draw appropriate conclusions, predictions and decisions.





Περίληψη

Οι τεχνολογικές εξελίξεις των τελευταίων ετών τόσο σε επίπεδο υλικού όσο και σε επίπε-

δο λογισµικού έχουν οδηγήσει σε µια έκρηξη συσκευών και υπηρεσιών στον χώρο που

αποκαλείται συχνά ∆ιαδίκτυο των Πραγµάτων. Σήµερα σε κάθε σπίτι στις Η.Π.Α. υπο-

λογίζεται ότι υπάρχουν 11 ‘έξυπνες’ συσκευές µε αισθητήρες ικανούς να περιγράψουν

και να παρακολουθήσουν µε σηµαντική ακρίβεια το περιβάλλον τους. Η τάση αυτή

υπολογίζεται πως ϑα συνεχιστεί ακόµη περισσότερο στο µέλλον µε τον αριθµό αυτό

να ανέρχεται σε 500 το 2022 αυξάνοντας κατακόρυφα τον όγκο πληροφοριών που

µπορεί να εξαχθεί από κάθε ανθρώπινη δραστηριότητα . Αυτή η πληθώρα δεδοµένων

παρέχει τεράστιες δυνατότητες για την ανάπτυξη εφαρµογών και υπηρεσιών προς τους

χρήστες για την ϐελτίωση παραµέτρων της Ϲωής τους (από τον τοµέα της προσωπικής

άνεσης µέχρι την υγεία ή τις µεταφορές). Η ασφαλής και αποτελεσµατική επεξεργα-

σία των δεδοµένων αυτών είναι ένα σηµαντικό πρόβληµα για το οποίο δεν έχει µέχρι

σήµερα προκριθεί µια συγκεκριµένη λύση που να απαντά στα σηµαντικά προβλήµατα

της προστασίας των προσωπικών δεδοµένων και της αποτελεσµατικής διαχείρισης των

δεδοµένων αυτών. Τεχνολογίες όπως το IPv6 προωθούν την διαχείριση στο επίπεδο

του ςλουδ µε την άµεση επικοινωνία όλων των συσκευών µε το διαδίκτυο και των απο-

µακρυσµένο τους έλεγχο σε αντίθεση το Bluetooth LE όπου επιλέγεται η διαχείριση

των συσκευών σε τοπικό επίπεδο και η δηµοσίευση µόνο επιλεγµένων πληροφοριών

στο διαδίκτυο. Τέλος, ιδιαίτερα σηµαντικός είναι ο εµπλουτισµός των δεδοµένων µε

εξωτερικά δεδοµένα όπως µετεωρολογικές προβλέψεις ή δεδοµένα για των κίνηση και

τα δροµολόγια των µέσων µαζικής µεταφοράς.

Στην παρούσα διατριβή µελετάµε την σε πραγµατικό χρόνο παρακολούθηση και

οργάνωση δικτύων αισθητήρων ανάλογα µε τις µεταβαλλόµενες απαιτήσεις εφαρµογών

και χρηστών. Στόχος είναι ο σχεδιασµός, υλοποίησης και αξιολόγηση µε πειραµατι-

κούς µηχανισµούς αυτο-οργάνωσης µε χρήση της σηµασιολογικής πληροφορίας για

την ϐελτίωση της ποιότητας των παρεχόµενων ϱοών δεδοµένων στο επίπεδο του ∆ια-

δικτύου. Στα πλαίσια αυτής της διαδικασίας επιδιώκουµε και τον συνδυασµό ϱοών

για τον αποδοτικότερο διαµοιρασµό και διαχείριση των πληροφοριών. Οι µηχανισµοί

που υλοποιούµε ϐασίζονται στο µοντέλο των ‘σηµασιολογικών οντοτήτων’, είτε ως λει-



x

τουργικό κοµµάτι του δικτύου των συσκευών είτε ως µέρος διαδικτυακών υπηρεσιών

στοχεύοντας στην εξισορρόπηση των υπολογιστικών και αποθηκευτικών απαιτήσεων

στα διάφορα επίπεδα ιεραρχίας του δικτύου. Επίσης, στόχος είναι να µελετήσουµε

νέες τεχνικές επεξεργασίας και παρακολούθησης των τελικών δεδοµένων για την εξα-

γωγή κατάλληλων συµπερασµάτων, προβλέψεων και αποφάσεων.
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Chapter 1

Introduction

1.1 Motivation and Aspirations

Starting from Wireless Sensor Networks (WSN) and Future Internet (FI) solutions,

a set of device and service-based solutions have emerged in the past years to form

what is known as the Internet of Things (IoT). A Wireless sensor network (Figure 1.1)

refers to a group of spatially dispersed and dedicated sensors for monitoring and

recording the physical conditions of the environment and organizing the collected

data at a central location. Typically WSNs monitored environmental conditions like

temperature, sound, pollution levels, humidity, wind, and so on in hard to reach

environments where wired installations were not feasible. Future Internet refers

to the research topics that intend to resolve the shortcomings of current Internet

related technologies in terms of performance, reliability, scalability, security and

other aspects. The term “Internet of things” was coined by Kevin Ashton of Procter

Figure 1.1 An example of a Wireless Sensor Network (source: wikipedia)
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& Gamble, later MIT’s Auto-ID Center, in 1999 [16]. The Internet of Things can

be defined as the network of physical devices embedded with electronics, software,

sensors, actuators and connectivity which enables them to exchange data with each

other and the Internet using their unique identifiers [41]. Such an infrastructure

allows the development of applications and services that facilitate the lives of citizens

and workers around the world and bring us closer to the convergence of the physical

and digital worlds (Figure 1.2). These applications have provided us with solutions in

fields like smart-grids, smart-homes, intelligent transportation or smart-cities. Some

successful examples include, amongst others, Nest and Ecobee for smart-heating,

Phillips Hue for smart-lighting, Smarthings as a provider for multiple smart-home

solutions, Fitbit and Withings for personal fitness trackers, as well as the personal

assistants like Alexa from Amazon or Siri from Apple.

Figure 1.2 A smart and connected home

Despite the huge growth of such IoT applications, the usefulness of the data

that originate from these systems is still to be validated and proved. The volume

of data that can be generated from a single sensor device installed in a house or a

wearable device worn by a person can be overwhelming for the device itself and in

most cases needs to be offloaded to a data-processing application from which users

can access it and connect it to a more meaningful use [19]. Taking into account

the rate with which such devices are being integrated into our everyday lives, the

result of offloading so much information in the cloud can create huge volumes of

data. Such data need to be communicated, processed and stored in real time, while

accessing it in its raw format tends to be useless when compared with the knowledge

it can generate (e.g., information about a person’s lifestyle and diet compared with
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their daily step count and trips as latitude-longitude coordinates). As a result, the

need for a holistic solution on the subject of managing the data generated is still

an open subject for research in both academic and enterprise scopes. Similarly,

multiple interfaces for communicating and representing such data formats have

been used, with none getting a clear step ahead of the others in the path for a global

standard, if and when this will be possible.

Figure 1.3 Data Streams of the Internet of Things

Another important characteristic of the IoT domain is the huge diversity of the

communication mediums, protocols and data representation and exchange formats

used. Figure 1.3 showcases how IoT devices communicate the collected data with

cloud services using multiple technologies and protocols for local-only or local-

to-cloud communications. Each protocol offers different capabilities in terms of

throughput, communication range or power consumption, based on the needs for

the application use case. For example, communication protocols with limited range

like Zigbee[6], Bluetooth LE[34] or WiFi [4] are used to communicate data between

wearables or smart-home devices and local gateways. Zigbee and Bluetooth LE are

better suited for devices that operate on batteries and exchange limited amounts

of data (e.g., wearable fitness trackers or beacons). On the other hand, WiFi is
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more suited for devices that need more real time communication and can exchange

larger chunks of information like smart-plugs or cameras. Such devices are mostly

connected to wall outlets as WiFi needs significantly more power and using batteries

is not feasible on a long-term basis. On the other end, to communicate information

with the Internet, gateways or smart-devices use technologies like xDSL [76] lines, LTE

[1] or LoRa [5] and Sigfox [67]. xDSL and LTE offer a higher throughput when compared

to LoRa and Sigfox but have a higher installation and operational cost as they require

on premises infrastructures, maintenance and recurring costs either as monthly or

pay-as-you-go data plans. LoRa and Sigfox are simpler solutions, with no installations

on the premises of the user, other than the device itself, and minimal (i.e., a yearly

subscription for Sigfox) or no costs (LoRa) but offer significantly reduced throughput.

In all the above cases, the characteristics of the communication module used

defines the sampling rate that can be achieved by the sensing modules of the device.

A general rule followed in most applications or devices currently available is that

devices try to sample and transmit data as fast as possible while maintaining a decent

amount of battery life. This is done to ensure that the phenomena monitored are

well observed and no desired events are missed due to devices sleeping to conserve

power. This behaviour leads to an ever increasing load of data that needs to be

processed in order to extract useful information and conclusions.

This fragmentation in the IoT domain presents the main challenge of integration

and interoperability to achieve the desired end result of a unified virtual environment.

For instance, a data analytics solution needs to ingest data streams from multiple of

the sources presented above. Mixing different hardware and technologies makes this

much more complex in order to finally make every device or system “talk to” and

“understand” each other. Finally, there are all the cyber-security and cyber-pivacy

issues for not only wireless communication, but also for the control and operation of

the connected assets.

From the user’s or customer’s perspective, it is a costly and time-consuming

experience to become familiar and maintain multiple solutions from different vendors,

as well as integrating them all together in a single system. Industry standards are

being developed (i.e. as wireless protocols), and continue to evolve through open-

source frameworks that encourage collaborations among solution developers but

global acceptance is hard to achieve due to contradicting interests from the involved

partners.
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1.2 Goals

In order to provide such a holistic solution it is important to be able to integrate

the data that are generated by all of these smart devices in a common base. We

need to be able to process them, view them and operate on them using a common

methodology and also be able to gain common knowledge from them. This is the

most important step towards the unification of the information originating from a

fragmented ecosystem that can lead to the development of next-level applications and

services with significantly reduced development effort. In this direction and in the

context of this dissertation, we study the possible solutions to the aforementioned

problems in an environment filled with IoT devices. We focus our work in the following

fields:

• The representation of the IoT environment together with its metadata and

semantics in a suitable representation format capable of handling the complex

relationships that are generated in such a densely populated environment.

• The efficient collection and processing of streaming IoT data, in real time with

the minimum processing time and latency, using a modular system that

can be extended to support additional data types and devices with limited

interventions.

• The extraction of knowledge from the collected and processed IoT data. Raw

data are of limited value to end users in most cases. The real value lies on the

conclusions that can be extracted from them.

Once we have achieved all 3 goals, we will be able to analyze IoT data in real time

offering the outcomes of our work to developers that can then build upon our work

and generate a truly intelligent and connected environment.

Generating a common domain where data, metadata and semantics can be

described is a key step towards this result, mainly due to the variety of representation

formats currently used. Some of these formats have been used and tested for quite

some time (e.g., XML), others are too strict and hard to be understood by end users

(e.g., RDF) while some are more flexible (e.g., JSON) and decentralized, but this

flexibility leads to diverse implementations that are not always compatible. Building

on top of this common domain, we need to implement a common processing flow

that can be used over all the data generated. For this part, time-based analysis is the

most prevalent solution and one that better syncs with the human lifestyles; this is

the direction that we will follow as well. Finally, using these two prerequisites, we can
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then build up a system that can offer additional and more meaningful information on

the data received. We can build a system that uses elements like Machine Learning

to generate new and combined observations on the physical world, bridging inputs

from multiple IoT devices and describing our surroundings in a much more accurate

way.

1.3 Contributions

Based on the goals set in Section 1.2 in this dissertation we contribute to the field

of data analytics for the Internet of Things in smart environments and the post

processing analysis of the IoT data to provide a better understanding of the physical

surroundings. We propose new and extensible methods to store the information

of IoT installations and our findings allow for fast look-ups across the whole set

of IoT devices in the network. Processing the data generated in real-time becomes

a more streamlined work flow, using a standardized methodology that allows for

changing the data analysis from a single point. Data generated can be easily stored

and retrieved from a specifically designed, reliable and efficient storage engine. Using

the original and calculated data in a feedback loop also allows us to build additional

processing and analysis layers that generate more data and information resulting in

more accurate outcomes.

The results of our work can be categorized in the following points:

1. The first goal of our work was to setup a base set of infrastructures for bringing

the physical world with its digital representations. We wanted to be able to

understand what is where and how it interacts with its environment as well as

what it observes in real time. Our work towards this direction was twofold:

(a) We have developed a graph-based schema to represent IoT installations

together with their semantics and meta information. The schema is not

based on the traditional relational databases but builds on the ideas of

graph theory and utilizes a new database model, the a graph database.

Each entity that participates in real world interactions or can be observed

by an IoT device is represented as a nodes of a graph, while the interactions

themselves are the vertices of the graph. We therefore build a web of

entities and relations that are easy to visualize and traverse to find

answers to various queries that may arise inside a smart environment.

Such queries can look for the the causes of events observed (e.g., what
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caused the rise of luminosity in room), the available information for an

area (e.g., what information is sensed for the building) or even the social

interactions and connections of individuals (e.g., which people use the

same appliances).

(b) For the analysis of the data we provide a template implementation for

setting up a system that can receive, process and analyze an unbounded

number of input data streams with no impact on its operation. Such data

streams can originate from sources that range from single smartphones

to city wide sensor installations. The system is also capable of handling

data streams that provide unbalanced volumes of information with no

performance drops. The calculation methodology itself is developed as

to be easily customized and extended, based on the data types and

the calculations required in every environment it is deployed to. This

processing engine is capable of identifying the data from each of the

sensing devices routing them to the appropriate processor without any

prior per-device configuration.

Both the database and processing engine presented in (a) and (b) are used

to support a publicly available system that supports over 300 users and

consumes data from more than 20 IoT installations with almost 5000 sensing

points. Based on our evaluation the database model can easily respond to

all queries in real time, even in use cases where the database ranges to tens

or even hundreds of thousands of entities. We also performed an extensive

evaluation of the processing engine in real world conditions for more than

2 years achieving sub-millisecond processing times per measurement. We

stressed our system with data volumes that exceed by far the data collection

rates of our real world installation to prove that it is future-proof and scalable.

This work is presented in [7, 9, 10, 51, 52].

2. To better understand the collection mechanisms of data from more distributed

and uncontrolled IoT installations we also developed a solution that can collect

data using smartphones in smart cites carried by volunteers in the context

of crowd-sourcing campaigns. This method is used to augment smart-city

installations with mobile and inexpensive infrastructures using the power of

volunteers local activist groups. Such solutions can be deployed with minimal

cost by the officials of a city as a new service that can provide them with

important insights for the local conditions, environmental, social or other. This
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smartphone application was used in more than 10 experimentation campaigns

in cities around Europe (including London in the UK, Santander in Spain,

Patras in Greece and Aarhus in Denmark) by more than 50 users over the past

2 years. Results for this work are presented in [8, 11, 12, 36, 37].

3. Finally, we also present a framework for characterizing the data from all the

above inputs using Machine Learning in real time by taking advantage of the

streaming data mechanism developed in the data processing engine described

above. This framework was used to analyze real world data from smart-city

IoT infrastructures as well as the data that originate from smaller scale IoT

installations. This work is presented in [26].

The outcomes of this dissertation mentioned in this chapter are used in the heart

of two EU-funded Horizon 2020 research projects: GAIA1
and OrganiCity2

that focus

on energy efficiency and smart cities respectively.

• GAIA aims to promote positive behavioural changes within communities re-

garding energy consumption/awareness using the gamification of real-time,

IoT-enhanced energy consumption metrics in trial schools located in Italy,

Greece and Sweden.

• OrganiCity is a service for experimentation that explores how citizens, businesses

and city authorities can work together to create digital solutions to urban

challenges using a set of tools experimenters can use to test and develop their

own ideas into viable smart-city application.

1.4 Thesis Organization

The rest of the dissertation is organized as follows:

In Chapter 2, we start by presenting state-of-the-art work in the field of IoT

applications, data analysis and data processing. We also present a selected list of

research applications that leverage IoT technologies in the areas of Smart Buildings and

Smart Cities focusing on data collection, as well as the challenges in analyzing and

validating such data.

In Chapter 3, we showcase our solution in the context of representing the IoT

ecosystem in the digital world. We present a graph-based storage engine that

1http://gaia-project.eu
2http://organicity.eu/

http://gaia-project.eu
http://organicity.eu/
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can store all the information related to an IoT installation. The data are easily

queried through the database’s interface and an appropriate programming interface.

Chapter 4 builds upon this data storage and contains our design of a streaming

data analytics engine designed for the IoT ecosystem. We present the data that

can be introduced in our system in Section 4.1, the architecture of the system in

Section 4.2 and the customizable modules that process the data based on their

metadata presented in the previous chapter in Section 4.2.2. Our work is applied and

tested against the data originating from a fleet of buildings. Finally, in Section 4.3,

we showcase the evaluation of the system during its real world operation over a

period of more that 2 years and a selected set of observations to point out and prove

its efficiency.

Chapter 5 focuses on how the aforementioned technologies can be used when

the IoT installation scales from a small number sensors inside one building to one

or even multiple cities. We present this case of a large scale installation, where the

sensor devices are no longer controlled by a single entity or organization but include

data from multiple, even untrusted sources or entities raising concerns about their

quality, validity or trustworthiness. In this context, we present in Section 5.2 a

framework that can be used to crowdsource data using volunteers in a city and

how we can validate and annotate them in an automated manner in Section 5.3.

Section 5.2.1 presents the evaluation of the crowdsourcing platform in a real world

environment as part of an EU research project. Similarly Section 5.3.3 presents

a number of evaluation applications that showcase how the implemented solution

can provide annotations over the collected data originating from a two different IoT

installations. Both applications are tested in the context of OrganiCity, an EU funded

project that explores how citizens, businesses and city authorities can work together

to create digital solutions to city challenges.

Finally, in Chapter 6 we present conclusions from the work performed in all the

above scenaria, lessons learned and possible extensions that need to be investigated

in the future.





Chapter 2

Background and Related Work

In this chapter we aim to provide In this chapter present basic concepts and

definitions that we will use in the rest of this dissertation. We define what is

described as Internet of Things, its characteristics and base application domains

together with main usage examples that provide us with incentives for building such

applications.

2.1 The Internet of Things

The Internet of Things (IoT) is a system of interrelated computing devices, analog and

digital machines, objects, animals or people that are provided with unique identifiers

and the ability to transfer data over a network without requiring human-to-human

or human-to-computer interaction. A thing, in the Internet of Things, can be a

person with a heart monitor implant, a farm animal with a biochip transponder,

an automobile that has built-in sensors to alert the driver when tire pressure is

low – or any other natural or man-made object that can be assigned an IP address

and provided with the ability to transfer data over a network. Experts estimate that

the IoT will consist of about 17.6 billion objects by 2020, a number far less than

the original predictions of 1 trillion or 50 billion devices, but still quite high
1

(when

compared to the number of devices currently connected to the Internet). It is also

estimated that the global market value of IoT will reach $7.1 trillion by 2020 [40].

The IoT allows objects to be sensed or controlled remotely across existing network

infrastructure, creating opportunities for more direct integration of the physical world

into computer-based systems, and resulting in improved efficiency, accuracy and

1
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-

50-billion-devices-by-2020-is-outdated
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economic benefit in addition to reduced human intervention. When IoT is augmented

with sensors and actuators, the technology becomes an instance of the more general

class of cyber-physical systems, which also encompasses technologies such as smart

grids, virtual power plants, smart homes, intelligent transportation and smart cities.

2.1.1 Streaming IoT Data

The data generated in the context of the IoT do not follow the typical characteristics

for data processing technologies and methodologies used in past computer science

use cases as their volume usually exceeds the size a single machine can process

in real time. The first attempts to harness such data were made using big data

technologies like Hadoop [75]. Such systems use a set of processes that can be run

in rounds one after the other and reduce the actual volume of data available to a

small and usable information, and were capable of overcoming the original problems

encountered in IoT systems. However, they lack a viable solution in the most recent

use cases of IoT, where the actual data are not a priori available to the system that

will process them. Such data are called streaming and are becoming a more and

more common example of how the information from IoT installations will arrive to

the processing system. Streaming Data is data that are generated continuously by

thousands of data sources, which typically send in the data records simultaneously,

and in small sizes (order of Kilobytes). Streaming data includes a wide variety of

data such as log files generated by customers using your mobile or web applications,

ecommerce purchases, in-game player activity, information from social networks,

financial trading floors, or geospatial services, and telemetry from connected devices

or instrumentation in data centers.

This data needs to be processed sequentially and incrementally on a record-by-

record basis or over sliding time windows, and used for a wide variety of analytics

including correlations, aggregations, filtering, and sampling. Information derived

from such analysis gives companies insights into many aspects of their business

and customer activity such as service usage (for metering/billing), server activity,

website clicks, and geo-location of devices, people, and physical goods –and enables

them to respond promptly to time-critical situations. For example, businesses can

track changes in public sentiment on their brands and products by continuously

analyzing social media streams, and respond in a timely fashion as the necessity

arises.

Streaming data processing is beneficial in most scenarios where new, dynamic

data is generated on a continual basis. It applies to most of the industry segments
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and big data use cases. Companies generally begin with simple applications such as

collecting system logs and rudimentary processing like rolling min-max computations.

Then, these applications evolve to more sophisticated near-real-time processing.

Initially, applications may process data streams to produce simple reports, and

perform simple actions in response, such as emitting alarms when key measures

exceed certain thresholds. Eventually, those applications perform more sophisticated

forms of data analysis, like applying machine learning algorithms, and extract deeper

insights from the data. Over time, complex, stream and event processing algorithms,

like decaying time windows to find the most recent popular movies, are applied,

further enriching the insights.

When comparing such streaming data with batch processing, we need to note

that the latter can be used to compute arbitrary queries over different sets of data.

It usually computes results that are derived from all the data it encompasses, and

enables deep analysis of big data sets. MapReduce-based systems, like Hadoop,

are ideal for such batch jobs. In contrast, stream processing requires ingesting

a sequence of data, and incrementally updating metrics, reports, and summary

statistics in response to each arriving data record. It is better suited to real-time

monitoring and response functions.

For managing large data streams produced by the Internet of Things, several

research prototype implementations and some more commercially-oriented solutions

have been presented. There is a large set of requirements, like publishing/subscribing

on data streams, interfacing with various technologies and performing real-time

analysis that makes it crucial to build systems extending a lot of classical RDBMS

systems. One of the fist options made available in this area was Xively[77] (previously

known as Cosm or Pachube). It is a secure, scalable platform that connects devices

and products with applications to provide real-time control and data storage. Other

enterprises, that focused more on offering computing services, like Amazon and

Microsoft also offer solutions for IoT data processing with AWS IoT [14] and Azure IoT

Suite [50]. Both systems focus on helping device manufacturers collect and send

data to the cloud, while making it easy to load and analyze them.

At the core of all similar solutions lies the concept of message exchanges using

normally a central service that plays the role of a Message Broker. A Message

Broker, in the general case, maintains a list of available topics on which client

applications can publish updates while other application can subscribe for updates.

This design concept allows the development of asynchronous system designs that can

be developed independently without any restriction on the hardware or software used.
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All data exchanges are done over a set of well-defined interfaces that can be available

simultaneously on the same system. Typical examples of such message brokers are

Apache Kafka, RabbitMQ, Mosquitto or VerneMQ that implement one or multiple

messaging protocols like ActiveMQ or MQTT, which offer similar functionality with

trade-offs in features based on the requirements from the application in question.

2.2 IoT applications

2.2.1 Smart Home

Smart Home is one of the most discussed and trending terms in relation to the IoT

domain in web searches according to Google Trends as presented in Figure 2.1,

reaching “Big Data” in popularity. It refers to the introduction of multiple IoT devices in

a residential or office building that extends the boundaries of the traditional Building

Management solutions and offers more personalized information on the operation and

the parameters of the building itself, as well as its occupants. Recent publications

like [46] identity the essential technologies for successful IoT solutions as radio

frequency identification, wireless sensor networks, middleware, cloud computing and

software for application development. They also identify the enterprise applications

sectors in monitoring and control, big data and business analytics, and information

sharing and collaboration. [47] presents the solution to developing such systems

in the use of a middleware that can envelop older and new components to support

common naming, addressing, storage and look-up services. Some of the work

available [66], differentiates on the physical location where the analysis of the data

takes place, either in house or on centralized services.

In the general case of a Smart Home, household devices become equipped with

interfaces for wireless communication, forming up a home network. Each home has

one or more such networks, and the sensed data from each device are forwarded

to central stations, which can be referred as gateways or smart hubs. Nodes of

this network are device that have moderate or limited computational power and

communication capabilities. The gateway is the one device that has some additional

data storage capacity and can perform local processing or simply communicate with

devices in the outside world. In the case of larger smart buildings, the gateways may

have additional capabilities based on the amount of devices that depend on them.

Gateways also play an important role in achieving interoperability across devices of

multiple technologies and communication protocols.
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Figure 2.1 Google trends data on Smart Homes, Smart Cities, Big Data and Internet

of Things.

2.2.2 Smart Cities

Recent studies [17] have predicted that, by 2050, 70% of the world population

will live in urban areas, while more than half of the world’s population already

lives in cities. In this context, different stakeholders (city planners, politicians,

researchers, etc.) implement policies that aim to improve the quality of life in

urban environments, also developing initiatives contributing to more efficient and

sustainable cities. The fact that cities represent a strategic meeting point between

citizens and technology provides an additional dimension that can be exploited for a

collaborative and continuous crowd-sourced creativity. This is what we categorize as

societal innovation: human beings are immersed in a context which, based on IoT

technologies, stimulates the conception of new ideas and solutions addressing the

problems that are related to cities. To facilitate the adoption of such solutions, IoT

experimentation under real world conditions is crucial to their validation.

In recent years, experimentation with Future Internet (FI) technologies has been

led by commercial companies and research centers, with less involvement from

external stakeholders like citizens or decision makers. Due to the slow uptake, it

is evident that a more holistic approach is needed, where all the relevant actors

are involved in order to produce more useful and engaging applications. In this
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sense, IoT technologies are contributing to the creation of innovation ecosystems,

where the FI provides an opportunity to the research community to modernize the

existing solutions and adopt new ones, validated through the involvement of multiple

stakeholders. Deployment, testing and evaluating solutions in cities under real

conditions enables the possibility to conceive new or improve existing urban city

services, such as waste or transportation management. Furthermore, the access

to the vast amounts of urban data, generated from numerous sources, enables the

design, implementation and ability to assess new techniques and algorithms that

have the potential to outperform existing ones.

Recently, experimentation with IoT-related technologies in urban environments

has attracted quite a lot of attention, especially in Europe. In this context, many

research projects have been conceived to experiment with large scale infrastruc-

tures, developing different pilots that evaluate the proposed use-cases in the urban

landscape. In such initiatives, the reader can find how different smart-city applica-

tions, outdoor deployments, and indoor installations in buildings targeting energy

efficiency have been carried out. SmartSantander [62] is probably a characteristic

example of how a massive deployment of IoT devices is used within an IoT facility

to allow experimenters to conduct research using innovative solutions in the city

context. The experimentation of smart city architectures, services and applications

in real-world urban environments has essentially been pioneered, deployed over a

very large-scale IoT infrastructure in the city-center of Santander.

2.2.3 Crowdsourcing and Experimentation-as-a-Service

Projects like IoT-Lab investigate crowdsourcing and IoT services for supporting multi-

disciplinary research tasks [42]. However, relatively little attention has been given to

combining both an urban IoT infrastructure, comprising stationary and mobile IoT

nodes, with a crowd-sensing component utilizing “transient” IoT resources contributed

by citizens. The area of participatory sensing using crowdsourcing and harnessing

ubiquitous technologies is discussed extensively in [35], where authors provide both

the theoretical background and a review of a number of approaches currently utilized.

However, although a number of technical advancements were made in these projects

with respect to making such IoT infrastructures available to the research community

and the industrial sector, there is still a lot of issues that need to be solved in a more

coherent and holistic manner. The most relevant one can be considered as how to

empower citizens or other stakeholders to participate in the societal change of the

smart city innovation ecosystems. In this sense, the Experimentation-as-a-Service
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(EaaS) paradigm has been conceived to achieve this goal, although depending on

the project, it has been implemented using different approaches. In [63], EaaS

is a federated platform that provides reconfigurable on-demand access to a set of

resources, allowing researchers to rapidly deploy experiments based on services

belonging to different smart city domains. Although the user stands as the key

actor of the experimentation, an integral framework and tools have not been defined

allowing them to be part of the co-creation process. On the other hand, in [45]

the EaaS concept is based on the creation of an Application Program Interface

(API) that enables executing experiments over multiple existing IoT testbeds. In this

case, the EaaS uses semantic-based technologies to provide an agnostic layer that

enables federating the several IoT experimentation facilities. However, they have not

designed the mechanisms to actively engage citizens in both defining application

scenarios and participating in their conception, usage and therefore validation. The

implementation of EaaS solutions has recently grown in relevance, catching the

attention of large companies and organizations. As an example, IBM (Armonk, NY,

USA) provides an EaaS cloud-based platform that enables users to demonstrate and

verify new products and technologies [61]. Also, in the city of Bristol (UK), a joint

venture company provides a digital infrastructure that can be used by companies

and developers to build and test a wide range of applications and smart city services

[55].

2.2.4 Extracting Knowledge from IoT Data

As mentioned before, a central question concerning such streaming big data orig-

inating from IoT installations is whether or not the generated data can be trusted.

And when the data can be trusted, how do we make sense out of them by extracting

knowledge, i.e., something actually useful, going beyond a technology demonstrator?

Moreover, how do we provide usefulness to the owners of the data and how do we

involve them in the whole process? Essentially, such questions get to the point of

understanding how do we actually make the analysis of the data smarter to achieve

what we need in the level of a smart city itself. Part of the answer to this question

lies in creating more "useful" information out of raw sensors or other kind of data

representing observations of the urban environment. For example, certain events

generate data reported by the city sensing infrastructure, but are, more often than

not, missing an appropriate description. Consider the case of a traffic jam inside

the city center; it generates sensed values in terms of vehicles’ speed, noise and gas

concentration. Moreover, in most cases, multiple devices or services, while missing
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useful correlations in the data streams, report such values. Adding data annotations

to such smart city data through machine learning, or crowdsourcing mechanisms,

can help reveal a huge hidden potential in smart cities.

Although there have been pioneering studies and applications on combining

human and machine intelligence, research in this field is still at its infancy stage. [35]

presents a vision on the potential of combination patterns of human and machine

intelligence, identifying three possible patterns sequential, parallel and interactive.

Moreover, in [18] authors present a crowd-programming platform that integrates

machine and human based computations. Their system integrates mechanisms for

challenging tasks like human task scheduling, quality control, latency due to human

behavior etc.

SONYC [69] is an example of a project with a very specific use-case, employing

machine-learning algorithms to classify acoustic readings into various types of noise

encountered inside an urban environment. Similarly, learning from the crowds,

by using the crowdsourced labels in supervised learning tasks in a reliable and

meaningful way is investigated in [60, 73]. In the above cases, each system builds

what can be described as a taxonomy that is to be used for the process of knowledge

extraction on top of the available datasets. Taxonomies are ubiquitous in organizing

information, by grouping digital objects/content to categories and/or mapping

them to abstract concepts expressing meanings, entities, events etc. Most of the

modern social networking applications (like Flickr) or online collaborative tools (like

Stack-Exchange) are relying heavily on an underlying taxonomy. Building and

curating a taxonomy is a challenging task that requires deep knowledge of the data

characteristics. Taxonomies are usually created by small groups of experts and

target a very specific application domain. Folksonomies, on the other hand, are quite

popular in online applications and they are categories of tags collectively organized

by the users of the applications. Such taxonomies usually have weaknesses like

double entries, misclassified tags, entries with typos or ambiguities in the categories,

but with simple processing in the background, it is possible to normalize them and

map their content to better established knowledge bases (like Wikipedia or WordNet).

In [24], the authors propose a workflow that creates a taxonomy from collective

efforts of crowd workers. It uses a feedback loop that suggests multiple categories

to each part that needs to be categorized and then uses a different set of workers

(or volunteers) to reduced the proposed categories to a single best-suggested choice.

This loop can later on be used to eliminate duplicate and empty categories, and
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to nest related categories in an iterative process. Such an approach can produce

results that are similar in cost and quality to the ones generated by experts.

2.3 Making use of IoT Data

2.3.1 Building Energy Efficiency using IoT

In general, about 75% of buildings in Europe are residential [30] and cause a

significant amount of greenhouse gas emissions (in 2009 residential buildings were

responsible for 68% of the total energy usage in buildings [31, 48]).Keeping this

in mind, we can acknowledge that systems that provide real-time monitoring and

actuation on multiple buildings over IoT infrastructures are going to be used in a

highly increasing rate. Such systems can focus either on energy consumption or on

environmental parameters monitoring, but can also be tailored in order to support

other applications, like smart storage or manufacturing.

In recent years, the European Union has been aggressive in promoting energy

efficiency in buildings, through a multitude of small and large-scale projects and

initiatives. Build Up [32] is a EU-specific portal for gathering all sorts of resources for

energy efficiency in buildings, e.g., energy-saving research project results, national

regulations and legislation. ICT4SaveEnergy [64] was a large-scale multinational

research project that involved energy efficiency in multiple types of public buildings -

theaters, enterprise offices, stadiums, schools, universities. Its continuation, [21],

focuses on 4 public university sites located at Helsinki, Lulea, Lisboa and Milan.

SMARTSPACES [68] is another similar large-scale project, taking place at 11 pilot

sites, also researching energy efficiency in public buildings of various types. More

focused on school buildings are the VERYSCHOOL [71] and ZEMEDS [78] projects,

with the latter further focused on Mediterranean countries and targeting retrofitting

of energy-saving components.

2.3.2 Behavioural Change in Education using Energy Efficiency

IoT Data

Affecting the behavioral characteristics of the citizens’ interaction within the buildings

where they live, learn and work will have a great impact on the overall reduction of

energy consumption [48]. In the last few years there has been a wealth of activity on

facilitating exactly this kind of goals. A small part of it focuses on the educational
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community, i.e., faculty, staff, students and parents. It should come as no surprise

that raising awareness among young people and changing their behavior and habits

concerning energy usage is key to achieving sustained energy reductions. Specifically

in the EU, people aged under 30 represent about a third of the total population [27].

In addition, young people are very sensitive to the protection of the environment so

raising awareness among children is much easier than other groups of citizens.

As we are now rapidly approaching 2020, it is as important as ever to address

the skills that will enable all citizens to make informed and well-thought choices.

Also, another ubiquitous fact should also come to mind: we cannot manage what

we cannot measure. It is necessary to monitor the impact of our current behavior

or the effect of potential behavioral changes in order to have a clearer picture with

respect to e.g., our everyday energy consumption. Furthermore, environmental

education, as part of the broader issue of science, is an important component

of the EU cultural heritage [57]. In fact, EU considers environmental education

one of the most prominent instrument to influence human behaviour towards

more environmentally sustainable patterns [54]. Hence, associating environmental

education and game-based learning will lead to students taking over a leading role

in the educational process, setting questions, investigating the possible answers and

looking for alternative explanations to come up with a fitting model.

Several software products for monitoring sensor data exist, able to capture sensor

data from proprietary data formats or protocols and visualize them. Regarding

visualisation, [33] discusses the most common approaches with respect to feedback

design in eco-conscious work for the past decade, from the perspective of both

ICT and psychology, providing insights to their strengths and weaknesses. [72] is

an example of a typical engineering-focused approach, that utilises a number of

skeuomorphic metaphors to enable smart home feedback creation on smartphones.

While such systems provide end-users and developers with powerful tools and

front-ends, we believe they should also be paired with multiple approaches, offering

multiple possibilities to interact with the system. [29] are examples of large-scale

smart metering deployments that used Web portals (for electricity and water) and

other visualization tools to support the system and engage end-users to participate.

Their findings support the notion that the use of multiple approaches, with respect

to visualization and feedback, serves such purposes well. We have followed a similar

line of thought while implementing our own user interfaces and will continue to

evolve our approach in future revisions of the system.
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Regarding similar work carried out in Europe, a related action was [44], in the

context of the GEN6 research project. We build upon such results and have already

integrated aspects of this specific project into our own. Other projects like [21] and

[68] target the educational sector as well, but focus mostly on a university level while

we target students of younger age. They also mostly leave out the environmental and

health part of building monitoring, which is a major component in our work. Projects

like [22] have instead focused more on providing educational material and game-

focused activities to promote learning aspects of sustainability and energy efficiency.

We embrace such methods as well, but we chose to build an IoT infrastructure to

utilize the actual environment of school buildings; we believe that by using this

infrastructure and the data it produces, it will be easier and more effective to build

tools that better reflect the everyday reality in school life and provide more meaningful

feedback, with respect to the impact of any potential changes in the behavior of

students and school staff. [71] uses a similar approach to our own, however, we

utilize a larger number of installations and target a broader audience.

Recently, several works introduced such concepts in the curricula of schools

participating in research projects. [65] produced several guidelines and results

regarding good energy saving practices in an educational setting, [71] also produced

certain related results.

2.4 Graphs

1 2 3

6 4 5

Figure 2.2 Example of a Graph.

Graphs are the basic subject studied by graph theory. The word "graph" was first

used in this sense by James Joseph Sylvester in 1878. In mathematics, and more

specifically in graph theory, a graph is a structure amounting to a set of objects in

which some pairs of the objects are in some sense "related". The objects correspond

to mathematical abstractions called vertices (also called nodes or points) and each

of the related pairs of vertices is called an edge (also called an arc or line) [70].
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Typically, a graph is depicted in diagrammatic form as a set of dots for the vertices,

joined by lines or curves for the edges. Graphs are one of the objects of study in

discrete mathematics. An example of a simple graph is available in Figure 2.2, with

6 vertices:

(1,2,3,4,5,6)

and 7 edges:

((1,2), (2,3), (3,4), (3,5), (4,5), (2,4), (2,6)) is available in

Edges in a graph may be directed or undirected. A directed edge represents a

relationship that is expressed from the starting to the ending node of the edge. For

example, in a family tree a directed edge can express that a person “is the parent of”

another person. In a more strict mathematical definition it is written as an ordered

pair G = (V,E) with V a set whose elements are called vertices, nodes, or points; E a

set of ordered pairs of vertices, called directed edges. A directed graph similar to the

on presented in the previous figure is available in Figure 2.3. This time the graph

has again 6 vertices:

V=(1,2,3,4,5,6)

but 7 directed edges:

E=((1,2), (2,3), (3,4), (3,5), (4,5), (2,4), (2,6), (1,6), (6,1))

As we can see from the figure, edges can exist in both directions between two edges.

1 2 3

6 4 5

Figure 2.3 Example of a Directed Graph.

A Property graph, builds upon the concept of a directed graph and allows for the

vertices and edges of the graph to have names or labels. These edges are always

directed and both edges and vertices can be associated with additional properties

as key/value. Figure 2.4 depicts an example of a property graph. This graph,

contains 6 vertices (named bob,john,alice,bike,car,hoverboard) and 5 edges

(e.g., bob-drives->bike). Also vertices can contain additional properties in the

format of key/value pairs like for example the vertice car has a brand property

with value of BMW.
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bob john alice

bike car hoverboard

color: green
brand: BMW

color: gray

age: 18

drives
drives

isparentofisparentof

drives

Figure 2.4 Example of a Property Graph.





Chapter 3

Representing the IoT

In order to interact with an IoT installation, an appropriate representation for it in

the digital world is required. Each installation comprises multiple elements that

produce, consume or transfer data. Every element in this ecosystem potentially has

multiple relations with other ones creating a complex schema that can be hard to

understand or visualize as the scale of the installation increases. To overcome this

problem and simplify our interaction with this digital image representation, formats

more appropriate than the traditional relational databases need to be applied. At

the same time, these formats need to be easy to understand and be used by non

tech-savvy users like artists or activists in their work with this, now accessible, living

part of our environment.

In this chapter, we focus on a simple case of a building populated with IoT devices

for monitoring and limited actuation use cases to extract information about all the

involved entities and their possible interactions. This information will help us define

a representation schema that best fits our requirements, while it is suitable for use

in a high performance computation system.

3.1 A Typical Smart Building IoT Installation

As mentioned before, we focus on a building-wide installation. Such an installation

is used as the basis for a number of EU funded research projects that target energy

efficiency in public school buildings. It is based on the installation of custom

(Figure 3.1) and off-the-self IoT devices in a number of Greek public school buildings

to monitor energy consumption and environmental parameters (Figure 3.2).

The generated information, supplemented by a set of software tools aims to

help educate students on energy and environmental matters while achieving better
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Figure 3.1 Custom IoT device containing temperature, humidity, noise, luminosity

and gas concentration sensors based on the Adruino™ micro-controller.

energy efficiency in the buildings in question. By focusing on increased energy

awareness and behavioral transformation within students and teaching staff, the

projects “Greenmindset” and “GAIA” envisage multiple benefits apart from the savings

to be achieved in terms of energy consumption. Historically, energy expenses in

schools have been treated as relatively fixed and inevitable. However, evidence shows

that a focus on energy use in schools yields an array of important rewards in concert

with educational excellence and a healthy learning environment [25]. Educational

buildings constitute the 17% of the non-residential building stock (in m2
) in the

EU [30]. Since energy costs are the second largest expenditure within school district

budgets, exceeded only by personnel costs [3], significant savings can be carved out

for reallocation to needed services, if energy consumption can be reduced.

The educational sector presents a very interesting and important case for the

problem monitoring and managing of a very large number of IoT installations situated

in a very fragmented and decentralized manner. In national educational systems
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we have literally thousands of buildings spread throughout a country, usually, with

very different characteristics in terms of construction, age, size, etc. It is reasonable

to expect a diverse set of device providers working under the same interoperability

framework. Due to this, the tools that interact with such an environment need

to be hardware independent, supporting elements from multiple manufacturers

that inter-operate under the same framework and are commonly represented and

interacted with.

Figure 3.2 Example of two devices installed in a school building (an environmental

meter on the left and a power meter on the right)

The goal of the GAIA platform is direct it to allow users directly compare the

collected data of their school to other similar buildings participating in the project, by

carefully taking into account environmental parameters like the time of year, location

or weather. The final platform needs also to support multiple end-user groups that

inherently exist in the educational sector: students, educators, building administra-

tors and other administrative staff. In such a building, a typical installation based

on the learnings of the GAIA project is comprised of:

• a power meter device installed in the main junction box of the building
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• 5-10 environmental meter devices, installed in the a subset of the building’s

classrooms and common areas.

• a weather station device installed on the roof of the building (if easilly accessi-

ble).

Figure 3.3 An example of a typical installation inside a school building with a

weather station, 4 environmental meter and one power meter devices.

3.2 Key Elements

Based on the previous discussion, we can summarize the involved elements in the

following categories:

• Users: Users are people that will interact with or live inside the installation.

• Sensing devices: Sensing devices are IoT devices that are installed and have

the role of data producers. Their information can be transferred, consumed or

collected for future use.
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• Actuator devices: Actuator devices are IoT devices that can be controlled to

invoke change in the physical world. They include elements like light switches

or the set value of the thermostat in an HVAC system.

• Gateway devices: Gateway devices are IoT devices that simply have the role

of transferring information between the installation and the Internet. Their

role is crucial in installations where the other IoT devices installed are not

Internet-enabled and cannot communicate directly with the rest of the system.

• Observed Phenomena Observed Phenomena refers to the physical phenomena

that can be observed from a digital sensing or actuator devices.

• Units of Measurements Units of Measurements refer to the convention used

to quantify an observed phenomenon.

• Locations Locations refer to the physical and logical groupings that can be

applied to any of the elements presented above. They can describe a building,

a school unit or a classroom but also a more abstract grouping of a set of users

inside multiple school communities.

In a similar manner there are relationships between the elements presented

above that are defined as follows:

• Ownership Ownership defines the relation in which users have the full control

and permissions on a set of sensing, actuator or gateway devices and physi-

cal locations. This relationship is important for administrative and security

purposes and can be used for the management of the whole installation.

• Access: Access defines the right of a user to view the information produced by

a set of sensing devices or physical location or control an actuator device. Such

rights can be limited based on the type of the user as for example teachers

and students may need access to detailed information only about their own

classroom while they are allowed to view only limited data on the rest of their

school building. Similarly, students may not be allowed to control actuator

devices even in their own classroom as elements like the HVAC system is

configured only by their building managers or an authorized teacher (e.g., the

principal).

• Membership: Membership refers to the fact that each one of the sensing

actuator and gateway devices as well as users are part of a physical or logical
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location. For example sensing devices are part of a physical classroom that

is part of a building, while they are also part of the local educational branch

(i.e., the prefecture the school belongs to). Similarly users also belong to user

groups that are tied either to their actual physical location or study groups

that may be defined withing their schools.

• Sensing Attributes: Sensing attributes refer to the sensing and actuator

devices and are used to define what type of information each one of the devices

generates, or what type of device it controls. The can be information about

the physical phenomenon or the measurement unit that is measured or even

whether the data generated are raw values or need a post processing to be

valid.

3.3 Digital Representation

To provide a digital representation of what we described before we choose to use

a graph database. Such a database is more appropriate to our use case as it can

easily bind elements and their relations to vertices and edges of the graph. It also

provides as with a common representation and storage mechanism for each element

or relationship using key-value pairs for their attributes and simplifies searches

inside the graph in the form of graph traversals.

3.3.1 Graph Databases

We base our design in the Neo4j Graph Platform
1
. The Neo4j native graph database

is an enterprise grade solution for creating transactional applications. Neo4j comes

bundled with the Cypher graph query language allows for expressive and efficient

operations on the database both in terms of time and computing resources. Using

a graph database we are able to leverage complex and dynamic relationships in

use-cases with highly connected data to generate insight and a better understanding

of the relationships between the entities of our application. Graph databases are the

best way to represent and query data of any size or value. Based on the usage of the

data from the graph we can separate graph databases in two separate spaces:

• Transactional, persisted online graphs, typically accessed in real time inside

the context of an application.

1
https://neo4j.com/product/
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• Offline graph analytics applications, that are composed of a series of batch

steps executed over a set of collected data.

The fist one mostly refers to applications that include social or user interactions

while the second one refers mostly to statistical and data mining applications.

Formally, a graph is just a collection of vertices and edges-or, in less intimidating

language, a set of nodes and relationships that connect them. Neo4j, follows the

Property Graph Model, a simple yet powerful enough model to describe the vast

majority of graph use-cases. A property graph has the following characteristics:

• It contains nodes and relationships

• Nodes contain properties (as key-value pairs)

• Relationships are named and directed, and always have a start and end node

• Relationships can also contain properties

Querying graph data in Neoj4 is possible using Cypher. Cypher is an expressive

(yet compact) graph database query language. Although currently specific to Neo4j,

its close affinity with our habit of representing graphs as diagrams makes it ideal

for programmatically describing graphs. Cypher is arguably the easiest graph

query language to learn, and is a great basis for learning about graphs. Other

graph databases have other means of querying data. Many support the RDF query

language SPARQL [59] and the imperative, path-based query language Gremlin [39]

but Cypher is a lot easier to learn and use allowing even non-experts to express

simple queries in a matter of minutes.

The Neo4j database runs on top of the JVM in two modes: as an embedded

database, that is stated as part of an application but remains persisted on the disk of

the application’s host, or as a standalone database server. Based on the application’s

use-case the developers are able to select the best mode that fits their case. Using

Neo4j as a standalone server allows for clustered, sharted and replicated setups like

the ones presented in Figure 3.4.

Neo4j stores graph data in a number of different store files on disk. Each

store file contains the data for a specific part of the graph (e.g., there are separate

stores for nodes, relation-ships, labels, and properties). The division of storage

responsibilities -particularly the separation of graph structure from property data-

facilitates performant graph traversals, even though it means the user’s view of

their graph and the actual records on disk are structurally dissimilar. Figure 3.5
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Figure 3.4 Neo4j clustered setup using read/write load balancers to direct requests

to a different database instances.

describes the physical storage of the Neo4j data by depicting the structure of nodes

and relationships on disk. The node store file stores node records. Every node

created in the user-level graph ends up in the node store, the physical file for which

is neostore.nodestore.db. Like most of the Neo4j store files, the node store is a

fixed-size record store, where each record is nine bytes in length. Fixed-size records

enable fast lookups for nodes in the store file. If we have a node with id 100, then

we know its record begins 900 bytes into the file. Based on this format, the database

can directly compute a record’s location, at cost O(1), rather than performing a

search, which would be cost O(logn). Correspondingly, relationships are stored in

the relationship store file, neostore.relationshipstore.db. Like the node

store, the relationship store also consists of fixed-sized records. Each relationship

record contains the IDs of the nodes at the start and end of the relationship, a pointer

to the relationship type (which is stored in the relationship type store), pointers

for the next and previous relationship records for each of the start and end nodes,

and a flag indicating whether the current record is the first in what’s often called

the relationship chain. Figure 3.6, shows how the various store files interact on

disk. Each of the two node records contains a pointer to that node’s first property
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Figure 3.5 Neo4j node and relationship records as they are stored on disk.

and first relationship in a relationship chain. To read a node’s properties, we follow

the singly linked list structure beginning with the pointer to the first property. To

find a relationship for a node, we follow that node’s relationship pointer to its first

relationship (the LIKES relationship in this example). From here, we then follow

the doubly linked list of relationships for that particular node (that is, either the

start node doubly linked list, or the end node doubly linked list) until we find the

relationship we’re interested in. Having found the record for the relationship we

want, we can read that relationship’s properties (if there are any) using the same

singly linked list structure as is used for node properties, or we can examine the

node records for the two nodes the relationship connects using its start node and

end node IDs. These IDs, multiplied by the node record size, give the immediate

offset of each node in the node store file.

3.3.2 The GAIA Graph Database Schema

In our case we developed a schema that contains the aforementioned elements and

their relationships and applied it to the information of the installation of GAIA project.

We used and embedded instance of Neo4j to persist the data of the system on disk

due to some performance and stability issues we faced with the initial versions of

the Neo4j server distribution. This did not limit the development of the different

applications and services of our system as all functionality and operations on the

actual database are handled through a single point, secured web-based application

programming interface (API).

Listings 3.1 and 3.2 contain the generated schema for two of the described

element and a single relationship between them in Java. Figure 3.7 shows an
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Figure 3.6 Neo4j nodes and relationships as they are physically stored on disk and

how they point to each other.

example of how tow of the core entities of the GAIA schema are stored on disk and

connected with each other. The final list of entities in the production version of the

GAIA schema contains the following:

• User: for storing user related information

• Site: for storing schools and classrooms,

• Resource: for storing sensing points,

• Gateway: for storing gateway nodes that communicate with sensing devices,

• Property: for storing sensing capabilities and metadata

Also the GAIA schema contains the following relationships:

• ResourceProperty: to link a Resource entity with the Properties showing

its sensing parameters,

• GatewayProperty: to link a Gateway entity with the Properties showing its

connectivity capabilities

• IsPartOf: to link a Resource entity with the location it physically resides in,

• ShareWith: to provide Site access to Users of the system,

• SubSite: to easilly describe the structure inside school buildings.
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NodeEntity
public class Resource implements Serializable {

GraphId
private Long id;

private String uri;

private String name;

private long creationDate;

RelatedTo(type = "providedby")
private Gateway gateway;

RelatedTo(type = "ispartof")
private Set<Location> locations;

private Set<String> tags;
}

Listing 3.1 Example of a node entity in the graph database

RelationshipEntity(type = "ispartof")
public class IsPartOf implements Serializable {

GraphId
Long id;

StartNode
private Resource resource;

EndNode
private Site site;

}

RelationshipEntity(type = "property")
public class ResourceProperty implements Serializable {

GraphId
Long id;

StartNode
private Resource resource;

EndNode
private Property property;

private String predicate;

}

Listing 3.2 Example of a relationship entities in the graph database
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Figure 3.7 Neo4j nodes and relationships for the GAIA project as they are physically

stored on disk and how they point to each other.

3.3.3 Comparing the Graph and Relational Database Schemas

In this section we are going to present how some of the entities and relationships

presented above could be implemented in a traditional relational database. Based

on this implementation we will show how the respective implementation in a graph

database compares with the relational one.

Figure 3.8 Entity Relational Diagram for the GAIA schema.

Figure 3.8 shows part of an Entity Relationship diagram for the GAIA schema. This

implementation follows the principles of relational databases like MySQL, MariaDB

and PostgreSQL. It contains 3 entities (Resource, Gateway and Location)

together with one helper table needed to represent the many-to-many relationship
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between Resources and Locations and one for the recursive relationship of the

Locations to express hierarchical structures. The diagram also contains the many-

to-one relationship between Resources and Gateways expressed with a single

foreign key in the Resource table. Out of hand we can observe that in this case we

need to store two new tables to express some of the relationships of our schema.

Gateway : 1 Resource : 2 Location : 3

Resource : 5 Location : 6

hasGateway

hasGateway

resourceLocation

resourceLocation

subLocation

Figure 3.9 Entity Diagram for the GAIA schema in as a graph.

On the contrary, to express the same schema in a graph database we need a

schema similar Figure 3.9. This schema contains the 3 entities and the relationships

between them. As we can see, we do not need additional storage for any relationship,

as the graph database stores each edge separately and therefore we can describe each

relationship of our graph as an additional entry in a single “relationship” schema, as

we described in Section 3.3.1. Properties of the vertices and edges are stored in a

similar manner to the relational databases.

3.3.4 Real World Application

Thus far 18 school buildings (Table 3.1) have been involved in the project, spreading

in 3 countries (Greece, Italy, Sweden), covering a range of local climatic conditions

and educational levels (primary, secondary, high school and university). Electricity

consumption meters are installed in all of these buildings, along with sensors

monitoring indoor and outdoor conditions as described above. The vast majority of

the rooms monitored are used for teaching purposes and the rest for other activities

like teacher/staff rooms, etc. The year of construction of these buildings ranges from
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1950 to 2000. To represent all the information of the GAIA project the graph database

contains a total of 7332 vertices and 47864 edges in total for the deployment and

uses a total of 113 MB in disk space. From those vertices, 4749 are sensing points,

are 1012 locations, 681 are sensing properties and 300 are users of the system.

Parameter # Description

Educational Buildings 18

13 Greece

4 Italy

1 Sweden

Sensing Points 1000 ≥ five sensors per device

Students 5500 students in all levels

Teachers 900 teachers in all levels

Sensing Rate 30 s classroom sensors

Table 3.1 Data of the GAIA deployment.

Multiple queries on the data have been defined. Some of them are presented in

Listing 3.3 and the average times for executing them is presented in Table 3.2.

Query Result Size Time (ms)

List all School locations 18 6.7

List all Classroom locations 180 12.6

List all devices 1000 5.4

Find Classrooms of School 10 1.8

Find devices of Classroom 5 1.4

Table 3.2 Execution times of typical queries for the graph database.
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//List all School locations
MATCH (n:"School") WITH n RETURN n

//List all Classroom locations
MATCH (n:"Classroom") WITH n RETURN n

//List all Sensing and Actuator devices
MATCH (n:"Resource") WITH n RETURN n

//Find all Classroom locations inside a School location
MATCH (n:"School")-[r_c1:"IN"]-(c1:"Classroom")
WHERE n."id" = { "XXX" } WITH n RETURN c1

//Find all Sensing and Actuator devices in a Classroom location
MATCH (n:"Classroom")-[r_r1:"PLACED_IM"]-(r1:"Resource")
WHERE n."id" = { "XXX" } WITH n RETURN r1

Listing 3.3 Graph query examples in Cypher

A snapshot of the graph If we could isolate a subset of the graph that describes a

single school building we would end up with a graph similar to Figure 3.10. In this

graph we see the owner of the installation, the User 8gym. The school building is

called 8
thHighSchool and we can identify in the figure the ownership relationship

between the User and School entities. The school building is in our case composed

of 3 Classrooms (1,2,3). The Classrooms are connected to the School with a

relationship called in. This relationship is directed, and points from the smaller

location to the one that encloses it, physically or logically. On the other side of

the graph, we can see the Gateway node (with the name 1) that is similarly owned

by the User. Connected to this Gateway we can find 3 Resources (012,022,032).

These Resources are also connected with the Gateway in the graph with a of

relationship. These Resources are also part of a physical location and collect data

for them. As a result they are also connected to these Classrooms with the placed

in relationship.

In each of these entities and relationships we also have stored also a set of

properties that contain the parameters of the entity like the password for the User

or the location of the School. We do not represent this information here to provide

a more clear picture about how the graph is built. A more complex snapshot of a

school generated from the Neo4j database is available in Figure 3.11.
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User : 8gymGw : 1 8
th

High School

Classroom 1

Classroom 2

Classroom 3

Res : 012

Res : 022

Res : 032

owns owns

in
in

in

of

of
of

placed in

placed in

placed in

Figure 3.10 Snapshot of a part of the GAIA graph.
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Figure 3.11 Snapshot of a part of the GAIA graph taken from the Neo4j database.





Chapter 4

Data Collection

The next milestone, after managing to represent the complex structures of an IoT

deployment is to build a system that is capable of receiving all the data that such a

deployment will produce. This system needs to cover a set of basic requirements to

be successful future-proof (easy to maintain and extend):

• openness, to support a number of different IoT ecosystems,

• versatility, to support different application domains, e.g., energy efficiency

and educational scenarios,

• scalability, to support a very large number of buildings and IoT sensing end-

points,

• up-to-date support of modern practices in the design of the system, i.e.,

cloud-based solutions, easy deployment, etc.

To provide such a solution, we base our work on the use of open-source, well

established application frameworks that are used by many software developers

around the world. These technologies are also easy to extend and support new

technologies and function over multiple infrastructures reducing the chances of

vendor lock situations. Also, we base our work on services that can easily be scaled

vertically or horizontally to support the increasing needs of the deployment that will

grow over time, minimizing the need to redesign any part of the system.

In the rest of this chapter, we present how we designed a system that is destined

to analyze the data from a large scale IoT deployment in real-time and offer them

to different users in the context of the EU project GAIA. Our design was based on

the needs of the specific deployment but was also focused on the scalability of the

platform in the future to support new hardware and new requirements as they arose.
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4.1 Devices

In each of the buildings participating in the GAIA pilot installations, we deployed

sensor devices that measure (a) the overall power consumption of the building, (b) the

environmental comfort within each individual class (see below for more details), and

(c) the weather conditions and air pollution levels in each building. These devices

can be split into three different categories based on their origin and operation type.

In general, we use (i) custom made IoT devices that communicate using an IEEE

802.15.4 local network[58], (ii) proprietary off-the-self IoT devices that communicate

using IEEE 802.11 and 3G in areas that we cannot easily connect to, and (iii) sensors

from legacy Building Management Systems (BMS) that are already installed in a

number of school buildings. Most indoor IoT nodes form IEEE 802.15.4 networks

(Zigbee or plain) and communicate with their respective edge devices by establishing

ad hoc multihop bidirectional trees, set up at the time of the deployment and

maintained throughout the network lifetime. The outdoor nodes are connected via

Power Over Ethernet cables to transfer both electricity and maintain communication

over a single cable, while in some other cases we also used IEEE 802.11 and supplied

the weather stations with batteries and solar panels to harvest energy from the sun.

On the transport and session layers, the devices communicate using either a custom

protocol or Zigbee for the discovery of resources and transmission of measurements.

In the rest of this section, we provide some more details on the categories of devices

we have integrated.

4.1.1 Custom IoT Devices

Environmental Comfort The environmental comfort meters measure various as-

pects affecting the well-being of the building’s inhabitants, such as thermal (satis-

faction with surrounding thermal conditions), visual (perception of available light)

comfort and overall noise exposure. We also monitor room occupancy using pas-

sive infrared sensors (PIR). These devices are also equipped with XBee wireless

transceivers, in order to access an IEEE 802.15.4 network and transmit the mea-

surements to the cloud services via our custom-made gateways. For more details

regarding the design and technical specification of the devices, see [58]. Images of

the device and its installation are available in Figure 4.1.

Power Consumption The power consumption meters installed measure the appar-

ent power and the electrical current drawn from the network by each school building.
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Figure 4.1 A custom Arduino-based environmental comfort meter device installed in

school buildings.

Regarding the electrical setup, 3-phase electric power installations are a common

practice for most public and private non-housing buildings, such as schools, in

Greece. Three separate single-phase supplies, with a fourth neutral connection,

provide a constant voltage to power most common single-phase appliances. In order

to measure the total power consumption of such an installation, it is necessary

to independently measure the power consumption of each phase and add up the

total consumption, as if the installation consisted of three separate lines. Meters

are situated on the main distribution board of each such building to measure each

one of the three-phase power supply of the building. These devices are equipped

with XBee wireless transceivers, in order to access an IEEE 802.15.4 network and

transmit the measurements to cloud services via the custom made gateway nodes.

For more details regarding the design and technical specification of the devices,

see [58]. Images of the device and its installation are available in Figure 4.2.

Weather and Atmosphere Stations These provide information on the outdoor

atmospheric conditions including precipitation levels, wind speed and direction. The

atmospheric meters monitor atmospheric pressure and the concentration of selected

pollutants, to provide insights on the pollution levels near school buildings. These
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Figure 4.2 A custom Arduino-based power meter device installed in school buildings.

devices communicate with our system directly via Ethernet or WiFi and are powered

using Power-Over-Ethernet or are plugged into the sockets of the building when

available. For more details regarding the design and technical specification of the

devices, see [58]. Images of the device and its installation are available in Figure 4.3.
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Figure 4.3 A custom Arduino-based weather station meter device installed in school

buildings.

4.1.2 Proprietary Devices

Meazon In certain locations where the installation of our custom devices was not

feasible due to connectivity or other restrictions, we have installed a number of

Meazon
1

power meters and sensors. These sensors communicate with Meazon’s

proprietary data infrastructure and their data are then pushed to our platform. On

the hardware side, these devices communicate using Zigbee to a central gateway

device that is either connected to the Internet via Ethernet or use 3G in order to

communicate directly with Meazon’s proprietary cloud services. Images of the device

and its installation are available in Figure 4.4.

1
https://meazon.com/
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Figure 4.4 A Meazon power meter device.

synField Similarly, in some of the buildings instead of our custom weather stations,

we used some off-the-self synField
2

weather stations that offered us WiFi connectivity

to avoid installing additional cables on the roofs of the buildings, as well as energy

harvesting via solar panels. In this case, the weather stations communicate via WiFi

directly to proprietary cloud services. Images of the device and its installation are

available in Figure 4.5.

4.1.3 Legacy installations

BMS In one of the schools involved (a large technical high school/college) a BMS

was already in place, utilized by the building manager and other technical staff

to monitor and control several aspects of the day-to-day business. However, this

system provided little to none standard interfaces to external systems. To integrate its

infrastructure to our system, a custom application was developed to poll periodically

the collected data directly from the application’s database and transmit the data to

our platform.

4.2 Architecture

Our goals it to build a system that is capable of handling an unlimited amount of

data in real-time without any delays or outages. A graphical representation of the

components used in the actual implementation that handles all the data originating

2
http://synfield.synelixis.com/
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Figure 4.5 synField weather stations installed in school buildings.

from the educational buildings of GAIA is presented in Figure 4.6. The system

is designed based on the microservices
3

approach. It is therefore comprised of

a set of loosely connected services that communicate using web interfaces and a

central message exchange service. This central point of our architecture is a message

broker service that allows all other services to publish updates or subscribe to data

streams and receive notifications as they appear. Its role is to merge the various

data inputs from the IoT devices and feed information to the a central processing

service that analysis the data and reintroduce them to the message broker for further

processing or storage. The Continuous Computation Engine that will be presented in

the rest of this section subscribes to updates on the broker and publishes the final

calculated results back to the broker for storage and distribution to other attached

services. As we will showcase in the next chapters this is allows us to easily add new

3
https://en.wikipedia.org/wiki/Microservices
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services to the system and gives us the freedom we need to implement each service

in the best suited environment using the best tools available each time. Appropriate

Application Programming Interfaces are provided to retrieve information from the

system (historical data or schema information) to build user-facing applications that

appear on the right hand side of Figure 4.6.

Figure 4.6 Educational building-specific IoT architecture

We also include in the architecture diagram the different data input services

on the left hand side of figure and the Data Warehouse service that collects all the

analyzed data and stores them in an internal database. Our platform provides a

unified API for retrieving data from multiple sites and multiple hardware platforms

with transparency. Each hardware device integrated in the platform is mapped to

a resource. Resources are self-described Entities and are also software/hardware

agnostic. The Data API acts as a wrapper function and hides much of the lower-level

plumbing of hardware specific API calls for querying and retrieving data, providing a

common API for retrieving historical or real-time data from resources.

To facilitate integration between the existing hardware and software technologies,

the exchange of the information occurs through API Mappers. The API Mapper

acts as a translation proxy for data acquisition and it is responsible for polling

the devices infrastructure through proprietary APIs and translating the received

measurements in a ready to process form for the platform. In general, the API

Mapper transforms data to and from the API. The data input type can be, based

on each device’s capabilities, either poll based and/or push-based. In more detail,

the API Mapper is capable of receiving data from the IoT devices but also of sending

messages/commands to the devices. Furthermore, according to the system design,
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the API Mappers introduce scalability and modularity in the platform. Our solution

offers two separate types of API Mappers for integration with external services and to

retrieve IoT sensor data: (a) Polling API Mapper and (b) Message Queue API Mapper.

Both solutions were used to integrate with data originating from the IoT installations

that originate from different devices provided by different manufacturers.

4.2.1 Gathering data from the installations

Polling API Mapper

The first solution (Polling API Mapper) is based on polling of remote APIs that contain

the collected data. The API mapper does not poll the actual IoT devices put an

interface made available by their manufacturers. The IoT devices themselves forward

their data to the manufacturers’ backend using proprietary protocols that were not

publicly available.

A usage example is the following: weather stations are installed in a subset of the

school buildings of GAIA. Data produced by such stations are accessible through

a field manager application that provides historical information through both a

dedicated web interface (Figure 4.7) and a secured RESTful API. To integrate them

into our system, the weather API Mapper was implemented based on the RESTful

API provide by Synfiedl. The IoT devices update the backend every 5 minutes and our

applications queries it every 5 minutes for updated data. When new data is found,

it is formatted to the internal format of our system and forwarded for processing

and analysis. The data is then processed and can be accessed by the users of

the GAIA platform. A similar implementation, based on the Polling API Mapper, is

used to integrate legacy data provided by a web-based building management system

(Figure 4.8) installed in one of the schools of the project. This system does not

offer any kind of programming interface to retrieve data. In that case, we used

the HtmlUnit
4

GUI-Less browser for Java programs to simulate accessing the

data of the web-interface inside the API Mapper. Once we access the pages of the

building manager system we extract the latest measurements and format them to

the internal format of our system as before. Then the data are ready to be forwarded

for processing and analysis and finally available to the users of GAIA.

4
http://htmlunit.sourceforge.net/



52 Data Collection

Figure 4.7 The synField Web Interface.

Push-based API Mapper

The second solution is used when the IoT devices themselves or the backend of the

device manufacturer is capable of offering publish/subscribe capabilities. In that

case, either the devices or an external service is capable of pushing the IoT data

(generated or gathered) to a provided endpoint. The API Mapper is then able to

receive the new measurements asynchronously and format them to the internal

format of our platform. The data is then forwarded for processing and analysis and

made available to the GAIA users. In our case, we use this option on a set of custom

IoT devices that are installed inside the schools and provide the main volume of data

for our system. Each device installed forwards its data every a few seconds (typically

30) to a local gateway device placed in each building. The gateway then forwards the

data to a configured MQTT broker in a text based format: the topic of the message

refers to the device and sensor that generated the message while the actual payload

represents the value generated. For example, if a sensor with a hardware (MAC)

address 124B00061ED466 publishes a temperature value of 20 degrees Centigrade,

the topic is 124B00061ED466/temperature and the message is 20. All sensors

forward their measurements periodically (every 30 seconds) or based on events (i.e.,
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Figure 4.8 The web-based building management system installed in one of the GAIA

buildings.

when motion is detected) and the API mapper receives, transforms and forwards

them to the processing engine so that they are available for the GAIA users.

4.2.2 Data Processing

Our target for the analysis of the data retrieved from the devices is to implement

an engine that is capable of handling the data streams originating from the devices,

as presented above, in real time with minimum latency. To achieve this, we need

a framework that is scalable and can operate using a messaging mechanism to

exchange data between its sub-components. Apache Storm
5

is a free and open

source distributed real-time computation system that we use to guarantee this

behaviour. It allows us to split all the steps of the processing of the data into tasks

that are executed asynchronously but with the correct order, forming a pipeline of

5
http://storm.apache.org/
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transformations that are applied in the original data entering the processing engine.

An abstract view of that schema is presented in Figure 4.9. This flow is called a

processing topology in the context of Apache Storm. In it we can spot the tasks

that feed data into the system (called spouts) presented as faucets, the tasks that

transform the data (called bolts) presented as water drops and the arrows that show

the flow of data from each task to the next in line. Data are always transferred on all

exchanges using tuples. Tuples are indexed key value pairs that can be serialized

on the sender’s end and deserialized upon receipt.

Figure 4.9 Abstract view of an Apache Storm processing topology.

Spouts Spouts are tasks that are polled with high frequency and have the role of

picking up or receiving new data from external sources. In our case they maintain an

open connection to the available message broker, receive updates asynchronously an

add all new messages to an internal queue. This queue is then polled by Storm and

all the objects found in it are forwarded for processing. A simple spout is available in

Listing 4.1. In this listing we can identify two methods. receive is the one called

when a new message arrives from the external message broker and the payload of the

message is appended to the end of the queue. nextTuple is polled continuously by

Storm to discover new payloads and forward them for processing as tuples.

public class StringSpout extends BaseRichSpout {

Queue<byte[]> queue = new Queue<>();
SpoutOutputCollector collector;

Override
public void receive(byte[] body) {

this.queue.offer(body);
}
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Figure 4.10 Graphical representation of a Storm Spout.

Override
public void nextTuple() {

// Pop latest thing off the queue
byte[] nextObj = this.queue.poll();
if (nextObj == null) {

// Silent return & sleep to avoid spamming the CPU
Utils.sleep(5L);

} else {
String message = new String(nextObj);
Values outTuple = new Values();
outTuple.add(0, message);
collector.emit(outTuple);

}
}

}

Listing 4.1 A simple Storm Spout

Bolts Bolts are tasks that are executed based on a received tuple. The goal of Storm

is to break up every calculation needed into smaller tasks that can be specifically

tuned and independently scaled for better performance. In Listing 4.2 we present

an example of a simple bolt that calculates the maximum, minimum and average

value of all the values received so far. Once the values are calculated the bolt creates

an array of them and emits them for possible further processing or storage. In a

slightly different implementation, this bolt could be replaced by 3 individual bolts

that calculate the maximum, minimum and average value respectively. In that case

and as the averaging is the most complex operation we could assign more instances

running in parallel to this bolt in order to increase its throughput. Finally, a special



56 Data Collection

type of bolt is what we call a “data sink” and is placed in the end of the processing

topology. Its role is to receive the final tuple as a result and forward it to an external

service for storage or further use. Such sinks are implemented or provided by Apache

Storm for common databases such as MySQL
6
, MongoDB

7
and others.

public class StatisticsBolt extends BaseBasicBolt {
List<Double> values = new ArrayList<>();
Double min=Double.MAX_VALUE, max=Double.MIN_VALUE, avg=0;

Override
public void execute(final Tuple tuple,

final BasicOutputCollector collector) {
if (max < value) { max = value; }
if (min > value) { min = value; }
values.add(value);
avg = avg(values);

final Object[] output
= new Object[3] { max, min, avg};

collector.emit(new Values(output));
}

}

Listing 4.2 A simple Storm Bolt

Time-based data analysis

That calculation engine needs to provide us statistics for different rolling timespans.

In our case, we decided that we need statistics for each observed parameter for 5

minute, 1 hour and 1 day intervals in order to provide data in different granularities.

We choose those values as they are the most appropriate for generating useful

end-user visualizations and additional statistics. In each stage of the data analysis

we maintain a buffer that contains the received values and uses them to re-calculate

the aggregated values once a new value is received. This buffer, is actually a double

ended queue where we add on the one side the latest value received and remove from

the other side the oldest values that are now our of scope for the timespan we are

interested in. Such a strategy provides us with 12 5 minute intervals for every hour

(minutes 0-5, 5-10 etc.) and 24 hour intervals in each day. The final outcome of our

calculation engine for each observed parameter is therefor a set of multiple queues

with 48 values on each granularity. The 48 values were selected to provide a more

extended view on the level observed that is meaningful in a visualization and a yet

not memory consuming. An example of the resulting outcome from our caluclation

engine is presented in Listing 4.3.

6
https://www.mysql.com/

7
https://www.mongodb.com
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{
keyName: "0013a20040b55ff0/0xe44/cur/2",
latestTime: 1525335805765, //timestamp in unix time
latest: 1836.4736842105262,
minutes5: [

1836.4736842105262,
13241.596159571429,
12218.473685185187,
12009.260433888889,
11984.854856666669,
18481.245200307698,
16743.183172,
... //48 values

],
minutes60: [

51290.65881952271,
192838.42803524583,
219732.656716715,
71440.66035250713,
57744.96627651688,
72314.9046214876,
74556.74366975091,
... //48 values

],
day: [

809954.4193813745,
1778599.4514102784,
1505638.3105379613,
3287908.3959045573,
1639454.896280735,
1551001.504456223,
1414542.523241626,
... //48 values

]
}

Listing 4.3 An example outcome of our caluclation engine

Forming a processing topology

Using the building blocks described in the previous section we are able to easily build

a processing topology that is capable of handling all the data originating from the

GAIA installation. We have implemented multiple topologies that focus on calculating

aggregated values for different kind of data. Specifically we use topologies for power

measurements, environmental data, weather data and events. For each of those

data types a different kind of aggregation is required:

• Power Consumption needs to be totaled in each of the timespans we are

interested in. The power meters provide us with an absolute value of power

consumed every 30 seconds in Watt-hours. To calculate the total power
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consumed we need to calculate the sum of all values received in each timespan

(e.g., in 5 minues or 1 day).

• Environmental data needs to be averaged in each of the timespans we are

interested in. When we want to provide feedback for the temperature or

relative humidity inside a building we are interested in the average value

observed during time window, reducing the effect of momentary extreme values.

Calculating the average value per 5 minutes throughout the day gives us the

option to later on calculate also other metrics like the maximum or minimum

values inside a day via simple calculations over much smaller data sizes.

• Weather data like the height of rain or the amount of radiation received from

the sun requires also to calculate the total amount in each of the time period

inspected.

• Event data are typically boolean values that indicate a certain condition inside

the building. For example, motion detection sensor provide us with information

about whether a room is occupied or not. Similarly, piezoelectric sensor can

provide similar information for persons sitting on a chair. Such data can be

handled in two different ways. The first option is to calculate the number of

times such an event was recorded in each timespan as an absolute number.

The second option is to calculate in what percentage of the timespan this event

was observed. In our case, we choose to follow the second approach in order

to have a common comparison level as all aggregated values will range from 0

to 1, with 0 indicating no events observed, 0.5 indicating the event appearing

50% of the time and 1 describing a constant event.

Figure 4.11 Graphical representation of a calculation spout.

To easily achieve these processing methodologies we use a set of interchangeable

aggregation components in each Storm bolt that differentiate the final aggregate

computed. These modules bind with the bolts on the setup of the topology as

presented in Figure 4.12 resulting in a final topology that is presented in Figure 4.13.
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Figure 4.12 Processing bolt with the aggregation module.

An example of the resulting topology is available in Listing 4.4. As this is a production

level topology need some additional components to be able to cleanup data (delete

sensor spout) or adjust the in-memory data inside for timezone changes (time-shift

spout and time adjuster bolt).

Figure 4.13 Final view of the calculation topology.

[spout] sensor measurements input
[spout] delete sensor input
[spout] time-shift input
[bolt] time adjuster
[bolt] aggregation bolt 5 minutes + aggregation type
[bolt] aggregation bolt 60 minutes + aggregation type
[bolt] aggregation bolt 1 day + aggregation type
[bolt] summary bolt
[bolt] data sink bolt

Listing 4.4 The final structure of a calculation topology
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4.2.3 Data Storage

Once the calculated data are available they need to be stored in an appropriate

storage schema that will allow for fast data retrieval and efficient storage. The

options to implement such a solution we need to investigate the capabilities of the

state-of-the-art solutions for data storage. What is available ranges from traditional

SQL databases that provide strict and well defined schemas but tend to suffer when

the data volume increases beyond a certain limit to NoSQL databases like Cassandra

remove the issues of big data storage but may severely degrade the access times

of time based queries. Another important solution that was introduced during the

past years is the use of timeseries databases, like InfluxDB
8

and KairosDB
9

that are

designed for IoT data and use in their backends NoSQL solutions for storing the raw

data.

In our case, we implemented a two-stage storage engine that is designed to target

both requirements. We use a MongoDB as the raw data storage and store an instance

of the provided summary and the historical data for time-based requests. The first

stage stores the summary that is extracted from the analytics engine as a single entry

that can be directly retrieved upon request. This method gives as fast responses in

the simplest queries that are requested by the majority of the users of the system.

The summary presented in Listing 4.3 is what is used for this kind of storage.

The second stage decodes each summary received and stores its data as key-value

pairs for each of the time interval they concern. This method allows use to easily

query the historical data of our system by providing a set of keys that can be accessed

in constant time from the database. In terms of scalability, MongoDB offers use

the option to run on sharded clusters where data can be split and replicated for

security and accessibility reasons. Listing 4.5 presents how the data are stored in

the database. Each entry has a key value the is comprised of the unique identified

for the sensor and a suffix that refers to the timespan in question in the format of

year-month-day-hour-5minute interval indexes (YYYY/MM/DD/HH/M). Based on

the depth of the second index we can understand in what timespan each entry refers

to.

//entry for the average electrical current consumption
//on the 3rd May 2018 08:20:00-08:24:59
{

key: "0013a20040b55ff0/0xe44/cur/2/2018/5/3/8/5",
value: 1836.4736842105262

8
https://www.influxdata.com/

9
https://kairosdb.github.io/
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}
//entry for the average electrical current consumption
//on the 3rd May 2018 08:00-08:59
{
key: "0013a20040b55ff0/0xe44/cur/2/2018/5/3/8",
value: 51290.65881952271

}
//entry for the average electrical current
//on the 3rd May 2018 00:00-23:59
{

key: "0013a20040b55ff0/0xe44/cur/2/2018/5/3",
value: 809954.4193813745

}

Listing 4.5 Examples of historical data entries in the MongoDB storage

4.3 Evaluation

The evaluation of the system’s operation focuses on the following areas: (1) data

processing, (2) data access, and, (3) data analysis and statistics. These areas can

adversely affect the performance and perception of a system since users need rich

data, easily and quickly accessible and real-time information to better understand

how their actions affect the building usage. This is more crucial when the data is

used in the educational context, i.e., during courses.

4.3.1 Data Analysis

To better present the operation and capabilities of the system, an analysis of the

average weekly occupancy of 4 distinct school buildings during May 2017 is presented

in this section. Remark that this analysis is similar to the work presented in [15].

Figure 4.14 (a) depicts the occupancy levels of the whole building, as an aggregated

occupancy of all the rooms in which a smart motion sensors is installed. All four

buildings are elementary schools that follow the same academic schedule with

activities starting from 08:00 until 13:30. Remark that the building of “School 1” is

also used by a technical school that is used in the afternoon. The data presented are

ranged from 0 (no motion detected during this time interval) to 1 (constant motion

was detected during the whole time period). This graph shows the actual active

hours of the schools that are commonly ranged between 7:00 and 15:00 during

weekdays. It also depicts the clear differences between schools of different levels,

e.g., the case of School 1 where a Technical school operates also in the afternoon

for classes. Similarly, Figure 4.14 (b) presents the average power consumption of a

school as it is measured by our system, versus the occupancy of the building. From
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the graph, it is clear that the school building consumes power mainly when it is

occupied during the weekdays.

(a) (b)

Figure 4.14 (a) Four-week (May 2017) average occupancy levels in four differ-

ent school buildings. (b) Four-week (May 2017) average power consumption and

occupancy levels in a specific school building.
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4.3.2 Data Access

Accessing historical data is crucial for building monitoring applications, e.g., when

comparing historical data from different time spans and building areas. In such

use cases, it is important that an IoT service is capable of providing these data

without delays, independently of the targeted time interval. As discussed in [23],

application response times larger than 10 s tend to make users lose their attention

in the given task, while a 1 s response time is considered the limit for users that

are freely navigating an application without waiting for the application’s response.

In that context, when presenting power consumption statistics, e.g., over the past

year, it is important to be able to retrieve and present the stored values within one

second, independently of the requested interval (latest values versus older values).

Figure 4.15 and 4.16 present the average retrieval times for accessing historical data

of a one month duration for the past 12 months, observing minimal differences in

the access times independent of the period requested.

Figure 4.15 Average Response Time for accessing one month data for the past year

(daily aggregated values).

Note that, based on the data available from the graphs, the system’s response

time is independent of the actual time interval while it is actually dependent on the

amount of data requested. This is more clear in Figure 4.17, where response times

tend to increase as the response times increase when time periods of more than 9

months of data are requested.
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Figure 4.16 Average Response Time for accessing one month data for the past year

(hourly aggregated values).

4.3.3 Data Processing

Another important characteristic for evaluating the system’s performance is the

load of data that the system is able to process at any given time. With the current

setup, the fleet of buildings in the system produces an average of 25 measurements

per second. The data processing topology currently runs on a single core virtual

machine (on an Intel®Core™i5-3340 CPU running at 3.10GHz) with 4GB of RAM.

With this configuration and setup, the system is capable of processing up to 500

measurements per second. To increase the number of measurements, the system

can support two different options:

• Increase the computing power of the virtual machine, by assigning it to a more

powerful host or giving it access to more resources from the host machine.

• Deploy a second instance of the processing topology that is capable of consum-

ing the same number of measurements to reach the required data processing

rates.

Based on the nature of sensors deployed, the input data require three different

types of aggregation: (1) averaging for sensors such as temperature or relative

humidity, (2) total for sensors such as rain height levels, and (3) power consumption

estimation based on the electrical current values received from the installation. Each
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Figure 4.17 Average Response Time for variable time periods ranging from one to 12

months.

Aggregation Type Execute Latency (ms) Measurements (%)

Average 0.608 86.4

Total 0.799 0.9

Power Consumption 0.329 12.7

Table 4.1 Execution Latency statistics for the three different aggregation types used

in our system.

type of processing requires a different type of aggregation processing and as a result

has a different average execution latency, presented in Table 4.1.

4.3.4 Data Retrieval

The rationale behind the splitting of the storage service implemented in two distinct

storage mechanisms lays in the fact that user interfaces are built using a very specific

and predictable set of data that can be pre-calculated and pre-formatted, reducing

the processing time needed to provide such data upon request. In our case, usage

data shows that 90% of the requests arriving to the storage service concern the short

summary that we are providing while only 10% of them require access to the full

historical data storage. Table 4.2 shows how data requests for a single day of usage

of the system are distributed on historical data and summary information.
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Request Type Requests (#) Requests (%)

Summary 398705 90%

Historical 41374 10%

Table 4.2 Data Retrieval Statistics.

4.3.5 Data Representation

The final outcome of the GAIA project is based on providing a web-based building

management system provided to all the schools participating in the project as well

as teachers and students. This application was developed by a partner of the project

based on the APIs provided from our system. A screenshot of the application is

presented in Figure 4.18. The application offers a interface for users to browse the

locations of their school building and show the historical data collected from the

sensors. The data can be presented in 4 different granularities (5 minutes, 1 hour, 1

day, 1 month). The interface allow allows for the comparison of data from multiple

sensors by retrieving the data from the provided data storage backend.

Figure 4.18 The GAIA building manager application Web Interface.
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Collecting Crowd-sourced Data

Keeping in mind what was presented in the previous chapters, we now need to step

back and observe how such an installation could behave when the target is not to

monitor a limited amount of buildings, but a whole city or even clusters of cities. Such

an installation comprises potentially tens of thousands of sensors and can potentially

monitor much more variable data types than the ones described so far. Additionally,

in a direct comparison to the previous use case, we need to note that the sensor

installations are now not owned by a single entity but by the different public services

of the city or private entities, are probably heterogeneous by design and deployed

in a much larger area than a single building or building complex. Based on this

fact, different networking technologies need to be employed for the communication

between the sensing devices and the central platform. Communication needs to

be long range and in many cases over low power channels that operate on limited

battery life ruling out solutions like WiFi or IEEE 802.15.4. Also, due to the

large area that needs to be covered, mobile devices need to be included into the

picture. Such devices could be installed on public buses, municipality vehicles or

taxis, as well as be used by volunteers that move around the city.

In this chapter, we will study one large scale IoT installation that federates IoT

infrastructures of multiple cities in Europe, OrganiCity and compare its architecture

with the IoT installation of GAIA. OrganiCity is a Horizon2020 project started in 2015

that builds on existing Future Internet installations to build sustainable future city

infrastructures and services in collaboration with local communities and enterprises.

In this context, we investigate the behaviour of our system and showcase a platform

for collecting data using volunteered Android Smartphones.
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5.1 OrganiCity

Traditionally, cities have been the meeting point between societal challenges and

technological innovation. The main ambition of OrganiCity is to “make the creation

and design of technologies and services for cities more inclusive for any user of the

smart city”. It tackles the aspects of how smart cities can grow organically with the

involvement of different stakeholders (citizens, communities, policy makers, activists,

scientists, researchers, developers, city service and technology providers), and not

be driven solely by engineering visions.

OrganiCity has developed an Experimentation as a Service facility, as a research

and innovation environment for the co-creation of Future Internet enabled urban

knowledge and services. The facility leverages emerging tools and technologies to

provide mechanisms that allow users to extract knowledge from different cities, based

on the data streams that are generated in the diverse urban ecosystems. To make

this more inclusive, the facility delivers a set of tools and enablers to empower any

user to be part of the co-creation process. Moreover, the facility provides various

means for the engagement of the citizens participating in their validation.

Taking into consideration the resource constraints of cities in times of austerity, it

is difficult to create new city infrastructures and/or develop new experiments. Setting

up the OrganiCity facility on top of existing city web services permits city makers

and service providers to address not only the exploration of new pathways for their

services, but also to understand any societal implications in a rapid and more

iterative manner.

5.1.1 The Experimentation as a Service model

As mentioned before, OrganiCity offers a flexible Experimentation as a Service (EaaS)

framework, allowing researchers and developers of urban infrastructures to imple-

ment services by exploiting emerging Future Internet technologies. Research and

experimentation on top of the facility should lead to the creation of sustainable,

effective, and replicable smart-city solutions and urban technology developments

that are successfully adopted by citizens, local communities and society as a whole.

To answer such goals, the design phase of the facility considered questions

like how to provide data generated within the cities in a more public domain,

whether existing infrastructures are reliable enough for data scale collection with

citizens’ devices, how creation of actionable knowledge from urban sensors can be

scaled, how we can give incentives to and technically facilitate effective citizen-city-
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academia–industry co-creation. Different stakeholders such as developers, data

analysts, IoT solution manufacturers, urban service providers, activists, sociologists,

economists, and citizens were involved, in order to extract requirements for the EaaS

facility. As a result, OrganiCity has implemented a set of tools [20, 13] that empower

citizens to be part of the co-creation process at different stages of the urban service

life-cycle and provide different means for their participatory engagement.

Stakeholders

In this context, the OrganiCity facility supports different types of users, permitting

them to manage the whole experiment life cycle [36] and offering a set of tools and

enablers that make the co-creation and validation of new solutions more inclusive.

It can be used remotely by any stakeholder within smart cities.

Depending on the activity that they intend to do, users can request different

permissions, supporting the following roles: experimenters, participants, providers,

site managers and facility administrators. Experimenters can implement their own

solutions using a set of co-creation tools and conduct the corresponding experiment.

To validate the solutions, they can invite other participants within the scope of the

experiment (e.g., using an application developed by the experimenter). Providers

are users who do not belong to any experiment, but want to contribute with crowd-

sourced data to the facility (e.g., feed data from their own weather stations). Facility

administrators deal with the management of the entire platform, being able to

federate new urban ecosystems within the cities, assigning permissions and roles to

other users, configuring the facility parameters and monitoring its activity. Finally,

site managers are users belonging to the federated cities that can configure the

information related to the urban services, the tags that can be used for annotating

the data assets, and so on.

The use of the facility and its tools within the urban ecosystems will guarantee

that communities of users can grow around emerging experimental technologies.

Experimenters and service providers can leverage active contributors and early

technology adopters. These communities will not only inform and contribute to the

design of technology, but also provide a basis for exploring new business models

derived from the emerging solutions.
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5.1.2 Architecture

The OrganiCity platform uses the Microservices Architecture pattern [49]. Each service

deployed in the context of OrganiCity is a standalone application that uses a central

authentication service [56] (based on OAuth2.0) and provides either a user interface

for end-users or a programmatic API (usually RESTful). This allows for different

applications to be developed using tools, programming languages and frameworks

that best suit each case (i.e., node.js for frontend applications, Java for back-end

services). Additionally, the microservices pattern allows for better fine-tuning of the

different parts of the infrastructure based on usage and thus provides better user

experience and responsiveness to any number of clients, a major requirement for big

cross-city IoT applications.

The overall architecture of the OrganiCity platform is presented in Figure 5.1. This

figure presents the three layers of the OrganiCity architecture: (i) the Federation

API that aggregates the data from the various smart-city installations, (ii) the core

OrganiCity platform that is built around a central publish-subscribe service called

Orion Context Broker and (iii) the services layer that communicates with the core

platform with the EaaS API and contains both tools provided by OrganiCity as well as

services developed by external users.

Figure 5.1 OrganiCity Architecture
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If we compare directly with the solution presented and developed for the processing

of the data originating from the GAIA project in Section 4.1, we can identify a similar

pattern:

• The API mappers that are responsible for collecting the data from the sensing in-

frastructures of GAIA are called Sites in OrganiCity. These Sites are responsible

for aggregating all information provided by the various sensing infrastructures

and formatting to the internal data structures used by OrganiCity. To add a

new data-source to the system a new Site has to be deployed feeding the data

to the system as expected.

• A publish-subscribe broker is used to exchange the information of the platform

between the various services of the platform. This broker does not only

exchange the data collected in this case but also contains the metadata and

context information we described in Section 3.2.

• Historical data and context information are stored in different infrastructures

in both cases. This is done (in both cases) to reduce the strain of historical

data queries to the context database, and thus increase the throughput of the

system in total.

• External services and developed tools use well defined APIs to communicate with

the core platform together with the a central Authentication and Authorization

provider.

While the architecture of OrganiCity shows a great deal of similarity with our

own design, some differences do exist that are mainly justified by the different

requirements of the two projects:

• The entities stored in the Context Broker are organized in a flat single level

domain using only their unique identifiers to differentiate them. This option was

used inside OrganiCity as the different groups of resources are not of the same

size and applying any kind of relational grouping could create non-balanced

data groups that could affect the quality of services offered to its users.

• The latest value received for each attribute monitored is stored inside the Orion

Context Broker. This was done to avoid the development of an additional Data

Storage service in the context of the project as the historical data were stored

in the original infrastructures of the federated Sites and the OrganiCity facility

had no ownership on the data to replicate them.
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From all the above, we can summarize that the design we followed in the develop-

ment of our own service is valid and could support the operation of a platform even

in the scale of OrganiCity.

5.2 Crowdsensing

While a number of research projects, like SmartSantander, focused on building large

IoT infrastructures inside city centers and offering researchers and companies with

a testbed to develop and test their systems and applications current mainstream

smartphones can easily provide equivalent alternatives. Smart-phones currently are

equipped with a number of integrated sensors and necessary networking interfaces

to communicate with each other and with additional IoT devices like smartwatches,

fitness trackers (i.e., Bluetooth LE, NFC, etc.) or custom made hardware (i.e., Arduino-

based
1
). Also, the use of smartphones can be volunteer based, with participating

citizens volunteering their devices to run simple tasks in the background while

they commute inside the city during their everyday activities. Such a choice can

significantly reduce the costs for a pre-deployed infrastructure or for a data-collection

mechanism based on technologies like 4G or drive-by scenaria.

Using volunteers in such experiments and tasks can be tied with activist and

citizen groups in order to provide a platform that investigates the human aspects

of life inside modern cities and show a more human-centric experimentation inside

metropolitan environments. The benefit for the volunteers can be incentive/prize

based or based on a self-rewarding mechanism where citizens achieve personal goals,

like walking (e.g., reaching a step goal each day), learning their city (e.g., visiting

new areas in their city) or competing with their friends in game-like hunts for data.

In the rest of this section, we present a system that leverages volunteered

smartphones to perform data collection experiments inside Smart-Cities in the

context of OrganiCity, called Sensing-on-the-Go.

5.2.1 Sensing-on-the-Go

Following the concept of IoT experimentation testbeds, where sensing devices execute

applications and collect data results, in our case, smartphones participate in

campaigns, which produce measurements that are then made available through

OrganiCity ’s services. As described before, citizens participate in these experiments

1
https://www.arduino.cc/
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transparently during their commute or leisure activities. The overall goal of the

platform is that utilizing their smartphones does not cause them any disturbance

in their everyday life; like reducing the battery life of the smartphones or engages

them in any continuous activities that may distract or annoy them. To build such a

system we utilize two discrete components:

• A server/portal component dedicated to submitting, monitoring and managing

the execution of data collection campaigns that is used by users that want to

experiment inside a smart city.

• A smartphone component dedicated to the execution of the campaigns on

smartphones and the collection of the results to be sent back to the server

component.

The portal component is designed for users that intend to organize and run a

campaign inside the city. This portal offers them the basic interfaces to create and

organize their campaigns. The can use it to define the type of data they wish to collect,

information that is going to be used to promote their campaign, time and spatial

restrictions on the execution of the campaigns as well as any incentivization schemes

that may be used. Once submitted, the campaign appears on the smartphone of

each volunteer and is available for participation. Collected data are automatically

gathered and stored in the back-end of the service without any further action needed

by the volunteer or the experimenter. Volunteers also have the ability, at all times, to

stop or pause the execution of a campaign, or even opt out of the entire process. The

organizers of the campaign can view the final results from the same portal in near

real-time, in a fully anonymized format without any critical personal information

being revealed for the participating users.

The Smartphone component is based on a application used in the SmartSantander

EU project project [53]. Its functionality was redesigned and extended to support

newer Android versions and functionality. It takes advantage of the the ability to

dynamically launch and register new Services inside an already installed Android

application. These new Services do not necessarily belong to the application itself, but

are available as third-party applications installed separately on the same phone via

official application stores. In other words, the functionality of the main smartphone

application can be dynamically updated/augmented by downloading and installing

new Service Applications directly from the Google Play Store™(Figure 5.2) similarly

to the way plugins can be installed inside modern web browsers. Each new Service

Application is based on native Android code that is signed by and distributed by
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Figure 5.2 Main smartphone and service application in Google Play Store.

its developer. The use of this multi-application schema allows us to run different

campaigns on demand using a single central application that orchestrates the

experimentation without the need for constant updates every time new functionality

needs to be added to the system. Also, functionality that is not provided by the main

application can be implemented by the users of the platform and be distributed

by its original developers for security, privacy, and intellectual property protection

reasons.

To gather data, experimenters can use all the available sensor components

available in current Android smartphones, while also maintaining a certain degree

of transparency, in order to allow volunteers understand what kind of data they

are collecting. Such sensors include (but are not limited to) temperature, humidity,

noise, walking steps, location or data generated by accessing interfaces like WiFi,

Bluetooth or NFC. A number of basic sensor components are provided by Sensing-

on-the-Go as template Service applications for experimenters to use, but additional
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ones can be implemented based on the specific needs of a campaign. The overall

architecture of the system is presented in Figure 5.3. In it we can see how the

application’s components in the smartphones of the volunteers and the cloud interact

with each other and the Google Play Store™ to have access to the sensing modules

needed, as well as the services of OrganiCity. The OrganiCity services are used to

manage the general information of the data collection campaigns and to store the

collected data and present them on the tools of the project.

Figure 5.3 Sensing-on-the-Go overall architecture

Defining a campaign

To begin with the setup of a campaign, experimenters need to provide some basic

information that describes the main goals of the campaign, the usage intended for

the data collected and a link to the outcomes of the campaign. All data provided

in this step are made available to volunteers, so that they clearly understand what

is executed on their phone and what data are collected and made available to the

experimenter.

The next step concerns the designation of the spatio-temporal characteristics of

the experimentation. This includes the following restrictions:

• on where the campaigns are going to be executed.
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• on when the campaigns are executed.

• on the amount of data needed for the success of the campaign.

The experimenter firstly defines the areas in which the volunteers are asked to

move and collect data. The experimenter freely designs polygons of interest without

any limit on the number, size or location (Figure 5.4). The polygons can also overlap

with each other as the user can later on place restrictions on data collection that

create different data characteristics. For example, an experimenter can select the

whole city as a big polygon and then draw inside smaller areas of major interest or

set different time constraints.

Figure 5.4 View of area polygons defined for a campaign in the city of London.

Based on the areas defined, the experimenter now can define date and time

constraints on the data acquisition. Apart from the basic time period of the whole

campaign (start and end date), experimenters are able to define discrete time periods

of interest during the day (i.e., there is little interest in values between 2-6 a.m.).

This is used for example to focus the data collection during office or commute

hours, ignoring post midnight periods when traffic in the city in lower in a campaign

interested in commute information.

Similarly, data volume restrictions can be defined on each area. Such information

can be then used to mark them as complete and encourage volunteers to move in

the rest of the areas defined, especially when incentives or rewards are provided.

All these restrictions help in a more homogeneous execution of the campaigns

as not only is the geographical area of execution important, but the temporal and
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data volume plain is also taken into account. Apart from the ability to define these

restrictions, the system provides feedback options and interfaces to monitor the

progress/current state of execution of the campaigns and the degree to which the

constraints are fulfilled during the execution; e.g., the percentage of the requested

data already gathered.

Writing the code In order to develop a new sensor plugin, users of the platform

need to develop a new Android application based on the provided template
2
. In

this application, they need to edit only a single Android Service that collects the

data from the smartphone and prepares them for the platform. This service, uses a

provided SDK (called OrganiCitySDK) to communicate with the base OrganiCity

smartphone application. Listing 5.1 showcases a service for collecting temperature

sensor measurements, from the integrated temperature sensor, and forwarding them

to the Sensing-on-the-Go application. The code required to develop the application

is pure Android, and in most cases limited to a less than 100 lines.

public class TemperatureSensorService extends Service
implements SensorEventListener {

...
Override
public void onCreate() {

mSensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);
mSensor = mSensorManager.getDefaultSensor(

Sensor.TYPE_AMBIENT_TEMPERATURE);
}

Override
public int onStartCommand(Intent intent, int flags, int id) {

if (mSensorManager != null) {
mSensorManager.registerListener(

this, mSensor, SensorManager.SENSOR_DELAY_NORMAL);
}
return START_STICKY;

}

Override
public void onDestroy() {

if (mSensorManager != null) {
mSensorManager.unregisterListener(this);

}
super.onDestroy();

}

Override
public void onSensorChanged(SensorEvent sensorEvent) {

temperature = sensorEvent.values[0];
}

2
https://github.com/OrganicityEu/sensing-on-the-go/tree/master/sensors/ExampleSensor
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public void publishResults() {
JsonMessage info = new JsonMessage();
info.setState("valid");
List<Reading> r = new ArrayList<>();
JSONObject jsonObject = new JSONObject();
jsonObject.put(CONTEXT_TYPE + ".Temperature", temperature);
r.add(new Reading(

Reading.Datatype.String, jsonObject.toString(),
CONTEXT_TYPE + ".TemperatureSensorService"));

info.setPayload(r);
mRemoteCallbacks.handlePluginInfo(info);

}
}

Listing 5.1 A Template Sensor for Sensing-on-the-Go collecting temperature mea-

surements

Participating in a campaign

Volunteers are able to install the Sensing-on-the-Go smartphone application through

the Google Play Store™ as all other Android smartphone application. Once installed,

the application prompts them to register for the Sensing-on-the-Go platform through

OrganiCity in order to take advantage of all the benefits of a registered user, and

potentially receive rewards from the data collection process if incentives are used.

This option is not mandatory, as they can also continue as anonymous users

without any personal information provided to the system. Selecting, enabling and

participating in crowdsourcing campaigns is done with the touch of a single button.

Participants have a list of all the available campaigns along with the descriptions the

organizers provided in the setup of the campaign presented before. By clicking the

start button, the applications notifies them of any additional Service applications

that need to be also installed from the Google Play Store, and redirects them there to

complete the installation. Once all the pieces are available, the campaign can start

and data collection is done in the background. Additional data on statistics for the

data collection procedure are available in the home screen of the application in real

time (Figure 5.6). These statistics concern both the current campaign executed and

the overall statistics for this specific volunteer, if an account has been connected to

the phone.

For a higher level of privacy, volunteers can at any time disable the data collection

or their participation in all campaigns, using a “power-off” button available on the

phone. This button kill all services running in the background and any access to

the location of the device or the other sensors of phone.
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Figure 5.5 Sensing-on-the-Go Android application views: login screen, home page,

sensors view and campaigns view. The home page show the current location of

the volunteer, the area of interest and statistics on the data contributed. The

sensors view shows a list of all the available sensor plugins to be installed, while the

campaigns view shows the active campaigns the volunteer can participate in.
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Monitoring a campaign

After launching a new campaign, experimenters can monitor the progress of a

campaign in near real-time using the Sensing-on-the-Go portal. The term near

real-time is used to define that data are not made available upon receipt, due to

the fact that they need to be anonymized. This is done in batches, to reduce the

chance of any personal data (like the location of the user) being exposed. Therefore,

the experimenter can view any time aggregated data for the parameters monitored

over two main visualization methods, using graphs and on-map markers.

The graphs mainly refer to the coverage of the targets set by the experimenter on

the campaign. The coverage can be spatial or temporal, as the experimenters can

view how the data collected are distributed over the days of the experimentation or

the hours of the day. This quantitative analysis of the data received is intended not

to analyze the actual data of the campaign but to give the experimenter a better idea

of how volunteers collect data and participate in the experimentation.

Similarly, the portal offers the option to display the collected information on

top of maps, either as points or as a heatmap. The map view offers the option

to visualize the amount of collected data based on location. In the first option,

points, the experimenter can view for each point of the map the data of the specific

measurement, if only one, and the average value, if it is possible, for multiple

measurements. For the heatmap view, experimenters can view the hot-spots for data

collection as areas with more measurements are painted with a color closer to red

while areas without any measurements are painted with blue.

Examples of both visualization methods are provided in figures in the Evaluation

section. Options to export the data collected are also available to experimenters

in multiple formats, like JSON or CSV so that they can be parsed later on for the

appropriate analysis as an outcome of the campaign.

Real World Evaluation

Sensing-on-the-Go was testing in the wild during the two open calls for experimen-

tation of OrganiCity. It was used by 4 independent experimenter teams to perform

data collection over these open calls and by volunteers that participated in these

campaigns. Also, to verify the operation and performance of the system, we also

conducted internally a number of campaigns prior and in parallel with the OrganiCity

open calls mainly in the cities of Patras, London and Santander. We here present

one of these campaigns that was organized simultaneously in the 3 cities to collect
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data for the WiFi access points that can be detected in the city streets. Such data

can be used to develop a system that provides localization information without the

use of GPS inside the city or assist GPS positioning as proposed in recent literature

like [43] or [74].

To organize this campaign we used the following Service applications provided by

the Sensing-on-the-Go platform:

• Location Sensor provides the coordinates of the smartphone at the time of the

data collection. Such data are provided in latitude, longitude format based on

any source that is already available on the smartphone (GPS, network provided

or fused).

• WiFi Sensor scan periodically for WiFi Access points and provides a list of them

together with information about their type (2.4G or 5G), security if available

and SSID.

Both data points are merged in a single measurement and uploaded to the

back-end of Sensing-on-the-Go in regular intervals of 60 seconds.

The campaign was available in all 3 cities for a total of 5 days. Participants

were mainly members of the OrganiCity development team as this was one of the

first campaigns performed to validate the behaviour of our system. A total of 14

smartphones provided data during the campaign in all 3 cities and contributed a

total of more than 7500 measurements.

For the experimentation process 13 regions were defined in all 3 cities. Figure 5.4

shows the areas defined for the city of London. As London is the largest of the 3

cities, 8 areas were defined. 3 more were defined in Santander and 2 in Patras.

Figure 5.6 show the areas where data were collected in the city of Patras. Based on

the view of the map, the data were mainly collected around the central streets of

the city and coastal area that citizens use for walking and jogging. The heatmap on

the other side available in Figure 5.7 show that there are two cells where the most

measurements were collected, with both being city sqares with shops and pedestrian

alleys.

Each participant contributed an average of 500 measurements to reach a total

of 7634 measurements. Some of the points were gathered outside the areas of

interest defined in the campaign. The application is not too strict in enforcing

the spatial limits of the data collection and allows for some data to be collected in

the borders of the areas. These data are made available to the experimenters in a

separate view to assist the organizers in fine-tuning the spatial limits of the campaign.
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Figure 5.6 Pointmap view of the measurements for the WiFi campaign.

Figure 5.7 Heatmap view of the measurements for the WiFi campaign.

Table 5.1 briefly presents the statistics of the campaign as they are extracted from

Sensing-on-the-Go.

5.3 Extracting Knowledge from IoT Data

Although technologies like the ones presented so far in this thesis allow us to collect

data from IoT installations and smart-city environments, essential answers are yet to

be found revolving around two central questions:

• what do we do with all of these data collected?

• and how can we easily make sense out of them?
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Cities 3

Participants 14

Regions 13

Experimentation Days 5

Measurements 7634

Average Completion Rate 40%

Table 5.1 Statistics for the WiFi Experiment performed for the evaluation of the

Sensing-on-the-Go platform.

One answer to both questions is the extraction of knowledge. The term knowl-

edge refers to something actually useful, going beyond a technology demonstrator.

It could be vaguely described as something that provides usefulness to citizens with

or without their involvement in the process. Essentially, the questions lead us to as

ourselves how do we actually make a city smarter, and what is the definition of a

smart city itself.

Part of the answer to this question lies in creating more useful information out

of raw sensor data or other kind of data representing observations of the urban

environment. For example, certain events generate data reported by the city sensing

infrastructure, but are, more often than not, missing an appropriate description or

annotation. Consider the case of a traffic jam inside the city center; it generates

sensed values in terms of vehicles’ speed, noise and gas concentration. Moreover,

in most cases, multiple devices or services, while missing useful correlations in the

data streams, report such values. We believe that adding data annotations to smart

city data through Machine Learning technologies, or crowdsourcing mechanisms,

can help reveal a huge hidden potential in our path towards real smart cities.

5.3.1 Annotating Collected Data

Data annotation in smart cities presents us with a set of key challenges that need

to be addressed before such solutions are used at large. In this context, privacy

and overall security issues are a central challenge. Consider the case of a volunteer,

annotating noise level measurements along his daily commute in a smart city based

on proximity to certain events. Even in such simple scenarios, anonymization

techniques should be used to ensure that neither personal data, nor the volunteer’s

interactions are revealed.

Another important issue is the correlation of different types of smart city data that

can potentially point to the same event. In other words, how to facilitate knowledge



84 Collecting Crowd-sourced Data

extraction through such data. We currently have data produced by IoT infrastructure

installed in cities, however, there is relatively small research focus on discovering

relations between these data, e.g., if noise level readings are related to social data

referring to a live concert or some other event.

Moreover, smart city data are unreliable by nature either they are supplied

by humans or IoT infrastructures. In some cases, they can even be malicious, as

the sensing infrastructure could be easily accessed and influenced or suffer from

hardware failures and malfunctions. In most cases, the hardware utilized aims for

large-scale deployments (i.e., has to be cost-effective), thus being not so accurate

or hard to re-calibrate after the initial installation. Additionally, environmental

conditions, e.g., excessive temperature or humidity, may have an effect on the

sensitivity of the sensing parts.

End-user engagement in the process of data annotation and knowledge extraction

is another major challenge. Users’ contribution is twofold: end-users can contribute

to a smart city system by crowd-sourcing or by adding annotations. Although most

current crowd-sourcing platforms utilize a desktop or web interface, it should not be

limited to that. It can also be performed through smartphones and be incorporated

to the user’s everyday life. The interaction of end-users through such a tool could

help relate in a more personal way and help maintain the interest in continuous

participation. Moreover, annotation of events or sensed results could be more

interactive and focus at users, or even user groups, near the actual space of the

event in question. Smart city facilities usually integrate a large number of data

sources of various types sharing observations for environment, air quality, traffic,

transport, social events and so on. These data sources might be static (they are

not streaming data and have a fixed value until they are updated by an offline

process) or might be dynamic (streaming data constantly). Building a taxonomy

on this multithematic environment is not straight forward as some subcategories

of tags might be shared between different types of data sources and other might

be orthogonal. Moreover, as the dynamic data sources have a temporal dimension,

annotations might characterize the overall behavior and observations of the data

sources or observations falling into a specific time interval.

Furthermore, as data sources might be mobile (e.g., an IoT device on a bus or a

smartphone) an annotation might characterize a specific location inside the city and

for a specific time interval. Embedding in the taxonomy such spatiotemporal char-

acteristics introduces new requirements and extensions to the traditional methods.

Standards like W3 Web annotation data model and protocols do not cover sufficiently
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these requirements. Finally, implementing machine learning algorithms suited to

smart city data and real-time processing is another major challenge. Handling

citywide data introduces additional complexity, especially when considering relations

between different data types and sensing devices. Current mobile devices have

enough processing power to handle a broad set of use-cases, especially when dealing

with data from integrated sensors (e.g., [19] uses on-device processing to classify

urban noise sources). This could also be utilized as a means to enhance privacy,

since processing would be performed locally, without requiring sensitive data to be

uploaded to the cloud.

In the rest of this section, we present the design and implementation JAMAiCA

(JAva MAChine Annotation). JAMAiCA is a service destined to aid smart city data

annotation through crowdsourcing and machine learning techniques, like classifica-

tion and anomaly detection. It is currently part of the OrganiCity project ecosystem,

operating in real world conditions, analyzing the data submitted to the platform. On

the one hand, it aims to simplify the creation of more automated forms of knowledge

from data streams, while on the other hand it serves as a substrate for crowdsourc-

ing data annotations via a large community of contributors that participate in the

knowledge creation process.

5.3.2 JAMAiCA

JAMAiCA is composed of two distinct software components. The first is an annotation

taxonomy and storage engine with the appropriate programming interfaces to create,

update and delete annotations of smart-city assets. The second component is a

streaming data processing engine that is capable of analyzing incoming data using

machine learning techniques and store the results in the first component.

Annotation Component

The Annotation Component is responsible for maintaining a directory of all possible

annotations in the form of tags. Tags are simple indicators of the annotated

parameter, similar to the way tagging is performed in photos in social networks, or

the use of hashtags in social status updates. Tag domains are created as collections

of tags (e.g., high, normal and low) with a similar contextual meaning. Tag

domains can be generic as those mentioned before or more application specific (e.g.,

the tag contains a beach for images). Users of the system can either select

one of the tag domains already available, or create their own specifically for their
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application. Annotations are stored with additional information like numeric or

text values. These entries can be user comments, a number that describes the

abnormality of an observation, or a confidence indicator.

Model The underlying data model of the Annotation Component and the relations

between its entities are described in the rest of this section. The schema is comprised

mainly of the following entities:

• Tag: Tags represent the actual annotation labels to be used by end-users for

the annotation process. The entity is described in more details in Table 5.2.

• TagDomain: TagDomains represent collections of tags. Usually a tag domain

is associated with a user or a real-world phenomenon that can be identified by

the data (e.g., temperature) specifying which tags can be used to characterize

it. The entity is described in more details in Table 5.3.

• Annotation: Annotations are relationships between the assets of a smart-city

and tags. The entity is described in more details in Table 5.4.

• Asset: Assets are sensor points of a smart-city that can be annotated. The

assets are not stored in the internal database of the Annotation Service but

referenced by the added annotations. This is done in the context of OrganiCity

but in a general version does not to be the case.

The parameters of each entity are available in more detail in the following tables.

Figure 5.8 shows visual examples of tags and tagDomains.

(a) Fields

Name Data Type Required Description

id numeric Y The unique id of the Tag in the internal DB

name string Y A user friendly name for the Tag

urn string Y The unique id of the Tag available to users

user string Y The id of the user that added the Tag

(b) Relationships

Name Target Description

HAS TagDomain Every Tag must be a member of a TagDomain

TAGGING Annotation Every Tag can characterize one or more Annotations

Table 5.2 Tag entity fields (a) and relationships (b).
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(a) (b)

(c)

Figure 5.8 Visual representations of tags (blue), tagDomains (green),

annotations (orange) and their relations. (a) TagDomain: Luminosity levels -

Tags: Overcast Night, Overcast Day, Sunlight (b) TagDomain: Simple 3 level catego-

rization - Tags: High, Medium, Low (c) TagDomain: Traffic Levels - Tags: Light or no

traffic, High traffic, Assets: urn:oc:e...:1, urn:oc:e...:2

Implementation The Annotation Service is implemented as a standalone Java

web application. It is built using the Spring Boot framework and internally uses an

SQL database to store the tags, tagDomains as well as the annotations added.

SQL was used as it is capable of bot the storage of the annotation taxonomy as

well as the annotations added by end users. Queries are implemented using the

Spring Data HATEOAS (Hypermedia as the Engine of Application State) and helped

us develop queries on the system data with minimal code requirements resulting in

a standardized API. The Annotation Service has itself no actual user interface but

allows other services of the OrganiCity platform to develop their own flexible interfaces

for data annotation. For example, the most clear interface developed is available

in the main OrganiCity web interface. Using this interface, users of OrganiCity can

view the data collected the IoT devices and add their own annotations on top of them.

This is implemented by a simple question-response schema that presented to each

users based on the type of data presented. An example of this interface is available

in Figure 5.9. In this interface, we can see that bellow the data of the IoT device a UI
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(a) Fields

Name Data Type Required Description

id numeric Y The unique id of the TagDomain in the internal DB

description string Y A user friendly description for the TagDomain

urn string Y The unique id of the TagDomain available to users

user string Y The id of the user that added the TagDomain

(b) Relationships

Name Target Description

HAS Tag Every TagDomain can contain one or more Tags

Table 5.3 TagDomain entity fields (a) and relationships (b).

(a) Fields

Name Data Type Required Description

annotationId numeric Y The unique id of the Annotation in the internal DB

assetUrn string Y The unique id of the OC Asset

datetime string Y The time of the Annotation

numericValue numeric N A number concerning the Annotation

textValue string N A text message concerning the Annotation

user string Y The id of the user that submitted the Annotation

(b) Relationships

Name Target Description

TAGGING Tag Every Annotation characterizes an Asset with a Tag

Table 5.4 Annotation entity fields (a) and relationships (b).

slice is dedicated to the Annotations Service and the reputation that is based on the

functionality of the Annotations Service. In it we can view the following:

• On the left hand side of the user interface, we observe knowledge that the

platform has for the given asset that the time of viewing. This is either

information about the IoT device added by users or information that is generated

by the machine learning component to be described bellow.

• The middle part, contains information about the reputation of the IoT device

inside OrganiCity. This information is generated as a calculation on top of all

the annotations added by users.
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Figure 5.9 Annotation user interface in OrganiCity. It contains the geographical

location of the IoT device along with the knowledge available in the platform, the

reputation of the device in the platform and the interface through which users can

submit their own knowledge on the device

• Finally, the right hand side part of the user interface contains a set of questions

addressed to the users concerning the data that are presented above. Each

question, concerns a specific tagDomain of the annotation service and each

response is translated as a tag. When a user selects one of the answers, the

respective annotation is stored increasing the knowledge of the system.

Machine Learning Component

The Machine Learning Component orchestrates the machine learning process, in-

cluding managing the executed jobs, training the instances with provided or retrieved

data, and the exchange of real-time city data. Our system is capable of performing

both anomaly detection and classification jobs over the streaming data. In both

cases, after annotation jobs are added to the system the initial training data need to

be submitted. After the initial training data are submitted, the annotation job starts

with each data point examined and the result posted to the Annotation Component.

The system is designed to be agnostic of the actual machine learning implementation,
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as it capable of using multiple libraries to run the classification or the anomaly

detection on the data. This gives us flexibility to experiment with different machine

learning algorithms and the ability to provide extra functionality in the future.

Model The underlying data model of the Machine Learning Service and the relations

between its entities are described in the following tables (Table 5.5 and 5.6). The

schema comprises mainly the following entities:

• Classification Configuration: An entity that is stored for each classification

job to be executed. Each job concerns a subset of the assets of the OrganiCity

platform. The selection of the assets is performed using the Orion Context

Broker’s subscription API. For each subscription we need three parameters: a

pattern on the Asset’s id, a pattern on the Asset’s type and the attribute to be

classified. Each subscription on the Orion Context Broker is identified by a

subscription id that is also stored to identify expired subscriptions. Additionally,

each entry contains the tagDomain that the classifications results in and an

indicator to disable the process temporarily. The entity is described in more

details in Table 5.5.

• Classification Training Datum: Data supplied by the user in order to train

the classification model. The entity is described in more details in Table 5.6.

Name Data Type Required Description

typePattern string Y A pattern based on the OrganiCity Asset Model for

asset types to enable the subscription for data updates

idPattern string Y A pattern based on the OrganiCity Asset Model for

asset Ids to enable the subscription for data updates

attribute string Y The attribute that needs to be classified based on the

OrganiCity Asset Model used to enable the

subscription for data updates

subscriptionId string Y The id of generated subscription for data updates

from OrganiCity

tags string Y The tagDomain of the Annotation component used in

this classification job

enable boolean Y An indicator to disable the classification process

on demand

Table 5.5 Classification Configuration entity fields.
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Name Data Type Required Description

id numeric Y A unique identifier for this training datum

classificationConfigId string Y A foreign key to the Classification

Configuration this datum refers to

tag string Y The tag of the tagDomain of the

Annotation component

value numeric Y The training datum to be used

Table 5.6 Classification Training Data entity fields.

Machine Learning frameworks As the underlying implementation of the machine

learning component we have experimented in the context of this thesis with two

different frameworks: Jubatus [38] and JavaML [2].

Jubatus is designed to run as a standalone service that is setup and executed as

a service in a Unix or Windows based system and can be accessed using as an RPC

server. The advantage of such an execution is that the same instance can be used by

multiple services to execute classification on a specific model. Unfortunately, each

instance of Jubatus needs to be configured using a specific dataset and assigned to

a specific job. In our case, as we need to instantiate multiple different jobs for each

different user of the service, this cases a large waste of resources, due to the need

for an instance management layer to be able to dynamically spawn new Jubatus

processes. JavaML on the other side, operates as a library inside another application.

This helped us easily and dynamically spawn new processes that can be handled in

a much resource efficient way.

Both frameworks are used in the same way. Once an instance for both is

setup, it needs to be trained using the training data provided by the user. These

data are supplied to the framework and the internal model for the classification is

generated. Once this is setup, the system is ready to receive the new data from

the IoT devices. For each update, the machine learning framework is queried and

the resulting classification is returned. The respective tag is then found using

the internal database of the machine learning component and the annotation is

published back to the Annotation component. The instance of the machine learning

framework is kept in memory to speedup consecutive updates to the values of an IoT

device.
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5.3.3 Real World Evaluation

To verify the performance of our system, we setup a classification job for analyzing

atmospheric pollution in London, based on data for the particulate matter concentra-

tion (PM10). As training data for our test case, we used data of the same area from

the past 12 months (1000 nominal, erroneous and error data points). We then let

the system operate for 20 days, analyzing more than 40000 sensor measurements

(translated to an average of 6 measurements every 15 minutes). The distributions of

the values for the training data and the sensor data are presented in Figure 5.10

and Figure 5.11. A big part of the sensor measurements received is −1, pointing

out a malfunction in the sensor devices, while another part of the measurements

is greater than 50 µg/m3
, the level the European Union considers dangerous when

exceeded for more than 35 days in a year. Our system was able to detect all values

that were either negative or greater than the 50 µg/m3
limit and record the time and

date these values were abnormal.

Figure 5.10 Distribution of training data for the PM10 experiment.

These 20 experimentation days helped us show that the data generated by smart

city installations are not always trustworthy. A big number of the deployed sensor

devices proved to be malfunctioning during our experiment (negative values), while a

small number of measurements provided by the rest of the devices differed from the

expected levels. The system performed without any problems for the whole duration
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of the experiment, on a virtual machine with limited resources (8GB of hard disk,

2GB RAM and 2 CPU cores) proving the system’s scalability.

Figure 5.11 Histogram of actual sensor data received during the 20 experiment days.

Negative values indicate malfunctioning sensors.

A second experiment was conducted using data from IoT devices that are placed

in the streets of Santander, Spain. These devices are equipped with magnetic loop

sensors that count the number of cars passing over in fixed periods of time. We

use the data from those sensors to estimate the usage of the streets and a possible

congestion, thus estimating the traffic levels inside the city. We defined a total of 3

categorizations for the traffic levels: low, normal and congestion. In this case

we experimented with two different strategies. In the first strategy we added to the

system a single value that represented each classification category as training data,

while in the second run we defined multiple values. The distribution of the training

data in both cases is presented in Table 5.7. The resulting classifications are in both

cases the same. This is due to the fact that the training data in the second case are

equally distributed in the three segments (0–15, 15–55, 55–100). As a result, we

realized that in cases where the data in each classification category do not follow

a non-normal distribution, using a much smaller dataset is equally effective as a

larger dataset.

In cases where the classification domains of a physical phenomenon are more

complex, like for example the classification of a received temperature in good,
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Experiment Classification Category Training Data # Data

1

low 1 0

normal 1 30

congestion 1 80

2

low 100 0-15

normal 100 15-55

congestion 100 55-100

Table 5.7 Classification Training Data for the street traffic experiment.

acceptable and extreme values our classification data can extend to more than one

“buckets”. The histogram of the data used as input for this use case is presented in

Figure 5.12. For our next test case, we use the relative humidity data collected from

sensors placed inside school classrooms of the GAIA project.

Figure 5.12 Distribution of data in the given categories for the relative humidity

inside school classrooms.

Such, data are collected by the infrastructure presented in Chapter 4 and are

fed directly to the JAMAiCA machine learning component for analysis. We base

our analysis in established regulations by the European Union or other global
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organizations like ASHRAE
3
, where we can read that controlling relative humidity is

important for children’s comfort and for the prevention of moisture accumulation,

which can lead to mold growth. In general, relative humidity shall be between 30%
and 50%[28]. From our work, we see that the data from the Greek public schools are

well within the acceptable limits, with only a few measurements (17%) moving away

from the acceptable parameters. It is also important to note that when we focus on

the office hours (8–15) the conditions inside the classrooms improve significantly,

with the measurements exceeding the acceptable values reduced to a 6%. In both

cases, the recommended conditions are met at the 66% of the time with the rest being

conditions that can be characterized as comfortable but not perfect. The resulting

annotations are presented in Figure 5.13 for both office hours and the whole day.

Figure 5.13 Distribution of classifications in the given categories for the relative

humidity inside school classrooms.

3
American Society of Heating, Refrigerating and Air-Conditioning Engineers https://www.

ashrae.org

https://www.ashrae.org
https://www.ashrae.org




Chapter 6

Conclusions & Future Work

This chapter presents the main conclusions from our work in the context of this

dissertation, the lessons we learned and possible future extensions.

6.1 Conclusions

In the context of this dissertation we dealt with the problems that arise from

the introduction of more and more smart and connected devices in our everyday

environments. This increasing use of such devices is what makes an improved data

analysis methodology essential for making use of the data that are generated.

Our work was based on two real-world use cases concerning a fleet of educational

school buildings and a federation of European cities as part of two EU funded

research projects, providing us with a testing ground to apply and validate our

solutions. As a result, we can now showcase applications that are capable of

efficiently collecting and analyzing data from those two sources and providing them

to end-users and application developers in near-real-time. We are also capable of

generating additional knowledge from the raw data generated by IoT installations

or from crowdsourcing. We also proved that our system architecture is capable of

handling various data types and inputs with minimal changes based on its modular

design while remaining salable and efficient under any level of traffic.
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6.2 Lessons Learned

During our work and interaction with the IoT domain, we were also presented with

some important lessons that should be taken into account in any future work on the

same or similar fields.

IoT devices tend to be extremely unreliable especially when installed in the

wild outside of our control. Some of the users tend to distrust the devices and

cause problems, intentionally or not, to the installation, thus causing problems

in maintaining the data streams from the installations. Also, hardware sensor

failures or connectivity issues are a common case and will appear in any installation

independently of their cost or manufacturer.

Finally, in the case of crowdsensing, it is important to note that the user interfaces

developed are extremely important in order to keep interest on the application. In

the case where the user interface is even a little more complex than what is required,

users tend to lose focus and will to use any kind of application.

6.3 Future Work

An important extension to the work presented in this dissertation would be the

pursue of the possibility of splitting the analysis of the collected data in more than

one layers. In this case, some of the processing could happen on the premises of

the user, thus reducing the need for data transfer over the Internet. This case will

also help us reduce any possible data loses from networking and connectivity issues,

which are quite common with commercial internet connections. This trend, called

edge or fog computing is a highly interesting and promising field of research that can

significantly increase the efficiency of the system. More extensions could be focused

to adding more data types in the analysis modules of our system like video or audio

as their nature could reveal more complex requirements that were not investigated

here.
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Appendix B

Extended Summary in Greek

Αποδοτική διαχείριση δεδοµένων στα πλαίσια του ∆ια-

δικτύου των Αντικειµένων

Εισαγωγή

Ο όρος ∆ιαδίκτυο των Αντικειµένων (Internet of Things) εχει εµφανιστεί τα τελευταία χρόνια

στη ϐιβλιογραφία και την καθηµερινή Ϲωή εκατοµυρίων ανθρώπων. Αποτελεί την ϕυσική συ-

νέχεια της έρευνας που πραγµατοποιήθηκε τα προηγούµενα χρόνια στον τοµέα των ασύρµατων

δικτύων αισθητήρων (Wireless Sensor Networks) και αναφέρεται, σύµφωνα και µε τον Kevin

Ashton της Procter & Gamble [16] που πρωτο-χρησιµοποίησε τον όρο, στην ένθεση ηλεκτρο-

νικών συσκευών µε αισθητήρες, ενεργοποιητές καθώς και δυνατότητες επικοινωνίας σε ϕυσικά

αντικείµενα µε αποτέλεσµα την δηµιουργία ενός δικτύου ανταλλαγής δεδοµένων και πληρο-

ϕοριών για την αλληλεπίδραση του ϕυσικιού και του ψηφιακού περιβάλλοντος. Μια τέτοια

υποδοµή επιτρέπει την ανάπτυξη ενός µεγάλου αριθµού υπηρεσιών σε πολλαπλά πεδία εφαρ-

µογής όπως τα έξυπνα-δίκτυα, τα έξυπνα σπίτια, τις εφυείς µεταφορές και άλλα. Μερικά τέτοια

παραδείγµατα είναι µεταξύ άλλων οι συνδεδεµένοι ϑερµοστάτες των Nest και Ecobee, οι έξυ-

πνοι λαµπτήρες ϕωτισµού της Phillips, οι συσκευές της Smarthings για µια µεγάλη γκάµα

εφαρµογών αυτοµατισµών σπιτιού αλλά και τα Fitbit και Withings για την παρακολούθηση της

καθηµερινής άσκησης και Ϲωής των χρηστών ή οι προσωπικοί ϐοηθοί Alexa της Amazon και

Siri της Apple.

Παρά την τεράστια ανάπτυξη τέτοιων εφαρµογών, η χρησιµότητα των δεδοµένων που προ-

έρχονται από αυτά τα συστήµατα πρέπει ακόµη να επικυρωθεί και να αποδειχθεί. Ο όγκος των

δεδοµένων που µπορούν να δηµιουργηθούν από µία συσκευή αισθητήρων που είναι εγκατε-

στηµένη σε ένα σπίτι ή µια ϕορητή συσκευή ενός ατόµου µπορεί να είναι εξωντοτική για την

ίδια τη συσκευή και στις περισσότερες περιπτώσεις πρέπει να µεταφερθεί σε µια εφαρµογή

επεξεργασίας δεδοµένων µέσω της οποίας µπορεί να γίνει πιο αποτελεσµατική χρήση των δε-



112 Extended Summary in Greek

δοµένων. Καθώς ο αριθός αυτός των συσκευών που χρησιµοποιούµε στην καθηµερινή µας Ϲωή

αυξάνεται σηµαντικά µέρα µε τη µέρα ο όγκος των δεδοµένων αυτών αυξάνεται µε ακόµη µε-

γαλύτερους ϱυθµούς. Αυτό έχει σαν αποτέλεσµα, την ανάγκη για µια ολοκληρωµένη ανάλυση

του ϑέµατος της διαχείρισης των δεδοµένων αυτών που παράγονται από έξυπνες συσκευές, ένα

ανοιχτό ϑέµα για την έρευνα τόσο σε ακαδηµαϊκά όσο και σε επιχειρηµατικά πλαίσια.

΄Ενα άλλο χαρακτηριστικό αυτών των δικτύων συσκευών, είναι ο µεγάλος κατακερµατισµός

τους, τόσο στο πεδίο των κατασκευαστών όσο και στις τεχνολογίες συλλογής, µεταφοράς, επε-

ξεργασίας και παρουσίασης των δεδοµένων που συλλέγονται. Κύριος λόγος για αυτό το είναι

τόσο το νεαρό της ηλικίας των τεχνολογιών όσο και η έλλειψη ισχυρών πρωτοκόλλων και διε-

ϑνών προτύπων που να ακολουθούν οι κατασκευαστές. Ο κατακερµατισµός αυτός οδηγεί στην

αναπόφευκτη ανάγκη για την δηµιουργία δοµών και µεθοδολογιών διασύνδεσης όλων αυτών

των τεχνολογιών σε ένα κεντρικό σύστηµα το οποίο µπορεί να πραγµατοποιήσει όλες τις α-

παραίτητες επικοινωνίες και να προσφέρει τις διασυνδέσεις και διεπαφές µεταξύ αποκοµένων

τοµέων του ∆ιαδικτύου των Αντικειµένων.

Στόχος αυτής της ∆ιδακτορικής ∆ιατριβής (∆∆), είναι η µελέτη του πλαισίου λειτουργίας του

∆ιαδικτύου των Αντικειµένων και όλων των τεχνολογιών που αυτό περιλαµβάνει για τον σχε-

διασµό εφαρµογών που γεφυρώνουν πιθανά προβλήµατα διαλειτουργικότητας και λειτουργούν

αποτελεσµατικά σε αυτό το νέο περιβάλλον. Πιο συγκεκριµένα επικντρονώµαστε στα εξής :

• Την αποδοτική ψηφιακή αναπαράσταση της δοµής του ∆ιαδικτύου των Αντικειµένων µε

ϐάση όλες τις ιδιαιτερότητες που αυτή διαθέτει.

• Την αποδοτική επεξεργασία των δεδοµένων που προκύπτουν από εγκαταστάσεις ∆ιαδι-

κτύου των Αντικειµένων ανεξάρτητα µε το µέγεθος της εγκατάστασης και τον τύπο των

δεδοµένων που αυτή παράγει.

• Την εξαγωγή πληροφοριών χρήσιµων για τους χρήστες των συστηµάτων ∆ιαδικτύου των

Αντικειµένων µε ϐάση τόσο τα πρωταρχικά δεδοµένα που παράγονται από αυτές αλλά

και τις διασυνδέσεις µεταξύ τους.

Για την επίτευξη αυτών των στόχων υλοποιήθηκαν στα πλαίσια αυτής της ∆∆ τα εξής :

• ΄Ενα σχήµα αποθήκευσης και αναπαράστασης των πληροφοριών και µετα-δεδοµένων ε-

γκαταστάσεων ∆ιαδικτύου των Αντικειµένων µε χρήση γραφηµάτων. Σε αντίθεση µε τα τις

παραδοσιακές σχεσιακές ϐάσεις δεδοµένων που χρησιµοποιούνται στην πλειονότητα των

διαδικτυακών εφαρµογών, τα γραφήµατα µας δίνουν την δυνατότηνα να δηµιουργήσου-

µε ένα ευέλικτο και επεκτάσιµο σχήµα που προσφέρει πιο εκφραστικά και αποτελε-

σµατικά ερωτήµατα. Η χρήση αυτών των ερωτηµάτων αποφέρει σηµαντικά µικρότερους

χρόνους απάντησης και απαιτήσεις αποθήκευσης δεδοµένω.

• ΄Ενα σύστηµα ανάλυσης δεδοµένων προσαρµοσµένο στην συνεχή ϱοή πληροφοριών από

εγκαταστάσεις ∆ιαδικτύου Αντικειµένων. Το σύστηµα αυτό µπορεί να επεξεργάζεται ϱο-

ές δεδοµένων µε πολύ µεγάλους ϱυθµούς σε εξαιρετικά χαµηλούς χρόνους απόκρισης.
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Επίσης, διαθέτει µεγάλη ευελιξία στην ανάλυση των δεδοµένω καθώς είναι παραµετρο-

ποιήσιµο για να µπορεί να δεχθεί κάθε πιθανό τύπο δεδοµένων αλλά και σε κάθε ϐαθµό

χρονικής ή τύπο στατιστικής ανάλυσης.

• Ενα σύστηµα συλλογής δεδοµένων από κινητές συσκευές εθελοντών για την καλύτερη

κατανόηση των µεθόδων και των προβληµάτων που προκύπτουν από την αποκεντροµένη

και άναρχη δοµή ενός τέτοιου δικτύου.

• Τέλος, µια δοµή ανάλυσης δεδοµένων µε χρήση τεχνολογιών µηχανικής µάθησης σε

πραγµατικό χρόνο για την εξαγωγή περεταίρω πληροφοριών από τα ακατέργαστα δεδο-

µένα των εγκαταστάσεων.

Για την καλύτερη δυνατή εκτίµηση των δυνατοτήτων και των αποτελεσµάτων της χρήσης αυ-

τών των τεχνολογιών τις εφαρµόσαµε στην πράξη στα πλαίσια 2 ερευνητικών προγραµµάτων της

Ευρωπαϊκής ΄Ενωσης, το GAIA
1

και το Organicity
2
. Το έργο GAIA αποσκοπεί στην προώθηση

ϑετικών προτύπων συµπεριφοράς εντός κοινοτήτων όσον αφορά την κατανάλωση / συνειδητο-

ποίηση της κατανάλωσης ενέργειας µε τη χρήση των µετρήσεων της κατανάλωσης ενέργειας σε

πραγµατικό χρόνο, ενισχυµένων από εγκαταστάσεις ∆ιαδικτύου Αντικειµένων, σε επιλεγµένες

σχολικές κοινώτητες της Ιταλίας, της Ελλάδας και της Σουηδίας. Το Organicity είναι µια υπη-

ϱεσία πειραµατισµού που διερευνά πώς οι πολίτες, οι επιχειρήσεις και οι αρχές µπορούν να

συνεργαστούν για τη δηµιουργία ψηφιακών λύσεων στις αστικές προκλήσεις χρησιµοποιώντας

ένα σύνολο εργαλείων ∆ιαδικτύου Αντικειµένων για να δοκιµάσουν και να αναπτύξουν τις δικές

τους ιδέες σε επιτυχηµένες εφαρµογές έξυπνων πόλεων.

Βασικές έννοιες και σχετικές ερευνητικές εργασίες

Βασικοί όροι µε τους οποίους ασχολούµαστε στα πλαίσια αυτής της ∆∆ είναι µεταξή άλλων τα

εξής :

• ΄Εξυπνο Αντικείµενο : µπορεί να αναφέρεται σε ένα άτοµο, Ϲώο ή ϕυσικό αντικείµεντο

στο οποίο έχει εµφυτευθεί ή τοποθετηθεί µια µικρού µεγέθους υπολογισική συσκευή η

οποία µπορει να συλλέξει τα απαιτούµενα δεδοµένα από το άµµεσο περιβάλλον του αλλά

και να τα επεξεργαστεί ή να τα αποστείλει σε γειτονικές συσκευές και στο διαδύκτιο.

• Ροές δεδοµένων: Καθώς τα Αντικείµενα που αναφέραµε προηγουµένως συλλέγουν συ-

νεχώς δεδοµένα δηµιουργούν µια συνεχή ϱοή πληροφορίας για τα ϕυσικά µεγέθη που

παρακολουθούν. Οι ϱοές αυτές µπορούν να έχουν µη σταθερούς ϱυθµούς αποστολής

µε αποτέλεσµα να είναι αδύνατον εκ των προτέρων να προβλεφθεί ο ακριβής τους όγκος

και η συµπεριφορά τους.

1
https://gaia-project.eu

2
https://organicity.eu
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• Επεξεργασία Ροής και Επεξεργασία Παρτίδας : Η επεξεργασία αυτών των δεδοµένων

που περιγράψαµε πριν µπορεί να γίνει µε 2 τροπους. Είτε σειριακά καθώς τα δεδο-

µένα ϕθάνουν στο σύστηµα (Επεξεργασία Ροής) αλλά και συνολικά, ανά τακτά χρονικά

διαστήµατα µε ϐάση το σύνολο των δεδοµένων που έχουν συγκετρωθεί µέχρι τότε (Επε-

ξεργασία Παρτίδας). Η δευτερη περίπτωση έχει µελετηθεί αρκετά τα τελευταία χρόνια

µε την υλοποίηση συστηµάτων µεγάλων-δεδοµένων και κύριο εκφραστή το Hadoop. Σε

αυτή την περίπτωση χρησιµοποιείται µια αλληλουχία κατα Ϲεύγη επεξεργασίας για την

σταδιακή µείωση των δεδοµένων σε µια ή ενα µικρό σύνολο τιµών. Το µειονέκτηµα

µιας τέτοιας τεχνικής είναι κυρίως η καθυστέρηση της επεξεργασίας καθώς απαιτείται

η συγκέντρωση όλων των τιµών πριν την εκτέλεσή της. Αντίθετα στην Επεξεργασία Ρο-

ής τα στατιστικά εξάγωνται σε πραγµατικό χρόνο και ανανεώνωνται µε την λήψη νέων

δεδοµένων.

• Τεχνολογίες ΄Εξυπνων Σπιτιών : ΄Ενας από τους πιο συζητηµένους και δηµοφιλείς όρους

σε σχέση µε τις αναζητήσεις στο διαδίκτυο τα τελευταία χρόνια σύµφωνα µε τις τάσεις

της Google (Σχήµα Βʹ.1). Αναφέρεται στην εισαγωγή πολλαπλών συσκευών σε οικιακό ή

γραφείο που επεκτείνει τα όρια των παραδοσιακών λύσεων διαχείρισης κτιρίων και προ-

σφέρει πιο εξατοµικευµένες πληροφορίες σχετικά µε τη λειτουργία και τις παραµέτρους

του κτιρίου, καθώς και των κατοίκων του.

Σχήµα Βʹ.1 Στοιχεία δηµοτικότητας όρων από την εφαρµογή Google trends για τους

όρους Smart Homes, Smart Cities, Big Data Internet of Things.
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• Τεχνολογίες ΄Εξυπνων Πόλεων: καθώς σύµφωνα µε πρόσφατες µελέτες το 2050 το 70%

του παγκόσµιου πληθυσµού ϑα Ϲει σε αστικές περιοχές, ενώ περισσότερο από το ήµι-

συ του παγκόσµιου πληθυσµού Ϲει ήδη στις πόλεις οι διάφοροι ενδιαφερόµενοι ϕορείς

(πολεοδόµοι, πολιτικοί, ερευνητές κ.λπ.) εφαρµόζουν πολιτικές που στοχεύουν στη ϐελ-

τίωση της ποιότητας Ϲωής σε αστικά περιβάλλοντα µε χρήση τεχνολογιών ∆ιαδικτύου

Αντικειµένων.

• Εξαγωγή Γνώσης: Μια κεντρική ερώτηση σχετικά µε την συλλογή δεδοµένων από έξυ-

πνα αντικείµενα και ϱοές δεδοµένω είναι το κατά πόσο µπορεί να υπάρξει εµπιστοσύνη

στα παραγόµενα δεδοµένα. Και όταν το δεδοµένα ϑεωρούνται αξιόπιστα, πώς µπορούµε

να εξάγουµε γνώση απο αυτά, ως κάτι χρήσιµο πέρα από έναν τεχνολογικό επίτευγµα.

Επιπλέον, πώς παρέχουµε στους ιδιοκτήτες των δεδοµένων αυτό κάποια διευκόληνση

στην καθηµερινότητα και τη Ϲωή τους. Στην ουσία, τέτοιες ερωτήσεις ϕθάνουν στο σηµε-

ίο να κατανοήσουµε πώς πραγµατικά κάνουµε την ανάλυση των δεδοµένων πιο έξυπνη

για να επιτύχουµε αυτό που χρειαζόµαστε. Παραδείγµατος χάρη, στην περίπτωση κυ-

κλοφοριακής συµφόρησης στο κέντρο της πόλης παράγετονται τιµές δεδοµένων για την

ταχύτητα των αυτοκινήτων, του ϑορύβου και της συγκέντρωσης αερίων απο τις εκποµπές

των οχηµάτων. Σε αυτά τα δεδοµένα λείπουν χρήσιµοι συσχετισµοί στις ϱοές τους και

δεν ειναι εύκολα εφικτός ο συσχετισµός τους. Η προσθήκη επισηµάνσεων και συσχετι-

σµών σε τέτοιου είδους έξυπνα δεδοµένα µέσω µηχανισµών µηχανικής µάθησης ή µε τη

χρήση εθελοντών µπορεί να ϐοηθήσει να αποκαλύψουµε µια τεράστια κρυφή δυναµική

στα δεδοµένα που συλλέγουµε.

Αναπαράσταση του ∆ιαδικτύου Αντικειµένων

Προκειµένου να αλληλεπιδράσουµε µε µια εγκατάσταση ∆ιαδικτύου Αντικειµένων, απαιτείται

µια κατάλληλη αναπαράσταση γι άυτό στον ψηφιακό κόσµο. Κάθε εγκατάσταση περιλαµβάνει

πολλά στοιχεία που παράγουν, καταναλώνουν ή µεταφέρουν δεδοµένα. Κάθε στοιχείο σε αυτό

το οικοσύστηµα έχει πολλαπλές σχέσεις µε άλλους, δηµιουργώντας ένα περίπλοκο σχήµα που

µπορεί να είναι δύσκολο να κατανοηθεί ή να απεικονιστεί καθώς η κλίµακα της εγκατάστασης

αυξάνεται. Για να ξεπεραστεί αυτό το πρόβληµα και να απλοποιηθεί η αλληλεπίδρασή µας µε

αυτή την αντιπροσώπευση του ψηφιακού, πρέπει να εφαρµοστούν µορφές πιο κατάλληλες από

τις παραδοσιακές σχεσιακές ϐάσεις δεδοµένων. Ταυτόχρονα, αυτά τα µορφότυπα πρέπει να

είναι εύκολα κατανοητά και να χρησιµοποιούνται από τους χρήστες µε περιορισµένη αντίληψη

της τεχνολογίας, όπως καλλιτέχνες ή ακτιβιστές ή απλούς πολίτες.

Για την ανάπτυξη αυτής της αναπαράστασης χρησιµοποιούµε τις πληροφορίες που έχουµε

από το ερευνητικό έργο GAIA και εστιάζουµε στη δοµή µιας εγκατάστασης που εκτείνεται σε ένα

ολόκληρο σχολικό το κτίριο για την παρακολούθηση της κατανάλωσης ενέργειας και των πε-

ϱιβαλλοντικών παραµέτρων. Στόχος της πλατφόρµας είναι να διευκολύνει άµεσα τους χρήστες

να συγκρίνουν τα συγκεντρωµένα δεδοµένα του σχολείου τους µε άλλα παρόµοια κτίρια που
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συµµετέχουν στο έργο, λαµβάνοντας προσεκτικά υπόψη περιβαλλοντικές παραµέτρους όπως

η εποχή του χρόνου, η τοποθεσία ή ο καιρός. Η πλατφόρµα πρέπει επίσης να υποστηρίζει

πολλές οµάδες τελικών χρηστών που υπάρχουν στον τοµέα της εκπαίδευσης : µαθητές, εκπαι-

δευτικούς, διαχειριστές κτιρίων και άλλα διοικητικά στελέχη. Σε ένα τέτοιο κτίριο, µια τυπική

εγκατάσταση ϐασισµένη στις γνώσεις του έργου αποτελείται από:

• µια συσκευή µετρητή ισχύος εγκατεστηµένη στον κύριο ηλεκτρολογικό πίνακα του κτι-

ϱίου,

• 5-10 συσκευές µέτρησης περιβάλλοντος εγκατεστηµένες σε ένα υποσύνολο των τάξεων

και των κοινόχρηστων χώρων του κτιρίου,

• µια συσκευή µετεωρολογικού σταθµού εγκατεστηµένη στην οροφή του κτιρίου

Με ϐάση αυτή την ανάλυση, µπορούµε να συνοψίσουµε τα εµπλεκόµενα µέλη στις ακόλου-

ϑες κατηγορίες :

• Χρήστες: Οι χρήστες είναι άνθρωποι που ϑα αλληλεπιδρούν ή ϑα Ϲουν µέσα στην εγκα-

τάσταση.

• Συσκευές ανίχνευσης: Οι αισθητήρες είναι οι συσκευές που έχουν εγκατασταθεί και

έχουν τον ϱόλο των παραγωγών δεδοµένων. Οι πληροφορίες τους µπορούν να µεταφερ-

ϑούν, να καταναλωθούν ή να συλλεχθούν για τη χρήση τους

• Συσκευές ενεργοποιητών: Οι συσκευές ενεργοποιητή είναι οι συσκευές που µπορούν

να ελεγχθούν για να διεγείρουν την αλλαγή στον ϕυσικό κόσµο. Περιλαµβάνουν στοι-

χεία όπως διακόπτες ϕωτός ή την καθορισµένη τιµή του ϑερµοστάτη σε ένα σύστηµα

κλιµατισµού

• Συσκευές πύλης: Οι συσκευές πύλης είναι συσκευές που έχουν απλώς το ϱόλο της

µεταφοράς πληροφοριών µεταξύ της εγκατάστασης και του διαδικτύου. Ο ϱόλος τους

είναι Ϲωτικής σηµασίας σε εγκαταστάσεις όπου οι άλλες εγκατεστηµένες συσκευές δεν

είναι συνδεδεµένες στο διαδίκτυο και δεν µπορούν να επικοινωνούν απευθείας µε το

υπόλοιπο σύστηµα.

• Παρατηρηθέντα ϕαινόµενα: αναφέρονται στα ϕυσικά ϕαινόµενα που µπορούν να

παρατηρηθούν από συσκευές ψηφιακής ανίχνευσης ή ενεργοποίησης.

• Μονάδες µέτρησης: αναφέρονται στη σύµβαση που χρησιµοποιείται για την ποσοτικο-

ποίηση ενός παρατηρούµενου ϕαινοµένου.

• Τοποθεσίες: αναφέρονται στις ϕυσικές και λογικές οµαδοποιήσεις που µπορούν να

χρησιµοποιηθούν εφαρµόστηκε σε όλα τα στοιχεία που παρουσιάστηκαν παραπάνω.

Μπορούν να περιγράψουν ένα κτίριο, µια σχολική µονάδα ή ένα εργαστήριο, αλλά και
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µια πιο αφηρηµένη οµαδοποίηση ενός συνόλου χρηστών µέσα σε πολλαπλές σχολικές

κοινότητες.

Με παρόµοιο τρόπο υπάρχουν σχέσεις µεταξύ των στοιχείων που παρουσιάζονται παραπάνω

που ορίζονται ως εξής :

• Η σχέση ιδιοκτησίας καθορίζει τη σχέση µε την οποία οι χρήστες έχουν τον πλήρη

έλεγχο και τις αποστολές σε ένα σύνολο αισθητήρων, ενεργοποιητών ή συσκευών πύλης

και ϕυσικών τοποθεσιών.

• Τα δικαιώµατα ενός χρήστη να έχει πρόσβαση στις πληροφορίες που παράγονται από ένα

σύνολο συσκευών στίγµατος ή τη ϕυσική ϑέση ή να ελέγχει µια διάταξη ενεργοποιητή.

• Θέση των συσκευών αισθητήρων και ενεργοποίητών ως µέρος µιας ϕυσικής ή λογικής

ϑέσης. Για παράδειγµα, οι συσκευές συλλογής περιβαλλοντικών συνθηκών αποτελούν

µέρος µιας ϕυσικής τάξης που ανήκει σε ένα κτίριο

• Χαρακτηριστικά ανίχνευσης: Τα χαρακτηριστικά ανίχνευσης αναφέρονται στις συ-

σκευές ανίχνευσης και ενεργοποίησης και χρησιµοποιούνται για τον ορισµό του τύπου

πληροφορίας που παράγει η κάθε συσκευή ή του τύπου της συσκευής που ελέγχει.

Μπορεί να υπάρχουν πληροφορίες σχετικά µε το ϕυσικό ϕαινόµενο ή τη µονάδα µέτρη-

σης που µετράται ή ακόµα και αν τα δεδοµένα που παράγονται είναι πρώτες τιµές ή

χρειάζονται µια µεταγενέστερη επεξεργασία για να είναι έγκυρη.

Προκειµένου να παρέχουµε µια ψηφιακή αναπαράσταση αυτών των στοιχείων, επιλέγουµε

να χρησιµοποιήσουµε µια ϐάση δεδοµένων γραφηµάτων. Μια τέτοια ϐάση δεδοµένων είναι

πιο κατάλληλη για την περίπτωση µας, καθώς µπορεί εύκολα να αντιστοιχίσουµε τα στοιχεία

και τις σχέσεις τους µε τις κορυφές και τις ακµές ενός γραφήµατος. Παρέχει επίσης ως έναν

µηχανισµό προβολής και αποθήκευσης για κάθε στοιχείο ή σχέση χρησιµοποιώντας Ϲεύγη

κλειδιού-τιµής για τα χαρακτηριστικά τους και απλοποιεί τις αναζητήσεις µέσα στο γράφηµα µε

τη µορφή ερωτηµάτων γραφηµάτων. Η υλοποίηση αυτής της αναπαράστασης γίνεται µε χρήση

της πλατφόρµας Neo4j µιας λύσης επιχειρηµατικής ποιότητας για τη δηµιουργία εφαρµογών

υψηλών απαιτήσεων. Το τελικό σχήµα δεδοµένων που χρησιµοποιούµε έχει περιέχει τις εξής

οντότητες ως κόµβους του γραφήµατος :

• Χρήστης: για την αποθήκευση πληροφοριών σχετικών µε το χρήστη

• Τοποθεσία: για αποθήκευση σχολείων και σχολικών χώρων

• Πηγή: για την αποθήκευση σηµείων ανίχνευσης

• Πύλη: για την αποθήκευση κόµβων πύλης που επικοινωνούν µε συσκευές ανίχνευσης

• Ιδιότητα: για αποθήκευση των δυνατοτήτων ανίχνευσης και των µεταδεδοµένων
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Αντίστοιχα περιέχει τις εξής συσχετήσεις τως ακµές του γραφήµατος :

• ResourceProperty: για τη σύνδεση µιας οντότητας πόρων µε τις ιδιότητες που εµφα-

νίζουν τις αισθητήριες παραµέτρους της

• GatewayProperty: για τη σύνδεση µιας οντότητας πύλης µε τις ιδιότητες που εµφα-

νίζουν τις δυνατότητες συνδεσιµότητάς της

• IsPartOf: για τη σύνδεση µιας οντότητας πόρων µε τη ϑέση στην οποία ϐρίσκεται ϕυσικά

• ShareWith: για την παροχή πρόσβασης στο Σιτε στους χρήστες του συστήµατος

• SubSite για εύκολη περιγραφή της δοµής µέσα στα σχολικά κτίρια

Μέχρι στιγµής έχουν συµµετάσχει στο έργο GAIA συµµετέχουν 18 σχολικά κτίρια σε 3

χώρες (Ελλάδα, Ιταλία, Σουηδία) και καλύπτουν µια σειρά από τοπικές κλιµατολογικές συν-

ϑήκες και επίπεδα εκπαίδευσης (πρωτοβάθµια, δευτεροβάθµια, γυµνάσια και πανεπιστήµια).

Οι µετρητές κατανάλωσης ηλεκτρικής ενέργειας εγκαθίστανται σε όλα αυτά τα κτίρια, µαζί µε

αισθητήρες που παρακολουθούν εσωτερικές και εξωτερικές συνθήκες λειτουργίας όπως περι-

γράφεται παραπάνω. Η συντριπτική πλειονότητα των επιτηρούµενων δωµατίων χρησιµοποιείται

για εκπαιδευτικούς σκοπούς και τα υπόλοιπα για άλλες δραστηριότητες όπως η αίθουσα διδα-

σκόντων, προσωπικού κ.λπ. Το έτος κατασκευής αυτών των κτιρίων κυµαίνεται από το 1950

έως το 2000. Για να αντιπροσωπεύουν όλες τις πληροφορίες του έργου η ϐάση δεδοµένων

γραφηµάτων περιέχει συνολικά 7332 κόµβους και 47864 ακµές συνολικά για την ανάπτυξη

και χρησιµοποιεί συνολικά 113MB στο χώρο του δίσκου. Από αυτές τις κορυφές, τα 4749

σηµεία συγκέντρωσης είναι 1012 τοποθεσίες, 681 ιδιότητες και 300 χρήστες του συστήµατος.

Συλλογή και Ανάλυση ∆εδοµένων

Το επόµενο ορόσηµο µετά την αναπαράσταση των δεδοµένω είναι η ανάπτυξη ενός συστήµατος

που να µπορεί να επεργάζεται όλα τα δεδοµένα που παράγει µια τέτοια εγκατάσταση ∆ιαδικύου

Αντικειµένων. Το σύστηµα αυτό πρέπει να καλύπτει ένα σύνολο ϐασικών απαιτήσεων για να

είναι επιτυχηµένο, όπως να είναι επεκτάσιµο, ευέλικτο, ανοιχτό και ασφαλές ως προς την

ιδιωτικότητα των δεδοµένω.

Για να επιτύχουµε µια τέτοια λύση, ϐασίζουµε τη δουλειά µας στη χρήση πλαισίων ανοιχτο-

ύ κώδικα, καθιερωµένων εφαρµογών, που χρησιµοποιούνται από πολλούς προγραµµατιστές

λογισµικού σε όλο τον κόσµο. Αυτές οι τεχνολογίες είναι επίσης εύκολο να επεκταθούν και

να υποστηρίξουν τις νέες τεχνολογίες και να λειτουργήσουν σε πολλαπλές υποδοµές µειώνο-

ντας τις πιθανότητες δηµιουργίας παλαιών συστηµάτων που κληρονοµούνται χωρίς δυνατότητες

αλλαγών. Επίσης, ϐασίζουµε την υλοποίησή µας σε υπηρεσίες που µπορούν εύκολα να κλιµα-

κωθούν κάθετα ή οριζόντια για να υποστηρίξουν τις αυξανόµενες ανάγκες που ϑα αναπτυχθούν
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µε την πάροδο του χρόνου λόγω ανάπτυξης της εγκατάστασης, ελαχιστοποιώντας την ανάγκη

επανασχεδιασµού οποιουδήποτε τµήµατος του συστήµατος.

΄Οπως αναφέραµε πριν, σε κάθε ένα από τα κτίρια της εγκατάστασης εγκαταστήθηκαν συ-

σκευές που µετράνε (α) τη συνολική κατανάλωση ισχύος του κτιρίου, (ϐ) την περιβαλλοντική

ευελιξία κάθε κατηγορίας (ϐλ. Παρακάτω για περισσότερες λεπτοµέρειες) και (γ) και τα επίπεδα

ατµοσφαιρικής ϱύπανσης σε κάθε κτίριο. Αυτές οι συσκευές µπορούν να χωριστούν σε τρεις

διαφορετικές κατηγορίες ανάλογα µε τον τύπο προέλευσης και λειτουργίας τους. Σε γενικές

γραµµές, χρησιµοποιούµε (α) προσαρµοσµένες συσκευές που επικοινωνούν χρησιµοποιώντας

ένα τοπικό δίκτυο ΙΕΕΕ 802.15.4, (ϐ) έτοιµες συσκευές που επικοινωνούν µέσω ασύρµατου

δικτύου ή τηλεφωνικών δικτύων σε αποµακρυσµένες περιοχές, και (γ) αισθητήρες από πα-

λαιότερα συστήµατα διαχείρισης κτιρίων που έχουν ήδη εγκατασταθεί σε ορισµένα σχολικά

κτίρια.

Στόχος µας είναι να οικοδοµήσουµε ένα σύστηµα που να είναι σε ϑέση να χειρίζεται ένα

απεριόριστο αριθµό δεδοµένων από αυτές τις εγκαταστάσεις σε πραγµατικό χρόνο χωρίς καθυ-

στερήσεις ή διακοπές. Το σύστηµα έχει σχεδιαστεί µε την προσέγγιση των µικρο-εφαρµογών.

Ως εκ τούτου, αποτελείται από µια σειρά από χαλαρά συνδεδεµένες εφαρµογές που επικοι-

νωνούν χρησιµοποιώντας διεπαφές ιστού και µια κεντρική υπηρεσία ανταλλαγής µηνυµάτων.

Αυτό το κεντρικό σηµείο της αρχιτεκτονικής µας είναι µια υπηρεσία ‘µεσίτη’ µηνυµάτων που

επιτρέπει σε όλες τις άλλες υπηρεσίες να δηµοσιεύουν µηνύµατα ή να εγγράφονται σε ϱοές δε-

δοµένων και να λαµβάνουν ειδοποιήσεις από αυτές. Ο ϱόλος του είναι να εισάγει τα δεδοµένα

από τις διάφορες ϱοές δεδοµένων από τις εγκαταστάσεις στην κεντρική υπηρεσία επεξεργασίας

που αναλύει τα δεδοµένα και προωθεία ξανά προς τον ‘µεσίτη’ µηνυµάτων τα αποτελέσµατα για

περαιτέρω επεξεργασία ή αποθήκευση. Το σύστηµα αυτό ονοµάζεται Μηχανισµός Συνεχούς

Υπολογισµού. Κατάλληλες διεπαφές προγραµµατισµού εφαρµογών παρέχονται για την ανάκτη-

ση πληροφοριών από το σύστηµα (ιστορικά δεδοµένα ή πληροφορίες της δοµής του ∆ιαδικτύου

Αντικειµένων) για τη δηµιουργία τελικών εφαρµογών προς τους χρήστες του GAIA(Σχήµα Βʹ.2).

Για την ανάλυση των δεδοµένων χρησιµοποιούµε το σύστηµα επεξεργασίας ϱοών δεδοµένω

Apache Storm, ένα δωρεάν και ανοιχτού κώδικα κατανεµηµένο σύστηµα υπολογισµού για δε-

δοµένα πραγµατικού χρόνου. Το σύστηµα αυτό µας επιτρέπει να χωρίσουµε όλα τα ϐήµατα της

επεξεργασίας των δεδοµένων σε απλές εργασίες που εκτελούνται ασύγχρονα αλλά µε τη σωστή

σειρά, σχηµατίζοντας ένα αγωγό µετασχηµατισµών που εφαρµόζονται στα αρχικά δεδοµένα

που εισέρχονται στο σύστηµά µας. Αυτός ο σχηµατιζόµενος αγωγός ονοµάζεται τοπολογία

επεξεργασίας. Η ανάλυση που εκτελούµε σε κάθε ϐήµα γίνεται µε ϐάση τον χρόνο για την ε-

ξαγωγή στατιστικών αποτελεσµάτων σε διαφορετικές χρονικές περιόδους (5 λεπτά, 1 ώρα, κλπ).

Σε κάθε µια από αυτές τις χρονικές περιόδους µπορούµε να εκτελέσουµε µια ή περισσότερες

στατιστικές αναλύσεις όπως εξαγωγή µέσου όρου, αθροισµάτων, εύρεση µεγιστων/ελαχίστων

κλπ.

Το ϐασικό στοιχείο για την αξιολόγηση ενός τέτοιου συστήµατος είναι ο χρόνος απόκρισής

του και εξαγωγής των αποτελεσµάτων µετά την λήψη των τιµών από τις ϱοές δεδοµένων. Στην
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Σχήµα Βʹ.2 Αρχιτεκτονική συστήµατος συλλογής και επεξεργασίας δεδοµένων της

εγκατάστασης ∆ιαδικτύου Αντικειµένων GAIA.

δική µας περίπτωση για την ανάλυση όγκου δεδοµένων που ανέρχεται µέχρι και στις 500 µε-

τρήσεις ανά δευτερόλεπτο απαιτούνται χρόνοι µικρότεροι του ενός χιλιοστού του δευτερολέπτου

(0.6ms για εξαγωγή µέσων όρων και 0.3ms για ανάλυση της κατανάλωσης ενέργειας).

Συλλογή δεδοµένων µέσω εθελοντών για έξυπνες πόλεις

Στα πλαίσια µιας πόλης η εγκατάσταση εκτενών δικτύων συσκευών παρακολούθησης περι-

ϐαλλοντικών ή άλλων συνθηκών είναι αρκετές ϕορές ανέφικτο ειδικά σε περιόδους λιτότητας.

Στα πλαίσια αυτής της ∆∆ και µέσω το ευρωπαϊκού ερευτητικού έργου OrganiCity στοχεύου-

µε στην δηµιουργία µιας υπηρεσίας συλλογής δεδοµένων από εθελοντές µε χρήση ϕορητών

συσκευών όπως κινητά τηλέφωνα. Η διαδικασία αυτή ονοµάζεται αίσθηση πλήθους και ϐα-

σίζεται στην ανάθεση εργασιών συλλογής δεδοµένων σε ένα πλήθος εθελοντών που τις εκτελούν

κατά τη διάρκεια της καθηµερινής τους µετακίνησης µέσα στην πόλη, είτε µε στόχο την ανι-

διοτελή προσφορά προς της κοινότητα της πόλης τους, είτε µε στόχο την διεκδίκηση κάποιας

ανταµοιβής που µπροεί να προσφέρει ο ενδιαφερόµενος για τα δεδοµένα. Τα έξυπνα κινητά

τηλέφωνα είναι σήµερα εξοπλισµένα µε έναν αριθµό ενσωµατωµένων αισθητήρων και διεπα-

ϕές δικτύωσης για να επικοινωνούν µεταξύ τους και µε συσκευές ∆ιαδικτύου Αντικειµέννω

όπως smartwatches, ιχνηλάτες ϕυσικής κατάστασης ή ειδικά κατασκευασµένες συσκευές (πχ.

ϐασισµένες σε µικροελενκτές Arduino).

Για τον σκοπό αυτό υλοποιήσαµε την εφαρµογή Sensing-on-the-Go, µια εφαρµογή για

έξυπνα κινητά τηλέφωνα Android(Σχήµα Βʹ.3). Η εφαρµογή αυτή ακολουθεί τις ιδέες των εφαρ-

µογών ∆ιαδικτύου Αντικειµένων, µε τα εξυπνα κινητά τηλέφναν να συµµετέχουν σε εκστατείες

συλλογής δεδοµένων που ϐρίσκονται διαθέσιµες στην περιοχή τους µέσω των υπηρεσιών του

OrganiCity. Πέραν της εφαρµογής κινητών τηλεφώνων έχει υλοποιηθεί και µια διαδικτυακή
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εφαρµογή η οποία προσφέρει πρόσβαση στα δεδοµένα που συλλέγονται από τις εκτελούµε-

νες καµπάνιες αλλά και προσφέρει προγραµµατιστικές διεπαφές για την εφαρµογή κινητών

τηλεφώνων προκειµένου να αποστέλονται τα δεδοµένα που συλλέγονται.

Σχήµα Βʹ.3 ∆ηµοσίευση εφαρµογής Sensong-on-the-Go στο Google Play Store.

Η υλοποίηση της συλλογής δεδοµένων γίνεται µε ϐάση τις δυνατότητες που προσφέρει το

λειτουρικό σύστηµα Android για την εκτέλεση εξωτερικών διεργασιών µέσα από µια ανεξάρτητη

εφαργµογή. Οι εξωτερικές αυτές διεργασίες, αναλαµβάνουν τη συλλογή των δεδοµένων και την

αποστολή τους και την αποστολή τους στην κεντρική εφαρµογή. Η δοµή αυτή, µας δίνει τη

δυνατότητα να εµπλουτίζουµε την λειτουργικότητα της εφαρµογής για την συλλογή όλο και

περισσότερων τύπων µετρήσεων χωρίς να χρειαζόµαστε αλλαγές στην ϐασική µας εφαρµογή.

Επίσης δίνει την δυνατότητα, σε εξωτερικούς χρήστες και προγραµµατιστές να υλοποιήσουν µια

δική τους διεργασία συλλογής δεδοµένων και να χρησιµοποιήσουν το Sensing-on-the-Go για

να αποκτήσουν πρόσβαση σε όλη την υποδοµή συλλογής δεδοµένων και στο πλήθος των εθελο-

ντών της. Η ανάπτηξη των διεργασιών συλλογής δεδοµένων γίνεται σε περιβάλλον Android µε

αποτέλεσµα την όσο το δυνατόν πιο απλή διαδικασία υλοποίησης και δοκιµής από τους ίδιους
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τους προγραµµατιστές. Η εφαρµογή είναι διαθέσιµη σε όλους µέσω του Google Play Store

και η συλλογή των δεδοµένων µπορεί να γίνει είτε µέσω ενός προσωπικού λογαριασµού στην

πλατφόρµα του OrganiCity είτε ανώνυµα, δίχως την απαίτηση για την αποστολή οποιονδήποτε

προσωπικών στοιχείων.

Στα πλαίσια του έργου OrganiCity η εφαρµογή αυτή χρησιµοποιήθηκε από 4 διαφορετικές

οµάδες εθελοντών οι οποίες ανέπτυξαν δικές τους καµπάνιες συλλογής δεδοµένων και της

πραγµατοποίησαν στις πόλεις τους σε πραγµατικές συνθήκες µε τη συµβολή εθελοντών πολιτών.

Σε µια από αυτές τις καµπάνιες συγκεντρώθηκαν δεδοµένα από τα διαθέσιµα WiFi access

points για 3 ευρωπαικές πόλεις (Πάτρα, Λονδίνο και Σανταντέρ) µέσα σε 5 ηµέρες και από 14

διαφορετικούς χρήστες. Το σύνολο των δεδοµένων που συγκεντρώθηκε ήταν 7500 µετρήσεις

και για τις 3 πόλεις (κατά µέσο όρο 500 µετρήσεις ανά συµµετέχοντα).

Εξαγωγή γνώσης από δεδοµένα ∆ιαδικτύου Αντικειµένων

Τα 2 ϐασικότερα ερωτήµατα σχετικά µε τη συλλογή των δεδοµένων από εγκαταστάσεις ∆ιαδι-

κτύου Αντικειµένων είναι τα εξής :

• Τι κάνουµε µε όλα αυτά τα δεδοµένα·

• Πως µπρούµε να µάθουµε πράγµατα από αυτά τα δεδοµένα·

Μια απάντηση και στις δύο ερωτήσεις είναι η εξαγωγή γνώσης. Ο όρος γνώση αναφέρεται σε

κάτι πραγµατικά χρήσιµο, ξεπερνώντας κάποια απλά νούµερα. Θα µπορούσε να περιγραφεί

επίσης και ως κάτι που παρέχει αληθινή χρησιµότητα στους χρήστες ενός συστήµατος. Για πα-

ϱάδειγµα, ορισµένα συµβάντα µπορούν να παράγουν δεδοµένα από την υποδοµή ∆ιαδικτύου

Αντικειµένων µιας πόλης, αλλά χωρίς αξιόπιστες επισηµάνσεις πάνω από αυτά είναι αδύνατον

να εντοπίσουµε το ενδεχόµενο κυκλοφοριακής συµφόρησης στο κέντρο της πόλης. Μπορούµε

να παρατηρήσουµε χαµηλές τιµές για την ταχύτητα των αυτοκινήτων, του ϑορύβου και της

συγκέντρωσης εκποµπών ϱύπων αλλά χωρίς τον συνδυασµό τους είναι αδύνατον να το εντο-

πίσουµε µε ϐεβαιώτητα. Οι επισηµάνσεις αυτές µας δίνουν την δυνατότητα να προσπαθήσουµε

να καταλάβουµε τι είναι αυτό που κρύβεται πίσω από τις αριθµητικές τιµές που ϐλέπουµε

αρχικά.

Στα πλαίσια αυτής της ∆∆ υλοποιήσαµε ένα σύστηµα το οποίο µπορεί µε ηµι-αυτόµατο

τρόπο να αναγνωρίσει και να εξάγει αυτές τις επισηµάνσεις από τα αριθµητικά δεδοµένα µε

χρήση τεχνικών µηχανικής µάθησης το οποίο ονοµάζουµε JAMAiCA. Το σύστηµα αυτό µπορεί

να εκτελέσει 2 διαφορετικές κατηγορίες ανάλυσης δεδοµένω: εύρεση ανωµαλιών και ταξι-

νόµηση ωστόσο η δοµή του συστήµατος είναι παραµετροποιήσιµη έτσι ώστε να µπορεί εύκολα

να υποστηρίξει περισσότερες εργασίες. Για την εκτέλεση των αλγορίθµων µηχανικής µάθη-

σης χρησιµοποιούµε 2 πλατφόρµες που εξυπηρετούν αυτόν τον σκοπό: το Jubatus και την

JavaML.
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Για την αξιολόγηση του συστήµατος Jubatus εκτελέσαµε πολλαπλά πειράµατα µε χρήση

δεδοµένων και από τις 2 πηγές που είχαµε στην διάθεσή µας (OrganiCity και GAIA). Για την

πρώτη περίπωση, αναλύσαµε περισσότερες από 40000 µετρήσεις συγκεντώσεων µικροσωµατι-

δίων PM10 µέσα σε µια χρονική περίοδο 20 ηµερών. Το σύστηµά µας ήταν ικανό να εντοπίσει

σε πραγµατικό χρόνο προβληµατικές τιµές (τιµές εκτός επιτρεπτών ορίων, και τιµές προβληµα-

τικών αισθητήρων) χωρίς προβλήµατα. ΄Ενα άλλο πείραµα εκτελέστηκε µε ϐάση τα δεδοµένα

του έργου GAIA µε σκοπό την κατάταξη των συνθηκών σε αίθουσες σχολείων του προγράµµατος

σε 4 κατηγορίες µε ϐάση τιµές ϑερµοκρασίας και υγρασίας που είχαν συλλεχθεί για αυτές.

Συµπεράσµατα

Στο πλαίσιο της παρούσας ∆∆ αντιµετωπίσαµε τα προβλήµατα που προκύπτουν από την εισα-

γωγή ολοένα και περισσότερων έξυπνων συνδεδεµένων συσκευών στο καθηµερινό µας περι-

ϐάλλον. Αυτή η αυξανόµενη χρήση τέτοιων συσκευών κάνει επιτακτική την ανάγκη εύρεσης

µιας ϐελτιωµένης µεθοδολογίας ανάλυσης των δεδοµένωνπου παράγονται από τις συσκευές

αυτές. Η δουλειά µας ϐασίστηκε σε δύο πραγµατικές περιπτώσεις χρήσης εγκαταστάσεων ∆ια-

δικτύου Αντικειµένων ως µέρος 2 ερευνητικών προγραµµάτων της ευρωπαικής ένωσης. Τα

προγράµµατα µας παρείχαν ένα πεδίο δοκιµών για τις εφαρµογές µας σε πραγµατικές συν-

ϑήκες. Ως αποτέλεσµα, ϕτιάξαµε εφαρµογές που είναι ικανές να συλλέγουν και να αναλύουν

δεδοµένα αποτελεσµατικά από αυτές τις πηγές και να τα παρέχουν στους τελικούς χρήστες και

τους προγραµµατιστές εφαρµογών σε σχεδόν πραγµατικό χρόνο. Είµαστε επίσης σε ϑέση να

δηµιουργήσουµε πρόσθετη γνώση από τα πρωτογενή δεδοµένα που λαµβάνονται. Αποδείξαµε

επίσης ότι η αρχιτεκτονική του συστήµατος µας είναι ικανή να χειρίζεται διάφορους τύπους και

όγκους δεδοµένων και µε ελάχιστες αλλαγές σε επίπεδο υλοποίησης, µε την αρθρωτή σχεδίασή

του. Από την ενασχόλησή µας αυτή λάβαµε τα εξής µαθήµατα:

• Οι συσκευές ∆ιαδικτύου Αντικειµένων τείνουν να είναι εξαιρετικά αναξιόπιστες, ειδικά

όταν εγκαθίστανται σε εξωτερικούς χώρους έξω από τον άµεσο έλεγχό µας. Μερικοί από

τους χρήστες τείνουν επίσης να προκαλούν προβλήµατα στις συσκευές, µε πρόθεση ή

όχι, προκαλώντας έτσι προβλήµατα στη διατήρηση των ϱοών δεδοµένων από τις εγκατα-

στάσεις.

• Επίσης, οι αποτυχίες των αισθητήρων ή τα προβλήµατα συνδεσιµότητας είναι µια συνη-

ϑισµένη περίπτωση και ϑα εµφανίζονται σε οποιαδήποτε εγκατάσταση ανεξάρτητα από

την ποιότητα των υλικών ή τον κατασκευαστή τους.

• Τέλος, στην περίπτωση του της συλλογής δεδοµένων µέσω εθελοντών, είναι σηµαντικό να

σηµειωθεί ότι οι διεπαφές χρήστη που αναπτύσσονται είναι εξαιρετικά σηµαντικές για την

επιτυχία του συστήµατος. Στην περίπτωση που η διεπαφή χρήστη είναι πιο περίπλοκη

από ό, τι απαιτείται, οι χρήστες τείνουν να χάνουν το ενδιαφέρον και την ϑέληση να την

χρησιµοποιήσουν περισσότερο.
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Μια σηµαντική επέκταση στο έργο που παρουσιάζεται σε αυτή τη ∆∆ ϑα ήταν η επιδίωξη

της δυνατότητας διαίρεσης της ανάλυσης των συλλεγόµενων δεδοµένων σε περισσότερα από ένα

στρώµατα. Στην περίπτωση αυτή, κάποια επεξεργασία µπορεί να συµβεί στις εγκαταστάσεις του

χρήστη, µειώνοντας έτσι την ανάγκη µεταφοράς δεδοµένων µέσω του ∆ιαδικτύου. Αυτή η πε-

ϱίπτωση ϑα µας ϐοηθήσει επίσης να µειώσουµε τυχόν απώλειες δεδοµένων από προβλήµατα

δικτύωσης και συνδεσιµότητας, τα οποία είναι αρκετά κοινά µε τις εµπορικές διαδικτυακές

συνδέσεις. Αυτή η τάση, που ονοµάζεται υπολογιστική άκρη ή οµίχλη, είναι ένα εξαιρετικά εν-

διαφέρον και ελπιδοφόρο πεδίο έρευνας που µπορεί να αυξήσει σηµαντικά την αποδοτικότητα

του συστήµατος. Οι περισσότερες επεκτάσεις ϑα µπορούσαν να επικεντρωθούν στην προσθήκη

περισσότερων τύπων δεδοµένων στις ενότητες ανάλυσης του συστήµατός µας, όπως το ϐίντεο ή

το ήχο, καθώς η ϕύση τους ϑα µπορούσε να αποκαλύψει πιο περίπλοκες απαιτήσεις που δεν

διερευνήθηκαν.
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