
Algorithmic Methods of Data Mining
Computational Thinking, Basic Tools and First Practice

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 1

Computational Thinking

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking is taking an approach to solving problems,
designing systems and understanding human behaviour that draws
on concepts fundamental to computing.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager
to learn and use.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of
abstraction.

The riddle of machine intelligence
Computational thinking confronts the riddle of machine
intelligence:

I What can humans do better than computers?
I What can computers do better than humans?
I What is computable?

Computational Thinking
I Computers are here to help us.
I What do we need from computers?
I What is our problem?
I Computational Thinking allows us to understand what needs

to be solved.
I Four key techniques (cornerstones) to computational thinking:

1. Decomposition – breaking down a complex problem or system
into smaller, more manageable parts

2. Pattern Recognition – looking for similarities among and
within problems

3. Abstraction – focusing on the important information only,
ignoring irrelevant detail

4. Algorithms – developing a step-by-step solution to the
problem, or the rules to follow to solve the problem



Computational Thinking vs Programming
Thinking computationally is not programming.

I . . . not even thinking as a computer.
I Programming tells computer what to do / how to do it.
I Computational thinking enables us to understand what we

need to tell to computers.
I . . . what to program.

Examples:
I Explain to a friend how to drive to your house
I Organize a party at the park
I Prepare your luggage
I Teach a kid addition/subtraction
I . . .

Decomposition
Turn a complex problem into one we can easily understand.

I . . . probably you already do every day.
I The smaller parts are easier to solve.
I . . . we already know/have the solutions.

Examples:
I Brushing our teeth

Which brush? How long? How hard? What toothpaste?
I Solving a crime

What crime? When? Where? Evidence? Witnesses? Recent
similar crimes?

I . . .

Pattern Recognition
We often find patterns among the smaller problems we examine.

I The patterns are similarities or characteristics that some of
the problems share.

Example: Cats
I All cats share common characteristics.

they all have eyes, tails and fur.
I Once we know how to describe one cat we can describe

others, simply by following this pattern.



Abstraction
Hiding irrelevant details to focus on the essential
features needed to understand and use a thing

I A compression process – multiple different pieces of
constituent data to a single piece of abstract data.
e.g., “cat”

I Ambiguity – multiple different references.
e.g., “happiness”, “architecture”

I Simplification – no loss of generality
e.g., “red” - many different things can be red

Thought process wherein ideas are distanced from
objects

Abstraction Example: Car vs Car Breaks

I Do we know how car breaks work?
I Do we know how to use them?

Filter out (ignore) the characteristics that we don’t need in
order to concentrate on those that we do.

Algorithms
A plan, a set of step-by-step instructions to solve a problem.

I In an algorithm, each instruction is identified and the order in
which they should be carried out is planned.



Data Scientist’s skill set
I Statistics, data analysis methods

I Lots of data
I High noise levels, missing values
I #attributes � #data points

I Programming languages
I Scripting languages: Python, Perl, Ruby, . . .
I Extensive use of text file formats: need parsers
I Integration of both data and tools

I Data structures, databases
I Huge quantities of data need to be stored and indexed.

I Scientific computation packages
I R, Matlab/Octave, . . .

I Cloud computing
I Amazon Web Services, Microsoft Azure, Google Cloud . . .

Development Tools

Programming Tool

A programming tool or software development tool is a computer
program that software developers use to create, debug, maintain,
or otherwise support other programs and applications.

I Source Code Editor
I Debugger or Profiler
I Bug Tracking System
I Documentation Generators
I Revision Control
I Performance Analysis
I Collaborative Programming
I Cloud-based IDEs

Integrated Development Environment (IDE)

A programming tool or software development tool is a computer
program that software developers use to create, debug, maintain,
or otherwise support other programs and applications. The IDE is
meant to make programming a more productive process.

I Organize project files
I Searching
I Source Code Editor
I Debugger
I Tasks & Annotations related to code
I Documentation Generators
I Revision Control
I Code Analysis

pyCharm: Python IDE for Professional Developers
I Keyboard-centric approach

I Smart assistance

I Code quality tools

I Cross technology development

I Navigation and Refactoring

I Database support

I Scientific tools



Code with smart assistance

I Intention Action – indicated with a bulb ALT+Enter
I Suggestions based on the action that you do that intend to

save time.
I Remark that the code needs to be correct for this feature to

work.

I Code completion
I Auto-complete function/variable names.

Live Templates

I Live Template CTRL+J produce entire code constructs.
I A library of ready-to-use templates.



Search for Usages

I As the project grows, or when you work with someone else’s
code.

I To find where a particular symbol is used, ALT+F7
I All files are searched.

Project navigation – Find by name

I Search only Classes by name, CTRL+N
I Search only based on filenames, CTRL+Shift+N
I Search Variable, CTRL+Shift+ALT+N
I Search Declaration, CTRL+B
I Search Class/Function, CTRL+U

Find Action – CTRL+Shift+A





I Code Hosting Platform
I Version Control, Bug Tracking & Todo list, Wiki,

Collaboration, . . .

I Public + Private Projects
I Cloud-based or Private Storage
I Alternatives:

I BitBucket, SourceFourge, Team Foundation Server, SVN, CVS

First steps on Github
I Repository-oriented Family of Services

I Repository: group of files relevant to a specific project.
I Not necessarily related to coding.

I Each member of the project needs a separate account.
I Repositories are owned by an account.

I Organizations are also allowed to own repositories.

I Repositories are created via the Website.
I Repositories can be browsed/modified via the Web

or via broad range of client applications.

Creating a new Repository Make and commit changes

I Whenever you add, edit, delete.
I Keeps track of progress.
I Easy to roll-back to previous states.



Real power of Github: Branching
I The most over-stressed functionality.
I Branching: work on different versions of a repository at one

time.
I By default each repository has 1 branch:

master
I When create a new branch off the master:

I Make a copy of all contents.
I Changes on new repository are separated.
I Can pull changes from master at any point.
I Can push changes to master at any point.

Branching

I Starting from the MASTER branch.
I We create the FEATURE branch.
I The new branch progresses independently.
I Eventually, it MERGES into MASTER.



I Communicating changes to the other members of the team is
done via PULL REQUESTS.

I Pull Requests are the heart of collaboration on GitHub.
I As soon as you make a commit:

I open a pull request,
I start a discussion!

Merge Pull Requests
I The final step of bringing changes together.
I Merging 2 brunches.
I After confirming the merge, other branches can be deleted.


