
Algorithmic Methods of Data Mining
Computational Thinking, Basic Tools and First Practice

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 1

Computational Thinking

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking is taking an approach to solving problems,
designing systems and understanding human behaviour that draws
on concepts fundamental to computing.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager
to learn and use.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of
abstraction.

The riddle of machine intelligence
Computational thinking confronts the riddle of machine
intelligence:
I What can humans do better than computers?
I What can computers do better than humans?
I What is computable?

Computational Thinking
I Computers are here to help us.
I What do we need from computers?
I What is our problem?
I Computational Thinking allows us to understand what needs

to be solved.
I Four key techniques (cornerstones) to computational thinking:

1. Decomposition – breaking down a complex problem or system
into smaller, more manageable parts

2. Pattern Recognition – looking for similarities among and
within problems

3. Abstraction – focusing on the important information only,
ignoring irrelevant detail

4. Algorithms – developing a step-by-step solution to the
problem, or the rules to follow to solve the problem

Computational Thinking vs Programming
Thinking computationally is not programming.
I . . . not even thinking as a computer.
I Programming tells computer what to do / how to do it.
I Computational thinking enables us to understand what we

need to tell to computers.
I . . . what to program.

Examples:
I Explain to a friend how to drive to your house
I Organize a party at the park
I Prepare your luggage
I Teach a kid addition/subtraction
I . . .

Decomposition
Turn a complex problem into one we can easily understand.
I . . . probably you already do every day.
I The smaller parts are easier to solve.
I . . . we already know/have the solutions.

Examples:
I Brushing our teeth

Which brush? How long? How hard? What toothpaste?
I Solving a crime

What crime? When? Where? Evidence? Witnesses? Recent
similar crimes?

I . . .

Pattern Recognition
We often find patterns among the smaller problems we examine.
I The patterns are similarities or characteristics that some of

the problems share.

Example: Cats
I All cats share common characteristics.

they all have eyes, tails and fur.
I Once we know how to describe one cat we can describe

others, simply by following this pattern.

Abstraction
Hiding irrelevant details to focus on the essential
features needed to understand and use a thing

I A compression process – multiple different pieces of
constituent data to a single piece of abstract data.
e.g., “cat”

I Ambiguity – multiple different references.
e.g., “happiness”, “architecture”

I Simplification – no loss of generality
e.g., “red” - many different things can be red

Thought process wherein ideas are distanced from
objects

Abstraction Example: Car vs Car Breaks

I Do we know how car breaks work?
I Do we know how to use them?

Filter out (ignore) the characteristics that we don’t need in
order to concentrate on those that we do.

Algorithms
A plan, a set of step-by-step instructions to solve a problem.
I In an algorithm, each instruction is identified and the order in

which they should be carried out is planned.

Data Scientist’s skill set
I Statistics, data analysis methods

I Lots of data
I High noise levels, missing values
I #attributes � #data points

I Programming languages
I Scripting languages: Python, Perl, Ruby, . . .
I Extensive use of text file formats: need parsers
I Integration of both data and tools

I Data structures, databases
I Huge quantities of data need to be stored and indexed.

I Scientific computation packages
I R, Matlab/Octave, . . .

I Cloud computing
I Amazon Web Services, Microsoft Azure, Google Cloud . . .

Development Tools

Programming Tool

A programming tool or software development tool is a computer
program that software developers use to create, debug, maintain,
or otherwise support other programs and applications.

I Source Code Editor
I Debugger or Profiler
I Bug Tracking System
I Documentation Generators
I Revision Control
I Performance Analysis
I Collaborative Programming
I Cloud-based IDEs

Integrated Development Environment (IDE)

A programming tool or software development tool is a computer
program that software developers use to create, debug, maintain,
or otherwise support other programs and applications. The IDE is
meant to make programming a more productive process.

I Organize project files
I Searching
I Source Code Editor
I Debugger
I Tasks & Annotations related to code
I Documentation Generators
I Revision Control
I Code Analysis

Jupyter Notebook

I Interactively developing and presenting data science projects.
I A single document integrates: code and its output,

visualizations, narrative text, mathematical equations, and
other rich media.

Installation & Execution
Installation:
I For Windows - make sure you first install Anaconda, then use

pip.
I For Mac / Linux use directly pip:

pip3 install jupyter

Execution:
I For Windows - via Anaconda.
I For Mac / Linux from the command line:

jupyter notebook

I The jupyter interface is avalable at
http://localhost:8888/tree

The Notebook Interface

I A Cell can be either Code or Markdown
I Use the I| Run button or CTRL+ENTER to execute the Code

or present the Markdown.

I Check out that In []: has changed to In [1]:
I When python is processing the code we get In [*]:

Navigating the Notebook with the Keyboard
I There is always a Cell Active.
I You can Stop Editing by using the ESC key.
I You can Start Editing by using the ENTER key.
I When NOT in Editing mode:

I We can go up/down the cells using the Up and Down keys.
I To change the Cell type to Markdown use the M key.
I To change the Cell type to Code use the Y key.
I To insert a new Cell above the current Cell use the A key.
I To insert a new Cell below the current Cell use the B key.
I To delete a Cell use the D key twice.
I To UNDO a delete command use the Z key.

pyCharm: Python IDE for Professional Developers
I Keyboard-centric approach

I Smart assistance

I Code quality tools

I Cross technology development

I Navigation and Refactoring

I Database support

I Scientific tools

Code with smart assistance

I Intention Action – indicated with a bulb ALT+Enter
I Suggestions based on the action that you do that intend to

save time.
I Remark that the code needs to be correct for this feature to

work.
I Code completion

I Auto-complete function/variable names.

Live Templates

I Live Template CTRL+J produce entire code constructs.
I A library of ready-to-use templates.

Search for Usages

I As the project grows, or when you work with someone else’s
code.

I To find where a particular symbol is used, ALT+F7
I All files are searched.

Project navigation – Find by name

I Search only Classes by name, CTRL+N
I Search only based on filenames, CTRL+Shift+N
I Search Variable, CTRL+Shift+ALT+N
I Search Declaration, CTRL+B
I Search Class/Function, CTRL+U

Find Action – CTRL+Shift+A

I Code Hosting Platform
I Version Control, Bug Tracking & Todo list, Wiki,

Collaboration, . . .
I Public + Private Projects
I Cloud-based or Private Storage
I Alternatives:

I BitBucket, SourceFourge, Team Foundation Server, SVN, CVS

First steps on Github
I Repository-oriented Family of Services

I Repository: group of files relevant to a specific project.
I Not necessarily related to coding.

I Each member of the project needs a separate account.
I Repositories are owned by an account.

I Organizations are also allowed to own repositories.
I Repositories are created via the Website.
I Repositories can be browsed/modified via the Web

or via broad range of client applications.

Creating a new Repository

Make and commit changes

I Whenever you add, edit, delete.
I Keeps track of progress.
I Easy to roll-back to previous states.

Real power of Github: Branching
I The most over-stressed functionality.
I Branching: work on different versions of a repository at one

time.
I By default each repository has 1 branch:

master
I When create a new branch off the master:

I Make a copy of all contents.
I Changes on new repository are separated.
I Can pull changes from master at any point.
I Can push changes to master at any point.

Branching

I Starting from the MASTER branch.
I We create the FEATURE branch.
I The new branch progresses independently.
I Eventually, it MERGES into MASTER.

I Communicating changes to the other members of the team is
done via PULL REQUESTS.

I Pull Requests are the heart of collaboration on GitHub.
I As soon as you make a commit:

I open a pull request,
I start a discussion!

Merge Pull Requests
I The final step of bringing changes together.
I Merging 2 brunches.
I After confirming the merge, other branches can be deleted.

Introduction to AWS S3
I S3 = Simple Storage Service

I From 0 bytes to 5 Tbytes.
I Provides a secure, durable, highly-scalable storage space.

I AWS secures content with encryption, ACL and bucket policies.
I AWS guarantees 99.999999999% durability (11 × 9s).
I AWS guarantees 99.99% availability.

I We can access items stored:
I Using the web.
I Using the Web Console.
I Using the Smartphone App.
I From the Command line AWS tool.
I Programmatically through the AWS S3 API.

S3 Basics
I Object-based storage.

I Files = Objects.
I Not suitable to install an operating system or host a database.

I Files/Objects are organized in Buckets.
I Bucket names must be unique – S3 is a universal namespace.

I http://sapienza2020adm.s3.amazonaws.com/
I When you create a new S3 bucket, AWS creates a new web

address.
I Objects (Files) have the following properties:

I Key: the name of the object.
I Value: the actual contents.
I Version ID: used by the versioning system.
I Metadata: tags that we can attach to objects.
I ACL: who can access the object.

S3 Storage Classes
I Free Tier – new AWS accounts

I 5GB of S3 storage.
I 20,000 GET – 2,000 PUT/COPY/POST/LIST
I 15GB of Data Transfer Out each month for one year

I S3 Standard
I $0.0245 per GB
I $0.0054 per 1000 PUT/COPY/POST/LIST
I $0.00043 per 1000 GET/SELECT/all other requests.

I S3-IA Infrequent Access
I $0.0135 per GB – a minimum storage duration of 30 days.
I $0.01 per 1000 PUT/COPY/POST/LIST
I $0.001 per 1000 GET/SELECT/all other requests.

I S3 Glacier
I $0.0045 per GB – a minimum storage duration of 90 days.
I $0.06 per 1000 PUT/COPY/POST/LIST
I $0.00043 per 1000 GET/SELECT/all other requests.

What is open data?
I Open data is data that anyone can access, use and share.
I Open data becomes usable when made available in

I a common format,
I a machine-readable format.

I Open data must be licensed, permitting people to
I use the data in any way they want,
I transform it,
I combine it with other data,
I sharing it with others, even commercially.

Is open data free?
I Open data must be free to use, but this does not mean that it

must be free to access.
I There is often a cost to creating, maintaining and publishing

usable data.
I This cost tends to be negligible for many datasets.
I Live data and big data can incur ongoing costs related to

reliable service provision.
I Once the user has the data, they are free to use, reuse and

redistribute it – even commercially.

Why do we need open data?
I Open data can help bring diverse benefits to

I Governments
I Make governments more transparent.
I Provide the evidence that public money is being well spent.
I Provide the evidence that policies are being implemented.

I Businesses
I New opportunities for businesses to connect with customers.

I Civil Society
I Help us understand our personal impacts on the environment,

and take steps to improve it.

https://www.europeandataportal.eu/
https://github.com/GoogleCloudPlatform/covid-19-open-data

From raw material to new information and knowledge

A common, machine-readable format
I Several machine-readable formats exist:

I CSV, JSON, XML, . . .
I CSV – comma separated values

I A spreadsheet format, e.g., Excel or Google Sheets
I Each row is one observation, and the same values are recorded

for each observation.
I A flat data format – you only need to know the row number +

column number to get a value.
I JSON – JavaScript Object Notation

I A very common way to store data on the web.
I A series of objects that span in more than one line.
I Each object can have multiple keys/values pairs or other

objects within it.
I A hierarchical data format – you may need to know the

structure of the objects to get a value.

CSV Example

"id","name","address","regular"

1,"John","12 Totem Rd. Aspen",true

2,"Bob",null,false

3,"Sue","\"Bigsby\", 345 Carnival, WA 23009",false

JSON Examples

{"id":1, "name":"John",

"address":"12 Totem Rd. Aspen",

"regular":true},

{"id":2, "name":"Bob", "regular":false},

{

"id":3,

"name":"Sue",

"address":"\"Bigsby\", 345 Carnival, WA 23009",

"regular":false

}

Kaggle: eCommerce behavior data
I Kaggle is probably world’s largest data science community.
I We will work with data on eCommerce behavior from multi

category store.
I Data for 7 months: October 2019 . . . April 2020
I 285 million users’ events from the eCommerce website
I https://www.kaggle.com/mkechinov/

ecommerce-behavior-data-from-multi-category-store

I The dataset is formated using CSV
I Each row in the file represents an event.
I All events are related to products and users.
I Each event is like many-to-many relation between products

and users.

CSV + Python + Pandas – Example
I Download the small version of the CSV dataset from:

https://www.kaggle.com/mkechinov/

ecommerce-events-history-in-cosmetics-shop
I The dataset contains 5 files, one file for each month.
I We will use Python and Pandas to load the data.
I You need to install Pandas:

pip3 install pandas

CSV + Python + Pandas – Example

import pandas as pd

dataset = pd.read_csv('2020-Jan.csv', sep=',',

delimiter=None, header='infer',

names=None, index_col=None,

usecols=None,

encoding = "ISO-8859-1",

nrows=20)

Check out the manual page for details on the different parameters
used:

https://pandas.pydata.org/pandas-docs/stable/

reference/api/pandas.read_csv.html

File structure
1. event time – when the event happened (in UTC).
2. event type – one of the following:

I view - a user viewed a product
I cart - a user added a product to shopping cart
I removefromcart - a user removed a product from shopping cart
I purchase - a user purchased a product

Example of a typical funnel: view → cart → purchase.
3. product id – unique identity of the product.
4. category id – unique identity of the category of the product.
5. category code – product’s category taxonomy.
6. brand – name of the brand of the product.
7. price – price of the product (float).
8. user id – unique identity of the user.
9. user session – changes every time user comes back to

online store after a long pause.

JSON + Python + Pandas – Example
I Download the JSON dataset from:

https://sapienza2020adm.s3.eu-central-1.

amazonaws.com/2020-Jan.zip

{
"event_time":"2020-01-01 00:00:00 UTC",
"event_type":"view",
"product_id":5809910,
"category_id":1602943681873052386,
"category_code":"",
"brand":"grattol",
"price":5.24,
"user_id":595414620,
"user_session":"4adb70bb-edbd-4981-b60f-a05bfd32683a"

}

JSON + Python + Pandas – Example

import pandas as pd

dataset = pd.read_json('2020-Jan.json',

lines=True, nrows=20)

Check out the manual page for details on the different parameters
used:

https://pandas.pydata.org/pandas-docs/stable/

reference/api/pandas.read_json.html

