Algorithmic Methods of Data Mining

AWS Elastic Compute Cloud & Data Science at the Command Line

loannis Chatzigiannakis
Sapienza University of Rome

Laboratory 3

AWS: Elastic Compute Cloud (EC2)

>
>
>

AWS EC2 = Elastic Compute Cloud
Resizable compute resources in the cloud.
Minimizes the time to provision a server.
» Introduce a new server within minimum delay.
» Scale capacity up very fast
Quickly modify the capabilities of the compute instance.
> Introduce additional computational, memory and storage
capabilities.
> Reduce computational, memory and storage capabilities.
Shutdown - or completely remove resources.
» Scale down very fast.
Pay only for the resources you need.

Typical Use Cases
>

>
>
>
>
>
>
>
>
> .

Development and Testing Environments
Hosting of Databases

Hosting of web services

Data analytics

Code repository

GPU-assisted machine learning

High performance computing

Video processing

Backup and disaster recovery

EC2 Provisioning Options

>

On Demand — Pay for the compute capacity by the hour.
> No up-front payment or long-term commitment.
» Short-term, spiky, or unpredictable workloads.
> Applications development or testing.
Spot Instances — Acquire spare capacity up to 90% off the
on-demand price.
» When start/end times are flexible.
> Applications that are only feasible at very low compute prices.
> Urgent computing needs for large amounts of additional
capacity.
Reserved Instances — Significant discount (up to 75%)
compared to On-Demand instance pricing.
> For applications that have steady state or predictable usage
> Long term (> 1 year) to reduce their total computing costs.
Dedicated Hosts — Physical servers dedicated for use use.

EC2 Instance Types
» General Purpose — balance of compute, memory and

networking resources.
Compute Optimized — ideal for compute bound applications
that benefit from high performance processors.
Memory Optimized — deliver fast performance for workloads
that process large data sets in memory.
Accelerated computing — use hardware accelerators, or
co-processors, to perform functions, such as floating point
number calculations, graphics processing, or data pattern
matching, more efficiently than is possible in software running
on generic CPUs.
Storage optimized — for workloads that require high, sequential
read and write access to very large data sets on local storage.

EC2 Instance Types & Resources

» CPU - 64-bit Arm, AMD EPYC 7000, Intel Xeon Platinum
8175M, Intel Xeon E5-2676.
> 1...192 virtual CPUs - 1 thread = 1 vCPU.
» Memory =1 ...512 GB.
» Network — up to 100 Gbps.
» Storage
» Amazon Elastic Block Store (EBS) — easy to use, high
performance block storage service
» 0...60 TB NVMe SSD - ensure best IOPS (Input/Output
operations per second).
» Hardware Accelerators
> NVIDIA Tesla V100 GPUs, NVIDIA K80 GPUs, NVIDIA T4
Tensor Core GPUs
» AWS Inferentia Chips.
> Xilinx Virtex UltraScale+ VU9IP FPGAs

Available OS & Software
» Operating Systems
» Linux/Unix — Amazon Linux, Debian, Ubuntu, Red Hat,
CentOS, SUSE, FreeBSD, Gentoo, Mint, ...
» Windows — Server 2019, Server 2016, Server 2012.
» Databases — PostgreSQL, MySQL, MongoDB, Neo4J, Oracle
Enterprise, Microsoft SQL, ...
» AWS Marketplace — a wide selection of commercial and free
software from well-known vendors.

Pricing Examples

» General Purpose
> t2.micro Linux or Windows — 2 vCPUs + 4 GB - 750 hours
free per month, $0.05/h
» al.xlarge Linux — 4 64-bit ARM vCPUs + 8 GB - $0.1152/h
» al.xlarge Linux — 4 64-bit ARM vCPUs + 8 GB — $0.1152/h
» mb5.24xlarge Linux — 96 Xeon vCPUs + 337 GB - $5.136/h
mb5.24xlarge Windows — 96 Xeon vCPUs + 337 GB — $9.552/h
» Compute Optimized
» c5.xlarge Linux — 4 Xeon vCPUs + 8 GB — $0.192/Hour
> c5.24xlarge Linux — 96 Xeon vCPUs + 192 GB — $4.608 /Hour
» Hardware Accelerators
» p3.2xlarge Linux — 1 NVIDIA Tesla V100 GPUs + 8 Xeon
vCPUs + 61 GB — $3.305 per Hour
» p3dn.24xlarge Linux — 8 NVIDIA Tesla V100 GPUs + 96 Xeon

vCPUs + 768 GB — $33.711 per Hour

Amazon Elastic Block Store (EBS)
» Easy to use, high performance block storage service.
» Targeting both throughput and transaction intensive
workloads.
» Can be used for relational and non-relational databases.
> Enterprise applications.
> Big data analytics engines.
> General purpose file systems.
> Media workflows.
Highly availability and durability — 99.999%
Virtually unlimited scale — as little as a single GB of storage,
or scale up to petabytes of data.
Secure — encryption of data at-rest, data in-transit, and all
volume backups.

EBS Volume Types — HDD based

» Throughput Optimized HDD (ST1) — ideal for frequently
accessed, throughput-intensive workloads.

>
>
>
>
>

>

Large datasets and large 1/O sizes, such as MapReduce, Kafka,
log processing, data warehouse, and ETL workloads.

Low cost HDD volume.

Volume Size: 500 GB - 16 TB

Max IOPS/Volume: 500

Max Throughput/Volume: 500 MB/s

Price: $0.045/GB-month

> Low-cost HDD (SC1) — ideal for less frequently accessed
workloads with large, cold datasets.

>
>
>
>

Colder data requiring fewer scans per day.
Volume Size: 500 GB - 16 TB

Max IOPS/Volume: 250

Max Throughput/Volume: 250 MB/s
Price: $0.025/GB-month

EBS Volume Types — SSD based
» Provisioned IOPS SSD (101) — high performance SSD volume
designed for latency-sensitive transactional workloads.
> |/O-intensive NoSQL & relational databases.
> Volume Size: 4 GB - 16 TB.
» Max IOPS/Volume: 64,000
> Max Throughput/Volume: 1,000 MB/s
> Price: $0.125/GB-month + $0.065/provisioned IOPS
» Default EBS volume type (GP2) — ideal for suitable for a
broad range of transactional workloads.
> Boot volumes, low-latency interactive apps, dev & test.
> Volume Size: 1 TB - 16 TB.
» Max IOPS/Volume: 16,000
> Max Throughput/Volume: 250 MB/s
» Price: $0.10/GB-month

Choose Region

AWS Management Console

Launch Instance

Select Amazon Machine Image (AMI) Choose Instance Type

Configure Instance Details Configure Instance Details

Add Storage

Configure Security Group Launch Instance

Create Key pair

List of Instances Overview of Instance

Connect to Instance Command Line Console

Examples

Start, Stop, Terminate instance.
Change Instance Type.

Add Storage Volumes.
Configure Security Groups.

Connecting to the Instance

4 Internet

Instance
Security Group

J —— il

Root.
Amazon EBS

What is a Shell?

» The user interface to the operating system
» Functionality:
> Execute other programs
> Manage files
> Manage processes
» A program like any other
» Executed when you “open a Terminal”

Shell Interactive Use
» The # is called the “prompt”
» In the prompt we type the name of the command and press
“Enter”

» The prompt allows
Command history
Command line editing
File expansion (tab completion)
Command expansion
Key bindings
Spelling correction
Job control

Prompt: The Command Line
date
Sat Apr 21 16:47:30 GMT 2007

Error Handling
> If we type a wrong command, an error message appears

Prompt: The Command Line

no such file or directory

> The error message states that either the file or the folder
(directory) was not found
P In the prompt all commands are assumed to be connected to a
file
» The arrow keys 1 | allow to look-up previous commands
» The arrow keys < — allow to move within the same
command line

Terminating Command Execution
» We can interrupt the execution of a command by pressing
ctrl-c
» We can “freeze” the output of the execution of a command
by pressing ctrl-s
» To “un-freeze” the output of a command we use ctrl-q
» Note — only the output is frozen not the actual execution
» To close a terminal we use ctri-d
> We may need to press multiple times ctrl-q
> All programs currently running will terminate

Manual Pages
» The command man allows to access the manual pages
» Manual pages are organized in categories
Commands - Is, cp, grep
System Calls — fork, exit
Libraries
1/O Files
File Encoding Types
Games
Miscellaneous
Administrator's Commands
Documents
» We can request a page from a specific category
man [category] [topic]

Manual Pages
FORK(2) Minix Programer’s Manus FORKC2)

Al

fork - create a new process

creation of a new proc The new process (child process)
s an exact copy of the calling process except for the followin

The child process has a unique process ID.

The child process has a different parent process ID (i.e

pr) of the parent pr)

has its oun) of the parent’s descript

The
tandard-input 4 (Top)

File System
> All system entities are abstracted as files
» Folders and files
Commands and applications
1/0O devices
Memory
> Process communication
» The file system is hierarchical
> Folders and files construct a tree structure
> The root of the tree is represented using the /
> The actual structure of the tree depends on the distribution of
Linux
» Certain folders and files are standard across all Linux
distributions

File System Example

Foot directory

Students Faculty

Robbert Prof.Brown Prof.Green

Standard Folders

/bin — Basic commands

/etc — System settings

/usr — Applications and Libraries
/usr/bin — Application commands
/usr/local — Applications installed by the local users
/sbin — Administrator commands

/var — Various system files

/tmp — Temporary files

/dev — Devices

/boot — Files needed to start the system
/root — Administrator's folder

v

YYVYYVYVYVYYVYYVYY

Example of File Metadata

ls -la
lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin
-r--r--r-- 1 root operator 448 Jun 1 1993 boot
drwxr-sr-x 2 root operator 11264 May 11 17:00 dev
drwxr-sr-x 10 root operator 2560 Jul 8 02:06 etc
druxrwxrx 1 bin bin 7 Jun 1993 home
lrwxruxrwx 1 root operator 7 Jun 1 1993 lib
drwxr-sr-x 2 root operator 512 Jul 23 1992 mnt
- 2700t operator 512 Sep 26 1993 oot

2

6

drwx--

druxr-sr-x 2 bin operator 512 Jun 1 1993 sbin
druxrwxrux 6 root operator 732 Jul 8 19:23 tmp
drxr-xr-x 27 bin bin 1024 Jun 14 1993 usr
druxr-sr-x 10 root operator 512 Jul 23 1992 var

Navigating the File System File System Security

» For each file we have 16 bit to define authorization
» 12 bit are used by the operator
: > They are split in 4 groups of 3 bit — 1 octal — each
virtual” folders [me | » The first 4 bit cannot be changed
1s -la > They characterize the type of the file (simple file, folder,
R [symbolic link)
> The single dot represents > V.\lhe.n we list the contents of a folder the first letter is used to
signify:
the same folder . N
- — simple files
./myfile = myfile d — folders

» Each folder contains two

» The two dots represent
the “parent” folder in
the tree

useim | — symbolic links
» The next 3 bit are known as the s-bits and t-bit
» The last three groups are used to define the access writes for
read 'r’, write 'w’ and execute 'x’
> For the file owner, users of the same group, and all other users.

File System Permissions Examples Changing the File Permissions

Examples of File Permissions
Type Owner Group Anyone Binary Octal Text
WX rox - 001 1 x
010 2 w
Folder 100 A .
The owner has full access 110 6 ru-
All users that belong to the group defined by the file can read 101 5
and execute the file — but not modify the contents - 4
All other users cannot access the file or execute it

-x
4 ru-r--r--

» The command chmod allows to modify the permissions
» There are 2 way to define the new permissions
permission to execute 'x’ 1. Defining the 3 Octal — e.g., 644

2. By using text — e.g., a+r

To access a folder we use the command cd given that we have

Some Examples of chmod
make read/write-able for everyone
chmod a+w myfile

add the 'execute' flag for directory
chmod u+z mydir/

open all files for everyone
chmod 755 *

make file readonly for group
chmod g-w myfile

descend recursively into directory opening all files
chmod -R a+r mydir/

Changing the Owner and Group of a File
» The command chown allows to change the owner of a file
» The command chgrp allows to change the group of a file

give ownership to ichatz
choun ichatz myfile

set group to students
chgrp students mydir/

give ownership to pcs and group to students
chgrp pes:students myfile mydir/

descend recursively into directory opening all files
choun -R ichatz mydir/

Symbolic Links
» The file system enables to create symbolic links
» Two types are provided
» Symbolic link
> Hard link
» The contents and metadata of the original file are used for all
operations

create a symbolic link to a directory
In -s fvar/log ./log

1s -lg

lruxrwxrwx | operator 8 Apr 25 log -> /var/log

» The contents and metadata of the original file are used for all
operations
> Except for deletion.

Examples of Symbolic Links

[] Root directory

Shared file

Access Dates

» For each file the system keeps track of
> Date of last usage/access
» Date of last change

check last usage time

1s -lu

drwxrwxrwx 1 bin bin home

lruxrwxrux 1 root operator 2 3 1ib
2 root operator E root

check last change time

#1s -lc

drwxrvxrux 1 bin bin 5 1993 home

lruxrwxrux 1 root operator 1ib
operator p 2 3 root

Keep the software up-to-date
» Use the command line to update the software.
» Commands need to be executed as super user:

sudo ...

» Use apt tool to update software repository sources.

sudo apt update

» View updates available:

sudo apt list --upgradable

» Install updates:

sudo apt upgrade

Install Python - Jupyter ToolChain

» Use the command line to install the toolchain as super user.

» Install python3 pip using Ubuntu admin tool apt

sudo apt install python3-pip

» Use pip3 to install jupyter notebook.

sudo pip3 install notebook

» Modify Security Configuration
> Allow traffic to port 8888.
» lIdentify Private IPv4 Address

jupyter notebook --ip=<private address>

Connect EC2 with S3
» To connect to your S3 buckets from your EC2 instances, you
need to do the following:

1. Create and attach an AWS Identity and Access Management
(IAM) profile role to the instance that grants access to
Amazon S3.

2. Confirm that the 53 bucket policy doesn't have a policy
denying access.

3. Confirm network connectivity between the EC2 instance and
Amazon S3.

> Install AWS CLI - AWS Command Line tool

sudo apt install awscli

> Access the S3 bucket

aws s3 1s

UNIX Shell

» The shell
> Allows the execution of command scripts
> Enables alternative methods to carry out complex tasks
> Provides variables
» Various types of shells exist, e.g., korn, tcsh, zsh ...
> Every user has a preselected shell
> The selection is stored in the file /etc/passwd
ichatz:x:1000:1000:,,,:/home/ichatz:/bin/bash
» The command chsh allows to change the preselected shell
» Each shell uses a specific file for user settings

BASH Script Example

$ for dir in $PATH
>do
if [-x $dir/gec]
then
echo Found $dir/gcc
break
else
echo Searching $dir/gcc
fi
>done

» For each folder within the variable $PATH
» Check if the folder contains the file gcc

> If the file is found, print out the path and stop
> Otherwise continue to the next folder.

Command line

#b v
bash-4.4.20#
> Left part of # can be changed.
» Right part of # is used to type in commands.
» Offers certain built-in commands
> Implemented within the BASH source code
» These commands are executed within the BASH process
> Allows to execute scripts
> For this reason it is called a UNIX programming environment

Built-in Commands

Command | Description Exception

cd Change Folder cd ..

declare Set a variable declare myvar

echo Print out a text to the standard out- | echo hello

put

exec Replace bash with another process exec 1s

exit Terminate shell process exit

export Set a global variable export myvar=1

history List of command history history

kill Send a message to a process kill 1121

let Evaluate an arithmetic expression let myvar=3+5

Built-in Commands UNIX Pipes

Command | Description Exception » General idea: The input of one program is the output of the
local Declare a local variable local myvar=5 other, and vice versa.

pwd The current folder pwd

read Read a value from standard input read myvar
readonly Lock the contents of a variable readonly myvar
return Complete a function call and return a | return 1

value
set List declared variables set

Shifts the command parameters shift 2
Evaluate an expression test -d temp
Monitor a signal trop recho sigml’ 3 > Both programs run at the same time.

UNIX Pipes UNIX Pipes

» Often, only one end of the pipe is used. » Commands produce an output — using the descriptor > the
output is redirected to a file
1s > filelist
standard ou standard in A new file is created under the name filelist
If the file already exists, the new file will replace the old one.
We can use the descriptor >> to redirect the output to an
existing file
1s -1t /root/doc >> /root/filelist
The commands that require input — using the descriptor < the

> This can be done using intermediate files. input is redirected from a file
sort < /root/filelist

UNIX Pipes
» File approach: Run first program, save output into file.
» Run second program, using file as input.

-

» Unnecessary use of the disk:

> Slower,

» Can take up a lot of space.
» Makes no use of multi-tasking.

-

UNIX Pipes
» The output of a process is redirected as input to another
process.

—

» The redirection is done using the descriptor |
1s | sort — sorting the files of a folder
1s /root | wc -1 - counting files

» Multiple pipes are often chained together.

UNIX Pipes

> What's the difference?

» Both commands send input to command from a file instead of
the terminal:
cat file | command
command < file

» An extra process !
cat file | command

--l—0

command < file

-l

UNIX Pipes

» What if a process tries to read data but nothing is available?
» UNIX puts the reader to sleep until data available.
» What if a process cannot keep up reading from the process
that’s writing?
» UNIX keeps a buffer of unread data.
> This is referred to as the pipe size.
> If the pipe fills up, UNIX puts the writer to sleep until the
reader frees up space (by doing a read).
» Multiple readers and writers possible with pipes.

UNIX Pipes

» Examples of filters:
> Sort
> Input: lines from a file.
» Output: lines from the file sorted
» Grep
> Input: lines from a file.
> Output: lines that match the argument
> Sed
> Programmable stream editor.

Processes

» We may execute commands in series by using the delimeter ;
» Commands are executed one by one. When the first is
completed, the next one starts. When the last command is
completed, we get a new prompt
> # who | sort ; date
» We may execute commands in the background using the
delimeter &
» The commands are executed and a new prompt is provided
immediately
> # pr junk | lpr &
> The execution of a command results to a new process
> The command ps shows up in the list of active processes
» The command wait is active until all the commands executed
using the delimeter & complete.

List of processes

ps -a
PID TTY TINE CMD
106 0:01 -sh
4114 0:00 /bin/sh /usr/bin/packman
2114 0:00 -sh
6762 0:00 ps -a
87 0 getty
90 0:00 getty

Parameter a — list all the commands created by consoles
Column PID - unique ID of the process

Column TTY - the console ID that created the process
Column TIME - total execution time

Column CMD - the name of the command

Process management

» To terminate a process we use the command kill [PID]
» We may change the priority of a process
> prefix nice
nice pr junk | lpr &
» We may delay the execution of a command
> prefix at

at 1500

1s -1 / /root /dir | wc > allfiles

pr allfiles | lpr ; date > lpr-endtime &
date > lpr-starttime

“D

at: /usr/spool/at/07.111.1500.67 created
#

The echo command (1)
» Main way to produce output
» Prints out values of variables
> Recognizes special characters (or meta-characters)

The echo command (2)
» May contain more than 1 lines
» May also execute commands

bash-4.4.20# echo 'hello
bash-4.4.20# echo hello there there'

hello there hello

bash-4.4.20# let myvar=1; echo $myvar there

1 bash-4.4.20# echo hello\
bash-4.4.20# echo * there

junk lpr-starttime temp hello there

bash-4.4.20# echo print '#' "don't" bash-4.4.20# echo "date

print * don' Mon Apr 30 16:12:21 GMT 2007
bash-4.4.20# echo -n “date” " "
Mon Apr 30 16:12:21 GMT 2007 bash-4.4.20#

Meta-characters Shell Variables
» The character ? — defines any single character, e.g., » The shell allows the declaration of variables
» Initial values of variables are defined in the user settings file

» The character * — defines multiple characters, e.g., » The scope of the variables is connected with the session

1s /etc/rc.*

The array [...] — defines a specific set of characters, e.g.

1s [abc].c

The use of the above meta-characters is also called filename
substitution

We may use these meta-characters in any combination within
command execution

The following command is disabled

mv k.X k.y

» Or until the user removes them
The variables with UPPER-case letters are global — they are
transfered to all processes executed by the shell
The variables with LOWER-case letters are local — they are
accessible only by the shell process

The path to your home directory
The terminal type

Shell Variables Special Variables
» We may use variables at the command line » Some special variables are provided
» We use the descriptor $ Variable Description
USER User name
bash-4.4.20# myvar="hello"; echo $myvar HOME Home folder of user
hello TERM Type of terminal
bash-4.4.20# myvar="1s -la" SHELL Name of shell
bash-4.4.20# $myvar -
lruxrwxrwx 1 bin operator 2880 Jun 1 1993 bin PATH List of folders to look for commands
-r--r--r-- 1 root operator 448 Jun 1 1993 boot MANPATH List of folders to look for manual
druxr-sr-x 2 root operator 11264 May 11 17:00 dev pages
. PWD Active folder
OLDPWD Previously active folder
HOSTNAME | Name of the system

Variable Handling Creation of scripts
» The commands env, printenv provide a list of GLOBAL > Scripts are used as if they were commands/applications
variables » Defined by a source file
» The command set provides a list of LOCAL variables > We execute the script using the command sh
» To declare a new GLOBAL variable we use the command Or directly by setting execute access permissions
export
Variable type is define by content type bash-4.4.20# echo 'who | wc -1' > nu
» String variables — myvar = "value" bash-4.4.20# cat nu
> Integer variables — declare -i myvar who | we -1
» Constant variables — readonly me="ichatz" bash-4.4.20# sh nu
> Array variables — declare -a MYARRAY 1
MYARRAY [0]="one"; MYARRAY[1]=5; echo ${MYARRAY[+]} bash~4.4.20# chmod atx nu
. - bash-4.4.20# nu
The names of the variables are case-sensitive N
The command unset removes a variable

Handling (1)

» We may pass parameters to a script at command-line
» These are called the command-line arguments

> We use arguments as variables

Argument | Description

50 The name of the script

$1 ... 89 | The value of 1st ... 9th argument

$# Number of arguments

$ All the arguments as string

bash-4.4.20# cat mu
echo Files found: "1s -la $1x | wc -1 "($1\x)"
bash-4.4.20# nu /b

Files found: 57 (/b%)

Handling Parameters (2)

» In order to access more than 9 parameters
> We may not use §10

» We need to use command shift x
» Shifts the parameters left-wise by x positions
> Shifted parameters are lost (1)

bash-4.4.20# cat ten

shift 10

echo $1

echo $* " -- " $#

bash-4.4.20# ten 1 234 567 89 10
10

10 - 1

Mathematical Expressions
» Allows the evaluation of mathematical expressions using
integers
» Similar with C programming language
> No need to explicitely declare a variable as an integer
> We use expr rather than int

((@a=a+ 1)
a=$((a+1))
a=$(($a+1))
leta=a+1
let at+
a="expr $a + 1°

If Expressions

if [condition 1]; then
if [[condition 2 & condition 3]]; then
fi
elif [condition 4] || [condition 5] ; then
else
fi

» The command test allows the evaluation of an expression

Returns either true or false

Supports broad range of expressions

> e.g., we might check if we have write access to a given file
if test -w "$1"; then echo "File $1 is writable"
fi

vy

Evaluation using test

Expression

Description

Greater or equal

Greater

Smaller

Smaller or equal

Equal

Not Equal

Size of the string bigger than 0

Empty string

The file is a folder

A non empty file

The file exists

Read access to file

Write access to file

Execution access to file

Evaluation Example (1)

bash-4.4.20# cat check.sh
#!/bin/bash
read -p "Enter a filename: " filename
if [! -w "$filename” 1; then

echo "File is not writeable"

exit 1

elif [! -r "$filename"] ; then
echo "File is not readable"
exit 1

£i

Evaluation Example (2)

bash-4.4.20# cat check.sh

#1/bin/bash

TMPFILE = "diff.out"

diff $1 $2 > $TMPFILE

if [! -s "$TMPFILE"]; then
echo "Files are the same"

el

£i

se
more $TMPFILE

if [-f "$TMPFILE"]; then
m -rf $TMPFILE

£i

Boolean expressions
if [condition 1 &% condition al; then
if [condition 2 || condition bl; then
fi
elif [! condition 3] ; then
else

£i

For Loop

for VAR in <list>
do

done

for i in 6 3 1 2
do

echo $i
done | sort -n

for i in *.c
do

echo $i
done

Introduction to Regular Expressions (1)

> A regular expression (regex) describes a set of possible input
strings.
» Regular expressions descend from a fundamental concept, in
Computer Science called finite automata theory
» Regular expressions are endemic to Unix
P vi, ed, sed, and emacs
> awk, tcl, perl and Python
> grep, egrep, fgrep
> compilers

Introduction to Regular Expressions (2)
» The simplest regular expressions are a string of literal
characters to match.
» The string matches the regular expression if it contains the
substring.

Introduction to Regular Expressions (3)

regular expression

UNIX Tools ro.

match

UNIX Tools su.

match

UNIX Tools is okay.

no match

Introduction to Regular Expressions (4) Introduction to Regular Expressions (5)
> A regular expression can match a string in more than one » The . regular expression can be used to match any character.

place.
. regular expression ———
regular expression ——

Scr from the e to poEﬁtbn.

match 1 match 2 match 1 match 2

Character Classes (1) Character Classes (2)

» Character classes [| can be used to match any specific set of > Character classes can be negated with the [*] syntax.
characters.

beat] a [brat| on a [boat]

match
match 1 match 2 match 3

Character Classes (3)
» [aeiou] will match any of the characters a, e, i, 0, or u

[kK]orn will match korn or Korn
Ranges can also be specified in character classes
[1—9] is the same as [123456789]
[abcde] is equivalent to [a — €]
You can also combine multiple ranges
[abcde123456789)] is equivalent to [a — el — 9]
Note that the - character has a special meaning in a character
class but only if it is used within a range,
[—123] would match the characters -, 1, 2, or 3

Named Character Classes
» Commonly used character classes can be referred to by name
(alpha, lower, upper, alnum, digit, punct, cntrl)
Syntax [: name 1]
[a— zA — Z] is equivalent [[: alpha :]]
[a—2zA— Z0 — 9] is equivalent [[: alnum :]]
[45a — z] is equivalent [45[: lower :]]
Important for portability across languages

Anchor Characters
» Anchors are used to match at the beginning or end of a line
(or both).
» " means beginning of the line
» $ means end of the line

o camsion—— [~ 5] [eoz]] a] €]

m a brat on a boat

match

regular expression ——— Em alt]s

beat a brat on a |[boat

match

~word$ ~$

Repetition
» The * is used to define zero or more occurrences of the single
regular expression preceding it.

regular expression ——
I got mail, |yaaaaaaaaaa
match
regular expression

For me to on.

match

L

Match Length

» A match will be the longest string that satisfies the regular

expression.
relar espression =

ScraEEle from the| apple
= . T

Repetition Ranges

> Ranges can also be specified

> { } notation can specify a range of repetitions for the
immediately preceding regex

» {n} means exactly n occurrences

> {n,} means at least n occurrences

> {n,m} means at least n occurrences but no more than m
occurrences

» Example:
{0,} same as .*
a{2,} same as aaa*

Subexpressions
> If you want to group part of an expression so that * or { }
applies to more than just the previous character, use ()
notation
Subexpresssions are treated like a single character
a* matches 0 or more occurrences of a
abc* matches ab, abc, abcc, abcecg, ...

(abc)* matches abc, abcabc, abcabcabe, ...
(abc)2,3 matches abcabc or abcabcabe

Global Regular Expressions Print — grep

» grep comes from the ed (Unix text editor) search command
“global regular expression print” or g/re/p

» This was such a useful command that it was written as a
standalone utility

» There are two other variants, egrep and fgrep that comprise
the grep family
grep is the answer to the moments where you know you want
the file that contains a specific phrase but you can't
remember its name

Syntax
» Regular expression concepts we have seen so far are common
to grep

» grep: \(and \), \{ and \}

