
Algorithmic Methods of Data Mining
DynamoDB

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 5

Timeline of Database Technology

Data Volume Since 2010

• 90% of stored data generated in

last 2 years

• 1 Terabyte of data in 2010 equals

6.5 Petabytes today

• Linear correlation between data

pressure and technical innovation

• No reason these trends will not

continue over time

Technology Adoption and the Hype Curve

AWS: DynamoDB
I A NoSQL key-value and document database.

I Key-Value Database:
I Pairs of Key-Values (records) are stored into the same

namespace.
I Values can contain any type of records.
I The simples possible data model.

I Document Database:
I Documents (records) are organized into groups called

collections.
I Collections ∼ Tables of RDBMS.
I Can be viewed as an extension of the Key-Value database.

I Fully Managed Service.
I Support databases of virtually any size.
I Scale to more than 10 trillion requests per day.
I Service request peaks greater than 20 million requests per

second.

Some Use Cases
I Netflix – uses DynamoDB to run A/B testing that builds

personalized streaming experiences for their 125+ million
customers.

I United States Census 2020 – uses DynamoDB to scale
response collection on mobile or desktop, allowing people to
participate in its decennial count online for the first time.

I Samsung Electronics – uses DynamoDB for their
petabyte-sized mobile app backups, resulting in consistent
high performance and cost savings.

I . . .

Why NoSQL?

Optimized for storage Optimized for compute

Normalized/relational Denormalized/hierarchical

Ad hoc queries Instantiated views

Scale vertically Scale horizontally

Good for OLAP Built for OLTP at scale

SQL NoSQL

SQL vs. NoSQL Access Pattern

Table
Table

Items

Attributes

Partition
Key

Sort
Key

Mandatory

Key-value access pattern

Determines data distribution Optional

Model 1:N relationships

Enables rich query capabilities

All items for key
==, <, >, >=, <=
“begins with”
“between”
“contains”
“in”
sorted results
counts
top/bottom N values

00 55 A954 FFAA00 FF

Partition Keys

Partition Key uniquely identifies an item

Partition Key is used for building an unordered hash index

Allows table to be partitioned for scale

Id = 1

Name = Jim

Hash (1) = 7B

Id = 2

Name = Andy

Dept = Eng

Hash (2) = 48

Id = 3

Name = Kim

Dept = Ops

Hash (3) = CD

Key Space

Partition:Sort Key
Partition:Sort Key uses two attributes together to uniquely identify an Item

Within unordered hash index, data is arranged by the sort key

No limit on the number of items (∞) per partition key
• Except if you have local secondary indexes

00:0 FF:∞

Hash (2) = 48

Customer# = 2

Order# = 10

Item = Pen

Customer# = 2

Order# = 11

Item = Shoes

Customer# = 1

Order# = 10

Item = Toy

Customer# = 1

Order# = 11

Item = Boots

Hash (1) = 7B

Customer# = 3

Order# = 10

Item = Book

Customer# = 3

Order# = 11

Item = Paper

Hash (3) = CD

55 A9:∞54:∞ AA

Partition 1 Partition 2 Partition 3

Partitions are three-way replicated

Id = 2

Name = Andy

Dept = Engg

Id = 3

Name = Kim

Dept = Ops

Id = 1

Name = Jim

Id = 2

Name = Andy

Dept = Engg

Id = 3

Name = Kim

Dept = Ops

Id = 1

Name = Jim

Id = 2

Name = Andy

Dept = Engg

Id = 3

Name = Kim

Dept = Ops

Id = 1

Name = Jim

Replica 1

Replica 2

Replica 3

Partition 1 Partition 2 Partition N

Choose Table Name Define Primary Key

Add Sort Key Select Read/Write Capacity Mode

Roles and Encryption Table Overview

Create Item Add New Values

Save Record Edit Values

Edit Record Modify Keys

Instance Ready to Launch List of Instances

Overview of Instance Connect to Instance

Command Line Console Scaling
I Throughput

I Provision any amount of throughput to a table.
I Write capacity units (WCUs) – measured in 1 KB per second.
I Read capacity units (WCUs) – measured in 4 KB per second.

I RCUs measure strictly consistent reads.
I Eventually consistent reads cost 1

2
of consistent reads.

I Read and write throughput limits are independent.
I Size

I Add any number of items to a table.
I Maximum item size is 400 KB.

I Scaling is achieved through partitioning.
I Size = Total Size

10GB
I Capacity = Total RCU

3000 + Total WCU
1000I TotalPartitions = dmax(Size,Capacity)e

Scaling Example

You are storing book data – on average a book record requires
80KB of data. Additionally, a lot of people would like to retrieve
this game data and you expect about 1800 eventually consistent
reads per second.

I How many WCUs are needed to write 400 books per second ?
I How many RCUs are needed for 1800 strictly consistent reads

per second?
I How many RCUs are needed for 2400 eventually consistent

reads per second?

Partitions Example

You are storing 180GB of book data – with 36000 RCUs and
32000 WCUs.

I Size = 180
10=18

I Capacity = 36000
3000 + 32000

1000 = 12 + 32
I TotalPartitions = dmax(18, 44)e = 44
I RCUs and WCUs are uniformly spread across partitions:

I 4.09GB per partition.
I 818.18 RCUs per partition.
I 727.27 WCUs per partition.

What bad NoSQL looks like…

P
a
rt

it
io

n

Time

Heat

Getting the most out of DynamoDB throughput

DynamoDB Developer Guide

“To get the most out of DynamoDB throughput, create tables
where the hash key element has a large number of distinct values,
and values are requested fairly uniformly, as randomly as possible.”

I Space: access is evenly spread over the key-space.
I Time: requests arrive evenly spaced in time.

Much better picture… Connecting to AWS Services
I When interacting with AWS we need to specify our AWS

security credentials
I Verify who we are (Authentication)
I Verify that we have permission to access the resources

(Authorization)
I Alternative: Access services via an EC2 instance that has the

appropriate Roles.
I No need for further authentication/authorization.
I No security credentials used.
I We need to access the EC2 instance via our Private Key.

AWS Security Credentials
I AWS uses security credentials to authenticate and authorize

your requests.

I Two different types of users in AWS:
I The account owner (root user) – created automatically,
I An AWS Identity and Access Management (IAM) user –

created manually.

I All AWS users have security credentials.

AWS Users
I Root user

I The credentials of the account owner allow full access to all
resources in the account.

I You cannot explicitly deny the root user access to resources.
I For this reason it is highly recommended:

I Create an IAM User with administration permissions.
I Stop using Root user.

I There are specific tasks that are restricted to the AWS account
root user – e.g., close the account.

I IAM User
I Securely control access to AWS services and resources for users

in your AWS account.
I Grant/Revoke policies on the fly.

AWS credentials for programmatic access
I You must provide your AWS access keys to make

programmatic calls to AWS.
I Access Key + Secret Key + Session Token.

I The secret access key is available for download only when you
create it.

I If you don’t download your secret access key or if you lose it,
you must create a new one.

I You can assign up to two access keys per user (root user or
IAM user).

I You can disable a key – but it counts toward your limit of two
access keys.

I After you delete an access key, it’s gone forever and can’t be
restored, but it can be replaced with a new access key.

How to create an access key
1. Sign in to the AWS Management Console as the root user.
2. In the navigation bar on the upper right, choose your account

name or number and then choose My Security Credentials.
3. Expand the Access keys (access key ID and secret access key)

section.
4. Choose Create New Access Key.

I If you already have two access keys, this button is disabled.

5. When prompted, choose Show Access Key or Download Key
File. This is your only opportunity to save your secret access
key.

6. After you’ve saved your secret access key in a secure location,
chose Close.

AWS CLI
I You can provide your AWS access keys to AWS CLI

aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE

AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Default region name [None]: us-west-2

Default output format [None]: ENTER

AWS Python SDK (boto3)

pip3 install boto3

I Boto3 has two distinct levels of APIs.
1. Client (or ”low-level”) APIs provide one-to-one mappings to

the underlying HTTP API operations.
2. Resource APIs hide explicit network calls but instead provide

resource objects and collections to access attributes and
perform actions.

ec2 = boto3.client('ec2', 'eu-central-1')

response = ec2.describe_instances()

print(response)

for i in ec2.instances.all():

if i.state['Name'] == 'stopped':

i.start()

AWS Python SDK (boto3)

pip3 install boto3

I Boto3 has two distinct levels of APIs.
1. Client (or ”low-level”) APIs provide one-to-one mappings to

the underlying HTTP API operations.
2. Resource APIs hide explicit network calls but instead provide

resource objects and collections to access attributes and
perform actions.

ec2 = boto3.client('ec2', 'eu-central-1')

response = ec2.describe_instances()

print(response)

for i in ec2.instances.all():

if i.state['Name'] == 'stopped':

i.start()

Specifying Access Keys to boto3
I If not specified, boto3 uses default Access Key.

Get resources from the default session

s3 = boto3.resource('s3')

I It is possible to specify upon connecting to a resource.

Get resources from the default session

s3 = boto3.resource('s3',

aws_access_key_id=ACCESS_KEY,

aws_secret_access_key=SECRET_KEY,

aws_session_token=SESSION_TOKEN)

Connecting to an existing DynamoDB Table

Connect to dynamodb resources

ddb = boto3.resource('dynamodb',region_name='eu-central-1')

Connect to specific table

table = dynamodb.Table('Books')

print(table.creation_date_time)

print(table.item_count)

print(table.key_schema)

print(table.provisioned_throughput)

Inserting a record to a DynamoDB Table

entry = { "Author": "Orson Scott Card",

"Book Title" : "Ender's Game",

"Language" : "English",

"Publication Date" : "15/01/1985",

"ISBN" : "9780812550702"}

Connect to dynamodb resources

ddb = boto3.resource('dynamodb',region_name='eu-central-1')

Connect to specific table

table = ddb.Table('Books')

Store new entry

table.put_item(Item=entry)

Inserting a record to a DynamoDB Table (2)

entry = { "Author": "Frank Herbert",

"Book Title" : "Dune",

"Language" : "English",

"Publication Date" : "01/06/1965",

"ISBN" : "9780593099322",

"Characters" : ["Stilgar", "Vladimir Harkonnen",

"Duncan Idaho", "Leto Atreides", "Paul Atreides",

"Alia Atreides", "Lady Jessica", "Shaddam IV",

"Gurney Halleck"],

"Literary Awards": ["Hugo Award for Best Novel (1966)",

"Nebula Award for Best Novel (1965)",

"Seiun Award for Best Foreign Novel (1974)"]}

Store new entry

table.put_item(Item=entry)

Inserting multiple records to a DynamoDB Table (2)
I Speed up the process + reduce the number of write requests.
I Automatically handles buffering and sending items in batches.
I Automatically handles any unprocessed items and resend them

as needed.

with table.batch_writer() as batch:

batch.put_item(Item={'Author': 'Frank Herbert',

'Book Title': 'Dune Messiah'})

batch.put_item(Item={'Author': 'Frank Herbert',

'Book Title': 'Children of Dune',

'Publication Date': '21/04/1976'})

batch.put_item(Item={'Author': 'Frank Herbert',

'Book Title': 'The Great Dune Trilogy',

'ISBN': '9780575070707'})

Getting a record from a DynamoDB Table

my_key = { "Author": "Orson Scott Card",

"Book Title" : "Ender's Game"}

Connect to dynamodb resources

ddb = boto3.resource('dynamodb',region_name='eu-central-1')

Connect to specific table

table = dynamodb.Table('Books')

Store new entry

response = table.get_item(Key=my_key)

print(response)

Updating a record from a DynamoDB Table

my_key = { "Author": "Ray Bradbury",

"Book Title": "Fahrenheit 451"}

Update entry

response = table.update_item(Key=my_key,

UpdateExpression="set ISBN=:i",

ExpressionAttributeValues={

':i': 9780743247221

},

ReturnValues="UPDATED_NEW"

)

print(response)

Updating a record from a DynamoDB Table (2)

my_key = { "Author": "Ray Bradbury",

"Book Title": "Fahrenheit 451"}

Update entry

response = table.update_item(Key=my_key,

UpdateExpression="set #la=:l",

ExpressionAttributeNames={"#la": "Language"},

ExpressionAttributeValues={

':l': "English"

},

ReturnValues="UPDATED_NEW"

)

print(response)

Deleting a record from a DynamoDB Table

my_key = { "Author": "Ray Bradbury",

"Book Title": "Fahrenheit 451"}

Delete entry

response = table.delete_item(Key=my_key)

print(response)

Query records from a DynamoDB Table
I You can use the query method to retrieve data from a table.
I You must specify a partition key value.
I The sort key is optional.

from boto3.dynamodb.conditions import Key

Query entries

response = table.query(

KeyConditionExpression=Key('Author').eq('Frank Herbert')

)

print(response)

Scan records from a DynamoDB Table
I The scan method reads every item in the entire table and

returns all the data in the table.
I You can provide an optional FilterExpression so that only the

items matching your criteria are returned.
I The filter is applied only after the entire table has been

scanned.

from boto3.dynamodb.conditions import Attr

Query entries

response = table.scan(

FilterExpression=Attr('Language').eq('English')

)

items = response['Items']

print(items)

Create a DynamoDB Table

table = ddb.create_table(

TableName='Authors',

KeySchema=[

{ 'AttributeName': 'name',

'KeyType': 'HASH' }, # Partition key

{ 'AttributeName': 'genre',

'KeyType': 'RANGE' } # Sort key

],

AttributeDefinitions=[

{ 'AttributeName': 'name',

'AttributeType': 'S' },

{ 'AttributeName': 'genre',

'AttributeType': 'S'},

],

ProvisionedThroughput={

'ReadCapacityUnits': 10,

'WriteCapacityUnits': 10

})

Delete a DynamoDB Table

table = ddb.Table('Authors')

Delete table

table.delete()

1:1 relationships or key-values

Use a table or GSI with an alternate partition key

Use GetItem or BatchGetItem API

Example: Given an SSN or license number, get attributes

Users Table
Partiton key Attributes
SSN = 123-45-6789 Email = johndoe@nowhere.com, License = TDL25478134
SSN = 987-65-4321 Email = maryfowler@somewhere.com, License = TDL78309234

Users-Email-GSI
Partition key Attributes
License = TDL78309234 Email = maryfowler@somewhere.com, SSN = 987-65-4321
License = TDL25478134 Email = johndoe@nowhere.com, SSN = 123-45-6789

1:N relationships or parent-children

Use a table or GSI with partition and sort key

Use Query API

Example:

• Given a device, find all readings between epoch X, Y

Device-measurements
Partition Key Sort key Attributes
DeviceId = 1 epoch = 5513A97C Temperature = 30, pressure = 90
DeviceId = 1 epoch = 5513A9DB Temperature = 30, pressure = 90

N:M relationships

Use a table and GSI with partition and sort key elements

switched

Use Query API

Example: Given a user, find all games. Or given a game,

find all users.

User-Games-Table
Partition Key Sort key
UserId = bob GameId = Game1

UserId = fred GameId = Game2

UserId = bob GameId = Game3

Game-Users-GSI

Partition Key Sort key

GameId = Game1 UserId = bob

GameId = Game2 UserId = fred

GameId = Game3 UserId = bob

Hierarchical Data Structures as Items…

Use composite sort key to define a Hierarchy

Highly selective result sets with sort queries

Index anything, scales to any size

Primary Key
Attributes

ProductID type
It

em
s

1 bookID
title author genre publisher datePublished ISBN

Ringworld Larry Niven Science Fiction Ballantine Oct-70 0-345-02046-4

2 albumID
title artist genre label studio relesed producer

Dark Side of the Moon Pink Floyd Progressive Rock Harvest Abbey Road 3/1/73 Pink Floyd

2 albumID:trackID
title length music vocals

Speak to Me 1:30 Mason Instrumental

2 albumID:trackID
title length music vocals

Breathe 2:43 Waters, Gilmour, Wright Gilmour

2 albumID:trackID
title length music vocals

On the Run 3:30 Gilmour, Waters Instrumental

3 movieID
title genre writer producer

Idiocracy Scifi Comedy Mike Judge 20th Century Fox

3 movieID:actorID
name character image

Luke Wilson Joe Bowers img2.jpg

3 movieID:actorID
name character image

Maya Rudolph Rita img3.jpg

3 movieID:actorID
name character image

Dax Shepard Frito Pendejo img1.jpg

… or as Documents (JSON)

JSON data types (M, L, BOOL, NULL)

Document SDKs Available

Indexing only via Streams/Lambda

400KB max item size (limits hierarchical data structure)

Primary Key
Attributes

ProductID

It
em

s

1
id title author genre publisher datePublished ISBN

bookID Ringworld Larry Niven Science Fiction Ballantine Oct-70 0-345-02046-4

2

id title artist genre Attributes

albumID
Dark Side of the

Moon
Pink Floyd Progressive Rock

{ label:"Harvest", studio: "Abbey Road", published: "3/1/73", producer: "Pink
Floyd", tracks: [{title: "Speak to Me", length: "1:30", music: "Mason", vocals:

"Instrumental"},{title: ”Breathe", length: ”2:43", music: ”Waters, Gilmour,
Wright", vocals: ”Gilmour"},{title: ”On the Run", length: “3:30", music: ”Gilmour,

Waters", vocals: "Instrumental"}]}

3

id title genre writer Attributes

movieID Idiocracy Scifi Comedy Mike Judge

{ producer: "20th Century Fox", actors: [{ name: "Luke Wilson", dob: "9/21/71",
character: "Joe Bowers", image: "img2.jpg"},{ name: "Maya Rudolph", dob:

"7/27/72", character: "Rita", image: "img1.jpg"},{ name: "Dax Shepard", dob:
"1/2/75", character: "Frito Pendejo", image: "img3.jpg"}]

