Algorithmic Methods of Data Mining
Elastic Map Reduce
loannis Chatzigiannakis
Sapienza University of Rome

Laboratory 7

AWS Elastic Map Reduce

» Managed Hadoop framework on EC2 instances.

» AWS EMR splits large processing jobs into smaller jobs and
distributes them across many compute nodes in a Hadoop
cluster.

» Easily run and scale open-source big data frameworks:

> Apache Spark
Apache Flink
» Apache Hive
> Presto
> Apache HBase
>

» EMR Notebooks.

EMR: Benefits

» Easy to use — interact using Jupyter via web.
» Low cost
> Pay a per-instance rate for every second used, with a
one-minute minimum charge.
» Elastic
> For short-running jobs, you can spin up and spin down clusters
and pay per second for the instances used.
» For long-running workloads, you can create highly available
clusters that automatically scale to meet demand.
> Reliable
» Secure
> Flexible

AWS EMR lIdeal Usage Patterns
Logprocessing and analytics
Large extract, transform, and load (ETL) data movement
Risk modeling and threat analytics
Ad targeting and click stream analytics
Genomics
Predictive analytics
Adhoc data mining and analytics

Apache EMR Architecture

L -~ Core instance group

-
E Amazon S3

AWS EMR and Apache Hadoop
The Elastic Map Reduce is built on top Apache Hadoop.
An open-source Java software framework that supports
massive data processing across a cluster of instances.
Distributed processing across the instances that make up the
cluster.
It can run on a single instance or thousands of instances.
Elastic auto-scaling of cluster.
Provides a fault-tolerant processing environment.

Auto-scaling rule parameters
Rule name |MyScalingRule .
Add 1 nstances @ m
m if | YARNMemoryAvailablePercentage e
is | greater than or equalto v |15 percent) @
seros or [1 five-minute periods ,
gl

Cooldown period 1300 seconds €

Apache Hadoop

» Apache Hadoop includes the following modules:
» Hadoop Common: The common utilities that support the

other Hadoop modules.
Hadoop Distributed File System (HDFS): A distributed file
system that provides high-throughput access to application
data.
Hadoop YARN: A framework for job scheduling and cluster
resource management.
Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.
Hadoop Ozone: An object store for Hadoop.

Apache Hadoop Ecosystem Apache Spark on AWS EMR
Started in 2009 as a research project at UC Berkley's

-= »>
AMPLab.
» An open-source, distributed processing system used for big
data workloads.

In contrast to Hadoop, uses in-memory caching to achieve
high speed-ups.
» Optimized query execution for fast analytic queries against
data of any size.
Development APIs in Java, Scala, Python and R.
Supports code reuse across multiple workloads-batch
processing:
> interactive queries, real-time analytics, machine learning, and
graph processing.

&

Apache Oozie
Apache Pig
Apache Hive
SQL Query

Distributed Processing Framework

Apache HBase
Columnar Storage

YARN (MapReduce V2) @

HDFS
Hadoop Distributed File System

©

Apache ZooKeeper

Apache Flink on AWS EMR
» Started in 2009 as a research project by the Berlin-based

o q database research groups.
MLlib Streamin, SQL GraphX
9 Q P > An open-source, fast, general purpose distributed data

Apache Spark Workloads

processing system.
Streaming dataflow engine that you can use to run real-time
stream processing on high-throughput data sources
Stateful computations over unbounded and bounded data
Core streams.

Up to 100x faster than Hadoop.

5o
“ Programming APIs for Java and Scala.

Machine Real-time. Interactive

Learning analytics. processing.

Process Unbounded and Bounded Data Leverage In-Memory Performance
» Any kind of data is produced as a stream of events. » Stateful Flink applications are optimized for local state access.
» Credit card transactions, sensor measurements, machine logs, Task state is always maintained in memory or,
user interactions on a website or mobile application, ... if the state size exceeds the available memory, in
» Unbounded streams have a start but no defined end. access-efficient on-disk data structures.
> Bounded streams have a defined start and end. Flink guarantees exactly-once state consistency in case of
failures.

IR e e
e e [osc o [iooc 8 e Eij
Output T i3 "‘S(:M’:::

Apache Flink Ecosystem Apache Hive on AWS EMR

» Open-source, data warehouse, and analytic package that runs
Eventriven Sueaming Stream & Batch

Applcations Pipelines Analytics on top of a Hadoop cluster.
i Applcation » Hive scripts use an SQL-like language called Hive QL.

> Abstracts programming models,
» supports typical data warehouse interactions.

Transactions

Database,

File System, » A command line tool and JDBC driver are provided to
Database, Kv-store R

File System, Resources | Storage connect users to Hive.

KV-Store (K8, Yarn, Mesos, ...) | (HDFS, 3, NFS, ...)

togs
o1 Event Log
clcks

Presto on AWS EMR Apache HBase on AWS EMR
Open source distributed SQL query engine for running » An open source, distributed, versioned, non-relational
interactive analytic queries. database modeled after Google's BigTable.
Data sources of all sizes: from gigabytes to petabytes. » Enables random, realtime read/write access to Big Data.
A single Presto query can combine data from multiple > Strictly consistent reads and writes.
sources, allowing for analytics across your entire organization. » Allows hosting of very large tables — billions of rows X millions
Interactive Queries makes it easy for developers and data of columns — atop clusters of commodity hardware.
scientist to work with the big data. » Easy to use Java API for client access.
Supported by Linux Foundation. > Extensible jruby-based (JIRB) shell.

EMR Notebooks EMR Notebooks architecture
» EMR Notebooks is a Jupyter Notebook environment built in /Ny

to the Amazon EMR console. S kil
Quickly create Jupyter notebooks, attach them to Spark
clusters
Use Jupyter Notebook editor to remotely run queries and
COde. [Tupyter
Open, attach multiple notebooks to a single cluster, and Notebook |~
re-use a notebook on different clusters. ¢
You can start a cluster, attach an EMR notebook for analysis,
and then terminate the cluster.
You can also close a notebook attached to one running cluster
and switch to another. ‘Spark (Optional)
Multiple users can attach notebooks to the same cluster Coreitask
simultaneously. Command line Instances

Considerations when using EMR Notebooks Create Cluster
» User notebooks and files are saved to the file system on the Amazon x Welcome to Amazon Elastic MapReduce

master node. s ot e e (18 . st s e
This is ephemeral storage that does not persist through
cluster termination.
When a cluster terminates, this data is lost if not backed up.
EMR Notebooks support persistance to S3.
EMR Notebooks supports connection with GitHub
repositories.

Quick Options Software Configuration

==
=

Hardware Configuration Choose Instance Types

£

General Cluster Settings Security Options

EMR Notebooks Create notebook

pee— Notebooks Create notebook

Name and canfigure your notebook

Choose a cluster Link Git repository to notebook

Add repository

Link Git repository to notebook

Create notebook

Create notebook

Name and configureyournotebook

Starting notebook

L L S EP——

EMR Notebooks: ready Jupyter Tree

Choose PySpark Kernel Spark Driver Program

oo e nan = Worker Node

Executor | Gache.
-
P — ﬁ
Cluster Manager |
Worker Node l

Executor | Cache

» Map/Reduce operations are issued to the cluster manager.
» Map/Reduce operations work on a given dataset.
» The dataset is encoded using the RDD structure.

Spark Context

» SparkContext is the entry point to any spark functionality.

» A SparkContext represents the connection to a Spark cluster.
» Used to create RDD and broadcast variables on that cluster.
» Only one SparkContext should be active per session.

Resilient Distributed Datasets

» A fundamental data structure of Spark.
» Spark makes use RDD to achieve faster and efficient
MapReduce operations.
» An immutable distributed read-only collection of objects.
P> immutable = state cannot change after it is constructed.
» Can contain any type of Python, Java, or Scala objects,
including user-defined classes.
» Two ways to construct an RDD:
1. Referencing a dataset in an external storage system: S3,
HDFS, HBase, ...
2. Through Map/Reduce opreations.
» RDD is divided into logical partitions.
» Each logical partition may be computed on different nodes of
the cluster.

Iterative Operations on MapReduce

Iteration - 1 teration - 2 teration - n

read)| M1 |

Tupl
(on Disk)
Input from

stable

storage

» Reuse intermediate results across multiple computations in
multi-stage applications.
Each Map/Reduce operation works on a given/input RDD.
Each Map/Reduce operation constructs/outputs a new RDD.
If the Distributed memory (RAM) is not sufficient to store
intermediate RDD, then it will store those results on the disk.

Book Plot Summaries Dataset: A subset
» Today we will work with the CMU Book Summary Corpus.
» A collection of 16,559 book plot summaries extracted from
Wikipedia:
. Wikipedia article ID
Freebase ID
. Book title
. Author
. Publication date
. Book genres (Freebase ID:name tuples)
7. Plot summary
> A tab-delimited text file is a file containing tabs that separate
information with one record per line.
» Retrieve file https://sapienza2020adm.s3.
eu-central-1.amazonaws.com/booksummaries.txt.gz
» Upload it to the S3 bucket associated with the EMR cluster.

Retrieve book dataset

» Use the variable sc to access the Spark Context.
» Load the Tab-delimited text file to Spark.

books = sc.textFile("s3://.../booksummaries.tar.gz")

» textFile Creates a new RDD object.
» Provides a reference to the dataset - no data loaded yet.

books . count ()

» Retrieves the dataset from s3 and uncompress it.
» Creates 1 entry in the RDD for each line of the text file.
» Counts the entries in the RDD object.

books . take (5)
» Take the first 5 elements of the RDD.

Spark Monitoring Job Progress

For faled jobs, ciick these links to
view logs in Amazon 53 when
logging is enabled on the cluster

ek this Hink to view
Hadoop Job History.

Yearly statistics: Books per Year
» Identify how many books are published per year.
» Retrieve the 5th field from each record.
» Count repetitions of each year.
» RDD Operations used:
1. Map - extract the 5th field.
FlatMap — extract each word from the title.
Map — convert each word to a tupple (word, 1).
ReduceByKey — count appearances of each (word, *) tupple.

RDD operations — Publication date

book_dates = books.map(lambda a: a.split('\t')[4])

» Return a new RDD by applying a function to each element of
this RDD.
1-to-1 mapping: For each original record, a new record will be
generated.
Each line is 1 record: fields are separated by tab characters.
We split the line using the tab character, take the 4th field:
the publication date.
The new RDD contains only the publication dates of the
books.
Execution of the Map operation is delayed.

RDD operations — Examine records

results = book_dates.take(10)

> Take the first 10 elements of the RDD.
» The Map operation is executed.

print (results)
['1945-08-17', '1962', '1947', '', '', '1920-01-29',
'1968', '', '1996-10-01', '1995-10-01']
> lssues:
1. Some values are missing,
2. Some values also contain month + day.
3. Some values need to be converted to number.

RDD operations — Extract year

book_years = book_dates.map(lambda value: 0 if not value
else int(value) if value.isdigit()
else int(value[0:4]))
Return a new RDD by applying a function to each element of
this RDD.
1-to-1 mapping: For each original record, a new record will be
generated.
The new RDD contains only the publication years of the
books.
Execution of the Map/Map operation is delayed.

RDD operations — Group by year

years = book_years. groupBy (lambda x: x)

» Group the values for each key in the RDD into a single
sequence.
Many-to-1 mapping: For all original record that have the
same value, one record will be generated.
Each new record is a tupple (year, <Groupped values>)
The groupped values are encoded as
pyspark.resultiterable.ResultIterable objects.
Execution of the Map/Map/GroupBy operation is delayed.

RDD operations — Count items per year RDD operations — Sort results and collect

year_stats = years.mapValues(len) year_stats.sortBy(lambda entry: entry[1], False).collect()

Pass each value in the key-value pair RDD through a map » Sorts the RDD by the given keyfunc
function without changing the keys. » Retrieve all entries of the RDD.
The 1en() function is applied on each iterable object.
1-to-1 mapping: For each original record, one record will be year_stats.values() .variance()
generated.

Each new record is a tupple (year, number)

Execution of the Map/Map/GroupBy/MapValues operation is
delayed.

» Return an RDD with the values of each tuple.
» Compute the variance of this RDD’s elements.

Book title statistics: Words used in Book Titles RDD operations — Book names
» Identify which words are most frequently used in book titles
starting with the letter 'I'. book_names = books.map(lambda a: a.split('\t')[2])
Retrieve the 3rd field from each record.
Select only book titles starting with the letter 'I"
Extract the words from the book title.
Count repetitions of each word.
RDD Operations used:
1. Map — extract the 3rd field.
2. Filter — select records starting with the letter 'I".
3. FlatMap — extract each word from the title. the name.
4. Map — convert each word to a tupple (vord, 1). The new RDD contains only the names of the books.
5. ReduceByKey — count appearances of each (word, *) tupple.

» Return a new RDD by applying a function to each element of
this RDD.
1-to-1 mapping: For each original record, a new record will be
generated.
Each line is 1 record: fields are separated by tab characters.
We split the line using the tab character, take the 3rd field:

RDD operations — Sort Book Names

books . takeOrdered(5)
» Order the entries and take the first 5 elements of the RDD.
— 1

name_filter = books.filter(lambda a: a[0]

» Return a new RDD containing only the elements that satisfy a
predicate.
» No operation is executed.

name_filter.take(5)

> Execute the filter operation.
> Retrieve 5 records.

name_filter.collect()

» Collect all records.

RDD operations — Split Book Names

book_name_words = name_filter.flatMap(lambda a: a.split(' '))

» Examine each record and split into multiple records.

» Each word becomes a separate record.

» 1-to-many mapping: For each original record, multiple new
records will be generated.

» No operation is executed.

book_name_words . take (5)

» Execute the filter + flatMap operation.
» Return 5 records.

RDD operations — Count Words (1)

book_name_words_tupples = book_name_words.map(lambda a: (a, 1))

» Convert each word into a tupple (word, 1)
» 1-to-1 mapping: For each original record, generate 1 new.
> No operation is executed.

book_name_words_tupples . take(5)

> Execute the Filter/FlatMap/Map operation.
» Return 5 records.

RDD operations — Count Words (2)

count_words = book_name_words_tupples.reduceByKey(lambda a, b: a + b)

» Merge the values for each key using reduce function.
» Many-to-1 mapping: Multiple records reduced to 1 record.
> No operation is executed.

count_words . take (5)

> Execute the Filter/FlatMap/Map/ReduceByKey operation.
» Return 5 records.

count_words . takeOrdered (5, key = lambda x: -x[1])
> Execute the Filter/FlatMap/Map/ReduceByKey operation.
» Order records based on counter, in reverse.
» Return 5 records.

RDD operations — Count Words (3) Top Book Genre
» Each book is assigned to 0 or more Book Genres
» The 6th field from each record.

top_5_words = books.map(lambda a: a.split('\t')[2])\
P P » > Some records are not assigned to any Book Genre — empty

.filter(lambda a: a[0] == 'I')\ i
flatMap(lambda a: a.split(' "))\ string.
.map(lambda a: (a, 1))\ > If 1+ genres, list is in json format including a dictionary

.reduceByKey(lambda a, b: a + b)\ { "genreID": "genre name", ... }
-takeOrdered(5, key = lambda x: -x[1]) » Count number of Books per Book Genre.

> Execute the Filter/FlatMap/Map/ReduceByKey operation. > Identify Top 10 Book Genres.

» Order records based on counter, in reverse.
» Return 5 records.

RDD operations — Top Book Genre Index Books by Book Genre

Each book is assigned to 1 or more Book Genres
books.map(lambda entry: entry.split('\t')[5])\ .
filter(lambda a: len(a) > 0)\ Build an Index of Book Genres.

.flatMap(lambda entry: json.loads(entry).values())\ Each Book Genre points to Books
.map(lambda a: (a, 1))\
.TeduceByKey(lambda a, b: a + b)\ Use the Wikipedia article ID as Book ID.

.takeOrdered(10, key = lambda x: -x[11)

RDD operations — Index Books by Book Genre (1)

import json

def convert_tupple(tupple):
new_list = []
genre = json.loads(tupple[1]).values()
for item in genre:
new_list.append((item, tupple[0]))

return new_list
def extract_ids(tupple):
new_list = []
for entry in list(tupple[i]):
new_list.append(int(entry[1]))

return (tupple[0], sorted(new_list))

RDD operations — Index Books by Book Genre (2)

reverse_index = books.map(lambda entry: (entry.split('\t')[0],

entry.split('\t') [5]))\

.filter(lambda tupple: len(tupple[1]) > 0)\

.flatMap(convert_tupple)\

.groupBy (lambda tupple: tupple[01)\

.mapValues (list)\

.map (extract_ids)\

.collect()

