
Algorithmic Methods of Data Mining
Elastic Map Reduce

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 7

AWS Elastic Map Reduce
I Managed Hadoop framework on EC2 instances.
I AWS EMR splits large processing jobs into smaller jobs and

distributes them across many compute nodes in a Hadoop
cluster.

I Easily run and scale open-source big data frameworks:
I Apache Spark
I Apache Flink
I Apache Hive
I Presto
I Apache HBase
I . . .

I EMR Notebooks.

EMR: Benefits
I Easy to use – interact using Jupyter via web.
I Low cost

I Pay a per-instance rate for every second used, with a
one-minute minimum charge.

I Elastic
I For short-running jobs, you can spin up and spin down clusters

and pay per second for the instances used.
I For long-running workloads, you can create highly available

clusters that automatically scale to meet demand.
I Reliable
I Secure
I Flexible

AWS EMR Ideal Usage Patterns
I Logprocessing and analytics
I Large extract, transform, and load (ETL) data movement
I Risk modeling and threat analytics
I Ad targeting and click stream analytics
I Genomics
I Predictive analytics
I Adhoc data mining and analytics



Apache EMR Architecture AWS EMR and Apache Hadoop
I The Elastic Map Reduce is built on top Apache Hadoop.
I An open-source Java software framework that supports

massive data processing across a cluster of instances.
I Distributed processing across the instances that make up the

cluster.
I It can run on a single instance or thousands of instances.
I Elastic auto-scaling of cluster.
I Provides a fault-tolerant processing environment.

Auto-scaling rule parameters Apache Hadoop
I Apache Hadoop includes the following modules:

I Hadoop Common: The common utilities that support the
other Hadoop modules.

I Hadoop Distributed File System (HDFS): A distributed file
system that provides high-throughput access to application
data.

I Hadoop YARN: A framework for job scheduling and cluster
resource management.

I Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.

I Hadoop Ozone: An object store for Hadoop.



Apache Hadoop Ecosystem Apache Spark on AWS EMR
I Started in 2009 as a research project at UC Berkley’s

AMPLab.
I An open-source, distributed processing system used for big

data workloads.
I In contrast to Hadoop, uses in-memory caching to achieve

high speed-ups.
I Optimized query execution for fast analytic queries against

data of any size.
I Development APIs in Java, Scala, Python and R.
I Supports code reuse across multiple workloads-batch

processing:
I interactive queries, real-time analytics, machine learning, and

graph processing.

Apache Spark Workloads Apache Flink on AWS EMR
I Started in 2009 as a research project by the Berlin-based

database research groups.
I An open-source, fast, general purpose distributed data

processing system.
I Streaming dataflow engine that you can use to run real-time

stream processing on high-throughput data sources
I Stateful computations over unbounded and bounded data

streams.
I Up to 100x faster than Hadoop.
I Programming APIs for Java and Scala.



Process Unbounded and Bounded Data
I Any kind of data is produced as a stream of events.

I Credit card transactions, sensor measurements, machine logs,
user interactions on a website or mobile application, . . .

I Unbounded streams have a start but no defined end.
I Bounded streams have a defined start and end.

Leverage In-Memory Performance
I Stateful Flink applications are optimized for local state access.
I Task state is always maintained in memory or,
I if the state size exceeds the available memory, in

access-efficient on-disk data structures.
I Flink guarantees exactly-once state consistency in case of

failures.

Apache Flink Ecosystem Apache Hive on AWS EMR
I Open-source, data warehouse, and analytic package that runs

on top of a Hadoop cluster.

I Hive scripts use an SQL-like language called Hive QL.
I Abstracts programming models,
I supports typical data warehouse interactions.

I A command line tool and JDBC driver are provided to
connect users to Hive.



Presto on AWS EMR
I Open source distributed SQL query engine for running

interactive analytic queries.
I Data sources of all sizes: from gigabytes to petabytes.
I A single Presto query can combine data from multiple

sources, allowing for analytics across your entire organization.
I Interactive Queries makes it easy for developers and data

scientist to work with the big data.
I Supported by Linux Foundation.

Apache HBase on AWS EMR
I An open source, distributed, versioned, non-relational

database modeled after Google’s BigTable.
I Enables random, realtime read/write access to Big Data.

I Strictly consistent reads and writes.
I Allows hosting of very large tables – billions of rows X millions

of columns – atop clusters of commodity hardware.
I Easy to use Java API for client access.
I Extensible jruby-based (JIRB) shell.

EMR Notebooks
I EMR Notebooks is a Jupyter Notebook environment built in

to the Amazon EMR console.
I Quickly create Jupyter notebooks, attach them to Spark

clusters
I Use Jupyter Notebook editor to remotely run queries and

code.
I Open, attach multiple notebooks to a single cluster, and

re-use a notebook on different clusters.
I You can start a cluster, attach an EMR notebook for analysis,

and then terminate the cluster.
I You can also close a notebook attached to one running cluster

and switch to another.
I Multiple users can attach notebooks to the same cluster

simultaneously.

EMR Notebooks architecture



Considerations when using EMR Notebooks
I User notebooks and files are saved to the file system on the

master node.
I This is ephemeral storage that does not persist through

cluster termination.
I When a cluster terminates, this data is lost if not backed up.
I EMR Notebooks support persistance to S3.
I EMR Notebooks supports connection with GitHub

repositories.

Create Cluster

Quick Options Software Configuration



Hardware Configuration Choose Instance Types

General Cluster Settings Security Options



EMR Notebooks Create notebook

Choose a cluster Link Git repository to notebook



Add repository Link Git repository to notebook

Create notebook Starting notebook



EMR Notebooks: ready Jupyter Tree

Choose PySpark Kernel Spark Driver Program

I Map/Reduce operations are issued to the cluster manager.
I Map/Reduce operations work on a given dataset.
I The dataset is encoded using the RDD structure.



Spark Context

I SparkContext is the entry point to any spark functionality.

I A SparkContext represents the connection to a Spark cluster.

I Used to create RDD and broadcast variables on that cluster.

I Only one SparkContext should be active per session.

Resilient Distributed Datasets
I A fundamental data structure of Spark.
I Spark makes use RDD to achieve faster and efficient

MapReduce operations.
I An immutable distributed read-only collection of objects.

I immutable = state cannot change after it is constructed.
I Can contain any type of Python, Java, or Scala objects,

including user-defined classes.
I Two ways to construct an RDD:

1. Referencing a dataset in an external storage system: S3,
HDFS, HBase, . . .

2. Through Map/Reduce opreations.
I RDD is divided into logical partitions.

I Each logical partition may be computed on different nodes of
the cluster.

Iterative Operations on MapReduce

I Reuse intermediate results across multiple computations in
multi-stage applications.

I Each Map/Reduce operation works on a given/input RDD.
I Each Map/Reduce operation constructs/outputs a new RDD.
I If the Distributed memory (RAM) is not sufficient to store

intermediate RDD, then it will store those results on the disk.

Book Dataset



Book Plot Summaries Dataset: A subset
I Today we will work with the CMU Book Summary Corpus.
I A collection of 16,559 book plot summaries extracted from

Wikipedia:
1. Wikipedia article ID
2. Freebase ID
3. Book title
4. Author
5. Publication date
6. Book genres (Freebase ID:name tuples)
7. Plot summary

I A tab-delimited text file is a file containing tabs that separate
information with one record per line.

I Retrieve file https://sapienza2020adm.s3.

eu-central-1.amazonaws.com/booksummaries.txt.gz
I Upload it to the S3 bucket associated with the EMR cluster.

Retrieve book dataset
I Use the variable sc to access the Spark Context.
I Load the Tab-delimited text file to Spark.

books = sc.textFile("s3://.../booksummaries.tar.gz")

I textFile Creates a new RDD object.
I Provides a reference to the dataset - no data loaded yet.

books.count()

I Retrieves the dataset from s3 and uncompress it.
I Creates 1 entry in the RDD for each line of the text file.
I Counts the entries in the RDD object.

books.take(5)

I Take the first 5 elements of the RDD.

Spark Monitoring Job Progress Yearly statistics: Books per Year
I Identify how many books are published per year.
I Retrieve the 5th field from each record.
I Count repetitions of each year.
I RDD Operations used:

1. Map – extract the 5th field.
2. FlatMap – extract each word from the title.
3. Map – convert each word to a tupple (word, 1).
4. ReduceByKey – count appearances of each (word, *) tupple.



RDD operations – Publication date

book_dates = books.map(lambda a: a.split('\t')[4])

I Return a new RDD by applying a function to each element of
this RDD.

I 1-to-1 mapping: For each original record, a new record will be
generated.

I Each line is 1 record: fields are separated by tab characters.
I We split the line using the tab character, take the 4th field:

the publication date.
I The new RDD contains only the publication dates of the

books.
I Execution of the Map operation is delayed.

RDD operations – Examine records

results = book_dates.take(10)

I Take the first 10 elements of the RDD.
I The Map operation is executed.

print(results)

['1945-08-17', '1962', '1947', '', '', '1929-01-29',

'1968', '', '1996-10-01', '1995-10-01']

I Issues:
1. Some values are missing,
2. Some values also contain month + day.
3. Some values need to be converted to number.

RDD operations – Extract year

book_years = book_dates.map(lambda value: 0 if not value

else int(value) if value.isdigit()

else int(value[0:4]))

I Return a new RDD by applying a function to each element of
this RDD.

I 1-to-1 mapping: For each original record, a new record will be
generated.

I The new RDD contains only the publication years of the
books.

I Execution of the Map/Map operation is delayed.

RDD operations – Group by year

years = book_years.groupBy(lambda x: x)

I Group the values for each key in the RDD into a single
sequence.

I Many-to-1 mapping: For all original record that have the
same value, one record will be generated.

I Each new record is a tupple (year, <Groupped values>)

I The groupped values are encoded as
pyspark.resultiterable.ResultIterable objects.

I Execution of the Map/Map/GroupBy operation is delayed.



RDD operations – Count items per year

year_stats = years.mapValues(len)

I Pass each value in the key-value pair RDD through a map
function without changing the keys.

I The len() function is applied on each iterable object.
I 1-to-1 mapping: For each original record, one record will be

generated.
I Each new record is a tupple (year, number)

I Execution of the Map/Map/GroupBy/MapValues operation is
delayed.

RDD operations – Sort results and collect

year_stats.sortBy(lambda entry: entry[1], False).collect()

I Sorts the RDD by the given keyfunc
I Retrieve all entries of the RDD.

year_stats.values().variance()

I Return an RDD with the values of each tuple.
I Compute the variance of this RDD’s elements.

Book title statistics: Words used in Book Titles
I Identify which words are most frequently used in book titles

starting with the letter ’I’.
I Retrieve the 3rd field from each record.
I Select only book titles starting with the letter ’I’
I Extract the words from the book title.
I Count repetitions of each word.
I RDD Operations used:

1. Map – extract the 3rd field.
2. Filter – select records starting with the letter ’I’.
3. FlatMap – extract each word from the title.
4. Map – convert each word to a tupple (word, 1).
5. ReduceByKey – count appearances of each (word, *) tupple.

RDD operations – Book names

book_names = books.map(lambda a: a.split('\t')[2])

I Return a new RDD by applying a function to each element of
this RDD.

I 1-to-1 mapping: For each original record, a new record will be
generated.

I Each line is 1 record: fields are separated by tab characters.
I We split the line using the tab character, take the 3rd field:

the name.
I The new RDD contains only the names of the books.



RDD operations – Sort Book Names

books.takeOrdered(5)

I Order the entries and take the first 5 elements of the RDD.

name_filter = books.filter(lambda a: a[0] == 'I')

I Return a new RDD containing only the elements that satisfy a
predicate.

I No operation is executed.

name_filter.take(5)

I Execute the filter operation.
I Retrieve 5 records.

name_filter.collect()

I Collect all records.

RDD operations – Split Book Names

book_name_words = name_filter.flatMap(lambda a: a.split(' '))

I Examine each record and split into multiple records.
I Each word becomes a separate record.
I 1-to-many mapping: For each original record, multiple new

records will be generated.
I No operation is executed.

book_name_words.take(5)

I Execute the filter + flatMap operation.
I Return 5 records.

RDD operations – Count Words (1)

book_name_words_tupples = book_name_words.map(lambda a: (a, 1))

I Convert each word into a tupple (word, 1)

I 1-to-1 mapping: For each original record, generate 1 new.
I No operation is executed.

book_name_words_tupples.take(5)

I Execute the Filter/FlatMap/Map operation.
I Return 5 records.

RDD operations – Count Words (2)

count_words = book_name_words_tupples.reduceByKey(lambda a, b: a + b)

I Merge the values for each key using reduce function.
I Many-to-1 mapping: Multiple records reduced to 1 record.
I No operation is executed.

count_words.take(5)

I Execute the Filter/FlatMap/Map/ReduceByKey operation.
I Return 5 records.

count_words.takeOrdered(5, key = lambda x: -x[1])

I Execute the Filter/FlatMap/Map/ReduceByKey operation.
I Order records based on counter, in reverse.
I Return 5 records.



RDD operations – Count Words (3)

top_5_words = books.map(lambda a: a.split('\t')[2])\

.filter(lambda a: a[0] == 'I')\

.flatMap(lambda a: a.split(' '))\

.map(lambda a: (a, 1))\

.reduceByKey(lambda a, b: a + b)\

.takeOrdered(5, key = lambda x: -x[1])

I Execute the Filter/FlatMap/Map/ReduceByKey operation.
I Order records based on counter, in reverse.
I Return 5 records.

Top Book Genre
I Each book is assigned to 0 or more Book Genres

I The 6th field from each record.
I Some records are not assigned to any Book Genre – empty

string.
I If 1+ genres, list is in json format including a dictionary

{ "genreID": "genre name", ... }

I Count number of Books per Book Genre.
I Identify Top 10 Book Genres.

RDD operations – Top Book Genre

books.map(lambda entry: entry.split('\t')[5])\

.filter(lambda a: len(a) > 0)\

.flatMap(lambda entry: json.loads(entry).values())\

.map(lambda a: (a, 1))\

.reduceByKey(lambda a, b: a + b)\

.takeOrdered(10, key = lambda x: -x[1])

Index Books by Book Genre

I Each book is assigned to 1 or more Book Genres

I Build an Index of Book Genres.

I Each Book Genre points to Books

I Use the Wikipedia article ID as Book ID.



RDD operations – Index Books by Book Genre (1)

import json

def convert_tupple(tupple):

new_list = []

genre = json.loads(tupple[1]).values()

for item in genre:

new_list.append( (item, tupple[0]) )

return new_list

def extract_ids(tupple):

new_list = []

for entry in list(tupple[1]):

new_list.append(int(entry[1]))

return (tupple[0], sorted(new_list))

RDD operations – Index Books by Book Genre (2)

reverse_index = books.map(lambda entry: (entry.split('\t')[0],

entry.split('\t')[5]))\

.filter(lambda tupple: len(tupple[1]) > 0)\

.flatMap(convert_tupple)\

.groupBy(lambda tupple: tupple[0])\

.mapValues(list)\

.map(extract_ids)\

.collect()


