
Algorithmic Methods of Data Mining
Cluster Analysis

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 8

Internet news data with user engagement

How can we determine the popularity of an article
before it is published online ?

I Internet news data was collected between 03.09.2019 and
04.11.2019.

I Articles listed as the top in popularity at the publisher website.
I Multiple well-known publishers.
I Using Facebook GraphAPI the data was enriched with

engagement features such as shares, reactions, and comments
count

https://www.kaggle.com/szymonjanowski/

internet-articles-data-with-users-engagement

Internet news data with user engagement (1)
1. Row counter.
2. Sourceid – publisher unique identifier.
3. Source_name – publisher name.
4. Author – article author. Some publishers do not share

information about authors of their news, in this case usually
source_name replaces that information.

5. Title – headline of an article.
6. Description – short article description usually visible in

popups or recommendation boxes on the publisher’s website.
7. Url – URL of the publisher website.
8. Urltoimage – main image associated with the article.
9. Published_at – exact date and time of publishing the article

in UTC (+000) time format.
10. Content – unformatted content of the article (max 260 char).

Internet news data with user engagement (2)
11. Top_article – 1 if article was listed as a top article on

publisher website, otherwise 0.
12. engagement_reaction_count – counts user reactions on

posts on Facebook involving article URL.
13. engagement_comment_count – number of comments posted

on Facebook involving article URL.
14. engagement_share_count – number of time original post

was shared by a use on Facebook involving article URL.
15. engagement_comment_plugin_count – number of

comments made by users from an external site using their
Facebook account.

import modin.pandas as pd

data = pd.read_csv('articles_data.csv')

data.shape

(10437, 15)

data.describe()

data.isnull().sum()

Unnamed: 0 0
source_id 0
source_name 0
author 1020
title 2
description 24
url 1
url_to_image 656
published_at 1
content 1292
top_article 2
engagement_reaction_count 118
engagement_comment_count 118
engagement_share_count 118
engagement_comment_plugin_count 118
dtype: int64

data['author'].fillna('', inplace=True)
data['title'].fillna('', inplace=True)
data['description'].fillna('', inplace=True)
data['url'].fillna('', inplace=True)
data['url_to_image'].fillna('', inplace=True)
data['published_at'].fillna('2019-09-03T16:22:20Z',

inplace=True)
data['content'].fillna('', inplace=True)
data['top_article'].fillna(0, inplace=True)
data['engagement_reaction_count'].fillna(0,

inplace=True)
data['engagement_comment_count'].fillna(0,

inplace=True)
data['engagement_share_count'].fillna(0,

inplace=True)
data['engagement_comment_plugin_count'].fillna(0,

inplace=True)

data['author'].value_counts().head(20)

data.loc[data.author == 'https://www.facebook.com/bbcnews']

= 'BBC News'

I Other data that needs to be cleaned?

data['engagement_reaction_count'] =

data['engagement_reaction_count']

.apply(pd.to_numeric, errors='coerce')

I Other data that needs to be cleaned?

Engagement per publisher

data.groupby('source_name').sum().plot.bar()

Analysis of Data

1. Engagement per author

2. Articles collected every day

3. Distribution Of Engagement Reaction Counts

Text Mining

data['title'].sample(20)

I Remove stop words.
I Remove punctuations.
I Remove numbers.
→ Produce histogram of title lengths.
I Split title in vector of words.
I Convert to lower-case
→ Plot most used words.
I Analyze Description.

Analysis of Data

I Viewing and analyzing vast amounts of data in its
unstructured entirety can be perplexing.

I It is easier to interpret data if it is organized into clusters that
combine similar (i.e., related) data points.

The Clustering Problem
I Motivation: Find patterns in a sea of data
I Input

I A (large) number of datapoints: N
I A measure of distance between any two data points dij

I Output
I Groupings (clustering) of the elements into K (the number can

be user-specified or automatically determined) ‘similarity’
classes

I Sometimes there is also an objective measure that the
obtained clustering seeks to minimize.

Clustering Principles
I Homogeneity – elements of the same cluster are maximally

close to each other.
I Separation – elements in separate clusters are maximally far

apart from each other.
I One is actually implied by the other (in many cases).
I Generally it is a hard problem.

I Clustering in 2 dimensions looks easy
I Clustering small amounts of data looks easy
I High-dimensional spaces look different – Almost all pairs of

points are at about the same distance

Some Examples

I Both principles are violated

I Points in the same cluster
are far apart

I Points in different cluster
are close

I More reasonable assignment.

I We need to use an objective
function to optimize cluster
assignment.

Intra/Inter Cluster Distances

I Suitably select distance metric.
I Maximize Inter-cluster distances.
I Minimize Intra-cluster distances.

Distance Measures
I Each clustering problem is based on some kind of “distance”

between points.
I Two major classes of distance measure:

1. Euclidean
2. Non-Euclidean

I A Euclideanspace has some number of real-valued dimensions.
I There is a notion of “average” of two points.
I A Euclidean distance is based on the locations of points in

such a space.
I A Non-Euclidean distance is based on properties of points, but

not their “location” in a space.

Axioms of a Distance Measure

d is a distance measure if it is a function from pairs of points to
real numbers such that:

1. d(x , y) > 0

2. d(x , y) = 0 iff x = y

3. d(x , y) = d(y , x)

4. d(x , y) < d(x , z) + d(z , y) (triangle inequality)

Some Euclidean Distances

L2 norm: d(x , y) = square root of the sum of the squares of the
differences between x and y in each dimension.
The most common notion of “distance”.

L1 norm: sum of the differences in each dimension.
Manhattan distance = distance if you had to travel along
coordinates only.

Some Non-Euclidean Distances

Jaccard distance for sets = 1 minus ratio of sizes of intersection
and union.

Cosine distance = angle between vectors from the origin to the
points in question.

Edit distance = number of inserts and deletes to change one string
into another.

Jaccard Distance for Sets

Example: p1 = 10111; p2 = 10011.
Size of intersection = 3; size of union = 4, Jaccard similarity (not
distance) = 3

4 .
d(x , y) = 1–(Jaccard similarity) = 1

4 .

Why JD is a distance measure?

1. d(x , x) = 0 because x ∩ x = x ∪ x
2. d(x , y) = d(y , x) because union and intersection are

symmetric
3. d(x , y) ≥ 0 because |x ∩ y | ≤ |x ∪ y |
4. d(x , y) < d(x , z) + d(z , y) more difficult...(

1− |x∩z|
|x∪z|

)
+
(

1− |y∩z|
|y∪z|

)
≥ 1− |x∩y |

|x∪y |

Edit Distance

The edit distance of two strings is the number of inserts and deletes
of characters needed to turn one into the other. Equivalently:

d(x , y) = |x |+ |y | − 2|LCS(x , y)|

LCS = longest common subsequence = any longest string obtained
both by deleting from x and deleting from y.

Example
I x = abcde ; y = bcduve.
I Turn x into y by deleting a, then inserting u and v after d.

Edit distance = 3.
I Or, LCS(x,y) = bcde.
I Note: |x |+ |y | − 2|LCS(x , y)| = 5 + 6− 2× 4 = 3 = edit dist

Why Edit Distance is a Distance Measure?

1. d(x , x) = 0 because 0 edits suffice.

2. d(x , y) = d(y , x) because insert/delete are inverses of each
other

3. d(x , y) ≥ 0 no notion of negative edits

4. d(x , y) < d(x , z) + d(z , y) Triangle inequality:
changing x to z and then to y is one way to change x to y.

Hierarchical Clustering
I Produces a set of nested clusters organized as a hierarchical

tree
I Can be visualized as a dendrogram – A tree like diagram that

records the sequences of merges or splits

Agglomerative Hierarchical Clustering
I Initially, each point is a cluster
I Repeatedly combine the two “nearest” clusters into one

Compute the proximity matrix

Let each data point be a cluster

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

I Key operation is the computation of the proximity of two
clusters

I Different approaches to defining the distance between clusters
distinguish the different algorithms

How to define Inter-cluster similarity?

I Minimum – based on the two most similar (closest) points in
the different clusters

I Maximum – based on the two least similar (most distant)
points in the different clusters

I Group Average

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Strength Minimum – Limitations

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Strength Maximum – Limitations

K-means Algorithm
I Developed and published in Applied Statistics by Hartigan and

Wong, 1979.
I Many variations have been proposed since then.
I Standard/core function of R, Python, Matlab, . . .
I Assumes Euclidean space/distance

The aim of the K-means algorithm is to divide M points in N
dimensions into k clusters so that the within-cluster sum of squares
is minimized.

min.C1,...,CK

k∑

k=1

1

|Ck |
∑

i ,i ′∈Ck

p∑

j=1

(xij − xi ′ j)
2

Cluster Initialization

I Start by picking k, the number of clusters

I Initialize clusters by picking one point per cluster

Example: Pick one point at random, then k − 1 other points, each
as far away as possible from the previous points

Populating Clusters
1. For each point, place it in the cluster whose current centroid

it is nearest
2. After all points are assigned, update the locations of centroids

of the k clusters
3. Reassign all points to their closest centroid

I Sometimes moves points between clusters

4. Repeat 2 and 3 until convergence

Convergence: Points do not move between clusters and centroids
stabilize

A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

How to select k?
I We use the elbow method to determine the optimum number

of clusters.
I Try different k , looking at the change in the average distance

to centroid as k increases.
I Average falls rapidly until right k , then changes little.

Selection of k – an example

Selection of k – an example Selection of k – an example

