
Algorithmic Methods of Data Mining
Data Science at the Command Line

Ioannis Chatzigiannakis

Sapienza University of Rome

Laboratory 4

What is a Shell?
I The user interface to the operating system
I Functionality:

I Execute other programs
I Manage files
I Manage processes

I A program like any other
I Executed when you “open a Terminal”

Shell Interactive Use
I The # is called the “prompt”
I In the prompt we type the name of the command and press

“Enter”
I The prompt allows

I Command history
I Command line editing
I File expansion (tab completion)
I Command expansion
I Key bindings
I Spelling correction
I Job control

Prompt: The Command Line

date

Sat Apr 21 16:47:30 GMT 2007

Error Handling
I If we type a wrong command, an error message appears

Prompt: The Command Line

datee

datee: no such file or directory

I The error message states that either the file or the folder
(directory) was not found
I In the prompt all commands are assumed to be connected to a

file . . .
I The arrow keys ↑ ↓ allow to look-up previous commands
I The arrow keys ← → allow to move within the same

command line

Terminating Command Execution
I We can interrupt the execution of a command by pressing

ctrl-c
I We can “freeze” the output of the execution of a command

by pressing ctrl-s
I To “un-freeze” the output of a command we use ctrl-q
I Note – only the output is frozen not the actual execution

I To close a terminal we use ctrl-d
I We may need to press multiple times ctrl-q
I All programs currently running will terminate

Manual Pages
I The command man allows to access the manual pages
I Manual pages are organized in categories

1. Commands – ls, cp, grep
2. System Calls – fork, exit
3. Libraries
4. I/O Files
5. File Encoding Types
6. Games
7. Miscellaneous
8. Administrator’s Commands
9. Documents

I We can request a page from a specific category
man [category] [topic]

Manual Pages File System
I All system entities are abstracted as files

I Folders and files
I Commands and applications
I I/O devices
I Memory
I Process communication

I The file system is hierarchical
I Folders and files construct a tree structure
I The root of the tree is represented using the /

I The actual structure of the tree depends on the distribution of
Linux
I Certain folders and files are standard across all Linux

distributions

File System Example Standard Folders
I /bin – Basic commands
I /etc – System settings
I /usr – Applications and Libraries
I /usr/bin – Application commands
I /usr/local – Applications installed by the local users
I /sbin – Administrator commands
I /var – Various system files
I /tmp – Temporary files
I /dev – Devices
I /boot – Files needed to start the system
I /root – Administrator’s folder

Example of File Metadata

ls -la

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin

-r--r--r-- 1 root operator 448 Jun 1 1993 boot

drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

drwxr-sr-x 10 root operator 2560 Jul 8 02:06 etc

drwxrwxrwx 1 bin bin 7 Jun 1 1993 home

lrwxrwxrwx 1 root operator 7 Jun 1 1993 lib

drwxr-sr-x 2 root operator 512 Jul 23 1992 mnt

drwx------ 2 root operator 512 Sep 26 1993 root

drwxr-sr-x 2 bin operator 512 Jun 1 1993 sbin

drwxrwxrwx 6 root operator 732 Jul 8 19:23 tmp

drwxr-xr-x 27 bin bin 1024 Jun 14 1993 usr

drwxr-sr-x 10 root operator 512 Jul 23 1992 var

Navigating the File System

I Each folder contains two
“virtual” folders
ls -la

. ..

I The single dot represents
the same folder
./myfile ⇒ myfile

I The two dots represent
the “parent” folder in
the tree

File System Security
I For each file we have 16 bit to define authorization

I 12 bit are used by the operator
I They are split in 4 groups of 3 bit – 1 octal – each

I The first 4 bit cannot be changed
I They characterize the type of the file (simple file, folder,

symbolic link)
I When we list the contents of a folder the first letter is used to

signify:
- – simple files
d – folders
l – symbolic links

I The next 3 bit are known as the s-bits and t-bit
I The last three groups are used to define the access writes for

read ’r’, write ’w’ and execute ’x’
I For the file owner, users of the same group, and all other users.

File System Permissions Examples

Type Owner Group Anyone

d rwx r-x ---

I Folder
I The owner has full access
I All users that belong to the group defined by the file can read

and execute the file – but not modify the contents
I All other users cannot access the file or execute it
I To access a folder we use the command cd given that we have

permission to execute ’x’

Changing the File Permissions

Examples of File Permissions

Binary Octal Text

001 1 x

010 2 w

100 4 r

110 6 rw-

101 5 r-x

- 644 rw-r--r--

I The command chmod allows to modify the permissions
I There are 2 way to define the new permissions

1. Defining the 3 Octal – e.g., 644
2. By using text – e.g., a+r

Some Examples of chmod

make read/write-able for everyone

chmod a+w myfile

add the 'execute' flag for directory

chmod u+x mydir/

open all files for everyone

chmod 755 *

make file readonly for group

chmod g-w myfile

descend recursively into directory opening all files

chmod -R a+r mydir/

Changing the Owner and Group of a File
I The command chown allows to change the owner of a file
I The command chgrp allows to change the group of a file

give ownership to ichatz

chown ichatz myfile

set group to students

chgrp students mydir/

give ownership to pcs and group to students

chgrp pcs:students myfile mydir/

descend recursively into directory opening all files

chown -R ichatz mydir/

Symbolic Links
I The file system enables to create symbolic links
I Two types are provided

I Symbolic link
I Hard link

I The contents and metadata of the original file are used for all
operations

create a symbolic link to a directory

ln -s /var/log ./log

ls -lg

lrwxrwxrwx 1 operator 8 Apr 25 log -> /var/log

I The contents and metadata of the original file are used for all
operations
I Except for deletion.

Examples of Symbolic Links Access Dates
I For each file the system keeps track of

I Date of last usage/access
I Date of last change

check last usage time

ls -lu

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Apr 25 1993 lib

drwx------ 2 root operator 512 Mar 30 1993 root

check last change time

ls -lc

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Oct 27 1993 lib

drwx------ 2 root operator 512 Oct 27 1993 root

Keep the software up-to-date
I Use the command line to update the software.
I Commands need to be executed as super user:

sudo ...

I Use apt tool to update software repository sources.

sudo apt update

I View updates available:

sudo apt list --upgradable

I Install updates:

sudo apt upgrade

Install Python - Jupyter ToolChain
I Use the command line to install the toolchain as super user.
I Install python3 pip using Ubuntu admin tool apt

sudo apt install python3-pip

I Use pip3 to install jupyter notebook.

sudo pip3 install notebook

I Modify Security Configuration
I Allow traffic to port 8888.

I Identify Private IPv4 Address

jupyter notebook --ip=<private address>

Connect EC2 with S3
I To connect to your S3 buckets from your EC2 instances, you

need to do the following:
1. Create and attach an AWS Identity and Access Management

(IAM) profile role to the instance that grants access to
Amazon S3.

2. Confirm that the S3 bucket policy doesn’t have a policy
denying access.

3. Confirm network connectivity between the EC2 instance and
Amazon S3.

I Install AWS CLI – AWS Command Line tool

sudo apt install awscli

I Access the S3 bucket

aws s3 ls

UNIX Shell
I The shell

I Allows the execution of command scripts
I Enables alternative methods to carry out complex tasks
I Provides variables

I Various types of shells exist, e.g., korn, tcsh, zsh . . .
I Every user has a preselected shell

I The selection is stored in the file /etc/passwd
ichatz:x:1000:1000:,,,:/home/ichatz:/bin/bash

I The command chsh allows to change the preselected shell
I Each shell uses a specific file for user settings

BASH Script Example

$ for dir in $PATH

>do

> if [-x $dir/gcc]

> then

> echo Found $dir/gcc

> break

> else

> echo Searching $dir/gcc

> fi

>done

I For each folder within the variable $PATH

I Check if the folder contains the file gcc
I If the file is found, print out the path and stop
I Otherwise continue to the next folder.

Command line

bash

bash-4.4.20#

I Left part of # can be changed.
I Right part of # is used to type in commands.
I Offers certain built-in commands

I Implemented within the BASH source code
I These commands are executed within the BASH process

I Allows to execute scripts
I For this reason it is called a UNIX programming environment

Built-in Commands
Command Description Exception

cd Change Folder cd ..

declare Set a variable declare myvar

echo Print out a text to the standard out-
put

echo hello

exec Replace bash with another process exec ls

exit Terminate shell process exit

export Set a global variable export myvar=1

history List of command history history

kill Send a message to a process kill 1121

let Evaluate an arithmetic expression let myvar=3+5

Built-in Commands
Command Description Exception

local Declare a local variable local myvar=5

pwd The current folder pwd

read Read a value from standard input read myvar

readonly Lock the contents of a variable readonly myvar

return Complete a function call and return a
value

return 1

set List declared variables set

shift Shifts the command parameters shift 2

test Evaluate an expression test -d temp

trap Monitor a signal trap "echo Signal" 3

UNIX Pipes
I General idea: The input of one program is the output of the

other, and vice versa.

I Both programs run at the same time.

UNIX Pipes
I Often, only one end of the pipe is used.

I This can be done using intermediate files.

UNIX Pipes
I Commands produce an output – using the descriptor > the

output is redirected to a file
ls > filelist

I A new file is created under the name filelist
I If the file already exists, the new file will replace the old one.
I We can use the descriptor >> to redirect the output to an

existing file
ls -lt /root/doc >> /root/filelist

I The commands that require input – using the descriptor < the
input is redirected from a file
sort < /root/filelist

UNIX Pipes
I File approach: Run first program, save output into file.
I Run second program, using file as input.

I Unnecessary use of the disk:
I Slower,
I Can take up a lot of space.

I Makes no use of multi-tasking.

UNIX Pipes
I The output of a process is redirected as input to another

process.

I The redirection is done using the descriptor |
ls | sort – sorting the files of a folder

ls /root | wc -l – counting files
I Multiple pipes are often chained together.

UNIX Pipes
I What’s the difference?
I Both commands send input to command from a file instead of

the terminal:
cat file | command

command < file
I An extra process !

cat file | command

command < file

UNIX Pipes
I What if a process tries to read data but nothing is available?

I UNIX puts the reader to sleep until data available.
I What if a process cannot keep up reading from the process

that’s writing?
I UNIX keeps a buffer of unread data.
I This is referred to as the pipe size.
I If the pipe fills up, UNIX puts the writer to sleep until the

reader frees up space (by doing a read).
I Multiple readers and writers possible with pipes.

UNIX Pipes
I Examples of filters:

I Sort
I Input: lines from a file.
I Output: lines from the file sorted.

I Grep
I Input: lines from a file.
I Output: lines that match the argument.

I Sed
I Programmable stream editor.

Processes
I We may execute commands in series by using the delimeter ;

I Commands are executed one by one. When the first is
completed, the next one starts. When the last command is
completed, we get a new prompt

I # who | sort ; date

I We may execute commands in the background using the
delimeter &
I The commands are executed and a new prompt is provided

immediately
I # pr junk | lpr &

I The execution of a command results to a new process
I The command ps shows up in the list of active processes
I The command wait is active until all the commands executed

using the delimeter & complete.

List of processes

ps -a

PID TTY TIME CMD

106 c1 0:01 -sh

4114 co 0:00 /bin/sh /usr/bin/packman

2114 co 0:00 -sh

6762 c1 0:00 ps -a

87 c2 0:00 getty

90 c3 0:00 getty

I Parameter a – list all the commands created by consoles
I Column PID – unique ID of the process
I Column TTY – the console ID that created the process
I Column TIME – total execution time
I Column CMD – the name of the command

Process management
I To terminate a process we use the command kill [PID]
I We may change the priority of a process

I prefix nice
nice pr junk | lpr &

I We may delay the execution of a command
I prefix at

at 1500

ls -l / /root /dir | wc > allfiles

pr allfiles | lpr ; date > lpr-endtime &

date > lpr-starttime

^D

at: /usr/spool/at/07.111.1500.67 created

#

The echo command (1)
I Main way to produce output
I Prints out values of variables
I Recognizes special characters (or meta-characters)

bash-4.4.20# echo hello there

hello there

bash-4.4.20# let myvar=1; echo $myvar

1

bash-4.4.20# echo *

junk lpr-starttime temp

bash-4.4.20# echo print '*' "don't"

print * don't

The echo command (2)
I May contain more than 1 lines
I May also execute commands

bash-4.4.20# echo 'hello

there'

hello

there

bash-4.4.20# echo hello\

there

hello there

bash-4.4.20# echo `date`

Mon Apr 30 16:12:21 GMT 2007

bash-4.4.20# echo -n `date` " "

Mon Apr 30 16:12:21 GMT 2007 bash-4.4.20#

Meta-characters
I The character ? – defines any single character, e.g.,

ls /etc/rc.????
I The character * – defines multiple characters, e.g.,

ls /etc/rc.*
I The array [...] – defines a specific set of characters, e.g.

ls [abc].c
I The use of the above meta-characters is also called filename

substitution
I We may use these meta-characters in any combination within

command execution
I The following command is disabled

mv *.x *.y

Shell Variables
I The shell allows the declaration of variables
I Initial values of variables are defined in the user settings file
I The scope of the variables is connected with the session

I Or until the user removes them
I The variables with UPPER-case letters are global – they are

transfered to all processes executed by the shell
I The variables with LOWER-case letters are local – they are

accessible only by the shell process

HOME # The path to your home directory

term # The terminal type

Shell Variables
I We may use variables at the command line
I We use the descriptor $

bash-4.4.20# myvar="hello"; echo $myvar

hello

bash-4.4.20# myvar="ls -la"

bash-4.4.20# $myvar

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin

-r--r--r-- 1 root operator 448 Jun 1 1993 boot

drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

...

Special Variables
I Some special variables are provided
Variable Description

USER User name

HOME Home folder of user

TERM Type of terminal

SHELL Name of shell

PATH List of folders to look for commands

MANPATH List of folders to look for manual
pages

PWD Active folder

OLDPWD Previously active folder

HOSTNAME Name of the system

Variable Handling
I The commands env, printenv provide a list of GLOBAL

variables
I The command set provides a list of LOCAL variables
I To declare a new GLOBAL variable we use the command

export
I Variable type is define by content type

I String variables – myvar = "value"
I Integer variables – declare -i myvar
I Constant variables – readonly me="ichatz"
I Array variables – declare -a MYARRAY

MYARRAY[0]="one"; MYARRAY[1]=5; echo ${MYARRAY[*]}
I The names of the variables are case-sensitive
I The command unset removes a variable

Creation of scripts
I Scripts are used as if they were commands/applications

I Defined by a source file
I We execute the script using the command sh

I Or directly by setting execute access permissions

bash-4.4.20# echo 'who | wc -l' > nu

bash-4.4.20# cat nu

who | wc -l

bash-4.4.20# sh nu

1

bash-4.4.20# chmod a+x nu

bash-4.4.20# nu

1

Handling (1)
I We may pass parameters to a script at command-line

I These are called the command-line arguments
I We use arguments as variables
Argument Description

$0 The name of the script

$1 ... $9 The value of 1st ... 9th argument

$# Number of arguments

$ All the arguments as string

bash-4.4.20# cat nu

echo Files found: `ls -la $1* | wc -l` "($1*)"

bash-4.4.20# nu /b

Files found: 57 (/b*)

Handling Parameters (2)
I In order to access more than 9 parameters

I We may not use $10
I We need to use command shift x

I Shifts the parameters left-wise by x positions
I Shifted parameters are lost (!)

bash-4.4.20# cat ten

shift 10

echo $1

echo $* " -- " $#

bash-4.4.20# ten 1 2 3 4 5 6 7 8 9 10

10

10 -- 1

Mathematical Expressions
I Allows the evaluation of mathematical expressions using

integers
I Similar with C programming language
I No need to explicitely declare a variable as an integer
I We use expr rather than int

((a = a + 1))

a=$((a+1))

a=$(($a+1))

let a = a + 1

let a++

a=`expr $a + 1`

If Expressions

if [condition 1]; then

if [[condition 2 && condition 3]]; then

...

fi

elif [condition 4] || [condition 5] ; then

...

else

...

fi

I The command test allows the evaluation of an expression
I Returns either true or false
I Supports broad range of expressions
I e.g., we might check if we have write access to a given file

if test -w "$1"; then echo "File $1 is writable"

fi

Evaluation using test
Expression Description

-gt Greater or equal

-ge Greater

-lt Smaller

-le Smaller or equal

-eg Equal

-ne Not Equal

-n str Size of the string bigger than 0

-z str Empty string

-d file The file is a folder

-s file A non empty file

-f file The file exists

-r file Read access to file

-w file Write access to file

-x file Execution access to file

Evaluation Example (1)

bash-4.4.20# cat check.sh

#!/bin/bash

read -p "Enter a filename: " filename

if [! -w "$filename"]; then

echo "File is not writeable"

exit 1

elif [! -r "$filename"] ; then

echo "File is not readable"

exit 1

fi

...

Evaluation Example (2)

bash-4.4.20# cat check.sh

#!/bin/bash

TMPFILE = "diff.out"

diff $1 $2 > $TMPFILE

if [! -s "$TMPFILE"]; then

echo "Files are the same"

else

more $TMPFILE

fi

if [-f "$TMPFILE"]; then

rm -rf $TMPFILE

fi

Boolean expressions

if [condition 1 && condition a]; then

if [condition 2 || condition b]; then

...

fi

elif [! condition 3] ; then

...

else

...

fi

For Loop

for VAR in <list>

do

...

done

for i in 6 3 1 2

do

echo $i

done | sort -n

for i in *.c

do

echo $i

done

Introduction to Regular Expressions (1)
I A regular expression (regex) describes a set of possible input

strings.
I Regular expressions descend from a fundamental concept, in

Computer Science called finite automata theory
I Regular expressions are endemic to Unix

I vi, ed, sed, and emacs
I awk, tcl, perl and Python
I grep, egrep, fgrep
I compilers

Introduction to Regular Expressions (2)
I The simplest regular expressions are a string of literal

characters to match.
I The string matches the regular expression if it contains the

substring.

Introduction to Regular Expressions (3) Introduction to Regular Expressions (4)
I A regular expression can match a string in more than one

place.

Introduction to Regular Expressions (5)
I The . regular expression can be used to match any character.

Character Classes (1)
I Character classes [] can be used to match any specific set of

characters.

Character Classes (2)
I Character classes can be negated with the [ˆ] syntax.

Character Classes (3)
I [aeiou] will match any of the characters a, e, i, o, or u
I [kK]orn will match korn or Korn
I Ranges can also be specified in character classes
I [1− 9] is the same as [123456789]
I [abcde] is equivalent to [a− e]
I You can also combine multiple ranges
I [abcde123456789] is equivalent to [a− e1− 9]
I Note that the - character has a special meaning in a character

class but only if it is used within a range,
I [−123] would match the characters -, 1, 2, or 3

Named Character Classes
I Commonly used character classes can be referred to by name

(alpha, lower, upper, alnum, digit, punct, cntrl)
I Syntax [: name :]
I [a− zA− Z] is equivalent [[: alpha :]]
I [a− zA− Z0− 9] is equivalent [[: alnum :]]
I [45a− z] is equivalent [45[: lower :]]
I Important for portability across languages

Anchor Characters
I Anchors are used to match at the beginning or end of a line

(or both).
I ˆ means beginning of the line
I $ means end of the line

Repetition
I The * is used to define zero or more occurrences of the single

regular expression preceding it.

Match Length
I A match will be the longest string that satisfies the regular

expression.

Repetition Ranges
I Ranges can also be specified
I { } notation can specify a range of repetitions for the

immediately preceding regex
I {n} means exactly n occurrences
I {n,} means at least n occurrences
I {n,m} means at least n occurrences but no more than m

occurrences
I Example:

.{0,} same as .*
a{2,} same as aaa*

Subexpressions
I If you want to group part of an expression so that * or { }

applies to more than just the previous character, use ()
notation

I Subexpresssions are treated like a single character
I a* matches 0 or more occurrences of a
I abc* matches ab, abc, abcc, abccc, . . .
I (abc)* matches abc, abcabc, abcabcabc, . . .
I (abc)2,3 matches abcabc or abcabcabc

Global Regular Expressions Print – grep
I grep comes from the ed (Unix text editor) search command

“global regular expression print” or g/re/p
I This was such a useful command that it was written as a

standalone utility
I There are two other variants, egrep and fgrep that comprise

the grep family
I grep is the answer to the moments where you know you want

the file that contains a specific phrase but you can’t
remember its name

Syntax
I Regular expression concepts we have seen so far are common

to grep
I grep: \(and \), \{ and \}

