Internet of Things IoT Data Analytics

Ioannis Chatzigiannakis

Sapienza University of Rome Department of Computer, Control, and Management Engineering (DIAG)

Lecture 8: IoT Data Analytics

Cloud-based Architecture of 1st Assignment

←□ → ←□ → ← □ → ← □ →

Cloud-based Architecture of 1st Assignment

Cloud-based Architecture of 1st Assignment

Cloud-Based Architecture – Main Components

The value of IoT

It's all in the Cloud

Data Processing in a Cloud-based Architecture

- ▶ We wish to process the data arriving from the sensors.
- ▶ Produce statistics for predefine period of time:
 - Every Hour
 - Every Day
 - Every Week
 - **.**..
- ► Carry out various data mining tasks:
 - ► Identify anomalies
 - ► Identify seasonality of values
 - ► Identify corellation between values
 - **•** . .

GAIA: Cloud-based Smart School Architecture

Batch-based Data Processing

Batch-based Data Processing

Batch Processing

A Code Example

DataSet<ColorEvent> counts = env

- .readFile("MM-dd.csv")
- .groupBy("color")
- .count();
- Several frameworks exist for batch-based processing.
- ► Generic code example following Spark/Flink style.
- ▶ Here data is assumed to arrive as a Data Set in CSV format.
- ▶ Alternative: retrieve data from database using a query.
- ▶ We carry out various transformations (group, filter).
- ▶ We compute various aggregates (count, min, max . . .).

7

Time -

Continuous Counting Continuous ingestion Periodic files Periodic batch jobs Time

Moving Parts

Moving Parts

Moving Parts

High Latency

► Latency from event to serving layer usually in the range of hours.

Implicity Treatment of Time

- ► Time is treated outside our application.
- Part of administrative tasks.

Implicity Treatment of Time

- ► Time is treated outside our application.
- ▶ Part of administrative tasks.

Implicity Treatment of Time

- ▶ Time is treated outside our application.
- ▶ Part of administrative tasks.

Implicity Treatment of Time

- ► Time is treated outside our application.
- Part of administrative tasks.

Streaming over Batch

Stream-based Data Processing

- ▶ Until now, stream processors were less mature than their batch counterparts. This led to:
 - in-house solutions,
 - abuse of batch processors,
 - ► Lambda architectures
- ► This is no longer needed with new generation stream processors like Flink, Spark
- ► Stream-based processing is enabling the obvious: continuous processing on data that is continuously produced.

Continuous Analytics

- ► A production data application that needs to be live 24/7 feeding other systems (perhaps customer-facing)
- ▶ Need to be efficient, consistent, correct, and manageable
- Stream processing is a great way to implement continuous applications robustly

Why Streaming?

- ▶ Monitor data and react in real time.
- ▶ Implement robust continuous applications.
- Adopt a decentralized architecture.
- Consolidate analytics infrastructure.

Streaming vs Real-time

- ► Streaming != Real-time
- ► E.g., streaming that is not real time: continuous applications with large windows
- ► E.g., real-time that is not streaming: very fast data warehousing queries
- ► However: streaming applications can be fast

When and why does this matter?

- ► Immediate reaction to life
 - ► E.g., generate alerts on anomaly/pattern/special event
- Avoid unnecessary tradeoffs
 - ► Even if application is not latency-critical
 - ▶ With Flink you do not pay a price for latency!

Streaming all the Way

Streaming all the Way

Durability and Replay

◆□▶◆御▶◆恵▶◆恵▶ 恵

Streaming all the Way Streaming Job Stream Processor (e.g. Apache Flink) Consistent Processing

Processing

◆□▶ ◆□▶ ◆■▶ ◆■ ● りゅう

- Time -
- Example: Average value over the last 5 minutes.
- ► Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

Time

- Example: Average value over the last 5 minutes.
- ► Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

Time

- Example: Average value over the last 5 minutes.
- ► Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

- Example: Average value over the last 5 minutes.
- ► Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

Time

- Example: Average value over the last 5 minutes.
- ► Maximum value over the last 100 readings.

Sliding Windows (With Overlap)

Time

- ► Example: Average value over the last 5 minutes, updated each minute.
- ► Maximum value over the last 100 readings, updated every 10 readings.

Sliding Windows (With Overlap)

Time

- Example: Average value over the last 5 minutes, updated each minute.
- Maximum value over the last 100 readings, updated every 10 readings.

メロトス部とスラとスラン (重)

Sliding Windows (With Overlap)

Time

- ► Example: Average value over the last 5 minutes, updated each minute.
- ► Maximum value over the last 100 readings, updated every 10 readings.

Sliding Windows (With Overlap)

Time

- Example: Average value over the last 5 minutes, updated each minute.
- Maximum value over the last 100 readings, updated every 10 readings.

Sliding Windows (With Overlap)

- Example: Average value over the last 5 minutes, updated each minute.
- ► Maximum value over the last 100 readings, updated every 10 readings.

Explicity Handling of Time

Session Windows

- Sessions close after period of inactivity.
- ► Example: Compute Average from first value until connection time-out or last value.

Session Windows

```
DataStream<ColorEvent> counts = env
  .addSource(new KafkaConsumer(...))
  .keyBy("color")
  .window(EventTimeSessionWindows
        .withGap(Time.minutes(10))
  .apply(new CountPerWindow());
```


Notions of Time

Event Time

Time when event happened.

12:23 am

Notions of Time

Event Time Time when event happened. 12:23 am

1:37 pm **Processing Time**

Time measured by system clock

Out of Order Events

Event Time

Processing Time

Out of Order Events

Event Time Windows

Notions of Time

env.setStreamTimeCharacteristic(
 TimeCharacteristic.EventTime);

DataStream<ColorEvent> counts = env

- . . .
- .timeWindow(Time.minutes(60))
- .apply(new CountPerWindow());

◆□▶◆□▶◆■▶◆■▶ ■ 9Q®

- Open source.
- ► Started in 2009 in Berlin.
- ► In Apache incubator since 2014.
- Fast, general purpose distributed data processing system.
- Supports batch and stream processing.
- Ready to use.

Analytical Program

Architecture

Map-Reduce: Parallel Processing Paradigm

Data abstractions: Data Set. Data Stream

Program

Parallel Execution

Map-Reduce Pipelines

Map, FlatMap, MapPartition, Filter, Project, Reduce, ReduceGroup, Aggregate, Distinct, Join, CoGoup, Cross, Iterate, Iterate Delta, Iterate-Vertex-Centric, Windowing

Cloud-based Architecture of 2nd Assignment

Cloud-based Architecture of 2nd Assignment

Cloud-based Architecture of 2nd Assignment

◆□▶◆□▶◆■▶◆■▶ ■ 9Q®

Data arriving to the Cloud

What Makes a Smart City?

Multiple Applications Create Big Data

Edge-based Processing Stages

GAIA: Edge-based Smart School Architecture

Edge-based Data Processing

Apache Edgent

- ► Light-weight stream processing.
- ▶ Provides a micro-kernel runtime to execute Edgent applications.
- ► Executes a data flow graph consisting of oplets connected by streams.
- ▶ A stream is an endless sequence of tuples or data items.

Apache Edgent Scenario

- ► Two analytic Edgent applications communicating with each other and the system IoTDevice application.
- ▶ loTDevice application responsible for communicating with the message hub.

