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Cloud-based Architecture of 1st Assignment
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Cloud-Based Architecture — Main Compoments

Wireless Sensor Network Computational platform
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It's all in the Cloud

Data Processing in a Cloud-based Architecture

» We wish to process the data arriving from the sensors.
» Produce statistics for predefine period of time:

» Every Hour

> Every Day

> Every Week
> ..

» Carry out various data mining tasks:
> Identify anomalies
P |dentify seasonality of values

P Identify corellation between values
> ...




GAIA: Cloud-based Smart School Architecture
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Continuous Data Application

Analysis Specific Analysis

Batch-based Data Processing
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Batch-based Data Processing

Batch Processing
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Hadoop,
Spark,
Flink

All Input All Output

A Code Example

DataSet<ColorEvent> counts = env
.readFile("MM-dd.csv")
.groupBy("color")

.count();

Several frameworks exist for batch-based processing.

Generic code example following Spark/Flink style.

Here data is assumed to arrive as a Data Set in CSV format.
Alternative: retrieve data from database using a query.

We carry out various transformations (group, filter).

We compute various aggregates (count, min, max ... )
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Continuous Counting

Continuous Counting
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Moving Parts

Moving Parts
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(e.g. Hadoop,
Spark, Flink) » Latency from event to serving layer usually in the range of

hours.




Implicity Treatment of Time Implicity Treatment of Time
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» Time is treated outside our application. » Time is treated outside our application.
» Part of administrative tasks. » Part of administrative tasks.
Implicity Treatment of Time Implicity Treatment of Time
— DataSet<ColorEvent> counts = env
B_ |mEEN| .readFile("MM-dd.csv")
] | EEER ateh _lah Layer n n
1 S .groupBy("color") \
.count();

Time is implicit
in input file

» Time is treated outside our application.

» Part of administrative tasks.

» Time is treated outside our application.
» Part of administrative tasks.




Streaming over Batch

HEE
aa—[Enaa g o @
]|
Continuously Files are Periodically
produced finite streams executed

Stream-based Data Processing

» Until now, stream processors were less mature than their
batch counterparts. This led to:
» in-house solutions,

» abuse of batch processors,
» Lambda architectures

» This is no longer needed with new generation stream
processors like Flink, Spark .. ..

» Stream-based processing is enabling the obvious: continuous
processing on data that is continuously produced.

Why Streaming?

» Monitor data and react in real time.
» Implement robust continuous applications.
» Adopt a decentralized architecture.

» Consolidate analytics infrastructure.

Continuous Analytics

» A production data application that needs to be live 24/7
feeding other systems (perhaps customer-facing)

» Need to be efficient, consistent, correct, and manageable

» Stream processing is a great way to implement continuous
applications robustly




Streaming vs Real-time When and why does this matter?

ing 1— _tj ) . .
> Streaming != Real-time » |Immediate reaction to life

» E.g., streaming that is not real time: continuous applications > E.g., generate alerts on anomaly/pattern /special event
with large windows

. . . > i
» E.g., real-time that is not streaming: very fast data Avoid unnecessary tradeoffs
warehousing queries » Even if application is not latency-critical

. . » With Flink you do not pay a price for latency!
» However: streaming applications can be fast y pay ap y

Streaming all the Way Streaming all the Way
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(e.g. Apache Kafka)

Durability and Replay




Streaming all the Way

Stream-based Data Processing

(o) @

HTTPS——» &

] ! s & webste
Streaming Serving J R Sensor v e Historic Values
. .ﬁ . . . . . . . JOb Layer Sta:lrj)n 1 -~ % —ondge % / T Statistics
. . é _publish Sensor\’a‘“es’mm-r-sw Broker MQTT Broker Hscribe—p. 8
Stream Processor e T, Datestore
(e.g. Apache Flink) " T Setistis
Consistent Processing @@
Pztcr::sr?ng
Windowing Tumbling Windows (No Overlap)

Aggregates on streams
are scoped by windows
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Time-driven Data-driven
e.g. last X minutes e.qg. last X records
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» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.




Time

Tumbling Windows (No Overlap)

» Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

» Example: Average value over the last 5 minutes.

Tumbling Windows (No Overlap)
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» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

» Maximum value over the last 100 readings.
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» Example: Average value over the last 5 minutes.




Sliding Windows (With Overlap)
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» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)
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» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)
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» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)
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» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.




Sliding Windows (With Overlap)
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Time >

» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Explicity Handling of Time

DataStream<ColorEvent> counts = env
.addSource(new KafkaConsumer(..))
.keyBy("color")
.timeWindow(Time.minutes(60))
.apply(new CountPerWindow()X;

Time is explicit
in your program

Session Windows
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» Sessions close after period of inactivity.

» Example: Compute Average from first value until connection
time-out or last value.

Session Windows

DataStream<ColorEvent> counts = env
.addSource(new KafkaConsumer(..))
.keyBy("color")
.window(EventTimeSessionWindows

withGap(Time.minutes(10))
.apply(new CountPerWindow());




Notions of Time

Event Time
Time when event happened.

Notions of Time

Event Time
Time when event happened.

1:37 pm
Processing Time
Time measured by system clock

Out of Order Events
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Notions of Time

env.setStreamTimeCharacteristic(
TimeCharacteristic.EventTime);

DataStream<ColorEvent> counts =

env

.timeWindow(Time.minutes(60))
.apply(new CountPerWindow());

Apache Flink

» Open source.

Started in 2009 in Berlin.

In Apache incubator since 2014.

Supports batch and stream processing.

| 4
>
» Fast, general purpose distributed data processing system.
>
>

Ready to use.

Big Data Landscape 2016 (Version 3.0)
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An Example

Analytical Program

.£latMap ((str, out)

12
.groupBy (0)
.aggregate (SUM, 1);

DataSet<String> text = env.readTextFile (input);

DataSet<Tuple2<String, Integer>> result = text

- {

for (String token : value.split("\\W"))
out.collect (new Tuple2<>(token, 1));

{

Flink Client &
Optimizer

Master
[}

-

Flink Cluster




Architecture
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Map-Reduce: Parallel Processing Paradigm

Data abstractions: Data Set, Data Stream

Program

-0 -0 58

Operator X Operator Y

Parallel Execution

l‘/-\‘(1) - LB (1)
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|

Map-Reduce Pipelines

Iterate

Map, FlatMap, MapPartition, Filter, Project, Reduce,

ReduceGroup, Aggregate, Distinct, Join, CoGoup, Cross, lterate,
Iterate Delta, Iterate-Vertex-Centric, Windowing

Cloud-based Architecture of 2nd Assignment
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Cloud-based Architecture of 2nd Assignment Cloud-based Architecture of 2nd Assignment
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Data arriving to the Cloud Edge-based Processing Stages
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GAIA: Edge-based Smart School Architecture
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Edge-based Data Processing
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Apache Edgent

» Light-weight stream processing.

» Provides a micro-kernel runtime to execute Edgent
applications.

» Executes a data flow graph consisting of oplets connected by
streams.

» A stream is an endless sequence of tuples or data items.

Apache Edgent Scenario

Device

PN

loT scale
message
hub

y
S

)
Engine lotDevice nternet )
Analytics App
App

Monitoring

Condition
Analytics App

App

» Two analytic Edgent applications communicating with each
other and the system loTDevice application.

» loTDevice application responsible for communicating with the
message hub.




