Hands-on

[lwww.w3.0rg/TR/generic-sensor/

https

Generic Sensor API
W3C Candidate Recommendation, 12 December 2019

This version:
https://www.w3.org/TR/2019/CR-generic-sensor-20191212/

Latest published version:
https://www.w3.org/TR/generic-sensor/

Editor's Draft:
https://w3c.github.io/sensors/

Previous Versions:
https://www.w3.org/TR/2019/WD-generic-sensor-20190307/

Feedback:
public-device-apis@w3.org with subject line “[generic-sensor] .. message topic .." (archives)
GitHub (new issue, level 1 issues, all issues)

Editor:
Rick Waldron (Bocoup, formerly on behalf of]S Foundation)

Former Editors:
Mikhail Pozdnyakov (Intel Corporation)
Alexander Shalamov (Intel Corporation)
Tobie Langel (Codespeaks, formerly on behalf of Intel Corporation) tobie@codespeaks.com

Test Facilitator:
Wanming Lin (Intel Corporation)

Other:
Test suite, latest version history, previous version history

apply.

Abstract

This specification defines a framework for exposing sensor data to the Open Web Platform in a
consistent way. It does so by defining a blueprint for writing specifications of concrete sensors

along with an abstract Sensor interface that can be extended to accommodate different sensor
types.

https://www.w3.org/TR/generic-sensor/

Scope

* Specifying primitives which enable exposing
data from device sensors.

* EXposing remote sensors or sensors found on
personal area networks (e.g. Bluetooth) is out
of scope.

Detect HW

if (typeof Gyroscope i tior o
// run in circles... Presence and characteristics of an API,
no info on API
e 1) actually connected to real hardware
if F imityse) in window

2) whether it works,
3) if its still connected,
4) you can access it.

it (window.AmbientLightSensor
'/ go dark. .

f etc.

Note

* Why not info on underlying status available upfront.

— Getting this information out of the hardware is costly, in
both performance and battery time, and would sit in the
critical path.

- The status of the underlying hardware can evolve over
time. The user can revoke permission, the connection to
the sensor be severed, the operating system may decide to
limit sensor usage below a certain battery threshold, etc.

if (typeof Gyroscope === "function") {

J/ run in circles...

if ("ProximitySensor" in window) {
// watch out!

if (window.AmbientLightSensor) {
// go dark. ..

// etc.

Combine feature detection,
which checks whether an
API for the sought-after
sensor actually exists, and
defensive programming

let accelerometer = null;
try {
accelerometer = new Accelerometer({ frequency: 18 }|;
accelerometer.addEventListener(' error’, event == {
// Handle runtime errors.

if (event.error.name === 'NotAllowedError') {
console.log('Permission to access sensor was denied.');
} else if (event.error.name === 'NotReadableError' | {

console.log('Cannot connect to the sensor.');

i

accelerometer.addEventListener(' reading', () == reloadOnShakelaccelerometer) |

accelerometer.start();
} catch (error) {
// Handle construction errors.

if (error.name === 'SecurityError') {

console.log('Sensor construction was blocked by the Feature Policy.');
} else if (error.name === 'ReferenceError') {

console.log('Sensor is not supported by the User Agent.');
+ else {

1. checking for error thrown when
instantiating a Sensor object,

2. listening to errors emitted by it,

3. handling all of the above graciously
SO that the user’s experience is
enhanced by the possible usage of a
sensor, not degraded by its absence.

Security and privacy considerations

e Sensor readings are sensitive data and could become a
subject of various attacks from malicious Web pages.

The risk of successful attack can increase when
— Multiple sensors/functions are used (correlation)
* Minimize accuracy

- Used over time (fingerprinting)
* Minimize sampling time

Threats

* Location Tracking: use sensor readings to locate

the device without using GPS or any other location
Sensors.

- For example, accelerometer data can be used to infer
the location of smartphones by using statistical models
to obtain estimated trajectory, then map matching

algorithms can be used to obtain predicted location
points (within a 200-m radius)

Threats

* Eavesdropping: Recovering speech from gyroscope
readings

* Keystroke Monitoring: many user inputs can be inferred
from sensor readings, this includes a wide range of attacks
on user PINs, passwords, and lock patterns (and even
touch actions such as click, scroll, and zoom) using motion
sensors. These attacks normally train a machine learning
algorithm to discover such information about the users.

Threats

* Device Fingerprinting: Sensors can provide information that can
uniquely identify the device using those sensors. Every
concrete sensor model has minor manufacturing imperfections
and differences that will be unique for this model. These
manufacturing variations and imperfections can be used to
fingerprint the device

* User ldentifying: Sensor readings can be used to identify the
user, for example via inferring individual walking patterns from
smartphone or wearable device motion sensors' data.

Mitigation Strategies

 Secure Context: Sensor Readings (SR) are
explicitly flagged by the Secure Contexts
specification

* Feature Policy: SR are only available for the
documents which are allowed to use the policy-
controlled features for the given sensor type.

https://www.w3.org/TR/secure-contexts/

Mitigation Strategies

* Focused Area: SR are only available for active
documents whose origin Is same origin-domain with
the currently focused area document.

* Visibility State: SR are only available for the active
documents whose visibility state is "visible".

* Permissions API: SR are controlled by the
Permissions API

Mitigation Strategies

Main risks due to correlation, fingerprinting
* Limit maximum sampling frequency

» Stop the sensor altogether

* Limit number of delivered readings

* Reduce accuracy

* Keep the user informed about API use

Sensor Interface

[SecureContext, Exposed=(DedicatedWorker, Window)]
interface Sensor : EventTarget {

readonly attribute boolean activated;

readonly attribute boolean hasReading;

readonly attribute DOMHighResTimeStamp? timestamp; anerror
Construct

vold start(); L
. . activating
void stop!();
attribute EventHandler onreading; activated
attribute EventHandler onactivate; stop() / onerror

attribute EventHandler onerror;

}s

dictionary SensorOptions {
double frequency:

It

https://intel.github.io/generic-sensor-demos/

Generic Sensor API playground

Here you can find list of web applications based on Generic Sensor APIs

View on GitHub

Demos for Generic Sensor API

This repository contains applications that demonstrate how to use the Generic Sensor API.

The Generic Sensor APl is a set of interfaces which expose sensor devices to the web platform. The
API consists of the base Sensor interface and a set of concrete sensor classes built on top, such as
Accelerometer, LinearAccelerationSensor, Gyroscope, AbsoluteOrientationSensor and
RelativeOrientationSensor.

The Generic Sensor APl is very simple and easy-to-use! The Sensor interface has start() and stop()
methods to control sensor state and several event handlers for receiving notifications about sensor
activation, errors and newly available readings. The concrete sensor classes usually add their specific
reading attributes to the base class.

https://intel.github.io/generic-sensor-demos/

FIRST TEST

https://intel.github.io/generic-sensor-demos/sensor-info/build/bundled/

https://intel.github.io/generic-sensor-demos/sensor-info/build/bundled/

We've created a set of resources to help you ensure your site remains available and accessible to all during the COVID-19 situation.

W WWW

Home » Products > Web > Updates » By Year

Sensors For The Web!

By Alexander Shalamov

Alex is an Engineer at Intel

By Mikhail Pozdnyakov

Mikhail is an Engineer at Intel

Today, sensor data is used in many native applications to enable use cases such as immersive gaming, fitness tracking,
and augmented or virtual reality. Wouldn't it be cool to bridge the gap between native and web applications? The Generic
Sensor API, For The Web!

What is Generic Sensor API?

The Generic Sensor APl is a set of interfaces which expose sensor devices to the web platform. The API consists of the
base Sensor interface and a set of concrete sensor classes huilt on top. Having a base interface simplifies the
implementation and specification process for the concrete sensor classes. For instance, take a look at the Gyroscope
class, it is super tiny! The core functionality is specified by the base interface, and Gyroscope merely extends it with three
attributes representing angular velocity.

Nice description on sensors

Contents
What is Generic Sensor API?
Generic Sensor APls in Chrome
What are all these sensors? How can | use them?
Accelerometer and linear acceleration sensor
Gyroscope
Orientation sensors
Synchronization with screen coordinates
Let's code!
Development environment
3D model rotation
Punchmeter
Privacy and security
only HTTPS
Feature Policy integration
Sensor readings delivery can be suspended
What's next?
You can help!

Resources

https://developers.google.com/web/updates/2017/09/sensors-for-the-web

https://developers.google.com/web/updates/2017/09/sensors-for-the-web

“= X: 00 radis
— S XA
g P— Y: 0.0 rad/
’ vl g A= ;
l == Z: 0.0 radls

Quaternion L
[x: 0.0, y: 0.0,z 0.0, w: 1.0]

Delivering data

* Note that in principle we are talking about a huge
amount of data

- Edge computing
- Privacy
* However a simplistic assumption coherent with the
course
- MQTT

MQTT on the front-end

* MOQTT over websockets

MQTT Over Websockets Illustration

1
| I JMQTT DATA Packet
‘ —

: WebSockets envelope Unpack
1 — Data
v
S ~ TCP/IP
envelope

https://youtu.be/EvUI4vRhF88

/I Create a client instance
client = new Paho.MQTT.Client("127.0.0.1",9001, "clientld");

1/ set callback handlers
client.onConnectionLost = onConnectionLost;
client.onMessageArrived = onMessageArrived;

/I connect the client

client.connect({onSuccess:onConnect});

/I called when the client connects
function onConnect() {

/I Once a connection has been made, make a subscription and send a message.

console.log("onConnect");
client.subscribe("World");
message = new Paho.MQTT.Message("Hello");

<IDOCTYPE html>
<html|>
<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible"
content="IE=edge">

<title>Hello MQTT World</title>

<meta name="viewport"
content="width=device-width, initial-scale=1">

<script
src="https://cdnjs.cloudflare.com/ajax/libs/paho-
mqtt/1.0.1/mgttws31.min.js"></script>

message.destinationName = "World";
client.send(message); /

<script src="main.js" defer></script>

} |

/I called when the client loses its connection
function onConnectionLost(responseObject) {
if (responseObject.errorCode == 0) {
console.log("onConnectionLost:"+responseObject.errorMessage);
}
}

/I called when a message arrives
function onMessageArrived(message) {
console.log("onMessageArrived:"+message.payloadString);

}

</head>
<body>
<div id="logger"></div>
</body>
</html|>

http-server

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

