Internet of Things

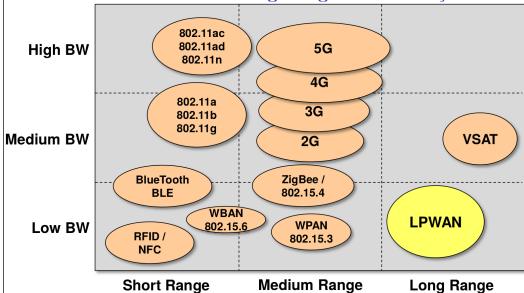
Marco Zecchini

Sapienza University of Rome

Lecture 9: Low-Power Long-Range Connectivity

The Need for Low-Power Long-Range Connectivity

- > 25 billion devices by 2020
- ▶ Bluetooth & Wi-Fi not well suited for many scenario < 100m, high throughput & power consumption
- ▶ 3G/4G cellular not well suited as well \$ hardware, \$ SIMs/plans, high battery inefficiency, available spectrum.
- ► Endpoints costs need to be low
- ▶ Must be small for integration into everything
- ► Conserve wireless spectrum duty cycle policy
- ► Conservative power run on a battery i.e. mA
- Support really low bandwidth for Bytes not MB of data
- \$ network plans

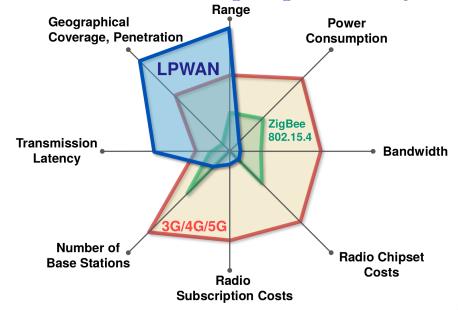


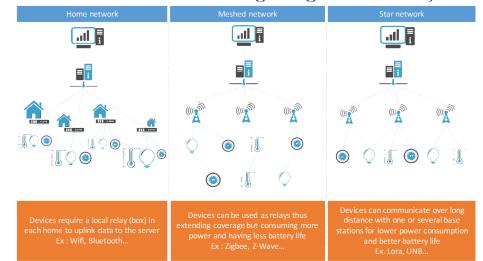
The Need for Low-Power Long-Range Connectivity

The emergence for IoT introduces new challenges that cannot be addressed by the current available connectivity protocol, such as:

- ▶ Bandwidth/Data Rate: In LPWAN, the data rate is selected by a trade-off between the communication range and the duration of the message.
- ▶ Battery Life: To maximize the life of the final device batteries, the LPWAN server controls the RF output and an output rate through an adaptive scheme for each end device.
- ▶ Range: LPWAN obtains about 2-5 km of coverage range in urban perimeters and about 45 km in rural areas.
- ► Latency: There is a trade-off between downlink communication latency versus battery life time that can be resolved through QoS classes in a LPWAN device.
- ► Throughput: Data rates between 290 bps and 50 kbps.

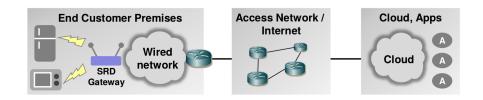
The Need for Low-Power Long-Range Connectivity





The Need for Low-Power Long-Range Connectivity

The Need for Low-Power Long-Range Connectivity


The Need for Low-Power Long-Range Connectivity

titled for Low rower Long Runge Connectivity					
Characteristic	Target Value for LPWAN Technologies				
Long range	5 – 40km in the open field				
Ultra low power	Battery lifetime of 10 years				
Throughput	\sim a few hundred bps				
Radio chipset costs	\$2 or less				
Radio subscription	\$1 per device and year				
costs					
Transmission latency	Not a primary requirement for LPWAN.				
Required number of	Very low. LPWAN base stations are able to				
base stations for cov-	serve thousands of devices.				
erage					
Geographic coverage,	Excellent coverage also in remote and rural				
penetration	areas. Good in-building and in-ground pen-				
	etration (e.g. for reading power meters).				

The Need for Low-Power Long-Range Connectivity

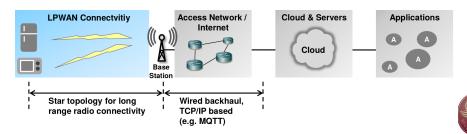
Short range radio connectivity for IoT devices:

- ► Short range radio devices (SRD) such as ZigBee require using a gateway for long-range backhaul.
- ► The gateway is typically hooked up to some on-site wired network which is not under control of the IoT provider.

LPWAN Network Topology

Direct long range connectivity (LPWAN) for IoT devices:

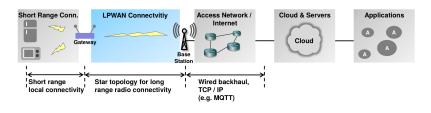
- Long range connectivity allows direct access to the devices in the field.
- ► The base station typically serves a large number of devices thus greatly reducing costs.



LPWAN Network Topology

Direct device connectivity (base station):

- ► A base station provides connectivity to a large number of devices.
- ► The traffic is backhauled to servers (cloud) through TCP/IP based networks (Internet).
- ► The base station is responsible for protocol translation from IoT protocols such as MQTT or CoAP to device application protocols.



LPWAN Network Topology

Indirect device connectivity through a LPWAN gateway:

- ▶ Devices cannot be directly reached through LPWAN, a local gateway bridges LPWAN connectivity to some short range radio (SRD) technology (e.g. ZigBee, BLE).
- ► The gateway typically runs on mains power since it serves a larger number of devices and must convert between LPWAN and SRD radio technologies and protocols.
- ► Gateways may help to improve security since more powerful security algorithms can be implemented on the gateway than is possible on the constrained devices.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q G

Available LPWAN Providers

Available LPWAN Providers MGENU LoRa Lte.M **M**GENU waviot **SIGFOX** RANGE LoRa Lte SIGFOX **N**GENU Lte waviot LoRa 25k 100k

LoRa – Architecture Principles

LoRa

LoRa

LoRa

Objenious

Network

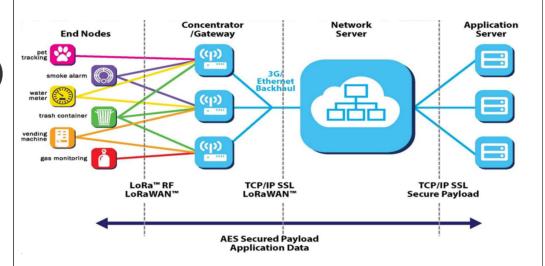
operator

LoRAWan

PRIVATE

LoRaWan Server

Gatewa


LoRAWan Gateway

LoRa - Long Range

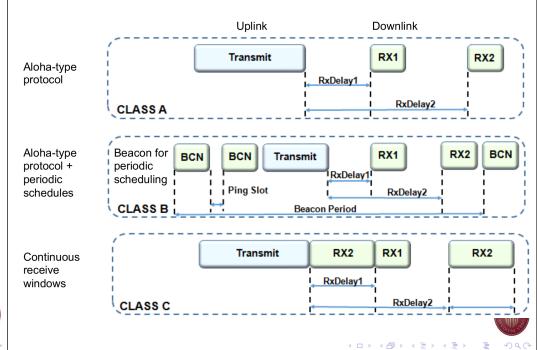
- Technology and protocol engineered by SEMTECH from a French technology (Cycleo)
- ▶ LoRa Alliance (founded in 2014, > 200 members in 2016)
- ▶ 2 successive versions of the protocol: LoRAMAC & LoRAWAN 1.1
- ▶ 3 classes of devices LoRAWan: A, B, C*
 - Classe A: Bi-directional end-devices
 - Classe B: Bi-directional end-devices with scheduled receive slots
 - ► Classe C: Bi-directional end-devices with maximal receive slots
- ► Chipsets exist in unidirectional (860 1020 MHz band) or bidirectional (High Band 860-960MHz & Low Band 169-510MHz) and for the moment are provided only by Semtech.
- ▶ End devices identification: IEEE EUI64 format

- ▶ Long range star network (same as telecom cellular networks)
- ► Centrally managed multi-tenant network

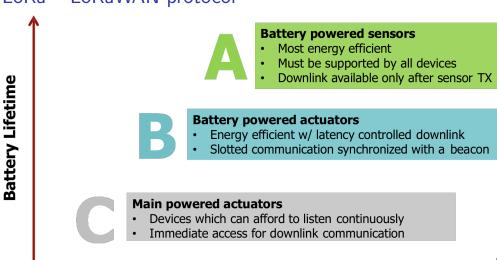
Encrypted applicative payload API or other APIs (MQTT, XMPP...)

Encrypted applicative payload

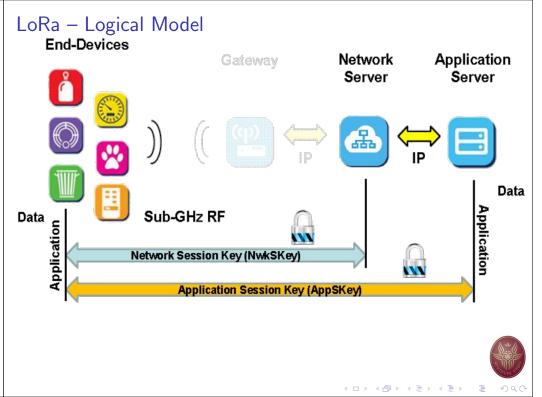
Encrypted applicative payload


LoRa - LoRaWAN protocol

- ► End devices identification: IEEE EUI64 format
- ▶ Datarate of 0.3 to 50 Kb/s
- ► Encryption AES128 device server & end-node user app
- Stars of stars architecture
- ▶ 3 classes of devices (bidirectionnal communication)
 - Classe A
 - ► Classe B (beacon)
 - ► Classe C (continuous)



LoRa - LoRaWAN protocol



LoRa - LoRaWAN protocol

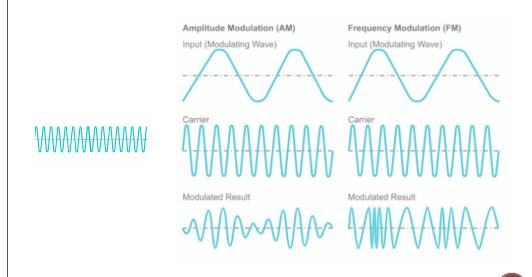
Downlink Network Communication Latency

Application PAYLOAD ENCRYPT Certificate keys AES 128 Algorithm Network Header PAYLOAD ENCRYPTED Message Integrity Code Integrity Code SIGNATURE Manufacture keys

LoRa – Logical Model SENSOR NETWORK SERVER Decrypt/Encrypt Customer **Customer Server** Application Logic Decrypt/Encrypt LoRaWAN Master LoRaWAN Slave GATEWAY HOST Backhaul IP Stack **Packet Forward** Ethernet, 3G/4G, WiFi Backhaul

IP Stack

LoRaWAN ingredients – Why these performances?

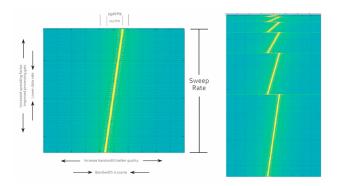

- Frequency
- ► Modulation Chirp spreading factor
- ► Adaptive Data Rate

LoRaWAN ingredients - Modulation Technique

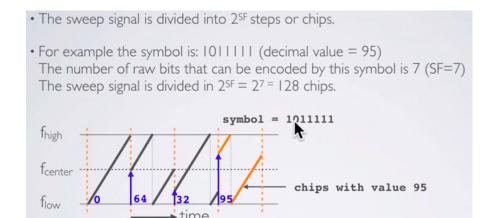
PHY layer

LoRa FSK

PHY layer

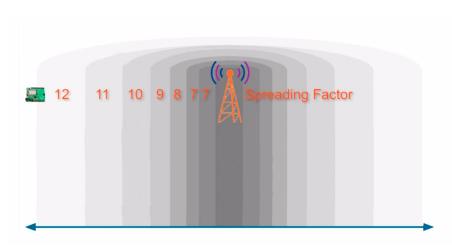


◆□▶ ◆□▶ ◆■▶ ◆■▶ ● のQの


LoRaWAN ingredients – Modulation Technique

Chirp Indicated signal Indicated signal

LoRaWAN ingredients - Modulation Technique


How to calculate data rate:

https://www.youtube.com/watch?v=r84GMLeiqg8

LoRaWAN ingredients – Spreading Factor

4□ > 4፭ > 4 ½ > 4 ½ > ½

LoRaWAN ingredients –

LoRa Spreading Factors (125kHz bw)

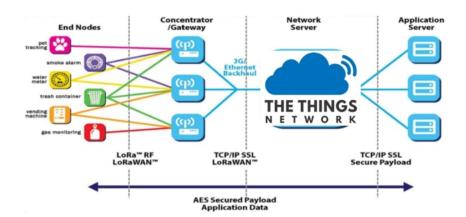
Spreading Factor	Chips/symbol	SNR limit	Time-on-air (10 byte packet)	Bitrate
7	128	-7.5	56 ms	5469 bps
8	256	-10	103 ms	3125 bps
9	512	-12.5	205 ms	1758 bps
10	1024	-15	371 ms	977 bps
11	2048	-17.5	741 ms	537 bps
12	4096	-20	1483 ms	293 bps

The Things Network – What is?

https://www.youtube.com/watch?v=U4UrXl-SGEo

◆□▶ ◆□▶ ◆■▶ ◆■ りへ⊙

The Things Network – Community


At this moment, there are 6668 gateways up and running

The Things Network – Architecture

