- Embedded Operating Systems — Basic notions of Operating Systems
Objectives of an Operating System

@ Make the computer system convenient to use in an efficient

manner.
Internet of Things @ Hide the details of the hardware resources from the users.
Embedded Operating Systems @ Provide users a convenient interface to use the computer
system.

@ Act as an intermediary between the hardware and its users,

loannis Chatzigiannakis making it easier for the users to access and use other

resources.
Sapienza University of Rome @ Manage the resources of a computer system.
Department of Computer, Control, and Management Engineering (DIAG) o Keep track of who is using which resource, granting resource
requests, and mediating conflicting requests from different
Lecture 3: programs and users.
Embedded Operating Systems @ Provide efficient and fair sharing of resources among users and
programs.
2/36
- Embedded Operating Systems — Basic notions of Operating Systems - Embedded Operating Systems — Basic notions of Operating Systems
Main elements of an Operating System Main services of an Operating System

Operating System (0OS) Operating System (OS)

A collection of software that manages the hardware resources and A collection of software that manages the hardware resources and
provides various service to the users. provides various service to the users.
@ Processor © Process management.
o Performs the data processing functions. o Load into main memory, execute programs.
o Controls the operation of the computer. © Resource Allocation
@ Main Memory © Memory Management
e volatile storage. o Allocate/de-allocate memory.
@ 1/0 Modules o Virtual memory.
o non volatile storage, @ File System
e communications, Q Communication
o terminals. o Interprocess communication, across Computer Networks.
© System Bus @ Error detection and response.

® communication among components. @ Authentication, Authorization, Accounting.

3/36 4/36

Interacting with the Operating System

Kernel mode:

@ has complete access to all
the hardware

@ can execute any instruction
that a machine is capable of
executing

@ has high privileged (rights)

User mode:

@ can execute only subset
(few) of the machine
instructions

@ has less privileged (rights)

Software platforms for loT

e

\ 3

é

Web E-mail Music
browser reader player

S/W 4 User Program

Operating System

1S g

> 29 8. @ &%

N %
::.'5 ..l..’é Y) .’6’ @\ Oonenwrt

@ Memory: Kilobytes instead of Gigabytes.

CPU: Megahertz instead of Gigahertz.

Energy: Milliwatt instead of Watt.

Potentially limited storage capabilities.

Probably without direct connectivity to Internet.
Diverse hardware peripherals that can be connected.
... no standard platform to develop applications.

7/36

| Embedded Operating Systems — Basic notions of Operating Systems
Type of Operating Systems

@ Batch systems: jobs entered as a whole and in sequence.
e Purpose specific.
@ Interactive systems: allow multiple jobs
e Purpose specific or General purpose.
e Turnaround: Faster than batch — slower than real-time.
© Hybrid systems — combination of batch and interactive.
@ Network operating systems — for network devices.
© Real-time systems
e Purpose specific — reliability is critical.
e Used in time-critical environments — fixed time constraints.
e Hard vs Soft:
o Hard: total failure if deadline missed
o Soft: suffer performance degradation due to a missed deadline.
@ Embedded systems — single machine / purpose specific.
@ Wireless sensor systems — multiple nodes / purpose specific.
© Smart card operating systems

Operating systems for loT

5 o Zephyr”
[#RTOS ARMmbed
Contiki® % -—
IEEE 802.11 IETF core WG mynewt
"Wi-Fi IEEE 802.15.4 startedy
. RFC4944
Z;\u.:u, Iwas oLowe ‘.' oT |
| | | | | | | | |
1991 1997 2000 2002 2005 2007 2010 2013 2016

TinyQS — statically linked applications.

ContikiOS — dynamic linking of binaries, no thread support.
FreeRTOS - real-time operating system.

RIOT — focuses on constrained devices + interoperability.
ARM mbed — targeting ARM Cortex M series.

Zephyr — real-time on constrained devices.

8 /36

. STM32 family provides wide
EOEEIEEE ange of devices with limited

2m NUCLEQ-F43921 | NUCLEO-H75321
resources:

NUCLEO-L4RSZI NUCLEO-L4RSZI-P

@ Memory as low as 16KB.

™ NUCLEO-F74626
e @ Some may have direct
o] connectivity to Internet.
NUCLEQ-L552ZE-Q . -
@ Applications can be
o developed by tools:
a) : © STM32CubeMX

. , i > @ Middleware
s ; : @ IDE

Nucleo typs
Nucleo-32 Nucleo 64 Nucleo-144
5 hﬁ:‘“ e
’ i1 [#]
£ 3
-2
il
Legend: [l Mainstream Utira-low-power [l High-performance Wireless
- i ion -0

 HW crypto/Hash version avalable:

9/36

Modular - Ease of Use
e With a modular library structure, the necessary underlying
support for your application will be automatically included on
your device.
e By using the Mbed OS API, your application code can remain
clean, portable and simple.
o End to End Security
o It addresses security in device hardware, software,
communication.
Open Source
e https://github.com/ARMmbed/mbed-os
Community
e Big community support and Forum.
o Possibility to use drivers and libraries developed by third party.

11/ 36

Arm Mbed OS is a free, open-source embedded
operating system designed specifically for the

q rm "things” in the Internet of Things. It includes all

the features you need to develop a connected

M B E D product based on an Arm Cortex-M

microcontroller (32 bit).

10 / 36

Developer Intarface

Mbed OS 6 Conceptual Architectural T

Componentized, Layered Architecture
Partner component

IoT Connector pack ‘ Third-party

| e

Mbed OS5
05 G

Storage Mbed TLS Cloud connectivit Update H
P
“"Q" oo | [rsonten T
TCP/IP
LWIP

m Update client
RTOS 2 Meshing
5
RTX Block storage - - WiSUN PSA PSA PSA
Storage | Attestation | Crypto

LS /DTLS
Crypto

Mbed HAL sesesrssnsinissinssnssnssnasssssins
CMIs-Core Mbed Driver Model
i TF-M Core
Board support pack
Platform drivers ROM bootloader TRNG support TF-M HAL
HiiiUir it eas e seseseemsmmasasean =

XM C ipherals ipherals - v H ARM Cortex-M TrustZone/
ARM Cortex-M CPU & Core Peripherals Peripherals TRNG PHY / Radio : M Cortex Mt

12/ 36

https://github.com/ARMmbed/mbed-os
https://os.mbed.com/forum/?_ga=2.140504499.106673068.1550918714-1430794427.1523888257

Two possibilities:

Offline toolchains, (Arm
Compiler 6, GCC and IAR) that
support Arm Mbed CLI.

Online IDE, no setup and
easiest way to get started.

13 / 36
.. mbed Clients -,
Key technologies
mbed OS
Unparalleled power-
Q efficiency and
security for new loT
mbed Cloud Thread devces
Secure, scalable, efficient device @
~ management services «l} mbed Enabled
BLE products
Tested interoperability
‘ v (% for IoT that can be
~ trusted
End to v
end A 6LOWPAN mbed for other -~
security Connect Provision Update ~~ Operating System)
Global laT Secure Cost-effective \‘:'/ Supporting more
connectivity and management device support cechnology choices
management of device and WiFi
: assets maintenance
15/ 36

— Device software Device services

Third-party cloud services
! s
mbed Cloud loT cloud applications

loT device

application Update Analytics and rules App management
mbed clients — ARMmbed Provision Web servers Scale-
mbed OS, tools

on and Connect Load balancing

Data storage

14 / 36

mbed Cloud: Trust Built In
From Development to Deployment mbed Cloud ‘

_
mbed Cloud
Client . Public
Bootstrap CA
i (7 certiﬁcate‘

Portal

REST APIs &

c
E.Q
g
]
gs
Y B
3 a
Vg

Develop Manufacture On-Board

mbed Cloud enables the business of loT by empowering customers to develop, deploy
at the factory, bring on-board and maintain connected products securely and efficiently.

16 / 36

Zephyr OS is a scalable, real-time operating
system (RTOS) for embedded devices.

\N‘ @ Open source.

Zephyr” o Cross-architecture with broad SoC and
development board support.

17/ 36

@ Build Zephyr as native Linux application

Enable large scale simulation of network or Bluetooth tests

without involving HW

Improve test coverage of application layers

Use any native tools available for debugging and profiling

Develop GUI applications entirely on the desktop

Optionally connect to real devices with TCP/IP, Bluetooth,

and CAN

@ Reduce requirements for HW test platforms during
development

19 / 36

@ Provide an OS that runs best on MCUs for wearable and loT
devices, where the cost of the silicon is minimal.
Highly Configurable.
@ Kernel mode only
e Nanokernel — Limited functionality targeting small footprint
(below 10k)
o Microkernel (superset of nanokernel): with additional
functionality and features.
No user space and no dynamic runtimes
Memory and Resources are typically statically allocated
Cross architecture (IA32, ARM, ARC)

18 / 36
Normal Zephyr Native build Zephyr
layering layering
Application Application
Zephyr = Zephyr
Kemel [— Kemel —
Drivers Drivers
dependent layer native POSIX
.d‘ -
I HW models /
CPUWSOC HW host HWAPI
e T
Host OS Kemel (i.e. Linux)

20 /36

Highly Configurable, Highly Modular
Cooperative and Preemptive Threading

Memory and Resources are typically statically allocated
Integrated device driver interface
Memory Protection: Stack overflow protection, Kernel object

and device driver permission tracking, Thread isolation
@ Bluetooth Low Energy (BLE 5.1) with both controller and

host, BLE Mesh

@ 802.15.4 OpenThread
@ Native, fully featured and optimized networking stack

Zephyr OS

* The kernel and HAL
+ OS Services such as IPC, Logging, file
systems, crypto

Zephyr Project

* SDK, west, tools and development
environment

* Additional middleware and features

+ Device Management and Bootloader

Zephyr Community

* 3rd Party modules and libraries

* Support for Zephyr in 3rd party projects,

for example: micro-ROS, Tensorflow
LITE, Micropython, Jerryscript

Zephyr “Community”

Zephyr Project

Zephyr OS

Kernel / HAL
Application Services

21/36

! Kernel / HAL

* Scheduler

+ Kernel objects and services

* low-level architecture and board support

+ power management hooks and low level
interfaces to hardware

OS Services and Low level APls

* Platform specific drivers

+ Generic implementation of 1/0O APIs

« File systems, Logging, Debugging and IPC
« Cryptography Services

* Networking and Connectivity

+ Device Management

Application Services

* High Level APIs
* Access to standardized data models

\\ + High Level networking protocols

\

23 /36

Applica

Smart Objects / High Level APIs / Data Models

n

Application Services

Management

0S Services

kernel

TCP/UDP

IPv6/IPv4

File System
Database/
Properties

Platform

7 Low Level API

Kernel Se s / Schedulers

22 /36

N N\
Governing Technical Steering tribut
Board Committee
-
Financial & Marketing Safety ~ Security Kernel & Subsystem Security Safety Architecture Individual Member Supporting o
Policy Oversight Oversight Oversight ~ Oversight Maintainers Architect Architect Maintainers Contributor ~ Organizations ~ Organizations ers
N— N— N— N— N— N— N— ~— N— — ~—

Goal: Separate business decisions from meritocracy, technical decisions

Governing Board Technical Steering Committee

Decides project goals and strategic
objectives

Makes business , marketing and legal
decisions

Prioritizes ir and
budget

Oversees marketing such as PR/AR,
branding, others

Identifies member requirements

Serves as the highest technical decision
body consisting of project maintainers and
voting members

Sets technical direction for the project
Coordi . .

1

- Sets up new projects

« Coordinates releases

« Enforces development

processes

+ Moderates working groups
Oversees relationships with other relevant
projects

Code base open to all contributors,
need not be a member to contribute.

Path to committer and maintainer status
through peer assessed merit of
contributions and code reviews

Ecosystem enablement

24 / 36

@ Driven by a grassroots community
o instead from the hardware providers/manufacturers.
o Linux-like approach.
e Open source + Free licensed under LGPLv2.1.
o Less garbage with less loT device lock-down
@ Functionalities of a full-fledged operating system.
o Needed memory & energy efficiency to fit loT devices.
o Faster innovation by spreading loT software dev. costs
@ Setting Privace & Security at core:
© Long-term loT software robustness & security
@ Trust, transparency & protection of loT users’ privacy

25 /36
Application
@ 3 blocks: boards, cpus, drivers Bl
° CPUS are organized as fO”OWS' Hardware-independent| core (kemel) ” drivers
o architecture (ARM) — family Hardware dependent perer |
(stm32) — type (stm32l4) — I
model (stm32|476rg) Hardware
@ Generic API for cpu peripherals e iy e e

CPU_ARGH CPU_FAM cPU GPU_MODEL

(gpio, uart, spi, pwm, etc)
e same API for all architectures

avi

()
=N
(J

ex32] Kzt] mk60dn256]
nri5x] mk60dn512]
kinetis] -]

@ Only based on vendor header files

(CMSIS) mips32r2
o less code duplication, more

efficient but more work

One application — one board — one cpu model

27 /36

@ Modular structure, adaptive to diverse hardware
o Micro-kernel architecture (contrary to Linux)
@ minimal requirements around 1kB RAM
e 2.8kB RAM, 3.2kB ROM on 32-bit Cortex-M
e support for 50+ different loT boards/devices.
o Efficient Hardware Abstraction Layer (HAL)
e minimized hardware-dependent code.
e support for 8/16/32 bit, ARM, AVR, MIPS.
e Supported vendors: Microchip, NXP, STMicroelectronics,
Nordic, Tl, ESP, RISC-V, etc.
o Large list of sensors and actuators supported (e.g drivers)
e native board: run RIOT as process on your computer
e +100 boards supported
@ Compliance with common system standards
e POSIX sockets, pthreads

e standard C, C++ application coding “

26 / 36

Features are libraries — only build what’s required

@ xtimer — high-level timer [Aoploations)
subsystem 1
. sock
e Full abstraction from the I [‘
hardware timer “I';"fnﬁ"es J<—> Networkstacks] sl
e Can set callbacks, put a
Core APIs netdev

thread to sleep, etc |

@ shell — interactive command { Core }<—> {Dev'j:;w[;ritm] [sensgmcrtsumr};
line . IR Perlph ;;l; 7777777777

o Others: crypto, fmt, math, (Hardware)
etc

Also: External packages provided and maintained by third parties.

28 / 36

o Tickless scheduler — energy efficient.
@ Fixed priorities — deterministic.
e Highest priority thread runs until finished or blocked.
e 16 priority levels.
o the lower level the higher priority.
o Idle thread has priority 15.
e Main thread has priority 7.
@ Preemption O(1) operations — real-time.
o Interrupt service runtime (ISR) can preempt any thread at any
time
o If all threads are blocked:
@ Switch to special IDLE thread
@ Goes into lowest possible power mode

@ Low latency interrupt handler — reactivity.

29 /36

Free memory

Thread 1
Stack .
@ Threads have their own memory stack
Thread 2 @ The stack also contains the thread
stack control block (tcb)
Free memory ° ere is no memory protection
Free memory| Th y protect
fhreads: o, @ A stack overflow can destroy another
| B
Free memory >
Thread 4 =2
Stack
Global variables
Heap
Unused memory Q

31/36

External
event

@ Separate thread contexts with separate _—
thread memory stack. ——

@ Minimal thread control block (TCB). | applcasen/
: | return0; HE

@ Thread synchronization using mutexes, { ™™
semaphores and messaging. ’

RIOT simple application

2 threads by default:

© the main thread: running the main function
@ the idle thread:
o lowest priority
— fallback thread when all other threads are blocked or
terminated
e switches the system to low-power mode

30 /36

Create ! Create and jump into’
i Idle thread | ! Main thread

cpu_init() : Initialize on-board ;
' H 1 peripherals
! 1. initcpu - (GPIO, ete)
i 2.init clock g

! 3.initperipherals } ' optional

Eny Pt o) 1. call auto_init()

i 2. call main()

OS init (kernel_init())

Board init (board_init())

Reset handler

@ board_init () is implemented in
boards/<board name>/board.c file

@ cpu_unit() is implemented in cpu/<cpu model>/cpu.c file

© kernel_init() is implemented in core/kernel_init.c file
Example for ARM Cortex-M:

@ the entry point is reset_handler_default “

@ implemented in cpu/cortexm_common/vectors_cortexm.c

32/36

IP oriented stacks: designed for Ethernet, WiFi, 802.15.4 networks
e GNRC: the in-house 802.15.4/6LowPAN/IPv6 stack of RIOT
@ Thread: 802.15.4 IPv6 stack provided by the ThreadGroup
@ OpenWSN (experimental): a deterministic MAC layer
implementing the |IEEE 802.15.4e TSCH protocol
Other IPv6 stacks:
@ IwlP: full-featured network stack designed for low memory
consumption
@ emb6: A fork of Contiki network stack that can be used
without proto-threads
@ IPv6 over BLE, NimBLE stack support

33 /36
L . L :
Application / Library ge'?:reac
050(:'(] MOdUII

gnrc_sock ¢ API

netapi netapi)
gnrc_ipve
dnetapi
netapi gnrc_6lo
dnetapi
MAC MAC
_ fnetdev {netdev
Driver Driver

Hardware “

35 /36

@ In-house Controller Area Network (CAN)

@ LoRaWAN stack — Compliant with LoRaWAN 1.0.2
o SigFox support for ATA8520e modules

o Full featured USB stack (CDC-ACM, CDC-ECM, etc)

@ SUIT: Standard and secure software update implementation

34 /36

@ boards: board specific definitions, cpu model, clock,
peripherals config, documentation, serial and flasher config

o core: kernel initialization, thread, ipc

@ cpu: support for microcontroller (cmsis, definitions, peripheral
drivers), entry point (_reset_handler_default_)

e dist: management and utility tools (script, ci, static checkers,
etc)

@ doc: doxygen documentation

@ drivers: high-level device drivers (sensors, actuators, radios),
HAL API

@ examples: sample applications

@ makefiles: build and management system makefiles

@ pkg: external packages

@ sys: system libraries, network, shell, xtimer, etc

°

tests: unittests, test applications (can be used as examples) a

36 /36

https://github.com/apache/mynewt-nimble

	Embedded Operating Systems
	Basic notions of Operating Systems
	Operating Systems for IoT
	STM32 Nucleo Development Process
	ARM MBed
	Zephyr OS
	RIOT

