
Internet of Things
Embedded Operating Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 3:
Embedded Operating Systems

1 / 36

Embedded Operating Systems – Basic notions of Operating Systems

Objectives of an Operating System

Make the computer system convenient to use in an efficient
manner.
Hide the details of the hardware resources from the users.
Provide users a convenient interface to use the computer
system.
Act as an intermediary between the hardware and its users,
making it easier for the users to access and use other
resources.
Manage the resources of a computer system.
Keep track of who is using which resource, granting resource
requests, and mediating conflicting requests from different
programs and users.
Provide efficient and fair sharing of resources among users and
programs.

2 / 36

Embedded Operating Systems – Basic notions of Operating Systems

Main elements of an Operating System

Operating System (OS)

A collection of software that manages the hardware resources and
provides various service to the users.

1 Processor
Performs the data processing functions.
Controls the operation of the computer.

2 Main Memory
volatile storage.

3 I/O Modules
non volatile storage,
communications,
terminals.

4 System Bus
communication among components.

3 / 36

Embedded Operating Systems – Basic notions of Operating Systems

Main services of an Operating System

Operating System (OS)

A collection of software that manages the hardware resources and
provides various service to the users.

1 Process management.
Load into main memory, execute programs.

2 Resource Allocation
3 Memory Management

Allocate/de-allocate memory.
Virtual memory.

4 File System
5 Communication

Interprocess communication, across Computer Networks.
6 Error detection and response.
7 Authentication, Authorization, Accounting.

4 / 36



Embedded Operating Systems – Basic notions of Operating Systems

Interacting with the Operating System

Kernel mode:

has complete access to all
the hardware

can execute any instruction
that a machine is capable of
executing

has high privileged (rights)

User mode:

can execute only subset
(few) of the machine
instructions

has less privileged (rights)

5 / 36

Embedded Operating Systems – Basic notions of Operating Systems

Type of Operating Systems

1 Batch systems: jobs entered as a whole and in sequence.
Purpose specific.

2 Interactive systems: allow multiple jobs
Purpose specific or General purpose.
Turnaround: Faster than batch – slower than real-time.

3 Hybrid systems – combination of batch and interactive.
4 Network operating systems – for network devices.
5 Real-time systems

Purpose specific – reliability is critical.
Used in time-critical environments – fixed time constraints.
Hard vs Soft:

Hard: total failure if deadline missed
Soft: suffer performance degradation due to a missed deadline.

6 Embedded systems – single machine / purpose specific.
7 Wireless sensor systems – multiple nodes / purpose specific.
8 Smart card operating systems

6 / 36

Embedded Operating Systems – Operating Systems for IoT

Software platforms for IoT

Memory: Kilobytes instead of Gigabytes.
CPU: Megahertz instead of Gigahertz.
Energy: Milliwatt instead of Watt.
Potentially limited storage capabilities.
Probably without direct connectivity to Internet.
Diverse hardware peripherals that can be connected.
. . . no standard platform to develop applications.

7 / 36

Embedded Operating Systems – Operating Systems for IoT

Operating systems for IoT

TinyOS – statically linked applications.
ContikiOS – dynamic linking of binaries, no thread support.
FreeRTOS – real-time operating system.
RIOT – focuses on constrained devices + interoperability.
ARM mbed – targeting ARM Cortex M series.
Zephyr – real-time on constrained devices.

8 / 36



Embedded Operating Systems – STM32 Nucleo Development Process

STM32 family provides wide
range of devices with limited
resources:

Memory as low as 16KB.

Some may have direct
connectivity to Internet.

Applications can be
developed by tools:

1 STM32CubeMX
2 Middleware
3 IDE

9 / 36

Embedded Operating Systems – ARM MBed

ARM Mbed OS

Arm Mbed OS is a free, open-source embedded
operating system designed specifically for the
”things” in the Internet of Things. It includes all
the features you need to develop a connected
product based on an Arm Cortex-M
microcontroller (32 bit).

10 / 36

Embedded Operating Systems – ARM MBed

Main Features

Modular - Ease of Use
With a modular library structure, the necessary underlying
support for your application will be automatically included on
your device.
By using the Mbed OS API, your application code can remain
clean, portable and simple.

End to End Security
It addresses security in device hardware, software,
communication.

Open Source
https://github.com/ARMmbed/mbed-os

Community
Big community support and Forum.
Possibility to use drivers and libraries developed by third party.

11 / 36

Embedded Operating Systems – ARM MBed

12 / 36

https://github.com/ARMmbed/mbed-os
https://os.mbed.com/forum/?_ga=2.140504499.106673068.1550918714-1430794427.1523888257


Embedded Operating Systems – ARM MBed

Toolchains and IDE

Two possibilities:

Online IDE, no setup and
easiest way to get started.

Offline toolchains, (Arm
Compiler 6, GCC and IAR) that
support Arm Mbed CLI.

13 / 36

Embedded Operating Systems – ARM MBed

ARM MCU to Cloud

14 / 36

Embedded Operating Systems – ARM MBed

ARM MBED Cloud Platform

15 / 36

Embedded Operating Systems – ARM MBed

16 / 36



Embedded Operating Systems – Zephyr OS

Zephyr OS

Zephyr OS is a scalable, real-time operating
system (RTOS) for embedded devices.

Open source.

Cross-architecture with broad SoC and
development board support.

17 / 36

Embedded Operating Systems – Zephyr OS

Main Features

Provide an OS that runs best on MCUs for wearable and IoT
devices, where the cost of the silicon is minimal.
Highly Configurable.
Kernel mode only

Nanokernel – Limited functionality targeting small footprint
(below 10k)
Microkernel (superset of nanokernel): with additional
functionality and features.

No user space and no dynamic runtimes
Memory and Resources are typically statically allocated
Cross architecture (IA32, ARM, ARC)

18 / 36

Embedded Operating Systems – Zephyr OS

Native Execution

Build Zephyr as native Linux application
Enable large scale simulation of network or Bluetooth tests
without involving HW
Improve test coverage of application layers
Use any native tools available for debugging and profiling
Develop GUI applications entirely on the desktop
Optionally connect to real devices with TCP/IP, Bluetooth,
and CAN
Reduce requirements for HW test platforms during
development

19 / 36

Embedded Operating Systems – Zephyr OS

Native vs Normal

20 / 36



Embedded Operating Systems – Zephyr OS

Zephyr Architecture

Highly Configurable, Highly Modular
Cooperative and Preemptive Threading
Memory and Resources are typically statically allocated
Integrated device driver interface
Memory Protection: Stack overflow protection, Kernel object
and device driver permission tracking, Thread isolation
Bluetooth Low Energy (BLE 5.1) with both controller and
host, BLE Mesh
802.15.4 OpenThread
Native, fully featured and optimized networking stack

21 / 36

Embedded Operating Systems – Zephyr OS

22 / 36

Embedded Operating Systems – Zephyr OS

Zephyr Ecosystem

23 / 36

Embedded Operating Systems – Zephyr OS

Zephyr Project Governance

24 / 36



Embedded Operating Systems – RIOT

Goals for IoT Operating Systems

Driven by a grassroots community
instead from the hardware providers/manufacturers.
Linux-like approach.
Open source + Free licensed under LGPLv2.1.
Less garbage with less IoT device lock-down

Functionalities of a full-fledged operating system.
Needed memory & energy efficiency to fit IoT devices.
Faster innovation by spreading IoT software dev. costs

Setting Privace & Security at core:
1 Long-term IoT software robustness & security
2 Trust, transparency & protection of IoT users’ privacy

25 / 36

Embedded Operating Systems – RIOT

Interoperability Goal

Modular structure, adaptive to diverse hardware
Micro-kernel architecture (contrary to Linux)

minimal requirements around 1kB RAM
2.8kB RAM, 3.2kB ROM on 32-bit Cortex-M

support for 50+ different IoT boards/devices.

Efficient Hardware Abstraction Layer (HAL)
minimized hardware-dependent code.
support for 8/16/32 bit, ARM, AVR, MIPS.
Supported vendors: Microchip, NXP, STMicroelectronics,
Nordic, TI, ESP, RISC-V, etc.
Large list of sensors and actuators supported (e.g drivers)
native board: run RIOT as process on your computer
+100 boards supported

Compliance with common system standards
POSIX sockets, pthreads
standard C, C++ application coding

26 / 36

Embedded Operating Systems – RIOT

Hardware Abstraction Layer

3 blocks: boards, cpus, drivers

CPUs are organized as follows:

architecture (ARM) → family
(stm32) → type (stm32l4) →
model (stm32l476rg)

Generic API for cpu peripherals
(gpio, uart, spi, pwm, etc)

same API for all architectures

Only based on vendor header files
(CMSIS)

less code duplication, more
efficient but more work

One application → one board → one cpu model

27 / 36

Embedded Operating Systems – RIOT

Modular Operating System

Features are libraries → only build what’s required

xtimer – high-level timer
subsystem

Full abstraction from the
hardware timer
Can set callbacks, put a
thread to sleep, etc

shell – interactive command
line

Others: crypto, fmt, math,
etc

Also: External packages provided and maintained by third parties.

28 / 36



Embedded Operating Systems – RIOT

Core: Real-time scheduler

Tickless scheduler – energy efficient.
Fixed priorities – deterministic.

Highest priority thread runs until finished or blocked.
16 priority levels.
the lower level the higher priority.
Idle thread has priority 15.
Main thread has priority 7.

Preemption O(1) operations – real-time.
Interrupt service runtime (ISR) can preempt any thread at any
time
If all threads are blocked:

Switch to special IDLE thread
Goes into lowest possible power mode

Low latency interrupt handler – reactivity.

29 / 36

Embedded Operating Systems – RIOT

Core: Multi-Threading and IPC

Separate thread contexts with separate
thread memory stack.

Minimal thread control block (TCB).

Thread synchronization using mutexes,
semaphores and messaging.

2 threads by default:
1 the main thread: running the main function
2 the idle thread:

lowest priority
→ fallback thread when all other threads are blocked or
terminated
switches the system to low-power mode

30 / 36

Embedded Operating Systems – RIOT

Core: Memory Management

Threads have their own memory stack

The stack also contains the thread
control block (tcb)

There is no memory protection

A stack overflow can destroy another
stack

31 / 36

Embedded Operating Systems – RIOT

Overview of the boot sequence

1 board_init() is implemented in
boards/<board name>/board.c file

2 cpu_unit() is implemented in cpu/<cpu model>/cpu.c file

3 kernel_init() is implemented in core/kernel_init.c file

Example for ARM Cortex-M:

the entry point is reset_handler_default

implemented in cpu/cortexm_common/vectors_cortexm.c

32 / 36



Embedded Operating Systems – RIOT

Network Stacks

IP oriented stacks: designed for Ethernet, WiFi, 802.15.4 networks

GNRC: the in-house 802.15.4/6LowPAN/IPv6 stack of RIOT
Thread: 802.15.4 IPv6 stack provided by the ThreadGroup
OpenWSN (experimental): a deterministic MAC layer
implementing the IEEE 802.15.4e TSCH protocol

Other IPv6 stacks:

lwIP: full-featured network stack designed for low memory
consumption
emb6: A fork of Contiki network stack that can be used
without proto-threads
IPv6 over BLE, NimBLE stack support

33 / 36

Embedded Operating Systems – RIOT

Other Network Support

In-house Controller Area Network (CAN)

LoRaWAN stack – Compliant with LoRaWAN 1.0.2

SigFox support for ATA8520e modules

Full featured USB stack (CDC-ACM, CDC-ECM, etc)

SUIT: Standard and secure software update implementation

34 / 36

Embedded Operating Systems – RIOT

35 / 36

Embedded Operating Systems – RIOT

Source code organization

boards: board specific definitions, cpu model, clock,
peripherals config, documentation, serial and flasher config
core: kernel initialization, thread, ipc
cpu: support for microcontroller (cmsis, definitions, peripheral
drivers), entry point (_reset_handler_default_)
dist: management and utility tools (script, ci, static checkers,
etc)
doc: doxygen documentation
drivers: high-level device drivers (sensors, actuators, radios),
HAL API
examples: sample applications
makefiles: build and management system makefiles
pkg: external packages
sys: system libraries, network, shell, xtimer, etc
tests: unittests, test applications (can be used as examples)

36 / 36

https://github.com/apache/mynewt-nimble

	Embedded Operating Systems
	Basic notions of Operating Systems
	Operating Systems for IoT
	STM32 Nucleo Development Process
	ARM MBed
	Zephyr OS
	RIOT


