
Internet of Things
Machine to Machine Communications

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 6:
Machine to Machine Communications

1 / 47

IoT Architectures –

Components, Processing Stages and Protocols

2 / 47

IoT Architectures – One-to-One Information Exchange

The Web and REST

3 / 47

IoT Architectures – One-to-One Information Exchange

A REST Request

4 / 47

IoT Architectures – One-to-One Information Exchange

Web Naming

5 / 47

IoT Architectures – One-to-One Information Exchange

URL Resolution

6 / 47

IoT Architectures – One-to-One Information Exchange

An HTTP Request

7 / 47

IoT Architectures – One-to-One Information Exchange

Web Paradigms

8 / 47

IoT Architectures – One-to-One Information Exchange

CoAP Design Requirements

9 / 47

IoT Architectures – One-to-One Information Exchange

The CoAP Architecture

10 / 47

IoT Architectures – One-to-One Information Exchange

The CoAP Protocol

A very efficient RESTful protocol
Ideal for constrained devices and networks
Specialized for M2M applications
Easy to proxy to/from HTTP
Does not replace HTTP
Is not a cut-down HTTP version
Not just for resource-constrained networks

11 / 47

IoT Architectures – One-to-One Information Exchange

CoAP Features

Embedded web transfer protocol (coap://)
Asynchronous transaction model
UDP binding with reliability and multicast support
GET, POST, PUT, DELETE methods
URI support
Small, simple 4 byte header
DTLS based PSK, RPK and Certificate security
Subset of MIME types and HTTP response codes
Built-in discovery
Optional observation and block transfer

12 / 47

IoT Architectures – One-to-One Information Exchange

Request Example

13 / 47

IoT Architectures – One-to-One Information Exchange

Separating Response and Acknowledgement

14 / 47

IoT Architectures – One-to-One Information Exchange

Dealing with Packet Loss

15 / 47

IoT Architectures – One-to-One Information Exchange

A Hands-on Example using libCoap

libCoap: C-Implementation of CoAP
https://libcoap.net/

Simple command-line server included for testing:
coap-server -A 127.0.0.1 -p 13001

Simple command-line client included for testing:
coap-client coap://127.0.0.1:13001/.well-known/core

</>;title="General Info";ct=0,</time>;if="clock";

rt="ticks";title="Internal Clock";ct=0;obs,</async>;

ct=0

16 / 47

https://libcoap.net/

IoT Architectures – One-to-One Information Exchange

Various implementations available on GitHub

CoAPthon: a python library to the CoAP protocol aligned with
the RFC – https://github.com/Tanganelli/CoAPthon

Simple client in python:
from coapthon.client.helperclient import HelperClient

host = "127.0.0.1"

port = 13001

path ="/"

client = HelperClient(server=(host, port))

response = client.get(path)

print(response.pretty_print())

client.stop()

17 / 47

IoT Architectures – One-to-One Information Exchange

Various implementations available on GitHub

Interroperable with libCoap
Source: ('127.0.0.1', 13001)

Type: ACK

MID: 11490

Code: CONTENT

Token: rK

Content-Type: 0

Max-Age: 196607

Payload:

This is a test server made with libcoap (see https://libcoap.net)

18 / 47

IoT Architectures – One-to-One Information Exchange

CoAP server resource in Python + CoAPthon

from coapthon.server.coap import CoAP

from coapthon.resources.resource import Resource

class BasicResource(Resource):

def __init__(self, name="BasicResource", coap_server=None):

super(BasicResource, self).__init__(name, coap_server, visible=True,

observable=True, allow_children=True)

self.payload = "Basic Resource"

def render_GET(self, request):

return self

def render_PUT(self, request):

self.payload = request.payload

return self

def render_POST(self, request):

res = BasicResource()

res.location_query = request.uri_query

res.payload = request.payload

return res

def render_DELETE(self, request):

return True

19 / 47

IoT Architectures – One-to-One Information Exchange

CoAP server in Python + CoAPthon

from coapthon.server.coap import CoAP

from coapthon.resources.resource import Resource

class CoAPServer(CoAP):

def __init__(self, host, port):

CoAP.__init__(self, (host, port))

self.add_resource('basic/', BasicResource())

def main():

server = CoAPServer("0.0.0.0", 5683)

try:

server.listen(10)

except KeyboardInterrupt:

print("Server Shutdown")

server.close()

print("Exiting...");

if __name__ == '__main__':

main()

20 / 47

https://github.com/Tanganelli/CoAPthon

IoT Architectures – One-to-One Information Exchange

CoAP server in Python + CoAPthon

Interroperable with libCoap command-line client:

coap-client coap://127.0.0.1:5683/basic

Basic Resource

21 / 47

IoT Architectures – One-to-One Information Exchange

Proxying and caching

22 / 47

IoT Architectures – One-to-One Information Exchange

Observation

23 / 47

IoT Architectures – One-to-One Information Exchange

Block transfer

24 / 47

IoT Architectures – One-to-One Information Exchange

The Web of Things

25 / 47

IoT Architectures – One-to-One Information Exchange

Example: Smart Parking using Web of Things

26 / 47

IoT Architectures – One-to-One Information Exchange

Example: Smart Parking using Web of Things

27 / 47

IoT Architectures – Many-to-Many Information Exchange

One-to-One vs Many-to-Many

28 / 47

IoT Architectures – Many-to-Many Information Exchange

Decoupling Produces and Consumers

29 / 47

IoT Architectures – Many-to-Many Information Exchange

Application Examples

30 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Publish - Subscribe Paradigm

31 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Bi-directional, asynchronous “push” communication

32 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Supported Protocols

MQTT through IP version 4 and IP version 6.

MQTT over the WebSocket protocol.

HTTPS protocol only to publish through IP version 4 and IP
version 6.

33 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Topic-based communication

Topics register interest for incoming messages.

Specify where to publish messages.

Topics are 8-bit Unicode Transformation Format (UTF-8)
encoded hierarchical strings

Each forward slash indicates a topic level.

34 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Multi-level Subscriptions

35 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Quality of Service for reliable messaging

36 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Agnostic payload for flexible delivery

37 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Retained messages for last value caching

38 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Session state control

39 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Last will and testament for presence

40 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Setting up a MQTT Broker

Several MQTT brokers are available to install locally
Eclipse Mosquitto: an open source implementation
https://mosquitto.org/

Many cloud-based MQTT brokers available
CloudMQTT: a hosted broker
https://www.cloudmqtt.com/

HiveMQ – both local or clour-based
https://www.hivemq.com/

Adopted by all major cloud-providers: AWS, Azure, Google . . .
Various implementations available on GitHub
paho.mqtt: a python library to the MQTT protocol by Eclipse
https://pypi.org/project/paho-mqtt/

41 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Various implementations available on GitHub

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):

print("Connected with result code "+str(rc))

def on_message(client, userdata, msg):

print(msg.topic+" "+str(msg.payload))

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect("localhost", 1883, 60)

client.subscribe("$SYS/#")

client.loop_forever()

42 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Various implementations available on GitHub

Interroperable with mosquitto / . . .

Connected with result code 0

$SYS/broker/version b'mosquitto version 1.6.8'

$SYS/broker/uptime b'3399 seconds'

43 / 47

IoT Architectures – Publish/Subscribe Protocol For IoT

MQTT-S/MQTT-SN: MQTT for Sensor Networks

Peers are mainly connected via wireless networks.

Low Power battery operated sensors with very limited
processing power and storage.

Limited payload size.

Not always on (sleeping).

44 / 47

https://mosquitto.org/
https://www.cloudmqtt.com/
https://www.hivemq.com/
https://pypi.org/project/paho-mqtt/

IoT Architectures – Publish/Subscribe Protocol For IoT

MQTT-S/MQTT-SN vs MQTT

1 Connect message split into three messages two are optional
and are used for the will message

2 Topic id’s used in place of topic names.
3 Short Topic names
4 Pre-defined topics.
5 Discovery process to let clients discover the Gateway
6 Will Topic and messages can be changed during the session
7 Off line keep alive procedure for sleeping clients.

45 / 47

IoT Architectures – Publish/Subscribe Protocol For IoT

Integration of Networks

46 / 47

IoT Architectures – Publish/Subscribe Protocol For IoT

MQTT-S Architecture

47 / 47

IoT Architectures – Publish/Subscribe Protocol For IoT

MQTT-S Transparent vs Aggregating Gateway

48 / 47

	IoT Architectures
	
	One-to-One Information Exchange
	Many-to-Many Information Exchange
	Publish - Subscribe Communication Paradigm
	Publish - Subscribe Communication Paradigm
	Publish/Subscribe Protocol For IoT

