
Internet of Things
Machine to Machine Communications

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 6:
Machine to Machine Communications

1 / 47

IoT Architectures –

Components, Processing Stages and Protocols

2 / 47

IoT Architectures – One-to-One Information Exchange

The Web and REST
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A REST Request
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Web Naming
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URL Resolution
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An HTTP Request
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Web Paradigms
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CoAP Design Requirements
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The CoAP Architecture
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The CoAP Protocol

A very efficient RESTful protocol
Ideal for constrained devices and networks
Specialized for M2M applications
Easy to proxy to/from HTTP
Does not replace HTTP
Is not a cut-down HTTP version
Not just for resource-constrained networks
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CoAP Features

Embedded web transfer protocol (coap://)
Asynchronous transaction model
UDP binding with reliability and multicast support
GET, POST, PUT, DELETE methods
URI support
Small, simple 4 byte header
DTLS based PSK, RPK and Certificate security
Subset of MIME types and HTTP response codes
Built-in discovery
Optional observation and block transfer
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Request Example

13 / 47

IoT Architectures – One-to-One Information Exchange

Separating Response and Acknowledgement
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Dealing with Packet Loss
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A Hands-on Example using libCoap

libCoap: C-Implementation of CoAP
https://libcoap.net/

Simple command-line server included for testing:
coap-server -A 127.0.0.1 -p 13001

Simple command-line client included for testing:
coap-client coap://127.0.0.1:13001/.well-known/core

</>;title="General Info";ct=0,</time>;if="clock";

rt="ticks";title="Internal Clock";ct=0;obs,</async>;

ct=0
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Various implementations available on GitHub

CoAPthon: a python library to the CoAP protocol aligned with
the RFC – https://github.com/Tanganelli/CoAPthon

Simple client in python:
from coapthon.client.helperclient import HelperClient

host = "127.0.0.1"

port = 13001

path ="/"

client = HelperClient(server=(host, port))

response = client.get(path)

print(response.pretty_print())

client.stop()
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Various implementations available on GitHub

Interroperable with libCoap
Source: ('127.0.0.1', 13001)

Type: ACK

MID: 11490

Code: CONTENT

Token: rK

Content-Type: 0

Max-Age: 196607

Payload:

This is a test server made with libcoap (see https://libcoap.net)
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CoAP server resource in Python + CoAPthon

from coapthon.server.coap import CoAP

from coapthon.resources.resource import Resource

class BasicResource(Resource):

def __init__(self, name="BasicResource", coap_server=None):

super(BasicResource, self).__init__(name, coap_server, visible=True,

observable=True, allow_children=True)

self.payload = "Basic Resource"

def render_GET(self, request):

return self

def render_PUT(self, request):

self.payload = request.payload

return self

def render_POST(self, request):

res = BasicResource()

res.location_query = request.uri_query

res.payload = request.payload

return res

def render_DELETE(self, request):

return True
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CoAP server in Python + CoAPthon

from coapthon.server.coap import CoAP

from coapthon.resources.resource import Resource

class CoAPServer(CoAP):

def __init__(self, host, port):

CoAP.__init__(self, (host, port))

self.add_resource('basic/', BasicResource())

def main():

server = CoAPServer("0.0.0.0", 5683)

try:

server.listen(10)

except KeyboardInterrupt:

print("Server Shutdown")

server.close()

print("Exiting...");

if __name__ == '__main__':

main()

20 / 47

https://github.com/Tanganelli/CoAPthon


IoT Architectures – One-to-One Information Exchange

CoAP server in Python + CoAPthon

Interroperable with libCoap command-line client:

coap-client coap://127.0.0.1:5683/basic

Basic Resource
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Proxying and caching
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Observation
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Block transfer
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The Web of Things
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Example: Smart Parking using Web of Things
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Example: Smart Parking using Web of Things
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One-to-One vs Many-to-Many
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Decoupling Produces and Consumers
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Application Examples
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Publish - Subscribe Paradigm

31 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Bi-directional, asynchronous “push” communication
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Supported Protocols

MQTT through IP version 4 and IP version 6.

MQTT over the WebSocket protocol.

HTTPS protocol only to publish through IP version 4 and IP
version 6.
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Topic-based communication

Topics register interest for incoming messages.

Specify where to publish messages.

Topics are 8-bit Unicode Transformation Format (UTF-8)
encoded hierarchical strings

Each forward slash indicates a topic level.
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Multi-level Subscriptions
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Quality of Service for reliable messaging
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Agnostic payload for flexible delivery
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Retained messages for last value caching
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Session state control
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Last will and testament for presence
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Setting up a MQTT Broker

Several MQTT brokers are available to install locally
Eclipse Mosquitto: an open source implementation
https://mosquitto.org/

Many cloud-based MQTT brokers available
CloudMQTT: a hosted broker
https://www.cloudmqtt.com/

HiveMQ – both local or clour-based
https://www.hivemq.com/

Adopted by all major cloud-providers: AWS, Azure, Google . . .
Various implementations available on GitHub
paho.mqtt: a python library to the MQTT protocol by Eclipse
https://pypi.org/project/paho-mqtt/
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Various implementations available on GitHub

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):

print("Connected with result code "+str(rc))

def on_message(client, userdata, msg):

print(msg.topic+" "+str(msg.payload))

client = mqtt.Client()

client.on_connect = on_connect

client.on_message = on_message

client.connect("localhost", 1883, 60)

client.subscribe("$SYS/#")

client.loop_forever()

42 / 47

IoT Architectures – Publish - Subscribe Communication Paradigm

Various implementations available on GitHub

Interroperable with mosquitto / . . .

Connected with result code 0

$SYS/broker/version b'mosquitto version 1.6.8'

$SYS/broker/uptime b'3399 seconds'
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MQTT-S/MQTT-SN: MQTT for Sensor Networks

Peers are mainly connected via wireless networks.

Low Power battery operated sensors with very limited
processing power and storage.

Limited payload size.

Not always on (sleeping).
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MQTT-S/MQTT-SN vs MQTT

1 Connect message split into three messages two are optional
and are used for the will message

2 Topic id’s used in place of topic names.
3 Short Topic names
4 Pre-defined topics.
5 Discovery process to let clients discover the Gateway
6 Will Topic and messages can be changed during the session
7 Off line keep alive procedure for sleeping clients.
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Integration of Networks
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MQTT-S Architecture
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MQTT-S Transparent vs Aggregating Gateway
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