loannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 6:

Machine to Machine Communications

Server

redirect

Server

A

Server !

Server

Server

3 /47

Internet

Stage4: Data-Centers and Cloud

Stage3: Edge IT

2: |
Stag%ggpésgrt\%nG/W &gg as?é: U|smon/

Stagel: sensors & Actuators

2/ 47
225C
ltemperature
Server
——
200 OK
GET /temperature application/text
225 C
Client
4/ 47

Universal Resource Name (URN)

:N740:3a-43-f-12-01-01 I

Universal Resource Identifier (URI)

Universal Resource Locator (URL)

' http:// | www.example.org |8080| Isensors | ?id=light i

Scheme Authority Port Path Query
5/ 47

HTTP HTTP

Client Server
~ TCP 3-way handshake Bl
e o o e e e e o G o
_________________________________ >
HTTP GET /light _

B HTTP 200 OK (application/xml)

_________ TCP 2-way termination %
<_ ________________________________

747

Resource 1\
org— 2id=li
HTTP www.example. o1 ?id=light
TCP
IP
2001:dead:beef::1
Ethernet Link
e —
6/ 47
REST Resource SOAP Service
3 ——
WSDL/
application/xml application/soap+xml
?
s
<temp unit="C">50
</temp> Body RequestSensor(temp)
GET /serfsor/temp POST /sensorservice
HTTP
mysensor.example.com
8 /47

REQ7:
HTTP Mapping

REQ4:
Caching

REQ13: REQ14: REQ2:
MIME Type Manageability Constrained networks
REQS:
X Resource manipulation
Web F rces
LV
CoAP RE@:

ubpP

P REQS:
Sleeping nodes
Constrained Lh\
REQ1:
Limited Flash/RAM

REQ10:
UDP Transport REQ@:
REQ6: REQ11: REQ12: Multicast

Sub/Notify Reliability Low latency

9/ 47

A very efficient RESTful protocol

Ideal for constrained devices and networks
Specialized for M2M applications

Easy to proxy to/from HTTP

Does not replace HTTP

Is not a cut-down HTTP version

Not just for resource-constrained networks

11/ 47

- REST >

The Internet Constrained Environments ‘

10 / 47

Embedded web transfer protocol (coap://)
Asynchronous transaction model

UDP binding with reliability and multicast support
GET, POST, PUT, DELETE methods

URI support

Small, simple 4 byte header

@ DTLS based PSK, RPK and Certificate security

@ Subset of MIME types and HTTP response codes
@ Built-in discovery

@ Optional observation and block transfer

12 / 47

CoAP CoAP
Client Server

CON [0x1a] GET /humidity

I . X
V . . g0

timeout CON [0x1a] GET /humidity S

L/
ACK [0x1a] 2.05 Content "<humidity>..."
13 / 47
CoAP CoAP
Client il

CON Iiats] BET RGN > Confirmable Request

ACK 2. t "<light>..."
i [0x§75] 5 Etentily Piggy-backed Response

A

15 / 47

CoAP CoAP
Client Server

CON [0x1b] GET /light Token: 0x31

\/

ACK [0x1b] takes too much time

<
<%

V.
CON [0x823] 2.05 Content /light Token: 0x31 "<light>..."
-« Nlight ready

ACK [0x823]

»
>

14 / 47

@ libCoap: C-Implementation of CoAP
https://libcoap.net/

@ Simple command-line server included for testing:
coap-server -A 127.0.0.1 -p 13001

@ Simple command-line client included for testing:
coap-client coap://127.0.0.1:13001/.well-known/core
H/>;tit1e="General Info";ct=0,</time>;if="clock";
rt="ticks";title="Internal Clock";ct=0;o0bs,</async>;
ct=0

16 / 47

https://libcoap.net/

@ Interroperable with libCoap
Source: ('127.0.0.1', 13001)

@ CoAPthon: a python library to the CoAP protocol aligned with
the RFC — https://github.com/Tanganelli/CoAPthon

@ Simple client in python: Type: ACK
from coapthon.client.helperclient import HelperClient MID: 11490
P ' e P P Code: CONTENT
host = "127.0.0.1" gZi:lelr:lth'I{'ype' .
port = 13001 3] i
path =n/n Max Age 196607

Payload:

client = HelperClient (server=(host, port)) This is a test server made with libcoap (see https://libcoap.net)

response = client.get(path)
print (response.pretty_print())
client.stop()

17/ 47 18 / 47

from coapthon.server.coap import CoAP
from coapthon.resources.resource import Resource

from coapthon.server.coap import CoAP
from coapthon.resources.resource import Resource
class BasicResource(Resource):
def __init__(self, name="BasicResource", coap_server=None):
super (BasicResource, self).__init__(name, coap_server, visible=True,
observable=True, allow_children=True)

class CoAPServer (CoAP):
def __init__(self, host, port):
CoAP.__init__(self, (host, port))
self.payload = "Basic Resource" self.add_resource('basic/', BasicResource())
def main():
server = CoAPServer("0.0.0.0", 5683)
try:
server.listen(10)

def render_GET(self, request):
return self

def render_PUT(self, request):

self.payload = request.payload
return self

except KeyboardInterrupt:
print("Server Shutdown")
server.close()

def render_POST(self, request): print ("Exiting...");
res = BasicResource()
res.location_query = request.uri_query if __name__ == '__main__"':
res.payload = request.payload main()
return res
19 / 47 20 / 47
der render_UkLKIk(SelI, request):

rotiirn Triie

https://github.com/Tanganelli/CoAPthon

Interroperable with libCoap command-line client:

coap-client coap://127.0.0.1:5683/basic
Basic Resource

21 /47
CoAP CoAP
Client Server
CON GET /light Observe: 0 Token: 0x3f
» >
ACK 2.05 Observe: 27 Token: Ox3f "<;iéhi>..."
- N
CON 2.05 Observe: 28 Token: 0x3f "<light>..." | /light changes
ACK Token: 0x3f
CON 2.05 Observe: 29 Token: 0x3f "<light>..." Nlight changes
ACK Token: 0x3f
23 /47

1l [
@‘f g L
i
CoAP Server Proxy HTTP Client
HTTP GET /light
CON GET /light =

<

ACK max-age=30s 2.05 Content "<light>{.."

200 OK "<light>..."

\

HTTP GET flight

.
<

cache fresh
T T -

\/

22/ 47

CoAP CoAP
Client Server

CON GET Jlight

ACK block2(nr=0, m=1, sz=1024) 2.05 "</light>...

CON block2(nr=1, m=0, s2=1024) GET /light

ACK block2(nr=1, m=1, s2=1024) 2.05 "</light>...

CON block2(nr=2, m=0, sz=1024) GET /light

—

Jlight (4096 B)

ACK block2(nr=2, m=1, sz=1024) 2.05 "</light>...

CON block2(nr=3, m=0, sz=1024) GET /light

N

ACK block2(nr=3, m=0, sz=1024) 2.05 "</light>...

24 / 47

4 available

The Internet Constrained Environments

25 / 47 26 / 47

Node ”1“ is at parking space “VERIA-1"
Node “23” is at parking space “VERIA-2”
Node “2746" is at parking space “VERIA-3"

Semantic Search

Parking space “VERIA-1”, “VERIA-2", “VERIA-3" is at car park “VERIA" Engine

| \J marT CoAP

client | | Client [| Server |
- Broker | < [client | [Client

New application!

offer “Car Detection”

service :

Node “6“, “77", ... “3432"
offer “Car Detection”

service >

S

APACHE

Many display querying
different car parks

Display querying search
engine for “Car Detection”
services in car park “VERIA”

[Node “6“ is at parking space “PATRAS-1"
etc. |

27 / 47 28 / 47

Logistics, {1l
Transportation & Logistics ' "’g';@j_lﬂlﬂﬂlilllj Smiﬂgnzeﬁ' Transportation

Security & Surveillance
M2M .%
Integrat

ion
Platform
. = %

= Communication
Medical &

Industrial &

Infrastructure Enety N, @\
Healthcare n ' o ‘.g =
o Environmental
AT Logistics Monitoring
——= =

30 / 47

A

A

WebSocket
thing #2 !
-~ . recv MQTT
group chat Broker | Database

Broker

. [co)-| Mobile App
S tennis scores - —
— 2 ovOIes

€} —
w HTMLS5 App oo [l —
. thing #3
ad

CONNECT to MQTT broker
Logger PUBLISH to thing3/data

31/ 47

A

Analytics CONNECT to MQTT broker
e Car telemegy ' SUBSCRIBE to thing3/data TCP/IP
Il A thing #1 [4C2 >
ao

v

publish subscribe

32 /47

@ MQTT through IP version 4 and IP version 6.
o MQTT over the WebSocket protocol.

@ HTTPS protocol only to publish through IP version 4 and IP
version 6.

scores/football/bigl2/Texas
scores/football/bigl2/TexasTech
scores/football/bigl2/0klahoma
scores/football/bigl2/IowaState

scor‘es/football/bing/Texas

scores/football/bigl2/TCU \ MQTT scores/football/bigl2/+
scores/football/bigl2/0OkState —

scores/football/bigl2/Kansas 7" Broker
scores/football/SEC/TexasA&M

scores/football/SEC/LSU Scores/#

scores/football/SEC/Alabama

single level wildcard: + multi-level wildcard: #

33 /47

Texas Fan

Big 12 Fan

ESPN

35/ 47

@ Topics register interest for incoming messages.
@ Specify where to publish messages.

@ Topics are 8-bit Unicode Transformation Format (UTF-8)
encoded hierarchical strings

@ Each forward slash indicates a topic level.

Topic level separator

home/office/lamp

L o\ J
| |

Topic level Topic level

34 /47

QoS 0

PuBLiSH 3
at most once

- doesn't survive failures
- never duplicated

MQTT QoS 2

Broker exactly once

- survives connection loss
- never duplicated

QoS 1

at least once H PUBACK

- survives connection loss
- can be duplicated

36 / 47

pub pub pub .
- CONNECT 1D=thingl >
< i > PUBLISH thingl/battery {“value”:95} RETAIN —
CONNECT PUBLISH thingl/battery {“value”:94} RETAIN —»
PUBLISH to thingl/myBinary PUBLISH thingl/battery {“value”:93} RETAIN —»
| 01010100110011100 | MQTT DISCONNECT 4 MQTT
PUBLISH to thingl/myJSON Broker Broker

{“id":"thing1”,”lon":-97.135198,
"lat”:94.19384,"status™:"I'm alive!”}

CONNECT 1ID=thing2 >
. . SUBSCRIBE thingl/battery >
PUBLISH 1o thingl/myPicture <4— RETAIN thingl/battery {“value”:93} PUBLISH

I. . |

37 /47 38 /47

CONNECT 1D=thing2
26| SUBSCRIBE thingl/status
1. CONNECT 1D=thingl LWT=thingl/status “Bye!” —

PINGREQ d MQTT
PINGRESP

CONNECT 1D=thingl, cleanSession=FALSE ——»
115 SUBSCRIBE chat/myRoom QoS=2
DISCONNECT

vy

vy

CONNECT 1D=thing2
26 PUBLISH chat/myRoom “Hello Thingl!” QoS=1 — MQTT

Broker

PUBLISH chat/myRoom “Are you there?” QoS=2 — N={fe] (=]}

PINGREQ >
< PINGRESP
(client has network problem)

(KEEP_ALIVE seconds pass)
. <4——————— thingl/status “Goodbye!” PUBLISH

39 /47 40 / 47

CONNECT 1D=thingl, cleanSession=FALSE =———p
<4——————— chat/myRoom “Hello Thingl!” PUBLISH
<+——— chat/myRoom “Are you there?” PUBLISH

PUBLISH chat/myRoom “I am now!” QoS=1 —————»

@ Several MQTT brokers are available to install locally
e Eclipse Mosquitto: an open source implementation
https://mosquitto.org/
@ Many cloud-based MQTT brokers available
o CloudMQTT: a hosted broker
https://www.cloudmqgtt.com/
e HiveMQ - both local or clour-based
https://www.hivemq.com/
@ Adopted by all major cloud-providers: AWS, Azure, Google . ..
@ Various implementations available on GitHub
paho.mqtt: a python library to the MQTT protocol by Eclipse

https://pypi.org/project/paho-mqtt/

41/ 47

import

paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))

def on_message(client, userdata, msg):
print (msg.topic+" "+str(msg.payload))

client

client.
client.

client.
.subscribe ("$SYS/#")

client

client

= mqtt.Client()
on_connect = on_connect
on_message = on_message

connect ("localhost", 1883, 60)

.loop_forever()

42/ 47

@ Peers are mainly connected via wireless networks.

Interroperable with mosquitto / ...

Connected with result code 0
$SYS/broker/version b'mosquitto version 1.6.8'
$SYS/broker/uptime b'3399 seconds'

43 / 47

o Low Power battery operated sensors with very limited
processing power and storage.

@ Limited payload size.

@ Not always on (sleeping).

44 /47

https://mosquitto.org/
https://www.cloudmqtt.com/
https://www.hivemq.com/
https://pypi.org/project/paho-mqtt/

@ Connect message split into three messages two are optional
and are used for the will message

@ Topic id's used in place of topic names.

© Short Topic names

@ Pre-defined topics.

© Discovery process to let clients discover the Gateway

@ Will Topic and messages can be changed during the session

@ Off line keep alive procedure for sleeping clients.

45 / 47

' MQTT
Wireless / \
Sensor

Network

MQTT
Broker

47/ 47

Traditional
Ap p Netwol'k

46 / 47

MQTT-S MQTT MQTT-S MQTT
O > Broker O=—> /: > Broker
Transparent . Aggregating
Clients oW Clients ow

48 / 47

	IoT Architectures
	
	One-to-One Information Exchange
	Many-to-Many Information Exchange
	Publish - Subscribe Communication Paradigm
	Publish - Subscribe Communication Paradigm
	Publish/Subscribe Protocol For IoT

