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Disclaimer: The purpose of the following slides is to illustrate the high-level concept that 
underlies some privacy preserving computation techniques — not their mathematical 

foundations. 
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https://inpher.io/xor-secret-computing/ https://federated.withgoogle.com/

https://sites.google.com/view/fl-tutorial/

source: https://colinbyrneireland.medium.com/brief-primer-on-federated-learning-part-1-ecb95f36c0df



Advances and Open Problems in Federated 
Learning. Peter Kairouz et al.  Arxiv (2019)

https://sites.google.com/view/fl-tutorial/

https://sites.google.com/view/fl-tutorial/

Advances and Open Problems in Federated 
Learning. Peter Kairouz et al.  Arxiv (2019)



A simple example: Linear Regression 
LOSS FUNCTION



https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf

Minimize LOSS = (yi-xi,w)

https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf



https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf https://arxiv.org/pdf/1602.05629.pdf

1. At first, a model is randomly 
initialized on the central server. 

2. For each round t: 
i. A random set of clients 
are chosen; 
ii. Each client performs 
local gradient descent 
steps; 
iii. The server aggregates 
model parameters 
submitted by the clients.

https://colab.research.google.com/drive/1
p98m12ID-czEL2WyJSN1YI2tTExz71H3



https://www.openmined.org/ https://fate.readthedocs.io/en/latest/index.html

POSSIBLE
LEAK OF
INFORMATION

A number of evidences in the literature
● Exploiting unintended feature leakage in collaborative learning (in SP2019),
● Deep leakage from gradients (in NeurIPS2019),
● Beyond Inferring Class Representatives: User-Level Privacy Leakage From 

Federated Learning (in INFOCOM2019).

POSSIBLE
LEAK OF
INFORMATION

Secure Multiparty Computaion (MCP)



https://www.unboundtech.com/wp-content/uploads/2020/09/Unbound_Tech_A_Primer_in_Secure_Multiparty_Computation_MPC.pdf

Secure multiparty computation (MPC) 

Jointly computing a function among a set of mutually distrusting parties.

BASIC SCENARIO:

A group of parties wish to compute a given function on their private inputs, while 
still keeping their inputs private from each other

IoT example
Who is consuming less water? 

50 100 150

Alice Bob Joe

OUTPUT: Alice … they do not know anything about Alice consumption or 
if Bob consumption is more or less than Joe one

Properties

Input privacy: The information derived from the execution of the protocol should 
not allow any inference of the private data held by the parties, except for what is 
revealed by the prescribed output of the function. 

Correctness: Adversarially colluding parties willing to share information or deviate 
from the instructions during the protocol execution should not be able to force 
honest parties to output an incorrect result.



Average

source: https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf source: https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf

Adversaries

● Semi-honest (passive) security: In this case, it is assumed that corrupted parties merely cooperate 
to gather information out of the protocol, but do not deviate from the protocol specification. This is a 
rather naive adversary model, that may yield weak security in real situations. However, protocols 
achieving this level of security prevent inadvertent leakage of information between parties, and are 
thus useful if this is the only concern. In addition, protocols in the semi-honest model can suffice in 
cases where it is possible to guarantee that the code being run cannot be replaced.

● Malicious (active) security: In this case, the adversary may arbitrarily deviate from the protocol 
execution in its attempt to cheat. Protocols that achieve security in this model provide a very high 
security guarantee. The only thing that an adversary can do in the case of dishonest majority is to 
cause the honest parties to “abort” having detected cheating. If the honest parties do obtain output, 
then they are guaranteed that it is correct. Of course, their privacy is always preserved.

What it means for a protocol to be secure?

Hard to formalize:

● The parties should “learn nothing”, but they need to learn the output and this 
depends on the inputs. 

● The output must be “correct”, but correct output depends on the parties’ 
inputs, and we do not know what inputs corrupted parties will use.



Intuition:  ideal-real-world paradigm

MPC protocol is secure if a real-world protocol “behaves” like an ideal-world one, 
meaning that the only information revealed by the real-world protocol is that which 
is revealed by the ideal-world one, and that the output distribution is the same in 
both (guaranteeing correctness since this holds by definition in the ideal world).

DETOUR on RSA BASICS

Slides from Chapter 8 Security

of Computer Networking: A Top Down Approach 
7th edition 
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Two-Party Secure Computation of RSA

Joint computation:  decrypt an RSA encrypted text

Know in advance: the public key, the encrypted text

Know after: the decrypted text … nothing more and in particular not the 
secret key 
 

Two-Party Secure Computation of RSA
(some simplification please see the original paper)
Choose 𝑑1 and 𝑑2 uniformly at random under the constraint that d= 𝑑1 + 𝑑2
● Alice has (𝑑1, 𝑁)
● Bob has (𝑑2, 𝑁)

Neither Alice nor Bob can carry out the decryption operation by 
themselves, since they only hold a random share of the secret exponent 𝑑.

𝑦 is the encrypted text
● Alice can compute 𝑥1 = y𝑑1 mod 𝑁 in isolation
● Bob can compute 𝑥2 =  y𝑑2 mod 𝑁 in isolation

Then, the product 𝑥1 ⋅ 𝑥2 mod 𝑁 is the required result, since 𝑥1 ⋅ 𝑥2 = y𝑑1 ⋅ 
y𝑑2 = 𝑦(𝑑1+𝑑2) = 𝑦 𝑑 (where all operations are modulo 𝑁).



𝑥1 ⋅ 𝑥2 mod 𝑁 is the required result, since 

𝑥1 ⋅ 𝑥2 = y𝑑1 ⋅ y𝑑2 = 𝑦(𝑑1+𝑑2) = 𝑦 𝑑 (where all operations are modulo 𝑁).

This operation was computed without 𝑑 ever being revealed. 

Refreshing keys
A very important feature of this method is that it is actually possible for 
Alice and Bob to continually modify the value of their share of the key, 
without modifying the key itself. 
Specifically, the parties can run a secure coin-tossing protocol to obtain a 
random value 𝑟 of the same length as 𝑁. 
● Then, Alice can set 𝑑1 ′ = 𝑑1 + 𝑟 and Bob can set 𝑑2 ′ = 𝑑2 − 𝑟. 
● The result is that 𝑑1 ′ + 𝑑2 ′ = 𝑑1 + 𝑑2 = 𝑑 and so everything still works 

as above. 

However, if an attacker successfully attacks Alice and steals 𝑑1, and then 
later attacks Bob and steals 𝑑2 ′ , then it will actually learn nothing about 𝑑 
(because 𝑑1 + 𝑑2 ′ = 𝑑 − 𝑟 and so the secret 𝑑 is masked by the random 𝑟).

This means that the attacker has to successfully attack Alice and Bob at 
the same time in order to steal the private key. In the literature, this type of 
security is known as “proactive security”. 

Is it general?

The example of how the RSA function can be securely computed shows 
that it is indeed possible to compute with shared inputs. However, one may 
be tempted to conclude that this is only possible because of the specific 
algebraic structure of the function. In particular, how is it possible to 
securely compute AES or HMAC-SHA256 on shared keys, since these 
functions have no such clean structure by design? We will therefore now 
describe a method that can be used to securely compute any function 
whatsoever; this method is called Yao’s protocol.

In the academic literature, it was shown in the late 1980s that any function can be 
securely computed. However, the solutions proposed were not efficient enough to 
actually be used in practice. For the first 20 or so years, MPC research focused 
mainly on theoretical aspects. 

In recent years, significant algorithmic improvements have been made to MPC 
protocols, as a result of a major research effort to make MPC practical. Great 
progress has been made and secure computation can now be used to solve a 
wide range of problems with practical response times.



Boolean Circuits

It is well known that any 
function can be represented 
as a Boolean circuit. For 
example, the AES 
encryption function can be 
converted into a Boolean 
circuit with approximately 
32,000 gates

Yao’s basic protocol is secure against semi-honest adversaries and is 
extremely efficient in terms of number of rounds, which is constant, and 
independent of the target function being evaluated. The starting point of 
the protocol is the translation of the function to be computed into a Boolean 

Garbled Circuits and Yao’s Protocol

Yao explained how to garble (or 
“encrypt”) a circuit so that it can 
be evaluated without revealing 
anything but the output of the 
circuit. 

At a high level, Alice prepares the 
garbled circuit and sends it to 
Bob, who obliviously evaluates 
the circuit, learning the output 
corresponding to both his and 
Alice’s input.

POSSIBLE
LEAK OF
INFORMATION

https://medium.com/applied-mpc/federated-learning-and-mpc-93ab84c7909a

SMCP

https://www.win.tue.nl/~berry/mpyc/
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Differential Privacy

https://desfontain.es/privacy/differential-privacy-awesomeness.html

https://desfontain.es/privacy/differential-privacy-awesomeness.html https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf



https://desfontain.es/privacy/differential-privacy-awesomeness.html https://desfontain.es/privacy/differential-privacy-awesomeness.html

We have a mechanism A  which is 
ε-differentially private. We run it on 
some database D, and release the 
output A(D) to an attacker. Then, the 
attacker tries to figure out whether 
someone (their target) is in D.

Let's take the stronger attacker we can 
think of: they know all the database, 
except their target. This attacker has to 
determine which database is the real 
one, between two options: one with their 
target in it (let's call it Din), the other 
without (Dout)

Attacker sees A(D)=O updated 
suspicion ℙ[D=Din∣A(D)=O]

https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf



https://privacytools.seas.harvard.edu/files/privacytools/files/pedagogical-document-dp_0.pdf

Instead of having each person send you their true age, you have them send you their true 
age + random number between -100 and 100. So, if someone was 42, they might send you 
42 + (-50) = -8.
we can generate random numbers so that if you average over enough of them, they cancel 
each other out. Thus, if 10,000 people all add a random number (pulled from a distribution 
with a mean of 0) to their age before reporting it, the average age reported will still be 
similar to the underlying raw data despite the fact that nobody revealed their true age.

The bigger the random numbers (on average), the more privacy protection we give people, 
but the larger the group of people we need to average over before we can get aggregate 
statistics

This approach is useful for allowing app users to transform their local data in a way that 
protects it so that the central server can collect useful statistics without the central server 
being able to reverse engineer any specific person’s personal data.

Example: Avg age of a group of peple

Example

https://towardsdatascience.com/understanding-differential-privacy-85ce191e198a

Are you guilty?
P_innocent → No

1- P_innocent → Yes

P_Yes = P_Head(1-P_innocent)+(1-P_Head)P_Head

P_innocent = 1- (P_Yes-P_Head(1-P_Head))/P_Head



TRUTH

No privacy 
leakage, but 
limited 
information

https://desfontain.es/privacy/differential-privacy-awesomeness.html

● Counting unique users
● Counting things
● Summing or averaging numbers
● Releasing many things at once
● Traps to avoid

Counting unique users

Suppose you have a database, and you want to publish how many people in there satisfy a given condition. Say, 
how many have green eyes? Even if you have many people in your database, you can't just publish the true 
answer.

With differential privacy, we assume that the attacker knows almost all elements. They only have uncertainty about 
their target. Say they want to know whether their target has green eyes. If you output the real number 
k, they can compare it with the number of people with green eyes among the people they know. If it's k−1, then the 
target has green eyes. If it's k, then the target does not.

https://desfontain.es/privacy/differential-privacy-awesomeness.html



So, to get ε-differential privacy, we pick a random value according to Laplace(1/ε) and we add this noise to the real 
value. 

Why does it work? 

Let's look at the distribution of the number we return, depending on whether the true count is 
k=1000 (blue line, the target doesn't have green eyes) or k=1001 (yellow line, the target has green eyes).

https://desfontain.es/privacy/differential-privacy-awesomeness.html

Let's say the real number is k=1001, and after adding noise, we published 1003. 
Let's put ourselves in the attacker's shoes. 
What's the likelihood that the original number was 1001 vs. 1000? 

The hypothesis "k=1001" is a bit more likely: generating a noise of 2 is more likely than a noise of 3

How much more likely? It turns out that the ratio between these likelihoods is eε → The ratio of probabilities of 
differential privacy is satisfied.

https://desfontain.es/privacy/differential-privacy-awesomeness.html

slide 67

Case Study: K-means Clustering

slide 68

K-means Clustering

● Partition a set of points x1, x2, …, xn into k 
clusters S1, S2, …, Sk such that the following 
is minimized:



slide 69

K-means Clustering

Algorithm  (Lloyd):
●Initialize a set of k centers
●Repeat

− Assign each point to its nearest center
− Recompute the set of centers

   Until convergence …
●Output final set of k centers

slide 70

Differentially Private K-means

● Suppose we fix the number of iterations to T
● In each iteration (given a set of centers):

1. Assign the points to the new center to form 
clusters
2. Noisily compute the size of each cluster
3. Compute noisy sums of points in each cluster

https://dennyglee.com/2007/09/24/analyzing-data-while-protecting-privacy-a-case-study/ slide 72

● Differentially Private Kmeans
●  Suppose we fix the number of iterations to T
● In each iteration (given a set of centers):

1. Assign the points to the new center to form clusters
2. Noisily compute the size of each cluster
3. Compute noisy sums of points in each cluster

Each iteration uses ε/T privacy budget, total privacy 
loss is ε



POSSIBLE
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Homomorphic Encryption

https://homomorphicencryption.org/


