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Tutorial Slides

Overview

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a
central server (e.g.service provider), while keeping the training data decentralized. Similarly, federated analytics (FA) allows data scientists to generate analytical insight from the

ntralization. Federated hes embody the principles of focused data collection and minimization, and

combined information datasets without
‘can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth
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https://sites.google.com/view/fl-tutorial/
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Total population size  10°-10'° devices
Devices selected for one round of training 50 - 5000
Total devices that participate in training one model  10°-107
Number of rounds for model convergence 500 — 10000
Wall-clock training time 1 - 10 days

Advances and Open Problems in Federated
Learning. Peter Kairouz et al. Arxiv (2019)

Table 2: Order-of-

sizes for typical cross-device federated learning applications.

Cross-device federated learning

horizontally partitioned data

features

users

coordinating

server

https://sites.google.com/view/fl-tutorial/

Cross-silo federated learning

horizontal or
vertically partitioned data

features

users

coordinating
server

In Machine Learning [edit]

In machine learning theory, i.i.d. assumption is often made for training datasets to imply that all samples stem from the same generative
process and that the generative process is assumed to have no memory of past generated samples.

((‘ ,)) expensive communication
- massive, slow networks

privacy concerns
- user privacy constraints

% statistical heterogeneity
®

- unbalanced, non-lID data

A!; systems heterogeneity
®e - variable hardware, connectivity, etc
https://sites.google.com/view/fl-tutorial/
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Setting

Data
distribution

Orchestration

Wide-area
communication

Data
availability
Distribution
scale

Primary
battlencck
Addressability

Client
statefulness

Client
reliability

Daa partition
axis

Training a model on a large  Training a model on silocd data
but “flat” dataset.  Clients  Clients are different organiza-
are compute nodes in a sin-  tions (c.g. medical or financial)
gle cluster or datacenter. or geo-distributed datacenters.

The clients are a very large number of
mobile or loT devices.

Data is centrally stored and  Data is generated locally and remains decentralized. Each client stores
can be shuffled and balanced  its own data and cannot read the data of other clicnts. Data is ot indepen-

acrossclients. Anyclient can  dently or identically distributed.
read any partof the dataset.

Centrally erchestrated. A central

sces rw data,

2. but never

Nome  (fully connected Typically a hub-and-spoke topology. with the hub representing a coordi-
clients in one datacen- nating service provider (typically without data) and the spokes connecting

terfcluster).

Al clients are almast always available.

Typically 1 - 1000 clients.  Typically 2 - 100 clients.
Computation is more often  Might be computation or com-
the botlencck in the datacen-  munication.

tex, where very fast networks

can be assumed.

Each client has an identity or name that allows the system to
access it specificlly.

1 —eachcl the com-
putation, camying state from round to round.

y few failures.

Data can be purtitioned / re-  Partition is fixed. Could be
panitioned arbitrarily across  example-partitioned (harizontal)
clients or feature-partitioned (vertical).

Only a fraction of clients are available at
any ane time. often with diurmal or other
variations.

Massively parallel, up to 10'* clients.

Commurication is often the primary
botllencck. though it depends on the
task. Generally, cross-device federated
computations use wi-f o slower con-
nections.

Clients cannot be indexed dircetly (ic..
nouse of client identifiers).

Stateless — each client will likely par-
ticipate only once in a task, so gener-
ally a fresh sample of never-before-scen
clients in each round of computation is
assumed.

% ormore of the
in a round of com-
putation are expected to fail or drop out
(c.g. because the device becomes incli-
gible when hattery., netwark, or idleness
requirements are violated).

Fixed partitioning by example (horizon-
al)

Advances and Open Problems in Federated
Learning. Peter Kairouz et al. Arxiv (2019)
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Cross-silo Cross-device
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Setting

Data
distribution
Orchestration

Wide-area

communication

Data
availability

Distribution
scale

Training a model on a large
but “flat” dataset. Clients
are compute nodes in a sin-
gle cluster or datacenter.
Data is centrally stored and
can be shuffled and balanced
acrossclients. Anyclient can
read any part of the dataset.

Centrally orchestrated.

None  (fully  connected
clients in  one datacen-
ter/cluster).

All clients are almaost always available.

Typically I - 1000 clients.

The clients are a very large number of
mobile or loT devices.

Training a model on siloed data.
Clients are different organiza-
tions (e.g. medical or financial)
or geo-distributed datacenters.

Data is generated locally and remains decentralized. Each client stores
its own data and cannot read the data of other clients. Data is not indepen-
dently or identically distributed.

A central orchestration server/service organizes the training, but never
sees raw data.

Typically a hub-and-spoke topology, with the hub representing a coordi-
nating service provider (typically without data) and the spokes connecting
to clients.

Only a fraction of clients are available at
any one time, often with diurnal or other
vanations,

Typically 2 - 100 clients. Massively parallel, up to 1089 clients.

Datacenter Cross-silo Cross-device

distributed leaming federated learning federated leaming
Primary Computation is more often  Might be ¢ or com- (. ication is often the primary
bottleneck the bottleneck in the datacen-  munication. bottleneck, though it depends on the

ter, where very fast networks

can be assumed.
Addressability  Each client has an identity or name that allows the system to
access it specifically.

Client Stateful — each client may participate in each round of the com-
statefulness putation, carying state from round to round.

Client Relatively few failures.

reliability

Partition is fixed. Could be
example-partitioned (harizontal)
or feature-partitioned (vertical).

Data partition  Data can be partitioned / re-
axis partitioned arbitrarily across
clients.

task. Generally, crass-device federated
computations use wi-fi or slower con-
nections.

Clients cannot be indexed directly (i.c..
no use of client identifiers).

Stateless — each client will likely par-
ticipate only once in a task, so gener-
ally a fresh sample of never-before-seen
clients in each round of computation is
assumed.

Highly unreliable — 5% or more of the
clients participating in a round of com-
putation are expected to fail or drop out
(e.g. because the device becomes ineli-
gible when battery, network, or idleness
requirements are violated).

Fixed partitioning by example (horizon-
tal).
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Given one input sample pair (xg, ¥o), the goal of deep learning model training
is to find a set of parameters w, to maximize the probability of outputting y,

J(ﬂ,)‘ /S;?O':::g Cost Function — “One Half Mean Squared Error”: g'ven xo .

L _ -

180,80 = 5= (ha () - y©)
Iteration 3 i=1

Objective:
Iteration 4 é"‘,“é‘,/(e"' 6:) o
Given input: x b Maximize: p(5|xq, w
Convergence Derivatives: P 0 56 p( | 0’ )
0 1% : ;

a_60/(30, 0) = ;;(he(x(") —y®)

HH———t+H+H a 13
91 3—91](9"'9‘) - ;Z(ha(*’m) —y®) . x®
i=1
Final Minimize LOSS = (yi-xi,w)
Value
https://inst.eecs.berkeley.edu/~cs294-163/fa ning.pdf
For a training dataset containing n samples (x;,y;), 1 < i < n, the training Solution: Gradient Descent
objective is:
v 1
min_f(w) where f(w) & =¥, fi(w) +Loss f(w)
weRd n How to stop? — when the update
is small enough — converge.
Randomly initialized weight w I wepr —we IS €
fi(w) = l(x;, y;,w) is the loss of the prediction on example (x;, ;) m}]{}z fw) 3 or IVf(wo)lI<e
wE
Compute gradient V{‘v) I—. > _ Atthe local minimum, Vf (w) is close to 0
Wei1 = We = nVf (W) w

No closed-form solution: in a typical deep learni
Non-convex: multiple local minima exist.

ng model, w may contain millions of parameters.

fw)

https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf

(Gradient Descent)

Learning rate 77 controls the step size Problem: Usually the number of training
samples n is large — slow convergence

https://inst.eecs.berkeley.edu/~cs294-163/fa19/sli ning.pdf




Solution: Stochastic Gradient Descent (SGD)

« At each step of gradient descent, instead of compute for all training
samples, random|y|pick a small subset (mini-batch)lof training samples

(Xk> Yi)-

Wepr & We — NV (We; X, Yie)

« Compared to gradient descent, SGD takes more steps to converge, but
each step is much faster.

=

Gradient Descent Stochastic Gradient Descent

https://inst.eecs.berkeley.edu/~cs294-163/fa19/slides/federated-learning.pdf

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7) is the learning rate.

Server executes:
initialize wq
for eachroundt = 1,2,... do
m + max(C - K,1)
S; < (random set of m clients)
for each client k € S; in parallel do ii. Each client performs
wf, , + ClientUpdate(k, w;) I;;:ilsg.;radlent descent
Wiy Z,’;l %fwfﬂ iii. The server aggregates
model parameters
submitted by the clients.

1. At first, a model is randomly
initialized on the central server.

2. For each round t:
i. Arandom set of clients
are chosen;

ClientUpdate(k, w): // Run on client k
| B + (split Py into batches of size B) |
for each local epoch 7 from 1 to £ do

for batch b € B do
w 4 w — nVel(w;b)
return w to server

https://arxiv.org/pdf/1602.05629.pdf

Step 3 Step 4

_— — —

...... » wrver-c wrtar-a

Central server Central server Nodes train the Central server pools
chooses a statistical | transmits the initial | model locally with model results and
model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

co & fedavg.ipynb
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O def main0:

# Create Server and Update
server = Server(clients)
) server.update()

if _name_ == ' main_':

main()
ROUND 1 / 25 NUM SAMPLES : 38
ROUND 1 / 25 UPDATE ACCURACY : 41.55 %
ROUND 2 / 25 NUM SAMPLES : 20
ROUND 2 / 25 UPDATE ACCURACY : 51.02 %
: 63
ROUND 3 / 25 UPDATE ACCURACY : 73.38 %
25 UPDATE ACCURACY : 74.22 %
S UPDATE ACCURACY : 89.99 %
5 UPDATE ACCURACY : 90.97 %
5 UPDATE ACCURACY : 93.42 %
S UPDATE ACCURACY : 93.42 %
2

ROUND 9 / 25 UPDATE ACCURACY : 96.92 %
ROUND 10 / 25 NUM SAMPLES : 46




Watch on (8 YouTube

https://www.openmined.org/
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Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatcl e, E is the number
of local epochs, and 7 is the learning rate.

Server executes:
initialize wo

(o
Sy — (random set of m clients)

POSSIBLE for each client k € S, in parallel do
LEAK OF whyy « %lxc.::Up:luw(k. w,)
INFORMATION e = s Sl

ClientUpdate(k, w): // Run on client k
B + (split Py into batches of size B)
for each local epoch i from 1 to £ do

for batch b € B do
w 4w — nVe(w; b)
return w o server

A number of evidences in the literature
e Exploiting unintended feature leakage in collaborative learning (in SP2019),
e Deep leakage from gradients (in NeurlPS2019),
e Beyond Inferring Class Representatives: User-Level Privacy Leakage From
Federated Learning (in INFOCOM2019).

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, E is the number
of local epochs, and 7 is the learning rate.

Server executes:
initialize wo
foreachroundt = 1,2,... do
m  max(C - K,1)
S, + (random set of m clients)

POSSIBLE for each client k € S, in parallel do
LEAK OF wh,, Elitn(Up;]ulc(l\z l)
INFORMATION wer & They ki

ClientUpdate(k. w): // Run on client k
B < (split Py into batches of size B)
for each local epoch i from 1 to E do

for batch b € B do
w + w — Ve (w; b)
return w to server

Secure Multiparty Computaion (MCP)
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A Primer in Secure
Multiparty Computation

Prof. Yehuda Lindell
Co-Founder & Chief Scientist of Unbound Tech

https://www.unboundtech.com/wp-content/uploads/2020/09/Unbound_Tech_A_Primer_in_Secure_Multiparty Computation_MPC.pd
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Secure multiparty computation (MPC)

Jointly computing a function among a set of mutually distrusting parties.
BASIC SCENARIO:

A group of parties wish to compute a given function on their private inputs, while
still keeping their inputs private from each other

loT example
Who is consuming less water?

T : AD
kamst:
Foordiin

100 [

"o,
kamstru
i

Alice Bob Joe

OUTPUT: Alice ... they do not know anything about Alice consumption or
if Bob consumption is more or less than Joe one

Properties

Input privacy: The information derived from the execution of the protocol should
not allow any inference of the private data held by the parties, except for what is
revealed by the prescribed output of the function.

Correctness: Adversarially colluding parties willing to share information or deviate
from the instructions during the protocol execution should not be able to force
honest parties to output an incorrect result.




Average

source: https://www.cs.tau.ac.il/~iftachh/Cour inars/MPC/Intro.pdf

source: https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf

Adversaries

e Semi-honest (passive) security: In this case, it is assumed that corrupted parties merely cooperate
to gather information out of the protocol, but do not deviate from the protocol specification. This is a
rather naive adversary model, that may yield weak security in real situations. However, protocols
achieving this level of security prevent inadvertent leakage of information between parties, and are
thus useful if this is the only concern. In addition, protocols in the semi-honest model can suffice in
cases where it is possible to guarantee that the code being run cannot be replaced.

e Malicious (active) security: In this case, the adversary may arbitrarily deviate from the protocol
execution in its attempt to cheat. Protocols that achieve security in this model provide a very high
security guarantee. The only thing that an adversary can do in the case of dishonest majority is to
cause the honest parties to “abort” having detected cheating. If the honest parties do obtain output,
then they are guaranteed that it is correct. Of course, their privacy is always preserved.

What it means for a protocol to be secure?

Hard to formalize:

The parties should “learn nothing”, but they need to learn the output and this
depends on the inputs.

The output must be “correct”, but correct output depends on the parties’
inputs, and we do not know what inputs corrupted parties will use.




Intuition: ideal-real-world paradigm

THE IDEAL WORLD

K R

= \/
A A

MPC protocol is secure if a real-world protocol “behaves” like an ideal-world one,
meaning that the only information revealed by the real-world protocol is that which
is revealed by the ideal-world one, and that the output distribution is the same in
both (guaranteeing correctness since this holds by definition in the ideal world).

THE REAL WORLD

DETOUR on RSA BASICS
Computer

Networking

of Computer Networking: A Top Down Approach P ———

7" edition T

Jim Kurose, Keith Ross

Pearson/Addison Wesley
April 2016

Slides from Chapter 8 Security

Two-Party Secure Computation of RSA

Joint computation: decrypt an RSA encrypted text
Know in advance: the public key, the encrypted text

Know after: the decrypted text ... nothing more and in particular not the
secret key

Two-Party Secure Computation of RSA
(some simplification please see the original paper)

Choose d1 and d2 uniformly at random under the constraint that d= d1 + d2
e Alice has (d1, N)
e Bob has (d2, N)

Neither Alice nor Bob can carry out the decryption operation bty
themselves, since they only hold a random share of the secref exponent d.

y is the encrypted text

e Alice can compute x1 = y*' mod N in isolation
e Bob can compute x2 = y*> mod N in isolation

Then, theproduct x1 - x2 mod N is the required result, since x1 - x2 = ydt -
y@? = yld1*d2) = y, d (where all operations are modulo N).




x1 - x2 mod N is the required result, since
x1 - x2 =yd - y® = yld1*d2) = y d (where all operations are modulo N).

This operation was computed without d ever being revealed.

Refreshing keys

A very important feature of this method is that it is actually possible for
Alice and Bob to contlnualle/ modify the value of their share of the key,
without modifying the key itself.
Specifically, the parties can run a secure coin-tossing protocol to obtain a
random value r of the same length as N.

e Then, Alice cansetd1'=d1+ rand Bobcansetd2'=d2 -r.

e The tr;esult isthatd1 '+ d2'=d1 + d2 = d and so everything still works

as above.

However, if an attacker successfully attacks Alice and steals d1, and then
later attacks Bob and steals d2 ', then it will actually learn nothing about d
(because d1 + d2 '=d - r and so the secret d is masked by the random r).

This means that the attacker has to s.uccessfulle/ attack Alice and Bob at
the same time in order to steal the private key. In the literature, this type of
security is known as “proactive security”.

Is it general?

The example of how the RSA function can be securely computed shows
that it is indeed possible to compute with shared inputs. However, one may
be tempted to conclude that this is only possible because of the specific
algebraic structure of the function. In particular, how is it possible to
securely compute AES or HMAC-SHA256 on shared keys, since these
functions have no such clean structure by design? We will therefore now
describe a method that can be used to securely compute any function
whatsoever; this method is called Yao’s protocol.

In the academic literature, it was shown in the late 1980s that any function can be
securely computed. However, the solutions proposed were not efficient enough to
actually be used in practice. For the first 20 or so years, MPC research focused
mainly on theoretical aspects.

In recent years, significant algorithmic improvements have been made to MPC
protocols, as a result of a major research effort to make MPC practical. Great
progress has been made and secure computation can now be used to solve a
wide range of problems with practical response times.




Boolean Circuits

Yao'’s basic protocol is secure against semi-honest adversaries and is

extremel

efficient in terms of number of rounds, which is constant, and

independent of the target function being evaluated. The startin? point of
(o

the protocol is the translation of the function to be computed in

example, the AES

32,000 gates

a Boolean

It is well known that any
function can be represented
as a Boolean circuit. For

encryption function can be
converted into a Boolean
circuit with approximately

Garbled Circuits and Yao’s Protocol

[G.0). Gt 1) [(k2.0).(k3.1)]

Yao explained how to garble (or

“encrypt”) a circuit so that it can 7 - Fiti
be evaluated without revealing E*‘"’(E*‘*"“g” i by i
anything but the output of the G GHC))
circuit. i (B ()
£ (B (1))
At a high level, Alice prepares the £yg (B GD)
garbled circuit and sends it to =L
Bob, who obliviously evaluates Fig (P &)
the circuit, learning the output B (B &)
corresponding to both his and A CAC)

Alice’s input.

Ek

0
Eyp

Ex Ekx (k;)

(B (x9)
(B )
(B (x9)
(B (4)

Ex: (Exs (k3)

Algorithm 1 Federatedhveraging. The K clients are
indexed by k: B is the local minibatch size, £ is the number
of local epochs, and 7 is the learning rate.
Server executes:
initialize wo
for eachround ¢ = 1,2,.... do
m e max(C - K, 1)

S, ¢ (random set of m clients)
POSSIBLE for cach client k € S, in parallel do
LEAK OF whyy  ClientUpdate(k, w,)
INFORMATION Wi — Ty Bwkyy

ClientUpdate(k, w): // Run on client k
B « (split Py into batches of size B)
for each local epoch i from 1 to £ do

for batch b € B do
w  w - nve(w; )
return w to server

Suitable number of

Methods Security level Efficiency Bk
participants
Secure Multi-party Provable secure Small‘(Cr.oss-
: Low organization
s M C P Computation * ok kK :
collaboration)
Leak intermediate
Federated Learning information Medium Big (Edge computing)
* % %

http: im -mpc -learning-and-mpc-93ab84c7909a

Suitable model
for ML training

Simpler model

All

MPyC: Secure Multiparty Computation in Python

From VIFF, via TUeVIFF, to MPyC, launched on Wednesday May 30, 2018 at the Theory and Practice of Multi C
See MPyC--Python Package for Secure Multi C (PDE Slides) for some background information.

Use pip install mpyc for version 0.7 (October 31, 2020) of MPyC on PyPI. The documentation of this version is available at MPyC on github.io.

Use pip install git+https://github.com/lschoe/mpyc to get the latest version from GitHub.

See github.com/Ischoe/mpyc for source code and demos (Python scripts as well as Jupyter notebooks).

Check out this cool YouTube video on MPC by TNO to see where the MPyC logo -4 comes from!

(TPMPC) 2018 workshop in Aarhus, Denmark.

Try it out in the cloud!
Run MPyC without installing anything by running a Jupyter notebook in your browser with Binder:

Click to try the notebook SecureSortingNetsExplained. ipynb.

Click to try the notebook SecureSantaExplained. ipynb, including example runs with multiple parties.
Click to try the notebook onewayHashChainsExplained. ipynb.

Click to try the notebook KaplanMeiersurvivalExplained.ipynb.

Last updated Saturday, 31-Oct-2020 20:02:31 CET by Berry Schoenmakers.

https://www.win.tue.nl/~berry/mpyc/




Algorithm 1 FederatedAveraging. The K clients are
indexed by &; B is the local minibatch size, E is the number
of local epochs, and 7 is the learning rate.

Server executes:

initialize wo
for each round ¢ do
m « max(C - K, 1)
S,  (random set of n
POSSIBLE for each client k € S,
LEAK OF wh,, ¢ ClientUpdate(k, w;)

INFORMATION s = B s

ClientUpdate(k, w): // Run on client k
B « (split Py into batches of size B)
for each local epoch i from 1 to £ do

for batch b € B do
w 4 w—nvL(w;b)
return w to server

Differential Privacy

Why differential privacy is awesome

Part of a series on differential privacy. In case you need reading material once you finished this post!

1. Why differential privacy is awesome (this article) presents a technical ion of the

. Differential privacy in (a bit) more detail introduces the formal definition, with very little math.

2
3. Differential privacy. in practice (easy version) explains how to make simple statistics differentially private.
4

Almost differential privacy describes how to publish private histograms without knowing the categories in

advance.

5. Local vs. global differential privacy presents the two main models of differential privacy, depending on who

the attacker is.

6. The privacy loss random variable explains the real meaning of (¢, §)-differential privacy.
7. The magic of Gaussian noise introduces Gaussian noise and its shiny properties.
8. not differential privacy? explores what it means for an algorithm to not be differentially private.

wesomeness.html

es/privacy/differential-privac

Pl Ll
Jamsains

Eletottie
Aueas AR e—
Sietel lefeii

https://desfontain.es/privacy/differential-privacy-awesomeness.html

real-world .
computation analysis output

“difference” at most ¢

input
without
X's data

X's opt-out analysis —( output

scenario
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A process A is e-differentially private if for all databases D; and D, which differ in only one
individual:

PlAD)) = 0] < ¢ - P[A(Dy) = O]
.. and this must be true for all possible outputs O. Let's unpack this.

P[A(D;) = O] is the probability that when you run the process A on the database Dj, the
output is O. This process is probabilistic: if you run it several times, it might give you different
answers. A typical process might be: "count the people with blue eyes, add some random number
to this count, and return this sum". Since the random number changes every time you run the
process, the results will vary.

¢* is the exponential function applied to the parameter ¢ > 0. If ¢ is very close to 0, then ¢* is
very close to 1, so the probabilities are very similar. The bigger ¢ is, the more the probabilities can
differ.

https://desfontain.es/privacy/differential-privacy-awesomeness.html

Updated suspicion

We have a mechanism A which is
e-differentially private. We run it on
some database D, and release the
output A(D) to an attacker. Then, the
attacker tries to figure out whether
someone (their target) is in D.

Let's take the stronger attacker we can
think of: they know all the database,
except their target. This attacker has to
determine which database is the real
one, between two options: one with their
target in it (let's call it Din), the other
without (Dout)

Attacker sees A(D)=0 updated
04 suspicion P[D=Din| A(D)=0]

Initial suspicion

https://desfontain.es/privacy/differential-privacy-awesomeness.html

Gertrude, a 65-year-old woman, is considering whether to participate in a medi-
cal research study. While she can envision many potential personal and societal
benefits that could result in part from her participation, she is concerned that
the personal information she discloses in the course of the study could lead to an
increase in her life insurance premium in the future.

For example, Gertrude is concerned that the tests she would undergo as part of
the research study would reveal that she is predisposed to suffer a stroke and
is significantly more likely to die in the coming year than the average person of
her age and gender. If such information related to Gertrude’s increased risk of
morbidity and mortality is discovered by her life insurance company, it will likely
increase her premium substantially.

Before she opts to participate in the study, Gertrude wishes to be assured that
privacy measures are in place to ensure that her participation will have, at most,
a limited effect on her life insurance premium.

https://privacytools.seas.harvard.eduffiles/privacytools/files/pedagogical-document-dp_0.pdf

Gertrude holds a $100, 000 life insurance policy. Her life insurance company has
set her annual premium at $1, 000, i.e., 1% of $100, 000, based on actuarial tables
that show that someone of Gertrude’s age and gender has a 1% chance of dying
in the next year.

Suppose Gertrude opts out of participating in the medical research study. Regard-
less, the study reveals that coffee drinkers are more likely to suffer a stroke than
non-coffee drinkers. Gertrude’s life insurance company may update its assessment
and conclude that, as a 65-year-old woman who drinks coffee, Gertrude has a 2%
chance of dying in the next year. The company decides to increase Gertrude’s
annual premium from $1,000 to $2,000 based on the findings of the study.

https://privacytools.seas.harvard.eduffiles/privacytools/files/pedagogical-document-dp_0.pdf




Suppose Gertrude decides to participate in the medical research study. Based on
the results of medical tests performed on Gertrude over the course of the study,
the researchers conclude that Gertrude has a 50% chance of dying from a stroke in
the next year. If the data from the study were to be made available to Gertrude’s
insurance company, it might decide to increase her insurance premium from $2, 000
to more than $50, 000 in light of this discovery.

Fortunately for Gertrude, this does not happen. Rather than releasing the full
dataset from the study, the researchers release only a differentially private sum-
mary of the data they collected. If the researchers use a value of € = 0.01, then
the insurance company’s estimate of the probability that Gertrude will die in the
next year can increase from 2% to at most

2% - (1 +0.01) = 2.02%.
Thus Gertrude’s insurance premium can increase from $2, 000 to, at most, $2, 020.

Gertrude’s first-year cost of participating in the research study, in terms of a
potential increase in her insurance premium, is at most $20.

https://privacytools.seas.harvard.eduffiles/privacytools/files/pedagogical-document-dp_0.pdf

Example: Avg age of a group of peple

Instead of having each person send you their true age, you have them send you their true
age + random number between -100 and 100. So, if someone was 42, they might send you
42 + (-50) = -8.

we can generate random numbers so that if you average over enough of them, they cancel
each other out. Thus, if 10,000 people all add a random number (pulled from a distribution
with a mean of 0) to their age before reporting it, the average age reported will still be
similar to the underlying raw data despite the fact that nobody revealed their true age.

The bigger the random numbers (on average), the more privacy protection we give people,
but the larger the group of people we need to average over before we can get aggregate
statistics

This approach is useful for allowing app users to transform their local data in a way that
protects it so that the central server can collect useful statistics without the central server
being able to reverse engineer any specific person’s personal data.

Example

- gender
-age

- political affiliation
- religious affiliation
- gender identity
\c ethnicity

Head?——»  Retum the truth

For eacl:’:tn;rv inthe }_' Flip a coin

Tail?—>Flip a coin —Tau’?—-{ Return "No" ‘

Head?—  Retum "Yes”

'

https://towardsdatascience.com/understanding-differential-privacy-85ce191e198a

Are you guilty?

P_innocent — No

Hea—s; o motun 1- P_innocent — Yes

For each entry in the
lata

——> Flip a coin Head?——»|

|

Tail?—>Flip a coin —Taxl?—h{ Return "No"

Return "Yes”

P_Yes = P_Head(1-P_innocent)+(1-P_Head)P_Head

P_innocent = 1- (P_Yes-P_Head(1-P_Head))/P_Head




of coin's bias and privacy

p_innocent

00 02 04 06 08 10
bias

Figure 4: Compute on a simulated survey data of 20,000 individuals. Low bias
coins add more noise to the data. A consequence of adding noise is the
decrease in privacy loss.

e What does DP tell us?
As you can see in Figure 4, the
variance of p_innocent increases
dramatically and approaches
infinity when p_head
approaches 0, lead to a rapid
decrease in privacy loss. DP also
gives us the same conclusion.
Thus, when p_head is 0, the
distribution of returned result is
identical, no matter an
individual is an innocent or not
(the distance of 2 distributions

is P(“yes” | not innocent)-

P(“yes”|innocent) =p_head, the bias). If the number of innocents
participates in the data changed, it does not lead to any changes in

information in the noisy returned data. It means that there is no private

information in the noisy returned data.

Relationship of coin's bias and privacy

06
No privacy
05 L — leakage, but
limited
o 04 information
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Figure 4: Compute on a simulated survey data of 20,000 individuals. Low bias
coins add more noise to the data. A consequence of adding noise is the

decrease in privacy loss.

Differential privacy in practice (easy version)

« Counting unique users

« Counting things

« Summing or averaging numbers
« Releasing many things at once
« Traps to avoid

https://desfontain.es/privacy/differential-privacy-awesomeness.html

2018-11-22 — updated 2019-

Counting unique users

Suppose you have a database, and you want to publish how many people in there satisfy a given condition. Say,
how many have green eyes? Even if you have many people in your database, you can't just publish the true
answer.

With differential privacy, we assume that the attacker knows almost all elements. They only have uncertainty about
their target. Say they want to know whether their target has green eyes. If you output the real number

k, they can compare it with the number of people with green eyes among the people they know. If it's k-1, then the
target has green eyes. If it's k, then the target does not.

https://desfontain.es/privacy/differential-privacy-awesomeness.html




Let's say the real number is k=1001, and after adding noise, we published 1003.
Let's put ourselves in the attacker's shoes.
What's the likelihood that the original number was 1001 vs. 1000?

So, to get e-differential privacy, we pick a random value according to Laplace(1/¢) and we add this noise to the real
value.

Why does it work?
The hypothesis "k=1001" is a bit more likely: generating a noise of 2 is more likely than a noise of 3

Let's look at the distribution of the number we return, depending on whether the true count is
k=1000 (blue line, the target doesn't have green eyes) or k=1001 (yellow line, the target has green eyes). How much more likely? It turns out that the ratio between these likelihoods is €* — The ratio of probabilities of
) -~

differential privacy is satisfied. ; i

04 PIA(D) = 0] < - P[A(Dy) = O]

03

0.2

0.1

996 1004 996 1004 1006
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Case Study: K-means Clustering K-means Clustering

p—y DR peres B0 o CIUSEONCASS . Partition a set of points x1, x2, ..., xn into k

| | | clusters S1, S2, ..., Sk such that the following
| | | is minimized:
=20 & 2f K
i 1 | D> g —wll?
ol .. J ol '. | =1 x;ES; \

Mean of the cluster S;
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K-means Clustering

Algorithm (Lloyd):
elnitialize a set of k centers

eRepeat
- Assign each point to its nearest center
- Recompute the set of centers
Until convergence ...
eQutput final set of k centers
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Differentially Private K-means

. Suppose we fix the number of iterations to T

. In each iteration (given a set of centers):

1. Assign the points to the new center to form
clusters

2. Noisily compute the size of each cluster

3. Compute noisy sums of points in each cluster

slide 70

k-Means Clustering
Q True means (leaky)
Noisy means (private)

400 Points

v/

Many data-mining tasks can be
written as (few) noisy statistical
queries such as

« k-means,

« association rules,

« PCA, Perceptron, etc.

4,000 Points

Noise is independent of the dB
size such that privacy is ensured
but accuracy varies. The larger
the dB the higher the accuracy.

40,000 Points

Figure 6: Effect of noise

https://dennyglee.com/2007/09/24/analyzing-data-while-protecting-privacy-a-case-study/

. Differentially Private Kmeans

. Suppose we fix the number of iterations to T

. In each iteration (given a set of centers):
1. Assign the points to the new center to form clusters
2. Noisily compute the size of each cluster
3. Compute noisy sums of points in each cluster

Each iteration uses ¢/T privacy budget, total privacy
loss is €
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Algorithm 1 FederatedAveraging. The K clients are
indexed by k: B is the local minibatch size, £ is the number
of local epochs, and 7 is the learning rate.
Server executes:
initialize wo
foreachroundt = 1,2,... do
m ¢ max(C - K, 1

S, ¢ (random set of m clients)
POSSIBLE for each client k € S, in parallel do
LEAK OF whyy + ClientUpdate(k, w,)
INFORMATION e Tiny Bk

ClientUpdate(k, w): // Run on client k
B - (split Py into batches of size B)
for each local epoch i from 1 to £ do

for batch b € B do
w 4w — nVe(w;b)
return w o server

Homomorphic Encryption

Homomorphic Encryption Standardization

An Open Industry / Government / Academic Consortium to Advance Secure Computation

Home Introduction Standard Participants Standards Meetings  Affiliated Workshops ~ Mailing Lists ~ Contact

Homomorphic Encryption

Homomorphic Encryption provides the ability to compute on data while the data is encrypted. This
ground-breaking technology has enabled industry and government to provide never-before enabled

capabilities for outsourced computation securely.

HomomorphicEncryption.org is an open consortium of industry, government and academia to standardize
homomorphic encryption.

Please join our mailing list and participate in our standardization efforts.

https://homomorphicencryption.ora/

« Partially homomorphic encryption encompasses schemes that support the evaluation of circuits consisting of only one type of gate, e.g.,
addition or multiplication.

« Somewhat homomorphic encryption schemes can evaluate two types of gates, but only for a subset of circuits.

 Leveled fully homomorphic encryption supports the evaluation of arbitrary circuits composed of multiple types of gates of bounded (pre-
determined) depth.

« Fully homomorphic encryption (FHE) allows the evaluation of arbitrary circuits composed of multiple types of gates of unbounded depth,
and is the strongest notion of homomorphic encryption.
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If the RSA public key has modulus n and encryption exponent e, then the encryption of a message m is given by E(m) =m° mod n|

Unpadded RSA

The homomorphic property is then
E(my) - E(my) = m$m§ mod n
= (mim2)® mod n

= 5(m1 -mg)




