
Hands-on

ht
tp

s:
//w

w
w

.w
3.

or
g/

TR
/g

en
er

ic
-s

en
so

r/

Scope
● Specifying primitives which enable exposing 

data from device sensors.
● Exposing remote sensors or sensors found on 

personal area networks (e.g. Bluetooth) is out 
of scope.

Presence and  characteristics of an API, 
no info on  API  
1) actually connected to  real hardware 
2) whether it works, 
3) if its still connected, 
4) you can access it.

Detect HW



Note
● Why not info on  underlying status  available 

upfront. 
− Getting this information out of the hardware is 

costly, in both performance and battery time, and 
would sit in the critical path. 

− The status of the underlying hardware can evolve 
over time. The user can revoke permission, the 
connection to the sensor be severed, the operating 
system may decide to limit sensor usage below a 
certain battery threshold, etc.

1. checking for error thrown when 
instantiating a Sensor object,

2. listening to errors emitted by it,

3. handling all of the above graciously 
so that the user’s experience is 
enhanced by the possible usage of a 
sensor, not degraded by its absence.

Combine feature detection, 
which checks whether an 
API for the sought-after 
sensor actually exists, and 
defensive programming

Security and privacy considerations
● Sensor readings are sensitive data and could 

become a subject of various attacks from 
malicious Web pages.

● The risk of successful attack can increase when 
− Multiple sensors/functions are used (correlation)

● Minimize accuracy

− Used over time (fingerprinting)
● Minimize sampling time

Threats
● Location Tracking: use sensor readings to 

locate the device without using GPS or any 
other location sensors. 
− For example, accelerometer data can be used to 

infer the location of smartphones by using statistical 
models to obtain estimated trajectory, then map 
matching algorithms can be used to obtain 
predicted location points (within a 200-m radius)



Threats
● Eavesdropping: Recovering speech from 

gyroscope readings
● Keystroke Monitoring: many user inputs can be 

inferred from sensor readings, this includes a 
wide range of attacks on user PINs, passwords, 
and lock patterns (and even touch actions such 
as click, scroll, and zoom) using motion 
sensors. These attacks normally train a 
machine learning algorithm to discover such 
information about the users.

Threats
● Device Fingerprinting: Sensors can provide 

information that can uniquely identify the device 
using those sensors. Every concrete sensor 
model has minor manufacturing imperfections 
and differences that will be unique for this 
model. These manufacturing variations and 
imperfections can be used to fingerprint the 
device

● User Identifying: Sensor readings can be used 
to identify the user, for example via inferring 
individual walking patterns from smartphone or 
wearable device motion sensors' data.

Mitigation Strategies
● Secure Context: Sensor Readings (SR) are 

explicitly flagged by the Secure Contexts 
specification

● Feature Policy: SR are only available for the 
documents which are allowed to use the 
policy-controlled features for the given sensor 
type. 

Mitigation Strategies
● Focused Area: SR are only available for active 

documents whose origin is same origin-domain 
with the currently focused area document.

● Visibility State: SR are only available for the 
active documents whose visibility state is 
"visible".

● Permissions API: SR are controlled by the 
Permissions API 



Mitigation Strategies
Main risks due to correlation, fingerprinting
● Limit maximum sampling frequency
● Stop the sensor altogether
● Limit number of delivered readings
● Reduce accuracy
● Keep the user informed about API use

Sensor Interface
ht

tp
s:

//i
nt

el
.g

ith
ub

.io
/g

en
er

ic
-s

en
so

r-
de

m
os

/ FIRST TEST
https://intel.github.io/generic-sensor-demos/sensor-info/build/bundled/



https://developers.google.com/web/updates/2017/09/sensors-for-the-web

Nice description on sensors

Delivering data
● Note that in principle we are talking about a 

huge amount of data 
− Edge computing
− Privacy

● However a simplistic assumption coherent with 
the course
− MQTT 

MQTT on the front-end
● MQTT over websockets



// Create a client 
instance
client = new 
Paho.MQTT.Client("127
.0.0.1",9001, "clientId");

// set callback handlers
client.onConnectionLost 
= onConnectionLost;
client.onMessageArrive
d = onMessageArrived;

// connect the client
client.connect({onSucce
ss:onConnect});

// called when the client 
connects
function onConnect() {
  // Once a connection 
has been made, make a 
subscription and send a 
message.
  
console.log("onConnect
");
  
client.subscribe("World")
;
  message = new 
Paho.MQTT.Message("
Hello");
  
message.destinationNa
me = "World";
  client.send(message);
}

// called when the client 
loses its connection
function 
onConnectionLost(respo
nseObject) {
  if 
(responseObject.errorC
ode !== 0) {
    
console.log("onConnecti
onLost:"+responseObje
ct.errorMessage);
  }
}

// called when a 
message arrives
function 
onMessageArrived(mes
sage) {
  
console.log("onMessag
eArrived:"+message.pay
loadString);
}

<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" 
content="IE=edge">
    <title>Hello MQTT World</title>
    <meta name="viewport" 
content="width=device-width, initial-scale=1">
    <script 
src="https://cdnjs.cloudflare.com/ajax/libs/paho-m
qtt/1.0.1/mqttws31.min.js"></script>
    <script src="main.js" defer></script>
</head>
<body>
    <div id="logger"></div>
</body>
</html>
http-server

Minimalistic example
● https://mobiforge.com/design-development/the-

generic-sensor-api
● https://gitlab.com/mobiforge/sensors/


