

AWS IoT message broker

- Processes and routes data from your devices into AWS IoT Core.
- Scalable, reliable, with low-latency, message routing.
- Uses the publish and subscribe model to decouple devices and applications.
- Allows two-way message streaming between devices and applications.
- Allows data transformation, rerouting, and enhancement with external data sources.
- Based on the Message Queuing Telemetry Transport (MQTT) version 3.1.1.
 - Supports MQTT Quality of Service (QoS) levels 0 and 1 only.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Decoupling Produces and Consumers

Publish - Subscribe Paradigm

Bi-directional, asynchronous "push" communication

Supported Protocols

- ▶ MQTT through IP version 4 and IP version 6.
- MQTT over the WebSocket protocol.
- HTTPS protocol only to publish through IP version 4 and IP version 6.

Topic-based communication

- Topics register interest for incoming messages.
- Specify where to publish messages.
- Topics are 8-bit Unicode Transformation Format (UTF-8) encoded hierarchical strings

▲ロト ▲圖ト ▲国ト ▲国ト 三国

Each forward slash indicates a topic level.

Topic level separator home/office/lamp Topic level Topic level

Multi-level Subscriptions

scores/football/big12/Texas scores/football/big12/TexasTech scores/football/big12/Oklahoma scores/football/big12/IowaState scores/football/big12/TCU scores/football/big12/OkState scores/football/big12/Kansas scores/football/SEC/TexasA&M scores/football/SEC/LSU scores/football/SEC/Alabama

single level wildcard: +

multi-level wildcard: #

IoT Rules engine

- Sensor publish data continuously or periodically raw data
- Depending on Variety/Velocity/Volume of raw data we might end up with Big Data.
- Usually not all raw data are useful.
- The rules engine listens for incoming messages that match a rule based on the MQTT topic stream:
 - Saving a file, or a set of data, to an Amazon Simple Storage Service (Amazon S3) bucket.
 - Writing data from a device to an Amazon DynamoDB database.
 - Invoke an AWS Lambda function to extract specific data.
 - Send a message to an Amazon Simple Notification Service (Amazon SNS) topic.
- The rules allow devices to interact with AWS services.

Rules engine language

Uses SQL-like statements to filter and route MQTT messages.

IoT Analytics

- Automates the steps required to analyze IoT data.
- ► Helps collect only the data you need from your devices.
- Apply transformations to process the data.
- Enrich the data with device-specific metadata, such as device type and location, before storing it.
- Analyze by running queries using the built-in SQL query engine,
- Perform more complex analytics and machine learning inference.

IoT Analytics Terminology

- Channel collects and archives raw, unprocessed message data before publishing this data to a pipeline.
- Pipeline consumes messages from a channel and enables to process and filter the messages before storing them in a data store.
- Data store not a database, but a scalable and queryable repository of messages. May have multiple data stores for messages that come from different devices or locations.
- Dataset retrieve data from a data store by creating a dataset.
 - Enables you to create a SQL dataset or a container dataset.
 - Allows to view dataset contents from the console.

Closer analysis of the process

Device Shadow service

- ► A Digital Twin.
- Maintains a shadow for each device you connect to AWS IoT.
- Interact directly with the Digital Twin to get/set state over MQTT or HTTP.
 - ▶ If Actual Device is connected, changes are propagated.
 - If Actual Device is not connected, changes are kept by Shadow service and propagated when device reconnects.
- Applications are not aware of the connection status of each IoT device.

An Example of Device Shadow Usage

Device Shadow Lifecycle

Interacting with the Device Shadow

Each device is assigned with 4 MQTT topics:

- \$aws/things/ThingName/shadow/update
- \$aws/things/ThingName/shadow/get
- \$aws/things/ThingName/shadow/get/accepted
- \$aws/things/ThingName/shadow/delete
- \$aws/things/ThingName/shadow/update/delta

