PhD Course on Smart Environments
AWS loT Foundation

loannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 4

AWS loT Services

» Secure, bidirectional communication between
internet-connected devices:
» sensors, actuators, embedded microcontrollers, smart
appliances, ...
» AWS Cloud,
» Internet.

» Collect, store, and analyze telemetry data from multiple
devices.
» Six main components:

AWS loT
message broker

AWS loT
rules engine

AWS loT
registry

AWS loT Core AWS loT

device gateway

AWS loT
device shadow

Device Gateway

Applications

Messages

N
AN

Authentication

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights

Messages

Device ldentification

» Sensor devices must be identified in order to access the AWS
loT services.

» Authentication is based on pre-deployed certificates.

» Flexible authentication options:

1. Certificates for mutual authentication by using Message
Queuing Telemetry Transport (MQTT) over Transport Layer
Security (TLS) v1.2

2. SigV4 over HTTP

3. MQTT over WebSockets, which is similar to other AWS
services.

» Ensure your devices are TLSv1.2 compliant
» Not all devices support TLS v1.2.
P> TLS v1.2 ensures security and confidentiality of data exchange.
» Custom authentication tokens provided by our
authentication /authorization service also supported.

Sigv4

-

il
X.509 certificates

|
|
|
|
i
[AWS loT Core
|
|
|
|
|

Authorization & Access management

» Authorization is the process of granting permissions to an
authenticated identity.

» Fine-grained access control for each User/Device/Service.

» Each device can have different access rules.

» Policies defined using JavaScript Object Notation (JSON).

» Effect — Allow or Deny.
P Action - List of actions that the policy allows or denies.

» iot:Connect — connect to the AWS loT message broker.
» jot:Subscribe — subscribe to an MQTT topic or topic filter.
P iot:GetThingShadow — get a device's shadow.

P Resource - Lst of resources to which the actions apply.

LLLLIL @
- L~
- pree
- E e
IR LALE]
Custom
authentication tokens
loT Policy Example A Hands-on Example
{ . - .
"Version”: "2012—10—17" , Time/Date Stamp Digital I/O switch
"Statement”: [When do these problems occur? How long is the door open?
" Effect”: " Allow”, B
"Action”: "iot:Publish”, \
" Resource”: "arn:aws:iot:eu—central —1:904534684829:topic/measurements” |
Iy Y
{ >
" Effect”: " Allow”, (&) /
" Action” : "iot:Connect”,
" Resource”: "arn:aws:iot:eu—central —1:904534684829:client/measurements” D
I
{ — i L ﬁ
" Effect”: "Deny”, M
" Action”: "iot:DeleteThingShadow” ,
" Resource”: "arn:aws:iot:eu—central —1:904534684829:thing/measurements”
1 Voltage to Freezer Freezer Temperature
)] Is freezer starved for power? Does freezer maintains its

temperature?

Code available on GitHub:
https://github.com/ichatz/iotphd2020

AWS loT message broker

» Processes and routes data from your devices into AWS loT
Core.
Scalable, reliable, with low-latency, message routing.
Uses the publish and subscribe model to decouple devices and
applications.
Allows two-way message streaming between devices and
applications.
Allows data transformation, rerouting, and enhancement with
external data sources.
Based on the Message Queuing Telemetry Transport (MQTT)
version 3.1.1.

> Supports MQTT Quality of Service (QoS) levels 0 and 1 only.

>
>

Decoupling Produces and Consumers

—~ Logisti
Transportation & Logistics : - 2 g‘s IJ—I ||||||i|"|||
oS =P v
A lnr——g—T—— % Security & S

i

Communication

Medical & Infrastructure

Healthcare ﬂ

Application Examples

Publish - Subscribe Paradigm

Security & —= Transportation
Surveillance Sarvice
= ‘E' Gateway
| i} E',:,E: Service
Gateway I'_W_l‘l-l
= o M2M o car te’emetry
— M [, Integration \
Smart Shelf Platform t .
. €nnis scores
—— 2 OMIIeS
Gatr:wcaey MQTT
eee E w Broker
(0 o)
. w’
\ o
People ' @6 @
Traffic é ublish subscribe
Analysis E ' AFID AA 1 P

R E1 | I
o Environmental

Logistics Monitoring

Vending
Machines

Bi-directional, asynchronous “push” communication

CONNECT to MQTT broker
SUBSCRIBE to thing3/data TCP/IP
thing #1 < >
— . recv
WebSocket

thing #2

— . recv

pub III —

»

A

thing #3

CONNECT to MQTT broker
PUBLISH to thing3/data

v

Supported Protocols

» MQTT through IP version 4 and IP version 6.
» MQTT over the WebSocket protocol.

» HTTPS protocol only to publish through IP version 4 and IP
version 6.

Topic-based communication

» Topics register interest for incoming messages.
» Specify where to publish messages.

» Topics are 8-bit Unicode Transformation Format (UTF-8)
encoded hierarchical strings

» Each forward slash indicates a topic level.
Topic level separator

home/office/lamp
\] | l]

Topic level

Topic leve

Multi-level Subscriptions

scores/football/bigl2/Texas
scores/football/bigl2/TexasTech
scores/football/bigl2/0Oklahoma
scores/football/bigl2/IowaState
scores/football/bigl2/TCU —
scores/football/bigl2/0OkState
scores/football/bigl2/Kansas
scores/football/SEC/TexasA&M
scores/football/SEC/LSU
scores/football/SEC/Alabama

scores/football/bing/Texas

Te

MQTT
erd Broker
/

scores/football/bigl2/+

Bi

Scores/#

\—.

single level wildcard: + multi-level wildcard: #

Quality of Service for reliable messaging

QoS 0

at most once

Ed ruasig <am

- doesn't survive failures
- never duplicated MQTT P e o QOS 2
Broker PUBREL exactly ong

QoS 1

PUBCOMP

- survives connection |
- never duplicated

at least once

e
PUBACK

- survives connection loss
- can be duplicated

Agnostic payload for flexible delivery

pub pub pub
. ER - — G —
ao < >
CONNECT
PUBLISH to thingl/myBinary
| 01010100110011100 | MQTT
PUBLISH to thingl/my3JSON Broker

{"id”:"thing1”,”lon":-97.135198,
"lat”:94.19384,"status™.”I'm alive!”}

PUBLISH
 .|

to thingl/myPicture

Retained messages for last value caching

CONNECT 1D=thingl >
PUBLISH thingl/battery {“value”:95} RETAIN —b»
PUBLISH thingl/battery {“value”:94} RETAIN —»
PUBLISH thingl/battery {“value”:93} RETAIN —>»
DISCONNECT >

CONNECT 1D=thing2
SUBSCRIBE thingl/battery
<4— RETAIN thingl/battery {“value”:93} PUBLISH

v VY

Session state control

CONNECT 1D=thingl, cleanSession=FALSE ———p
SUBSCRIBE chat/myRoom QoS=2

-

v Yy

DISCONNECT
CONNECT 1D=thing2 >
26 PUBLISH chat/myRoom “Hello Thingl!” QoS=1 —
PUBLISH chat/myRoom “Are you there?” QoS=2 —
1 CONNECT 1D=thingl, cleanSession=FALSE =—————
a

<4——— chat/myRoom “Hello Thingl!”> PUBLISH
<4—— chat/myRoom “Are you there?” PUBLISH

PUBLISH chat/myRoom “I am now!” QoS=1 —»

Last will and testament for presence

CONNECT 1D=thing2
SUBSCRIBE thingl/status

vy

1 ‘ CONNECT 1D=thingl LWT=thingl/status “Bye!” —
ad

n

PINGREQ >
< PINGRESP
PINGREQ >
< PINGRESP
(client has network problem)
(KEEP_ALIVE seconds pass)
2 < thingl/status “Goodbye!” PUBLISH

loT registry

» Using the registry is optional.
» Helps you manage your device ecosystem effectively.
» A database of device properties, attributes and tags.

P> A catalog of static metadata.

» Example: serial numbers, manufacturer, firmware version, ...
P Can also store the state of the device and the device shadow.
P Can acts as a repository for device certificates.

» Fully managed and scales to over a billion devices.
» Enables to search for devices based on attributes and tags.

sl AWS Cloud

=

Static data,
serial numbers,
metadata, etc.

"version™: 3,
“thinghName™: "MylLightBulb",
"defaultClientId”: "MyLightBulb”,
"thingTypeMame"”: "LightBulb™,
"attributes™: {

“"model™: "123",

"wattage": "7/5"

loT Rules engine AWS IoT rules engine

» Sensor publish data continuously or periodically — raw data
» Depending on Variety/Velocity /Volume of raw data we might
end up with Big Data.
» Usually not all raw data are useful.
» The rules engine listens for incoming messages that match a
rule based on the MQTT topic stream:
» Saving a file, or a set of data, to an Amazon Simple Storage
Service (Amazon S3) bucket.
» Writing data from a device to an Amazon DynamoDB
database.
» Invoke an AWS Lambda function to extract specific data.

@ Amazon DynamoDB
@ AWS Lambda

P> Send a message to an Amazon Simple Notification Service Rulss Englos
(Amazon SNS) topic.
> ..
» The rules allow devices to interact with AWS services.
Rules engine language loT Analytics
Uses SQL-like statements to filter and route MQTT messages. » Automates the steps required to analyze loT data.

. » Helps collect only the data you need from your devices.
"awsIotSqlVersion”: "2016-03-23", » Apply transformations to process the data.
el T TN Hewrese loT Topic » Enrich the data with device-specific metadata, such as device
vactions™: [' type and location, before storing it.

t e » Analyze by running queries using the built-in SQL query
s 8 .
“rolefirn™: “arn:aws:iam::123456789012:rolefaws_iot_s3", roleARN engme,
“buckethame™: “my-bucket”, “* Amazon S3 bucket » Perform more complex analytics and machine learning

"key": "myS3Key™ .
; inference.

¥

loT Analytics Terminology

» Channel — collects and archives raw, unprocessed message
data before publishing this data to a pipeline.

» Pipeline — consumes messages from a channel and enables to
process and filter the messages before storing them in a data
store.

» Data store — not a database, but a scalable and queryable
repository of messages. May have multiple data stores for
messages that come from different devices or locations.

» Dataset — retrieve data from a data store by creating a
dataset.

» Enables you to create a SQL dataset or a container dataset.
» Allows to view dataset contents from the console.

Closer analysis of the process

O‘@ Run standard
ﬂﬂn SQL queries
[A]]
——— Lm
Run machine
learning analysis
Collect Process Store Analyze Build
Collect device dataina Enrich messages with Data is stored in a time- Run SQL queries or use pre- Analytics and reports are
variety of formats and external sources series data store for built models to perform used to help you build
frequencies analysis machine learning inference system and mobile
and make predictions applications

AWS loT O

O O
AUTHENTICATION <I D SN,)
AUTHORIZATION] \) (5
Secure with mutual «@: B(r% » @ﬂ é\@

authentication and encryption Ry .
\/ AWS Services

Rl i AT /Q RULES ENGINE 3P Sorvi
'\,‘ s i Transform messages ervices
Y= g
p Q‘/ based on rules and
H \’/ d route to AWS Services
DEVICE SDK DEVICE GATEWA!
Setof client libraries to Communicate with devices|via
connect, authenticate and MaTT ———
exchange messages . ﬁ .
N\ S _ﬂ = [
‘ ’ A & =
vILL f APPLICATIONS
NS DEVICE SHADOW
~ Persistent thing state
DEVICE REGISTRY during intermittent
Identity and Management of connections
your things .
AWS loT APIE‘.

HTTP

Device Shadow service

» A Digital Twin.

» Maintains a shadow for each device you connect to AWS IloT.

» Interact directly with the Digital Twin to get/set state over
MQTT or HTTP.

P If Actual Device is connected, changes are propagated.
P If Actual Device is not connected, changes are kept by Shadow
service and propagated when device reconnects.
» Applications are not aware of the connection status of each
loT device.

An Example of Device Shadow Usage

Example: Analyze chemicals in a sample with a mass spectrometer

AWS loT
© (‘- =
INTERMITTENT -

CONNECTION

Connected mass spectrometer
reports its state and readings
throughout a multi-hour cycle

The spectrometer goes offline when its
cycle completes, but its last-reported
state persists in AWS loT

RESTAPIs

& =P

Technicians can use mobile apps to set new
desired states (e.g. pause the cycle), or query
the last reported state of the spectrometer

Device Shadow Lifecycle

1. Device Publishes Current State
>

Shadow 3. :App requests device's current state

5. Device Shadow
syncs updated state

< > 8o

Device SDK

>

S

6. Device Publishes Current State

4. App requests change the state

-

AWS loT

7. Device Shadow confirms state change

‘ 2. Persist JSON Data Store

Device

o & = = 9l o & = = = DAl
A, Desired and Reported States An Example
{
Wstate™ & { [{
w i "o "state”:
« Reports the current state to the device's il rdesied"{
o) hadow o il) ;
7 shad ‘ "color™: "RED" }, @ "engine”: "
Thing * Retrieves desired state from shadow "engine" : "ON"
} }
« Coordinates and synchronizes "repori‘?d; L4 (— -:@1 "reported": {
nlights™] "engine”: ",
% shad.ow document updates "eolor®s “GREEN® }, Mobile App q
A * Publishes update events on related "engine" : "ON"
Device Shadow shadow topics .
"delta")
« Sets the desired state of a device _ "lights" Device Shadow “version':,
+ Gets the last reported state of "color®: “RED" } “clientToken' : "UniqueClientToken'
i Foby "timestamp":
Mobile App the device "version" : 10 ¥
}

}

)]

An Example An Example

{

"state" : { "state" : {
“desired" : { “desired" : {

"engine": "ON" "engine" : "ON’, @ "engine" : "ON”,
< ;> \ ' /}/{' | h ol
— A "reported” : T o ‘reported” :
N (7 "engine” : "OFF”, . "engine" : "OFF”,
Mobile App ’ Mobile App ’ }

) b

"version" : 10 /

Device Shadow } Device Shadow delta ’:’én ine” - “ON”
"engine" : "ON" 9 ’ '
h
Device Device "version" : 10
}
An Example An Example
{
"state:: { . "state" : {
desired" : { “desired" : {
@ "engine” : "ON”, @ ‘engine” : "ON’ "engine" : "ON",
h o h
— "reported” : — S "reported" :
. :@: "engine" : "ON”, o P "eng{ine" :"ON’,
Mobile App / Mobile App S

h

"version" : 10 "versi<}3'n" :10

Device Shadow } Device Shadow }

Device

Device

Interacting with the Device Shadow
Each device is assigned with 4 MQTT topics:

» $aws/things/ThingName/shadow/update
$aws/things/ThingName/shadow/get
$aws/things/ThingName/shadow/get/accepted
$aws/things/ThingName/shadow/delete

>
>
>
» $aws/things/ThingName/shadow/update/delta

