
PhD Course on Smart Environments
AWS IoT Foundation

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 4

AWS IoT Services
I Secure, bidirectional communication between

internet-connected devices:
I sensors, actuators, embedded microcontrollers, smart

appliances, . . .
I AWS Cloud,
I Internet.

I Collect, store, and analyze telemetry data from multiple
devices.

I Six main components:

Device Identification
I Sensor devices must be identified in order to access the AWS

IoT services.
I Authentication is based on pre-deployed certificates.
I Flexible authentication options:

1. Certificates for mutual authentication by using Message
Queuing Telemetry Transport (MQTT) over Transport Layer
Security (TLS) v1.2

2. SigV4 over HTTP
3. MQTT over WebSockets, which is similar to other AWS

services.

I Ensure your devices are TLSv1.2 compliant
I Not all devices support TLS v1.2.
I TLS v1.2 ensures security and confidentiality of data exchange.

I Custom authentication tokens provided by our
authentication/authorization service also supported.



Authorization & Access management
I Authorization is the process of granting permissions to an

authenticated identity.
I Fine-grained access control for each User/Device/Service.
I Each device can have different access rules.
I Policies defined using JavaScript Object Notation (JSON).

I Effect – Allow or Deny.
I Action - List of actions that the policy allows or denies.

I iot:Connect – connect to the AWS IoT message broker.
I iot:Subscribe – subscribe to an MQTT topic or topic filter.
I iot:GetThingShadow – get a device’s shadow.

I Resource - Lst of resources to which the actions apply.

IoT Policy Example
{

” Ve r s i on ” : ”2012−10−17” ,
” Statement ” : [
{

” E f f e c t ” : ”Al low ” ,
” Act ion ” : ” i o t : P u b l i s h ” ,
” Resource ” : ” a r n : aw s : i o t : e u−c e n t r a l−1: 904534684829 : t op i c /measurements ”

} ,
{

” E f f e c t ” : ”Al low ” ,
” Act ion ” : ” i o t : C onn e c t ” ,
” Resource ” : ” a r n : aw s : i o t : e u−c e n t r a l−1: 9 0 4 5 3 4 6 8 4 8 2 9 : c l i e n t /measurements ”

} ,
{

” E f f e c t ” : ”Deny” ,
” Act ion ” : ” i o t :De l e t eTh ingShadow ” ,
” Resource ” : ” a r n : aw s : i o t : e u−c e n t r a l−1: 904534684829 : t h i ng /measurements ”

}
]

}

A Hands-on Example

Code available on GitHub:
https://github.com/ichatz/iotphd2020



AWS IoT message broker
I Processes and routes data from your devices into AWS IoT

Core.
I Scalable, reliable, with low-latency, message routing.
I Uses the publish and subscribe model to decouple devices and

applications.
I Allows two-way message streaming between devices and

applications.
I Allows data transformation, rerouting, and enhancement with

external data sources.
I Based on the Message Queuing Telemetry Transport (MQTT)

version 3.1.1.
I Supports MQTT Quality of Service (QoS) levels 0 and 1 only.

Decoupling Produces and Consumers

Application Examples Publish - Subscribe Paradigm



Bi-directional, asynchronous “push” communication Supported Protocols

I MQTT through IP version 4 and IP version 6.

I MQTT over the WebSocket protocol.

I HTTPS protocol only to publish through IP version 4 and IP
version 6.

Topic-based communication

I Topics register interest for incoming messages.

I Specify where to publish messages.

I Topics are 8-bit Unicode Transformation Format (UTF-8)
encoded hierarchical strings

I Each forward slash indicates a topic level.

Multi-level Subscriptions



Quality of Service for reliable messaging Agnostic payload for flexible delivery

Retained messages for last value caching Session state control



Last will and testament for presence IoT registry
I Using the registry is optional.
I Helps you manage your device ecosystem effectively.
I A database of device properties, attributes and tags.

I A catalog of static metadata.
I Example: serial numbers, manufacturer, firmware version, . . .
I Can also store the state of the device and the device shadow.
I Can acts as a repository for device certificates.

I Fully managed and scales to over a billion devices.
I Enables to search for devices based on attributes and tags.



IoT Rules engine
I Sensor publish data continuously or periodically – raw data
I Depending on Variety/Velocity/Volume of raw data we might

end up with Big Data.
I Usually not all raw data are useful.
I The rules engine listens for incoming messages that match a

rule based on the MQTT topic stream:
I Saving a file, or a set of data, to an Amazon Simple Storage

Service (Amazon S3) bucket.
I Writing data from a device to an Amazon DynamoDB

database.
I Invoke an AWS Lambda function to extract specific data.
I Send a message to an Amazon Simple Notification Service

(Amazon SNS) topic.
I . . .

I The rules allow devices to interact with AWS services.

AWS IoT rules engine

Rules engine language

Uses SQL-like statements to filter and route MQTT messages.

IoT Analytics
I Automates the steps required to analyze IoT data.
I Helps collect only the data you need from your devices.
I Apply transformations to process the data.
I Enrich the data with device-specific metadata, such as device

type and location, before storing it.
I Analyze by running queries using the built-in SQL query

engine,
I Perform more complex analytics and machine learning

inference.



IoT Analytics Terminology
I Channel – collects and archives raw, unprocessed message

data before publishing this data to a pipeline.
I Pipeline – consumes messages from a channel and enables to

process and filter the messages before storing them in a data
store.

I Data store – not a database, but a scalable and queryable
repository of messages. May have multiple data stores for
messages that come from different devices or locations.

I Dataset – retrieve data from a data store by creating a
dataset.
I Enables you to create a SQL dataset or a container dataset.
I Allows to view dataset contents from the console.

Closer analysis of the process

Device Shadow service
I A Digital Twin.
I Maintains a shadow for each device you connect to AWS IoT.
I Interact directly with the Digital Twin to get/set state over

MQTT or HTTP.
I If Actual Device is connected, changes are propagated.
I If Actual Device is not connected, changes are kept by Shadow

service and propagated when device reconnects.

I Applications are not aware of the connection status of each
IoT device.



An Example of Device Shadow Usage Device Shadow Lifecycle

∆, Desired and Reported States An Example



An Example An Example

An Example An Example



Interacting with the Device Shadow
Each device is assigned with 4 MQTT topics:

I $aws/things/ThingName/shadow/update

I $aws/things/ThingName/shadow/get

I $aws/things/ThingName/shadow/get/accepted

I $aws/things/ThingName/shadow/delete

I $aws/things/ThingName/shadow/update/delta


