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Cloud-Based Architecture — Main Compoments
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It's all in the Cloud Data Processing in a Cloud-based Architecture

» We wish to process the data arriving from the sensors.
» Produce statistics for predefine period of time:

» Every Hour

> Every Day

> Every Week
> ...

» Carry out various data mining tasks:
> Identify anomalies
P |dentify seasonality of values

P Identify corellation between values
> ...
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Batch-based Data Processing A Code Example
DataSet<ColorEvent> counts = env

H BN Batch 111 .readFile("MM-dd.csv")
HEER Job HER .groupBy("color")

.count();

Hadoop,

All Input All Output
P Spark, P
Flink » Several frameworks exist for batch-based processing.
» Generic code example following Spark/Flink style.
» Here data is assumed to arrive as a Data Set in CSV format.
» Alternative: retrieve data from database using a query.
» We carry out various transformations (group, filter).
» We compute various aggregates (count, min, max ... )
Continuous Counting Continuous Counting
I
Continuous ingestion =.== Continuous ingestion . 1
¥ ¢ ¢
Periodic files Periodic files q q
Periodic batch jobs Job 1 Periodic batch jobs Job 1 Job 2

Time > Time
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Continuous Counting Moving Parts

Continuous ingestion =.== .=.= =...
v v ) EEE
= HTHE Serving
Periodic files Tl T 1 1 1 o_’ Batch Job =
HE
Periodic batch jobs Job 1 Job 2 Job 3
Time >
Moving Parts Moving Parts
N IE ST HER
Serving [ HETHE Serving
T T T e ateh Job _’ EE  |EEEE n_’ Batch Job
] | HE
Data loading Periodic job
into HDFS scheduler
(e.g. Flume) (e.g. Oozie)




Moving Parts High Latency
L] ] EEE
[ Serving 2 (mrEn Servi
— Batch Job erving
T | Layer ..—> EEEE —> Batch Job —> Layer
] 1
Batch Schedule every X hours
processor
(e.g. Hadoop,
Spark, Flink) » Latency from event to serving layer usually in the range of
hours.
Implicity Treatment of Time Implicity Treatment of Time
HEN ] ] |
= HTHE Serving B Serving
—> —> Batch Job —> —
HE EEER Layer HE Batch Job S
] ]
» Time is treated outside our application. » Time is treated outside our application.
» Part of administrative tasks. » Part of administrative tasks.




Implicity Treatment of Time

11
N HTER Serving
— —>
] EEENR ateh Inh Layer
HE Batch Job

» Time is treated outside our application.

» Part of administrative tasks.

Implicity Treatment of Time

DataSet<ColorEvent> counts = env
.readFile("MM-dd.csv")
.groupBy("color") \
.count();

Time is implicit
in input file

» Time is treated outside our application.
» Part of administrative tasks.

Streaming over Batch
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Continuously Files are Periodically
produced finite streams executed

Stream-based Data Processing

» Until now, stream processors were less mature than their
batch counterparts. This led to:

» in-house solutions,
P abuse of batch processors,
» Lambda architectures

» This is no longer needed with new generation stream
processors like Flink, Spark .. ..

» Stream-based processing is enabling the obvious: continuous
processing on data that is continuously produced.




Why Streaming?

» Monitor data and react in real time.
» Implement robust continuous applications.
» Adopt a decentralized architecture.

» Consolidate analytics infrastructure.

Continuous Analytics

» A production data application that needs to be live 24/7
feeding other systems (perhaps customer-facing)

» Need to be efficient, consistent, correct, and manageable

» Stream processing is a great way to implement continuous
applications robustly

Streaming vs Real-time

» Streaming != Real-time

> E.g., streaming that is not real time: continuous applications
with large windows

» E.g., real-time that is not streaming: very fast data
warehousing queries

» However: streaming applications can be fast

When and why does this matter?

» Immediate reaction to life
> E.g., generate alerts on anomaly/pattern/special event
» Avoid unnecessary tradeoffs

» Even if application is not latency-critical
» With Flink you do not pay a price for latency!




Streaming all the Way
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Windowing

Aggregates on streams
are scoped by windows

/N

Time-driven Data-driven
e.g. last X minutes e.g. last X records

ENECTEEETEEERTEEN

Time

Tumbling Windows (No Overlap)

HEEEEEE"EEEN" EEE

Time

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)
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Time >

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)
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Time

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.
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Tumbling Windows (No Overlap)

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

Time

» Example: Average value over the last 5 minutes.

» Maximum value over the last 100 readings.

Sliding Windows (With Overlap)
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Time

» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)
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Time

» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.




Sliding Windows (With Overlap)

JIRITT R

Time

» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

LRI [

» Example: Average value over the last 5 minutes,
updated each minute.

v

Time

» Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

EEETEEETE

Time

» Example: Average value over the last 5 minutes,
updated each minute.

» Maximum value over the last 100 readings,
updated every 10 readings.

Explicity Handling of Time

DataStream<ColorEvent> counts = env
.addSource(new KafkaConsumer(..))
.keyBy("color")
.timeWindow(Time.minutes(60))
.apply(new CountPerWindow()X;

Time is explicit
in your program




Session Windows

Inactivity BB

H BEE N .rcvy, |l

Time >

» Sessions close after period of inactivity.

» Example: Compute Average from first value until connection
time-out or last value.

Session Windows

DataStream<ColorEvent> counts = env
.addSource(new KafkaConsumer(..))
.keyBy("color")
.window(EventTimeSessionWindows

withGap(Time.minutes(10))
.apply(new CountPerWindow());

Notions of Time

Event Time
Time when event happened.

Notions of Time

Event Time
Time when event happened.

1:37 pm
Processing Time
Time measured by system clock




Out of Order Events
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Processing Time
Windows
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Notions of Time

env.setStreamTimeCharacteristic(
TimeCharacteristic.EventTime);

DataStream<ColorEvent> counts =
.timeWindow(Time.minutes(60))
.apply(new CountPerWindow());

env

Apache Flink

» Open source.
Started in 2009 in Berlin.
In Apache incubator since 2014.

Supports batch and stream processing.

>
>
» Fast, general purpose distributed data processing system.
>
>

Ready to use.




Big Data Landscape 2016 (Version 3.0)
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Architecture Map-Reduce: Parallel Processing Paradigm

Apache
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Map-Reduce Pipelines

Iterate

Reduce

Map, FlatMap, MapPartition, Filter, Project, Reduce,

ReduceGroup, Aggregate, Distinct, Join, CoGoup, Cross, lterate,
Iterate Delta, Iterate-Vertex-Centric, Windowing

Traditional Processing

Query

Repository

Historical fact finding

Find and analyze information stored on disk

Batch paradigm, pull model

Query-driven: submits gqueries to static data

Stream Processing

Real-Time
Analytics

Current fact finding

)

Results

Analyze data in motion — before it is stored

Low latency paradigm, push model

Data driven: bring data to the analytics

Data arriving to the Cloud

What Makes a Smart City?

Multiple Applications Create Big Data

Connected Plane Intelligent Building

40 TB per day (0.1% transmitted) 275 GB per day (1% transmitted)

A city of
one million
will generate
200 million gigabytes
of data per day

1 PB per day (0.2% transmitted) 5 TB per day (0.1% transmitted)

Public Safety
-
50 PB per day (<0.1% transmitted) ‘ 3 70 GB per day (0.1% transmitted)

10 MB per day (5% transmitted) 5 GB per day (1% transmitted)

alvaln Source: Cisco Global Cloud Index, 204680
cisco

Edge-based Processing Stages
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GAIA: Edge-based Smart School Architecture
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Apache Edgent

» Light-weight stream processing.

» Provides a micro-kernel runtime to execute Edgent

applications.

» Executes a data flow graph consisting of oplets connected by

streams.

» A stream is an endless sequence of tuples or data items.

Apache Edgent Scenario
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» Two analytic Edgent applications communicating with each
other and the system loTDevice application.

» loTDevice application responsible for communicating with the
message hub.




