
PhD Course on Smart Environments
IoT Data Analytics

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 5

Cloud-Based Architecture – Main Compoments The value of IoT

It’s all in the Cloud Data Processing in a Cloud-based Architecture

I We wish to process the data arriving from the sensors.
I Produce statistics for predefine period of time:

I Every Hour
I Every Day
I Every Week
I . . .

I Carry out various data mining tasks:
I Identify anomalies
I Identify seasonality of values
I Identify corellation between values
I . . .

GAIA: Cloud-based Smart School Architecture AWS IoT Analytics: Batch-based Data Processing

Batch-based Data Processing A Code Example

I Several frameworks exist for batch-based processing.
I Generic code example following Spark/Flink style.
I Here data is assumed to arrive as a Data Set in CSV format.
I Alternative: retrieve data from database using a query.
I We carry out various transformations (group, filter).
I We compute various aggregates (count, min, max . . .).

Continuous Counting Continuous Counting

Continuous Counting Moving Parts

Moving Parts Moving Parts

Moving Parts High Latency

I Latency from event to serving layer usually in the range of
hours.

Implicity Treatment of Time

I Time is treated outside our application.

I Part of administrative tasks.

Implicity Treatment of Time

I Time is treated outside our application.

I Part of administrative tasks.

Implicity Treatment of Time

I Time is treated outside our application.

I Part of administrative tasks.

Implicity Treatment of Time

I Time is treated outside our application.
I Part of administrative tasks.

Streaming over Batch Stream-based Data Processing

I Until now, stream processors were less mature than their
batch counterparts. This led to:

I in-house solutions,
I abuse of batch processors,
I Lambda architectures

I This is no longer needed with new generation stream
processors like Flink, Spark

I Stream-based processing is enabling the obvious: continuous
processing on data that is continuously produced.

Why Streaming?

I Monitor data and react in real time.

I Implement robust continuous applications.

I Adopt a decentralized architecture.

I Consolidate analytics infrastructure.

Continuous Analytics

I A production data application that needs to be live 24/7
feeding other systems (perhaps customer-facing)

I Need to be efficient, consistent, correct, and manageable

I Stream processing is a great way to implement continuous
applications robustly

Streaming vs Real-time

I Streaming != Real-time

I E.g., streaming that is not real time: continuous applications
with large windows

I E.g., real-time that is not streaming: very fast data
warehousing queries

I However: streaming applications can be fast

When and why does this matter?

I Immediate reaction to life

I E.g., generate alerts on anomaly/pattern/special event

I Avoid unnecessary tradeoffs

I Even if application is not latency-critical
I With Flink you do not pay a price for latency!

Streaming all the Way Streaming all the Way

Streaming all the Way Stream-based Data Processing

Windowing Tumbling Windows (No Overlap)

I Example: Average value over the last 5 minutes.

I Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

I Example: Average value over the last 5 minutes.

I Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

I Example: Average value over the last 5 minutes.

I Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

I Example: Average value over the last 5 minutes.

I Maximum value over the last 100 readings.

Tumbling Windows (No Overlap)

I Example: Average value over the last 5 minutes.

I Maximum value over the last 100 readings.

Sliding Windows (With Overlap)

I Example: Average value over the last 5 minutes,
updated each minute.

I Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

I Example: Average value over the last 5 minutes,
updated each minute.

I Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

I Example: Average value over the last 5 minutes,
updated each minute.

I Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

I Example: Average value over the last 5 minutes,
updated each minute.

I Maximum value over the last 100 readings,
updated every 10 readings.

Sliding Windows (With Overlap)

I Example: Average value over the last 5 minutes,
updated each minute.

I Maximum value over the last 100 readings,
updated every 10 readings.

Explicity Handling of Time

Session Windows

I Sessions close after period of inactivity.

I Example: Compute Average from first value until connection
time-out or last value.

Session Windows

Notions of Time Notions of Time

Out of Order Events Out of Order Events

Notions of Time Apache Flink

I Open source.

I Started in 2009 in Berlin.

I In Apache incubator since 2014.

I Fast, general purpose distributed data processing system.

I Supports batch and stream processing.

I Ready to use.

An Example

Architecture Map-Reduce: Parallel Processing Paradigm

Map-Reduce Pipelines

Map, FlatMap, MapPartition, Filter, Project, Reduce,

ReduceGroup, Aggregate, Distinct, Join, CoGoup, Cross, Iterate,
Iterate Delta, Iterate-Vertex-Centric, Windowing

Data arriving to the Cloud Edge-based Processing Stages

GAIA: Edge-based Smart School Architecture

Apache Edgent

I Light-weight stream processing.

I Provides a micro-kernel runtime to execute Edgent
applications.

I Executes a data flow graph consisting of oplets connected by
streams.

I A stream is an endless sequence of tuples or data items.

Apache Edgent Scenario

I Two analytic Edgent applications communicating with each
other and the system IoTDevice application.

I IoTDevice application responsible for communicating with the
message hub.

