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Part 1: Static Synchronous Networks

1. Synchronous Message-passing Model, Definitions

2. Anonymous Leader Election, Impossibility Results

3. Symmetry Breaking Algorithms, Randomization

4. Leader Election Algorithms

5. Broadcast, Convergecast

6. Lower Bounds

Hirschberg’s and Sinclair’s Algorithm

Each process i operates in phases (0, 1, 2, . . .). In each phase l ,
process u sends out “tokens” containing its UID ui . These are
intended to travel distance 2l , then return back to i . If both tokens
make it back, i continues with the next phase. While a ui token is
proceeding in the outbound direction, each other process j on ui ’s
path compares ui with UID uj . If ui < uj , then j discards the
token, if ui > uj , then j relays ui . If ui = uj , then it means that
process j has received its own UID and elects itself as the leader.
All processes always relay all tokens in the inbound direction.

Trajectories of successive tokens of process i



Communication Complexity

Theorem (3.1)

Algorithm HS achieves a O(n log n) message complexity.

Proof: Every process sends out a token in phase 0: a total of 4n
messages are sent in both directions. For phase l > 0, a process
sends a token in phase l ecatly if it receives both its phase l − 1
tokens back. This is exactly if it has not been “defeated” by
another process within distance 2l−1 + 1 in either direction along
the ring.

Communication Complexity

Theorem (3.1)

Algorithm HS achieves a O(n log n) message complexity.

Proof: Thus within any group of 2l−1 + 1 consecutive processes,
at most one goes on to the next phase. Therefore at most

⌊
n

2l−1 + 1

⌋

will be active in phase l .
Thus in phase l we have

4

(⌊
n

2l−1 + 1

⌋
× 2l

)
≤ 8n

message exchanges.

Communication Complexity

Theorem (3.1)

Algorithm HS achieves a O(n log n) message complexity.

Proof: The maximum number of phases is 1 + dlog ne, thus the
total number of messages is smaller than 8n (1 + dlog ne).

Time Complexity

Theorem (3.2)

Algorithm HS requires O(n) rounds.

Proof: For each phase l a total of 2l+1 rounds are required so
that the tokens go out and return. The final phase takes time n –
it is an incomplete phase, with tokens only traveling outbound.
Thus the total number of messages required are:

dlog ne−1∑

l=0

2l+1 + n = 2dlog ne+1 − 2 + n < 5n



Breaking Symmetry using Non-determinism

I We re-examine the case where processes do not have UID.

I Ring Networks are symmetric - thus we need to weaken our
model: we allow processes to use randomness.

I Itai & Rodeh solve the problem

I Use the LCR algorithm as the basis.
I Important difference: processes do not have UID.

I Each process chooses a random ID from a set {1, . . . , k}
I We try to identify the process with the highest UID

I If more than one process is identified, all processes with the
highest UID re-execute the algorithm.

Avoiding a Deadlock

I No process should be allowed to unilaterally stop.

I We have to make sure that at least one process is still active,
trying to win the election.

I If the algorithm does not guarantee this

I It is possible to end up in a configuration where no process
wishes to get elected.

I The algorithm enters a deadlock.

I The Itai & Rodeh algorithms deals with this issue as follows:

I In each phase, a processes can become inactive if and only if it
identifies at least one other process with higher UID.

I Thus, the are aware of at least one other process that may
become a leader.

I It is not possible for all processes to step-down all together.

Itai’s and Rodeh’s Algorithms

All processes maintain a variable phase=0. In each phase they pick
uniformly randomly a UID from the set {1, . . . , k} and send a
message to their clockwise neighbor of the form
(phase,UID,counter,unique), where counter=0 and unique=true.
When i receives a message from j , they compare its ui with uj . If
ui > uj , i discards the message. If ui < uj , i forwards the message
to their clockwise neighbor. If ui = uj , i checks,

I if counter < n then it sets unique=false and forwards the
message.

I If counter ≥ n and unique = false, i moves to the next
phase and repeat the algorithm.

I If counter ≥ n and unique = true, i enters the state
“elected”.

Properties of Algorithm IR

I The algorithm evolves in phases

I Each phase takes O(n) rounds.
I Each phase, processes exchange O(n log n) messages.
I The required number of phases until a leader is elected is en

n−1 .

I A constant number of phases — O(1).

I Time complexity is O(n).

I Communication complexity is O(n log n).



Communication Complexity

I Let’s examine a single phase of the algorithm.

I For simplicity, without loss of generality, let k = n.

I Let p(i , d) the probability that the message of process with
UID i travels distance d

p(i , d) =

{
pn−1i

pd−1i (1− pi )

if d = n

otherwise

I We wish to evaluate the average distance D that each
message travels

I This is related on the UID i
I If i = n then D = n
I otherwise, if i < n then we compute it as follows

Communication Complexity

D(i) =
n∑

i=1

d · p(i , d)

= n · pn−1i + (1− pi )
n−1∑

i=1

d · pd−1i

=
1− npn−1i + (n − 1)pni

1− pi
+ npn−1i

=
1− pni
1− pi

, 1 ≤ i ≤ n

I Each process has probability 1
n to select UID i .

I Process with UID i has probability i
n to be elected.

Communication Complexity

Thus the average number of messages N that are exchanged
during each phase is bound by :

N ≤
n∑

i=1

D(i) = n +
n−1∑

i=1

1− ( i
n )n

1− i
n

≤ n +
n−1∑

i=1

1

1− i
n

= n + n
n−1∑

i=1

1

n − 1

= n + n · O(log n)

Therefore the average number of messages for each phase is
O(n log n)

TimeSlice Algorithm

Computation proceeds in phases (0, 1, 2, . . .), where each phases
consists of n consecutive rounds. Each phase is devoted to the
possible circulation, all the way around the ring, of a token
carrying a particular UID. That is, in phase v (which consists of
rounds (v − 1)n + 1, . . . , uv) only a token carrying the UID v is
permitted to circulate.
If a process v exists, and round (v − 1)n + 1 is reached without v
having previously received any non-null message, then v elects
itself the leader and sends a token carrying its UID around the
ring. As this token travels, all the other processes not that they
have received it, which prevents them from electing themselves as
leader or initiating the sending of a token at any later phase.

I Very Strong assumption: each process knows the ring size n.

I Non-uniform algorithm.



Properties of Algorithm TimeSlice

I The process with the lowest UID is elected (imin).

I No process other than imin enters state “elected”.

I Process imin elects itself leader at round (imin − 1)n + 1.

I Until round (imin − 1)n + 1 and after round iminn no messages
are exchanged.

I Total number of messages n.

I Message complexity O(n).

I Time complexity cannot be expressed in a closed form. It
requires nimin rounds.
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Strongly Connected General Network

I The graph is strongly connected.

I Each process has UID – is not aware of the UID of the other
processes.

Algorithm FloodMax

Every process maintains a record of the maximum UID it has seen
so far (initially its own). At each round, each process propagates
this maximum on all of its outgoing edges. After diam(G ) rounds,
if the maximum value seen is the process’s own UID, the process
elects itself the leader; otherwise, it is a non-leader.

I Processes are not aware of the total number of processes (n).

I Processes are aware of the network diameter — δ = diam(G )

I Comparison-based algorithm.



Pseudo-code for FloodMax

#DEFINE UID = <...>;

#DEFINE δ = <...>;

void main() {
bool leader = false;
int max id = UID;
for (int i = 0 ; i < δ; i++ ) {

sendMessage(max id);
while (int new msg = readMessage()) {

if (new msg > max id)
max id = new msg;

}
}
if (max id == UID)

leader = true;

}

Example of Execution for FloodMax Algorithm

I Let a synchronous distributed system of
n = 8 processes..

I General network where δ = 3
I Processes are index 1 . . . 8

I The processes have UID.

I Not aware of the UID of the other
processes.

I First Round

I Second Round

I Leader Election
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Example of Execution for FloodMax Algorithm

I Let a synchronous distributed system of
n = 8 processes..

I General network where δ = 3
I Processes are index 1 . . . 8

I The processes have UID.

I Not aware of the UID of the other
processes.

I First Round

I Second Round

I Leader Election

General Network

Example of Execution for FloodMax Algorithm

I Let a synchronous distributed system of
n = 8 processes..

I General network where δ = 3
I Processes are index 1 . . . 8

I The processes have UID.

I Not aware of the UID of the other
processes.

I First Round

I Second Round

I Leader Election

General Network



Example of Execution for FloodMax Algorithm

I Let a synchronous distributed system of
n = 8 processes..

I General network where δ = 3
I Processes are index 1 . . . 8

I The processes have UID.

I Not aware of the UID of the other
processes.

I First Round

I Second Round

I Leader Election

General Network

Example of Execution for FloodMax Algorithm

I Let a synchronous distributed system of
n = 8 processes..

I General network where δ = 3
I Processes are index 1 . . . 8

I The processes have UID.

I Not aware of the UID of the other
processes.

I First Round

I Second Round

I Leader Election

General Network

Properties of FloodMax Algorithm

Let n processes and m channels, where the process with the
highest UID is imax .

I Process imax is elected leader at the end of round δ.

I No other process is in state “elected”.

I Time complexity is O (diam(G )).

I Message complexity O (diam(G ) ·m).

Proof of Correctness

Theorem (3.3)

In the FloodMax algorithm, process imax is elected at the end of
round δ.

Proof: It is enough to prove that after δ rounds, leaderimax =
true.
The key to the proof is the fact that after r rounds, the maximum
UID has reached every process that is within distance r of imax .
In view of the definition of the diameter of the graph, this implies
that every process has the maximum UID by the end of δ rounds.



Directed spanning tree

A directed spanning tree of a directed graph G = (V ,E ) is a
rooted tree that consists entirely of directed edges in E , all edges
directed from parents to children in the tree, and that contains
every vertex of G .

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from i in G appears at depth d in the
tree.

I Every strongly connected digraph has a breadth-first directed
spanning tree.

I Constructing a Breadth-First directed spanning tree is useful
for efficient collection of information.

SynchBFS Algorithm

At any point during execution, there is some set of processes that
is “marked”, initially just i0. Process i0 sends out a search message
at round 1, to all of its outgoing neighbors. At any round, if an
unmarked process receives a search message, it marks itself and
chooses one of the processes from which the search has arrived as
its parent. At the first round after a process gets marked, it sends
a search message to all of its outgoing neighbors.

I Processes are not aware of the total number of processes (n)

I All processes have UIDs.

Example of Execution for SyncBFS Algorithm

Initial Network

The network contains 9 processes, 14
channels

Process 1 initiates the execution.

Process 1 is marked.

All other processes are not marked.

Initial State
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Example of Execution for SyncBFS Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 1st Step
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Example of Execution for SyncBFS Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 2nd Step

Processes 2, 5 are marked.

Processes 2, 5 select 1 as parent
process.

1st Round – 2nd Step
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Example of Execution for SyncBFS Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 1st Step
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Example of Execution for SyncBFS Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 2nd Step

Process 1 ignores all search messages
received.

Processes 3, 4, 7, 8, 9 are marked.

Processes 3, 8 set process 5 as parent
process.

Processes 4, 7 set process 2 as parent
process.

Process 9 chooses (randomly) process 2 as

parent process.

2nd Round – 2nd Step
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Example of Execution for SyncBFS Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 1st Step
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Example of Execution for SyncBFS Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 2nd Step

Processes 2, 3, 4, 5, 7, 8, 9 ignore the
search messages received.

Process 6 is marked.

Process 6 chooses (randomly) process 8
as parent process.

3rd Round – 2nd Step
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Example of Execution for SyncBFS Algorithm

4th Round – 1st Step

Process 6 sends search to all neighbors.

4th Round – 1st Step
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Example of Execution for SyncBFS Algorithm

4th Round – 1st Step

Process 6 sends search to all neighbors.

4th Round – 2nd Step

Processes 4, 8 ignore the search
messages received.

4th Round – 2nd Step

1
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Example of Execution for SyncBFS Algorithm

Final Step

Breadth-first directed spanning tree is
constructed.

Total number of rounds: 4

Total number of messages: 28

Final State

1
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3
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Properties of SynchBFS Algorithm

I Algorithm SynchBFS constructs a breadth-first directed
spanning tree.

I The structure is not stored in some “centralized” process.

I The tree pointers are “distributed” across the network.

I The time complexity is O (diam(G ))

I In practice it is the maximum distance from u0
I In the example, the diameter is 4 – maximum distance from u0

is 3.

I Message complexity: O (m)

Improving Message Complexity

We can reduce the total number of messages exchanged by the
algorithm as follows:

I The processes can identify the channel from which they
received a search message.

I The processes do not send search towards those channels.

In the example, messages are reduced to 10 (i.e., 18 less).

Message Broadcast

The algorithm can easily be augmented to implement message
broadcast.

I A process has a message m that it wants to communicate to
all of the processes in the network.

I It initiates an execution of SynchBFS with itself as the root.

I Piggybacks message m on the search message in round 1.

I Other processes continue to piggyback m on all their search
messages as well.

I Since the tree eventually spans all the nodes, message m is
eventually delivered to all the processes.

Convergecast

Message convergecast is the inverse of a broadcast in a
message-passing system (see Flooding) – instead of a message
propagating down from a single root to all nodes, data is collected
from outlying nodes through a direct spanning tree to the root.
Typically some function is applied to the incoming data at each
node to summarize it, with the goal being that eventually the root
obtains this function of all the data in the entire system.
(Examples would be counting all the nodes or taking an average of
input values at all the nodes.)



Child Pointers

In order to use SyncBFS for message broadcast it is required that
each process learn not only who its parent in the tree is, but also
who all of its children are.

I If bidirectional communication is allowed between all pairs of
neighbors, i.e., the network is undirected, this is simple.

I Each unmarked process, upon receiving the first search
message, it sends a message parent to the process from which
the message was received.

When SynchBFS’ terminates, all processes are aware of their
“children” processes.

The modified algorithm SynchBFS’ requires diam(G ) + 2 rounds
and uses m + n − 1 messages.

Termination
How can the source process i0 tell when the construction of the
tree has completed ?

I The diameter of the network is know known, neither the total
number of processes n.

If each search message is answered with either a parent or
non-parent message, then after any process has received responses
from all of its search messages, it knows who all its children are
and knows that they have all been marked.

Termination
How can the source process i0 tell when the construction of the
tree has completed ?

Starting from the leaves of the BFS tree, notification of completion
can be “fanned in” to the source:

I each process can send notification of completion to its parent
in the tree as soon as

1. it has received responses for all its search messages (so that it
knows who its children are and knows that they have been
marked)

2. it has received notification of completion from all its children.

This type of procedure is called a convergecast.

Example of Execution for SyncBFSc Algorithm

Initial Network

The network contains 9 processes, 14
channels

Process 1 initiates the execution.

Process 1 is marked.

All other processes are not marked.

Initial State
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1



Example of Execution for SyncBFSc Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors. 1st Round – 1st Step
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Example of Execution for SyncBFSc Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 2nd Step

Processes 2, 5 are marked.

Processes 2, 5 select 1 as parent
process.

1st Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

1

Example of Execution for SyncBFSc Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors. 2nd Round – 1st Step
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Example of Execution for SyncBFSc Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 2nd Step

Process 1 ignores all search messages
received.

Processes 3, 4, 7, 8, 9 are marked.

Processes 3, 8 set process 5 as parent
process.

Processes 4, 7 set process 2 as parent
process.

Process 9 chooses (randomly) process 2 as

parent process.

2nd Round – 2nd Step
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Example of Execution for SyncBFSc Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 1st Step
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Example of Execution for SyncBFSc Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 2nd Step

Processes 2, 3, 4, 5, 7, 8, 9 ignore the
search messages received.

Process 6 is marked.

Process 6 chooses (randomly) process 8
as parent process.

3rd Round – 2nd Step
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Example of Execution for SyncBFSc Algorithm

4th Round – 1st Step
Process 3 sends non-parent to 8

Process 8 sends non-parent to 3

Process 8 sends non-parent to 9

Process 9 sends non-parent to 4

Process 4 sends non-parent to 7

Process 7 sends non-parent to 4

Process 6 sends non-parent to 4

Process 6 st’elnei m’hnuma “gon’eas” sthn 8

3rd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

p

¬p

¬p

¬p

¬p ¬p

¬p

¬p

¬p

¬p

Example of Execution for SyncBFSc Algorithm

4th Round – 1st Step
Process 3 sends non-parent to 8

Process 8 sends non-parent to 3

Process 8 sends non-parent to 9

Process 9 sends non-parent to 4

Process 4 sends non-parent to 7

Process 7 sends non-parent to 4

Process 6 sends non-parent to 4

Process 6 st’elnei m’hnuma “gon’eas” sthn 8

4th Round – 2nd Step

Process 8 detects the completion of the
sub-tree of 6

3rd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2



Example of Execution for SyncBFSc Algorithm

5th Round – 1st Step Processes 3, 8

send parent message to 5

Processes 4, 7, 9 send parent message
to 2

5th Round – 1st Step
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Example of Execution for SyncBFSc Algorithm

5th Round – 1st Step Processes 3, 8

send parent message to 5

Processes 4, 7, 9 send parent message
to 2

5th Round – 2nd Step

Process 5 detects the completion of the
sub-trees of 3, 8

Process 2 detects the completion of the
sub-trees of 4, 7, 9

5th Round – 2nd

Step
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Example of Execution for SyncBFSc Algorithm

6th Round – 1st Step Processes 2, 5

send parent message to 1

6th Round – 1st

Step
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Example of Execution for SyncBFSc Algorithm

6th Round – 1st Step Processes 2, 5

send parent message to 1

6th Round – 2nd Step

Process 1 detects the completion of the
sub-trees of 2, 5
Process 1 terminates

6th Round – 2nd

Step
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Example of Execution for SyncBFSc Algorithm

Final Step

Breadth-first directed spanning tree is
constructed.

Total number of rounds: 6

Total number of messages: 36

Final State

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Open Problem # 3

Design a synchronous distributed algorithm for general networks
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Open Problem # 4

Prove the correctness of SyncBFS.

Open Problem # 5

Each process u receives an input value iu ∈ R. Design a
synchronous distributed algorithm for general networks that
computes the average over all input values.



Open Problem # 3

Design a synchronous distributed algorithm for general networks
that computes the diameter of the network.

Open Problem # 4

Prove the correctness of SyncBFS.

Open Problem # 5

Each process u receives an input value iu ∈ R. Design a
synchronous distributed algorithm for general networks that
computes the average over all input values.

Open Problem # 6

Each process u receives an input value iu ∈ R. Design a
synchronous distributed algorithm for general networks that
computes the median of all input numbers.


