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Initial Assumptions

I Exercises correspond to problems studied during the course.

I We attempt to formulate a distributed computing solution.

I The formulation is done in an abstract way.

I A problem may be differentiated from its original version if the
initial assumptions are modified:

I either making it easier, or more difficult,
I or totally different.

I Our first step is to identify and understand all the initial
assumptions stated by the problem.

I We need to understand why an initial assumption is made (or
not).

Network Topology

I The network is abstracted using a communication graph

I Vertices correspond to processes,
I Edges correspond to communication channels.

I What are the assumptions about the communication graph ?

I Is it a special category graph (e.g. symmetric) or is it a
generic one ?

I Is it directed or undirected ?

I Is it fully connected ?

I Do we know the total number of vertices / total number of
edges ?

I We need to understand the nature of the graph – our solution
may be totally wrong.

Initial Input

I What is available to each process from system init ?

I Topology
I Diameter
I Total number of processes

I Processes have (or not) unique identities

I A leader is available from system init (e.g., u0)

I An input value is given to each process

I integer iu
I a value from a given set S

I We need to understand why each peace of information is
provided to us (or not).



Problem to solve

I Usually exercises are related to the design of a new algorithm

I Other problems are related to proving an impossibility result
I or identifying best-case/worst-case input scenaria

I What is the problem at hand ?

I What is the system goal ?
I Do we need all processes to acquire some specific knowledge ?

I Does it fit to one of the problems studied ?

I How does the initial input differentiate the problem ?
I Do we need to employ an additional initial step ?
I Does a known solution require a different topology than the

one we have at hand ?

I Does the algorithm need to terminate ?

Methodology: Understand the question

I Identify & Understand assumptions

I Communication Model, Failures and Topology

I Initial input

I Understand the problem statement

I Identify similar problems/solutions in the bibliography

Methodology: Initial solution

I Do we have a rough idea of a solution ?

I Do we have identified an approach to solving the problem ?

I think again !
I go through the assumptions – maybe we overlooked something

?

I Write down a solution sketch

I check if it adheres to the initial assumptions
I does it use all the available input ?

I Is the solution correct ? can we provide some arguments ?

I What is the complexity (time, communication) ?

I What is the achieved robustness ?

I Can we think of a more efficient solution ?

Write-down the solution

I Pedantic definition of process variables

I state the purpose – scope of use
I type of variable
I initial value

I Pedantic definition of message exchanged between processes

I state the purpose – scope of use
I contents (list of variables: types + initial values)

I Initialization phase

I state if a particular “virtual” topology is needed.
I execute a sub-algorithm (for acquiring specific knowledge on

the net)
I initialization of variables

I Basic round of execution

I Special cases

I Termination



Final document

1. Short description

2. Description of each process

I variables
I message types
I initialization

3. Required sub-algorithms

4. Basic algorithm – description of execution

I “simple” / “typical” round of execution
I special cases

5. Pseudocode (maybe for specific parts)

6. Correctness – Some arguments . . . full proof

7. Time Complexity – Some arguments . . . full proof

8. Message Complexity – Some arguments . . . full proof

Part 2: Failures

1. Link failures, Node failures, Impossibility Results

2. Agreement

3. Byzantine Failures

4. Failures in Asynchronous Systems

Consensus Problem
In a synchronous network G , each process begins with an arbitrary
initial value of a particular type. We require all processes to reach
consensus, that is, output the same value and terminate.

I There is a validity condition describing the output values that
are permitted for each pattern of inputs.

I When there are no failures of system components,

I consensus problems are usually easy to solve,
I using a simple exchange of messages.

I Consensus problems arise in many distributed computing
applications.

The Distributed Consensus Problem

We assume n processes, connected by a synchronous, undirected
graph where each process has a unique ID.
Each process u receives an input value iu from the set S , that is
iu ∈ S .
An algorithm solves the problem of distributed consensus if it
adheres to the following specifications:

1. Agreement: No pair of processes agrees on different output
values, that is, @u, v : ou 6= ov

2. Validity: If all processes start with the same value i ∈ S , i.e.,
∀u ∈ [1, n] : iu = i , then value i is the only possible decision
value, that is ∀u ∈ [1, n] : ou = i

3. Termination: All processes eventually decide.



SimpleConsensus Algorithm

Each process u ∈ [1, n] maintains a list lu with pairs of IDs and
input values. Initially the list contains only one set: the ID of u
and the input value iu ∈ S . In each round, all processes transmit
the list l to their local neighborhood. When they receive list lv
from a neighbor v , they merge it with their internal list. After
δ + 1 rounds, all processes maintain a list containing a pair (u, iu)
for each other process of the system. Then they apply a predefined
consensus rule and terminate by outputing the common value
o ∈ S .

I Each process knows δ.

I The algorithm solves the consensus problem.

I The consensus rule can be: minimum value, average value,
majority . . .

Example of execution of SimpleConsensus

Let a synchronous network of n = 6 processes and δ = 2.

I Consensus rule: simple majority

General Graph
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Example of execution of SimpleConsensus

Let a synchronous network of n = 6 processes and δ = 2.

I Consensus rule: simple majority

3rd Round– decision

Properties of SimpleConsensus Algorithm

Let a synchronous network G with n processes and m channels

I At the end of round δ each process u ∈ [1, n] will maintain a
list lu = {(1, i1), (2, i2), . . . , (n, in)}

I The lists maintained by all processes are identical, i.e.,
∀u ∈ [1, n] : lu = l

I The time complexity is O (diam(G ))

I The message complexity is O (diam(G ) ·m)

I The message complexity in bits is O (diam(G ) · n ·m)

Considerations

How will the execution evolve if failures occur during the
transmission of messages ?

Given the presence of failures,

I can we guarantee the correctness of SimpleConsensus ?

I can we identify failure ?

I can we prevent/deal with failure ?

We look into the case when

I during the execution of a distributed algorithm,

I communication failures during the transmission of messages.

Link Failure
The communication network interconnecting the processing units
of a distributed system may fail during the transmission of any
message over a (faulty) channel. The delivery of messages is not
guaranteed. We assume a number of the messages transmitted
during the execution of the system will not be delivered
successfully.



Coordinated Attack Problem
Two generals are planning a coordinated attack from different
directions, against a common objective. They know that they only
way the attack can be successful is if both generals attack; if only
one attacks, their armies will be destroyed. Each general has an
initial opinion about whether his army is ready to attack. Generals
need to agree on a common decision by communicating via
messengers that travel on foot. However, messengers can be lost
or captures, and their messages may thus be lost.

I Distributed Consensus problem with a simple system of n = 2
processes.

I Possible input/output values are “yes” or “no” – i.e.,
S = {”yes”, ”no”}

We assume that the two generals decide to attack when the
following conditions are met:

1. Agreement: The generals u, v decided on a common opinion,
that is ou = ov

2. Validity:

I If the initial opinion of both generals is “no”, then the only
valid common decision is “no”.

I If the initial opinion of both generals is “yes”, and all message
are delivered, then the only valid common decision is “yes”.

3. Termination: Both generals decide.

Validity Condition

I If the initial opinion of both generals is “no”, then the only
valid common decision is “no”.

I If the initial opinion of both generals is “yes”, and all message
are delivered, then the only valid common decision is “yes”.

We say that the validity condition is “weak”

I If even one general starts with “yes”, the algorithm is allowed
to decide “yes”.

I If all generals start with “yes”, and one message is lost, the
algorithm is allowed to decide “no”.

The weak formulation is appropriate to show the following
impossibility result.

Impossibility Result

Let assume that we have no knowledge on the total number of link
failures that occur.

It turns out that even this weak version of problem is impossible to
solve.

Let an algorithm A
I solves the problem of Coordinated Attack,

I while an unbounded number of link failures occur.

I it has 2 initial states, one for each input value, i.e.
∀u ∈ [1, n], |startu| = 2

I for any given initial state assignment, and a successful
exchange of messages, there is only one possible execution.

I each round, all processes send one message – they may send a
null message.



Let ε be an execution of A in which

I both processes start with initial value “yes”, that is
i1 = i2 = ”yes”

I all messages are delivered successfully.

Based on the termination condition

I the exists a round γ when both processes reach a decision.

According to the validity condition

I both processes decide “yes”, that is o1 = o2 = ”yes”

Let ε1 be an execution of A derived from ε during which all
messages transmitted after round γ fail to deliver.

Execution ε1 message transmission diagram

1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

In the message transmission diagram

I arrows represent successful message transmissions.

I transmissions that encounter a link failure are not shown.

Let ε2 be an execution of A derived from ε1 during which at round
γ the message sent by the red general is lost.

Execution ε2 message transmission diagram

1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I The decision of the green general at the end of round γ may
be different in ε2 than that in ε1.

I However, the red general is not aware of this change – the
state of red in ε2 is the same as in ε1

I Due to the agreement condition: is forced to decide the same
with red.

Let ε3 be an execution of A derived from ε2 during which at round
γ the message sent by the green general is lost.

Execution ε3 message transmission diagram

1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I The decision of the red general at the end of round γ may be
different in ε3 than in ε2

I However, the green general not aware of this change – the
state of green in ε3 is the same as in ε2

I Due to the agreement condition: red is forced to decide the
same with green



Continuing in this way, by alternately removing the last message
from the red general and from the green general, we eventually
reach an execution ε′ in which both processes start with “yes” and
no messages are delivered.

Execution ε′ message transmission diagram

1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I Since γ is a finite number, in a finite number of steps we will
reach construct execution ε′.

I Both generals start with “yes”.

I Both decide to attach with any message exchange.
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Continuing in this way, by alternately removing the last message
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1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I Since γ is a finite number, in a finite number of steps we will
reach construct execution ε′.

I Both generals start with “yes”.

I Both decide to attach with any message exchange.

Continuing in this way, by alternately removing the last message
from the red general and from the green general, we eventually
reach an execution ε′ in which both processes start with “yes” and
no messages are delivered.

Execution ε′ message transmission diagram

1

2

i1 = ”yes”

i2 = ”yes”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I Since γ is a finite number, in a finite number of steps we will
reach construct execution ε′.

I Both generals start with “yes”.

I Both decide to attach with any message exchange.

Let execution ε′′ be constructed from ε′, where the green general
has an initial opinion “no”.

Execution ε′′ message transmission diagram

1

2

i1 = ”yes”

i2 = ”no”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I The decision of the green general at the end of round γ may
be different in ε′′ than in ε′.

I However, the red generalis not aware of this change – the
state of red in ε′′ is the same as in ε′.

I Due to the agreement condition: green is forced to decide the
same with red.



Let execution ε′′′ be constructed from ε′′, where the red general
has an initial opinion “no”.

Execution ε′′′ message transmission diagram

1

2

i1 = ”no”

i2 = ”no”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

I The decision of the red general at the end of round γ may be
different in ε′′′ than in ε′′

I However, the green general not aware of this change – the
state of green in ε′′′ is the same as in ε′′

I Due to the agreement condition: red is forced to decide the
same with green

This yields a contradiction.

I Both generals have the same decision “no”.
I According to the validity condition the only acceptable value

is “no”.

Execution ε′′′ message transmission diagram

1

2

i1 = ”no”

i2 = ”no”

1st round 2nd round . . . round γ

o1 = ”yes”

o2 = ”yes”

Thus algorithm A does not solve the Coordinated Attack problem.

Fundamental limitation

Theorem
Let G be the graph constituting of nodes 1 and 2 connected by a
single edge. Then, there is no algorithm that solves the coordinated
attack problem on G given an unbounded number of link failures.

I Impossible to solve basic consensus problems when dealing
with totally unreliable network.

I To overcome, it is necessary to strengthen the model

I Assume an upper bound on the number of link failures.
I Assume that link failures occur with a probability p.

I or relax the problem requirements

I Allow the possibility of violating the agreement condition.
I Allow the possibility of violating the validity condition.

I Allow processes to use randomization.

Stopping Failures

Processes may simply stop arbitrarily without warning, at any point
during a round of execution of a distributed algorithm. The
process will halt immediately and terminate without further
interaction with the other processes of the system.

I Stopping failures model unpredictable processor crashes.

I We assume an upper bound σ on the number of stopping
failures

I such an upper bound holds for the complete execution of the
distributed system.

I is equivalent to other measures, e.g., rate of stopping failure
per round.



FloodSet Algorithm

Each process u ∈ [1, n] maintains a list lu with input values,
initially included only the input value iu ∈ S of u, lu = {iu}. In
each round, each process broadcasts l , then adds all the elements
of the received sets to lu. After σ + 1 rounds, if lu is a singleton
set (i.e., |lu| = 1), then u decides on the unique element of lu;
otherwise u decides on the default value i0 ∈ S .

I We assume a complete graph G .

I We assume an upper bound on process failures σ

I Let lu(γ) be the values in lu of u at round γ

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

Complete Graph

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

1st Round – process 3 fails

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

2nd Round – process 4 fails



Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

3rd Round – no failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

3rd Round – agreement

Properties of FloodSet

Lemma (FloodSet.1)

If no process failes during a particular round γ, 1 ≤ γ ≤ σ + 1,
then lu(γ) = lv (γ) for all u and v that are active after γ rounds.

Proof: Suppose that no process fails at round γ and let I be the
set of processes that are active after γ − 1 rounds.
Then, ∀u ∈ I will send its own lu(γ) to all other processes at
the end of round γ − 1.
Thus at round γ,

∀u ∈ I , lu(γ) = ∪v∈I lv (γ − 1)

Properties of FloodSet

Lemma (FloodSet.2)

Suppose that lu(γ) = lv (γ) for all u, v that are active after γ
rounds. Then for any round γ′, γ ≤ γ′ ≤ σ + 1, the same holds ,
that is, lu(γ′) = lv (γ′) for all u, v that are active after γ′ rounds.

Proof: All processes that have not failed for γ rounds have identical
lists.
The processes that have not failed after γ round still maintain identical
lists.
Since no other active process exists, after round γ no new value is
circulated in the network.

Therefore the value of lu,∀u ∈ I will not change in any consecutive round.



Properties of FloodSet

Lemma (FloodSet.3)

If processes u, v are both active after σ + 1 rounds, then
lu(σ + 1) = lv (σ + 1) at the end of round σ + 1.

Proof: Since there are at most σ failures, there must be a round
γ, 1 ≤ γ ≤ σ + 1 where no process fails.

I According to lemma FloodSet.1 lu(γ) = lv (γ) for each u, v
that are still active after round γ

I According to lemma FloodSet.2 lu(σ + 1) = lv (σ + 1) for each
u, v that are still active after round σ + 1

Properties of FloodSet

Theorem
Algorithm FloodSet solves the agreement problem for stopping
failures.

Proof:

Termination condition holds – all processes that are active until the
end of round σ + 1, terminate.

Validity condition holds –

I If all processes have initial value τ then the list transmitted is
{τ}

I The list lu will not changed at the end of round σ + 1

Agreement condition holds –

I According to FloodSet.3

Properties of FloodSet

I Time complexity is σ + 1 rounds

I Message complexity is O
(
(σ + 1) · n2

)

I Each message may be of size O (n) bits

I Communication complexity in bits is O
(
(σ + 1) · n3

)

Alternative rules

I Instead of a predefined value i0 ∈ S , choose min(S)

I Processes send only messages when they detect a change in
their list (OptFloodSet)

Open Problem # 7

Assume a synchronous distributed system consisting of a set of n
processes that are connected by an unidirectional ring network.
Each process has a unique identity and is not aware of the total
number of processes. Each process u receives an integer input iu.
Design a distributed algorithm that detects the neighborhood of
three processes ((v − 1), v , (v + 1)) with the largest sum
(iv−1, iv , iv+1). Define algorithm’s properties and verify it’s
correctness, as well as the time and message complexity. You
should prove your claims.



Open Problem # 8

Assume a synchronous distributed system consisting of a set of n
processes that are connected by a directed ring network, where
each process has a unique identity but is not aware of the total
number of processes neither of the network’s topology. Design a
distributed leader election algorithm that can tolerate σ number of
communication failures. Define algorithm’s properties and verify
it’s correctness, as well as the time and message complexity. You
should prove your claims.


