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Part 2: Failures

1. Link failures, Node failures, Impossibility Results

2. Agreement

3. Byzantine Failures

4. Failures in Asynchronous Systems

Byzantine Failures

I The network includes faulty processes that do not terminate
but continue to participate in the execution of the algorithm.

I The behavior of the processes may be completely
unpredictable.

I The internal state of a faulty process may change during the
execution of a round arbitrarily, without receiving any
message.

I A faulty process may send a message with any content (i.e.,
fake messages), independently of the instructions of the
algorithm.

I We call such kind of failures as Byzantine failures.

I We use byzantine failures to model malicious behavior
(e.g. cyber-security attacks).

Why study Byzantine Fault Tolerance?

I Does this happen in the real world?
The “one in a million” case.

I Malfunctioning hardware,
I Buggy software,
I Compromised system due to hackers.

I Assumptions are vulnerabilities.

I Is the cost worth it?

I Hardware is always getting cheaper,
I Protocols are getting more and more efficient.



Coordinated Attack of 4 Byzantine Generals

Four generals wish to coordinate the attack of their armies in an
enemy city. Among the generals there exits a traitor. All loyal
generals must agree to the same attack (or retreat) plan regardless
of the actions of the traitor. Communication among generals is
carried out by messengers. The traitor is free to do as he chooses.

I Consensus problem in a system with n = 4 processes under
the presence of byzantine failures.

I Possible input/output values are “yes” or “no” – that is
S = {”yes”, ”no”}

Problem Statement

I On general achieves the role of Chief of Staff.

I The Chief of Staff has to send an order to each of the n − 1
generals such that:

1. All faithful generals follow the same order
(all non faulty processes receive the same message)

2. If the Chief of Staff is faithful, then all faithful generals follow
his orders
(if all processes are non-faulty then the messages received are
the same with the transmitting process)

I The above conditions are known as the conditions for
“consistent broadcast”.

I Note: If the Chief of Staff is faithful, then the 1st condition
derives from the 2nd. But he may be the traitor.

Discussion

I A solution for the Byzantine Generals problems allows:

1. Reliable communication in the presence of tampered messages
2. Reliable communication in the presence of message omissions

I Dealing with message omissions (link/stopping failures) is the
most common approach.

I We name faults Byzantine all faults that fall under these two
categories.

I All solutions to the problem require a network size at least
three times the number of failures – that is n > 3β.

I Different situation from stopping failures where n and σ did
not follow any relationship.

I May sound surprising high, due to the triple-modular
redundancy – that states that n > 2β + 1.

Impossibility result

Let’s examine the following cases involving 3 generals:

Case #1

Chief of Staff

General 1 General 2

Attack Attack

said “retreat”

Case #2

Chief of Staff

General 1 General 2

Attack Retreat

said “retreat”

I In case #1, General 1 in order to meet the 2nd condition, he
has to attack.

2nd Condition
If the Chief of Staff is faithful, then all faithful generals follow his
orders.



Impossibility result

Let’s examine the following cases involving 3 generals:

Case #1

Chief of Staff

General 1 General 2

Attack Attack

said “retreat”

Case #2

Chief of Staff

General 1 General 2

Attack Retreat

said “retreat”

I In case #2, if General 1 attacks then he violates the 1st
condition.

1st Condition
All faithful generals follow the same order

Impossibility result

I Given the messages received by General 1, each case looks
symmetric.

I General 1 cannot break the symmetry.

I No solution exists for the Byzantine Generals in case of 3
generals and 1 traitor.

I Generalization of the impossibility result:
No solution exists for less then 3β + 1 generals if it has to
deal with β traitors.

Lamport, Shostak and Pease Algorithm

L. Lamport, R. Shostak, M. Pease: “The Byzantine Generals Problem”,

ACM Transactions on Programming Languages and Systems, 4(3): pp

382-401, 1982.

I The algorithm makes three assumptions regarding
communication:

1. All message transmissions are delivered correctly.
2. The receivers knows the identity of the sender.
3. The absence of a message can be detected.

I The 1st and 2nd assumptions limit the traitor from interfering
with the transmissions of the other generals.

I The 3rd assumptions prevents the traitor to delay the attack
by not sending any message.

I In computer networks conditions 1 and 2 assume that the
processors are directly connected and communication failures
are counted as part of the β failures.

Lamport, Shostak and Pease Algorithm

I Let n processes and β failures.

I Processes have a predefined decision odef that is used when
the Chief of Staff is a traitor (e.g., retreat).

I We define function majority(o1, . . . , on−1) = o that computes
the majority of decisions ou = o

Algorithm UM(n,0) (for 0 traitors)

1. The Chief of Staff transmits decision o to all generals.

2. All generals decide o or if they do not receive a message, they
decide odef .



Lamport, Shostak and Pease Algorithm

Algorithm UM(n,m) (for m traitors)

1. The Chief of Staff transmits decision o to all generals.

2. For each general u

I Set ou to the value received, or if no message received, set to
odef .

I Send the value ou to the n − 2 generals by invoking
UM(n − 1,m − 1).

3. For each general u and each v 6= u

I Set ov to the value received from u at step 2, or if no message
received set to odef .

I Decide on value majority(o1, . . . , on−1).

Example of Execution
n = 4, β = 1 – G3 is the traitor

C

G1 G2 G3

G2 G3 G1 G3 G1 G2

o o o

o o o o x y

I At the end of 1st phase: G1 (o1 = o), G2 (o2 = o), G3 (o3 = o)

I At the end of 2nd phase:

G1 – o1 = o, o2 = o, o3 = x
G2 – o1 = o, o2 = o, o3 = y
G3 – o1 = o, o2 = o, o3 = o

I At the end of 2nd phase, each general has the same number of

values and reaches the same decision due to condition 1.

I The decision of the Chief coincides with the majority (2nd condition)

Example of Execution

n = 4, β = 1 – the Chief of Staff is the traitor

C

G1 G2 G3

G2 G3 G1 G3 G1 G2

x y

x x y y odef odef

I At the end of 1st phase: G1 (o1 = x), G2 (o2 = y), G3 (o3 = odef )

I At the end of 2nd phase:

G1 – o1 = x , o2 = y , o3 = odef

G2 – o1 = x , o2 = y , o3 = odef

G3 – o1 = x , o2 = y , o3 = odef

I The three loyal generals decide majority(x , y , odef ) thus both 1st

and 2nd conditions are met.

Lemma
For any m and k, UM(m) adheres the 2nd condition given 2k + m
generals and at most k traitors.

Proof: (By induction on m)
In the 1st step, UM(0) works if the Chief of Staff is loyal, i.e.
UM(0) meets the 2nd condition.
Let’s assume that UM(m − 1) meets the 2nd condition for m > 0.
We can show that it holds for m:

I In the 1st step, the loyal general sends the value o to n − 1
generals.

I In the 2nd step all loyal general execute UM(m − 1).

I From the original assumption it holds that n > 2k + m or
n − 1 > 2k + (m − 1).



I From the induction step that we defined, each loyal general u
receives ou = ov from each loyal general v .

I Since there are at most k traitors and
n − 1 > 2k + (m − 1) ≥ 2k , i.e., k < n−1

2
then the majority is reached from the n − 1 loyal generals.

I Thus each loyal general has ou = o for majority of n− 1 values
– thus in the 3rd step, by invoking majority(o1, . . . , on−1) it
outputs o that meets the 2nd condition.

Theorem
For any m, UM(m) adheres the 1st and 2nd condition given 3m
generals and at most m traitors.

Proof: (By induction on m)
If no traitors exists it is easy to show that with the user of the
algorithm, in the 1st step, conditions 1 and 2 hold.
If we assume that UM(m− 1) meets conditions 1 and 2 for m > 0.
We can show for m:
Case 1:

I Assume the Chief of Staff is loyal.

I For k = m due to the Lemma, UM(m) meets the 2nd
condition.

I Since the 1st condition derives from the 2nd condition when
the Chief of Staff is loyal, it is enough to show the second
case:

Case 2:

I The Chief of Staff is a traitor.

I There exist at most m traitors and the Chief of Staff is among
them.

I Thus, at most m − 1 generals are traitors.

I Since we have 3m generals, the loyal generals must be
3m − 1 > 3(m − 1)

I Therefore we can apply the inductive step and conclude that
UM(m − 1) meets the 1st and 2nd condition.

I Thus for each v , each pair of loyal generals receives the same
value ov in the 3rd step.

I Thus, each pair of loyal generals receives the same number of
values and thus majority(o1, . . . , on−1) returns the same value
– which meets the 1st condition.

Properties of Algorithm

I By applying UM(n,β) we get n − 1 messages

I For each message the UM(n,β − 1) is activated that generates
n − 2 messages

I . . .

I The total number of messages is O(nβ+1)

I The β+ 1 steps during which messages are exchanged between
the processes is a mandatory feature of algorithms that need
to reach consensus in the presence of β faulty processes.



Study of Synchronous Message Passing Model

I The assumption of synchronous execution does not reflect the
real conditions of operation of distributed systems.

I However, it allows us to understand some fundamental
aspects.

I The assumption of coordinated execution of algorithm’s steps,
I The assumption of simultaneous delivery of all messages across

all channels.

I We investigated the correctness and performance of protocols

I in terms of number of rounds – time complexity
I in terms of number of message exchanges – communication

complexity

Study of Synchronous Message Passing Model

I We define the network as a graph G = (V ,E ):

I comprised of a finite set V of points – the vertices –
representing the processing untis (i.e., processes) – n = |V |

I a collection E of ordered pairs of elements of V (E ⊂ [V ]2) –
the edges – representing the communication channels of the
network – m = |E |

I Each process u ∈ V is defined by a set of states statesu

I A nonempty set of states startu, known as starting states or
initial states.

I A nonempty set of states haltu, known as halting states or
terminating states.

I Each process uses a message-generator function
msgsu : statesu × nbrsoutu → M ∪ {null}

I Uses a state-transition function
transu : statesu × (M ∪ {null})nbrs inu → statesu

Study of Synchronous Message Passing Model

I All processes, repeat in a “synchronized” manner the following
steps:
1st Step

1. Apply the message generator function.
2. Generate messages for each outgoing neighbor.
3. Transmit messages over the corresponding channels.

2nd Step

1. Apply the state transition function.
2. Remove all incoming messages from all channels.

I The combination of these two steps is called a round (of
execution).

Example of execution of a Synchronous System

I Initially

I all processes are set to an initial state,
I all channels are empty.

I the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1st Round

1st Step

1.α – apply msg gen func

1st Round

1st Step

1.α – apply msg gen func
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I Initially
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Example of execution with processors of variant speed

The synchronous message passing model assumes that all
processors have identical properties (e.g., speed).

I therefore, processes, execute in a coordinated manner the
protocol.

What if the processors do not have common speeds?

I some processes execute the protocol steps slower than the
others.

Executions by Processors of different speed

1 2

1st Round

1st Step

1.α – apply msg gen func

1st Round

1st Step

1.α – apply msg gen func
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Example of execution with processors of variant speed
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Example of execution with processors of variant speed

I The execution of process 2 is slower.

I How are messages handled?

I Do we assume a queue where incoming messages are inserted ?
I How many messages can it store?
I What if the queue is short, are messages lost ?

I Process 1 may delete a message before it’s being processed.

I What other anomalies will occur in such a system ?

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2
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1.α – apply msg gen func

1st Round
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1.α – apply msg gen func

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1st Round

1o Step

1.α – apply msg gen func

1st Round

1o Step

1.α – apply msg gen func



Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1o Step

1.α – apply msg gen func

1.β – generate messages

1o Step

1.α – apply msg gen func

1.β – generate messages

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.β – generate messages

1.γ – transmit messages

2o Step

1.β – generate messages

1.γ – transmit messages

2o Step

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.γ – transmit messages

2o Step

2.α – state trans function

1.γ – transmit messages

2o Step

2.α – state trans function

M

M



Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

2o Step

2.α – state trans function

2.β – delete messages

2o Step

2.α – state trans function

2.β – delete messages

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

2.α – state trans function

2.β – delete messages

2nd Round

2.α – state trans function

2.β – delete messages

2nd Round

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

2.β – delete messages

2nd Round

1o Step

2.β – delete messages

2nd Round

1o Step

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

2nd Round

1o Step

1.α – apply msg gen func

2nd Round

1o Step

1.α – apply msg gen func

M



Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1o Step

1.α – apply msg gen func

1.β – generate messages

1o Step

1.α – apply msg gen func

1.β – generate messages

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

M

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.β – generate messages

1.γ – transmit messages

2o Step

1.β – generate messages

1.γ – transmit messages

2o Step

M

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

1.γ – transmit messages

2o Step

2.α – state trans function

1.γ – transmit messages

2o Step

2.α – state trans function

M

M

M



Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed

1 2

2o Step

2.α – state trans function

2.β – delete messages

2o Step

2.α – state trans function

2.β – delete messages

M

M

M

Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).
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Example of execution with channels of variant speed

The synchronous message passing model assumes that all
communication channels have identical properties (e.g., speed).

I therefore, messages, are delivered simultaneously.

What if the communication channels do not have common speeds?

I some messages are delivered later than the others.

Execution with Communication Channels of different speed
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2.β – delete messages

3rd Round
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2.β – delete messages

3rd Round
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M

Example of execution with channels of variant speed

I The communication channel connecting process 2 with
process 1 is slower than the communication channel
connecting process 1 with 2.

I What if a process tries to send a message while the channel is
transmitting another message?

I Do we assume a queue for outgoing messages ?
I How many messages can be stored in the queue?
I In case of a short queue, are messages lost ?

I What other anomalies will occur in such a system ?



Asynchronous Message Passing Systems

I Systems of Independent Interconnected Entities

I Interconnection allows coordination

I Coordination allows solving common goals (e.g. Spanning
Trees, DB transactions)

Problem
To appropriately describe the way that the entities coordinate for a
systemic generation of desired properties.

Distributed Algorithms: Properties

I Dictates how entities coordinate.

I The description of the algorithm defines the actions of each
entity

I . . . and how they communicate.
I It is identical for each entity.

I Is part of the systemic solution of the given problem.
I properly deals with each instance of the problem (correctness)

I Is evaluated based on the number of actions required by each
entity and the number of messages generated (time &
communication complexity)

Distributed Algorithms: Weaknesses

I Time Free Systems: Does not allow any a priori assumption
on the speeds by which actions are being completed by each
entity or the speeds of delivering each message transmitted
over each channel.

I Each entity is invoked to execute the appropriate action with
partial knowledge on the global state of the system and the
progress achieved so far (in the execution)

I Real Life: A large number of undetermined factors affecting
the system:

I messages lost, entities stop/restart, entities act arbitrarily (or
maliciously), entities “losing”’ their state . . .

I Since the factors are undetermined they impose a
non-deterministic execution of the system that needs to be
addressed in order to end up with deterministic results.

Asynchronous Message Passing Model

We study distributed systems where

1. the entities of the system execute their actions

I with arbitrary order,
I and with arbitrary speed relative to the other entities,
I we do not assume any rate of execution actions.

2. the communications channels of the system deliver messages
with arbitrary speeds relative to the other channels

I we do not assume any message delivery rate.



Asynchronous Message Passing Model

I We model this undetermined temporal behavior using
Input/Output automata

I Each process is modeled as an I/O automaton,
I Each communication channel is modeled as an I/O automaton.

I The I/O automata model is generic enough.

I We can use it to describe almost all types of asynchronous
message passing systems.

Input/Output Automata

I An I/O automaton models an entity of the distributed system
that interacts with other entities of the system.

I It is a state automaton (state machine) where transitions
between states are connected by a set of actions.

I The actions are grouped:

1. Input Actions
2. Output Actions
3. Internal Actions

Input/Output Automata
I The input and output actions are used to model the

communication of the automata with their environment
I Example – an input action is the reception of a message by a

neighboring process.
I Example – an output action is the delivery of a message from a

communication channel.

I Internal actions are visible only by the automaton performing
the action.

I An automaton does not determine when an input action will
be invoked – this depends on its neighboring automata.

I It can only determine when an output action or and internal
action will be executed.

Modeling Processes

C

Q
init(q, vq) out(q, v ′q)

receive(m, p, q)

P
init(p, vp) out(p, v ′p)

send(m, p, q)

I I/O automata
I Defined by a state

I Special states: initial, halt states

I and a state transition function:
states × (messagein, process)→
states × (messageout , process)

I Some tasks may be executed
internally states ×
{(messagein, process) ∪ ∅} →
states×{(messageout , process)∪∅}

I We need to define the notion of
fareness



Modeling Communication Channels

C

send(m, p, q)

receive(m, p, q)

Q
init(q, vq) out(q, v ′q)

P
init(p, vp) out(p, v ′p)

I I/O automata
I Defined by a state

I We assume a queue of messages
that need to be delivered

I e.g., a FIFO priority queue

I Execute actions receive(m, p, q)
and send(m, p, q)

To stop or not to stop waiting

In a realistic asynchronous system, situations appear with very
similar properties which however need to be addressed with
different actions

I Messages sent by a process are lost before being properly
received

I A process executes an action very slowly

I A process fails and terminates

Common property

The existence of the process is not evident by the rest of the
network.

The common property makes it difficult (if not impossible) to
differentiated between each different case.

Still the differentiation is necessary to provide correct results.

To stop or not to stop waiting

Since a process does not respond we are faced with the dilemma if
the rest of the network should wait or not. The problem is the

combination of the time free and fault vulnerable aspects of the
system. Are we mistaken by mixing up these two properties ?

I A time free model abstracts the operation conditions of most
real systems.

I Failures occur without being able to predict them or avoid
them, at different levels (e.g., hardware failures, software
bugs. . . )

So how can we differentiated between a slow system (time free) or
a faulty system (fault vulnerabilities)?

Consensus: Problem Definition

Consensus
A process v has an initial value initv ∈ {0, 1}. The goal of the
system is that all processes agree on a common value.

I e.g., in a DB transactions 1=accept/commit,
0=reject/rollback

I The algorithm can be viewed as a decision system with the
initial values as the premises and the common value its goals.

I We wish the results to be characterized by

Soundness: Common value “accept” only if
∀v initv = 1
Completeness: If ∀v initv = 1 then the only
common value is “accept”



Consensus: Problem Definition
We relax the assumption in a way such that the decision reaches a
common value:

Consensus
Each process v has an initial value initv ∈ {0, 1}. Goal of all
processes is to decide a common value matching the following
criteria:

I The decision is common for all processes.

I For any decision value v ∈ {0, 1}, there is some initial state
that leads to this common value v

Consensus with One Faulty Process: Impossibility Result
I We use the concept of a configuration

Proof Idea

1. Let an algorithm P that solves the problem

2. An initial configuration exists that may lead to any decision
value (non trivial)

3. Given a configuration C , at some point the delivery of a
message m1 bye process p will determine the decision value

4. Each such message is delayed while another set of messages
are delivered which do not fix the decision value

5. Later on m1 is delivery which fails to determine the decision
value. Why?

Consensus with One Faulty Process: Impossibility Result

Proof Idea

I If we do not delivery the message (faulty process) the
algorithm will eventually terminate after a sequence of steps S
during which p does not participate.

I Since C may lead to any decision value, the termination may
determine either dec value=0 or 1.

I However if we delay the delivery too long, the algorithm will
still terminate. The delivery of m1 at this point will not
finalize the decision value since the algorithm has already
terminated to any value.

Consensus with One Faulty Process: Impossibility Result

Proof Idea

I Process p does not participate in S . Therefore if first steps S
occur and then the message of p is delivered will lead to the
same configuration configuration where m is first delivered
and then S occur.

I Therefore in the second scenario, p remains in the execution
and the decision value is not finalized.



Consensus with One Faulty Process: Impossibility Result
Definitions

Definition
A configuration of a system is a set of all processes states.

Definition
Two configurations are called neighboring if they differ in the state
of a single process.

Definition
The event e = (p,m) is the delivery of message m to process p,
and leads to the transition between two configurations.

Consensus with One Faulty Process: Impossibility Result
Definitions

Definition
A configuration C is reachable by another configuration C ′ if a
sequence of events S may lead from C ′ to C .

Definition
A configuration C is bivalent if the set of all terminating
configurations that are reachable from C includes configuration
where dec value=0 and configurations with dec value=1.
Otherwise C is univalent or i-valent depending on dec value.

Consensus with One Faulty Process: Impossibility Result

Lemma
Let configuration C and sequence of events S1,S2 that lead to
configuration C1, C2 respectively. If the set of processes that
participate in S1 and S2 are disjoint then S2 may be applied to C1

and S1 to C2, such that the execution will lead to a common
configuration C3.

Consensus with One Faulty Process: Impossibility Result

C

C1

S1

C2

S2

C3

S2 S1

S2(S1(C )) = S1(S2(C ))



Consensus with One Faulty Process: Impossibility Result

Lemma
Every algorithm A that solves the problem has at lease on bivalent
initial state.

I In contrast to the case where no failures occur.
I In that case each initial state leads to a unique decision value

I The decision is “known” from the very start. It is up to the
algorithm to coordinate the processes towards reaching this
common decision.

I The inherent non-determinism is due to the unpredictable
failures

I If the part of the network that will force decision “1” fails, the
execution will decide 0

I However, we do not know if it will fail . . .

I Can we prove this?

Consensus with One Faulty Process: Impossibility Result

Proof: Let assume that no such configuration exists. Then:

1. It will include 0-valent and 1-valent initial configuration since
both decisions are possible.

2. We order the initial configuration such that every pair of
configurations is neighboring

3. Thus a 0-valent C0 configuration will be neighboring a
1-valent configuration C1 where the state of process p is
different

4. We apply the same sequence of events S to both
configurations

I Where p does not participate in S

5. In both cases we will end up with the same decision value

6. Thus one of C0, C1 is bi-valent. Impossible.

Consensus with One Faulty Process: Impossibility Result

I This lemma establishes that a bi-valent initial configuration
exists.

I The next lemma shows that from each bi-valent configuration
we may lead the system to another bi-valent configuration.

I What will happen if we delay indefinitely the event that will
lead the system to a uni-valent configuration ?

Lemma
Let C a bi-valent configuration of the algorithm and e = (p,m) an
event applicable to C . Let X the set of configurations that are
reachable by C without applying e, and
Y = e(X ) = {e(E )|E ∈ X}. Then Y may include at least one
bi-valent configuration.

I The decision is delayed indefinitely.

Consensus with One Faulty Process: Impossibility Result

Proof: Let assume that Y does not include bi-valent
configurations.
Then it includes both 0-valent and 1-valent configurations

I Since C is bi-valent,

I It leads to both 0-valent and to 1-valent configurations.

I Even after the delivery of e each i-valent remains i-valent.



Consensus with One Faulty Process: Impossibility Result

C

X1 X2
. . . Xk

Y1

e

Y2

e
. . . Yk

e

0 1

Consensus with One Faulty Process: Impossibility Result

Proof: There exist C0, C1 in X such that Di = e(Ci ) is i-valent.
If we observe carefully, there exist C0, C1 such that Ci = e ′(C−i )
where e ′ = (p′,m′) an event

I One results from the other by the delivery of the message

I Without loss of generality C1 = e ′(C0)

Let’s examine the events that occur in C

Consensus with One Faulty Process: Impossibility Result

C

C0e0

C1

e1 = e ′

C ′1
e1 e0

C

C k
0

. . .

C 2
0

C 1
0

. . . C1
e ′

Consensus with One Faulty Process: Impossibility Result I

Proof: Let’s examine p′

I p′ 6= p: Then D1 = e ′(D0) due to the commutative of
independent events. Impossible since from a 0-valent
configuration we cannot reach a 1-valent configuration.

C0

D0

e

C1

e ′

D1
e ′ e



Consensus with One Faulty Process: Impossibility Result

Proof: (continued)

I p′ = p: If the sequence of events S during which p does not
participate leads to a decision A, S may be applied to D0 and
to D1

I S exists since in the case when p fails the rest of the network
will decide

I When S is applied to Di it leads to a i-valent configuration Ei

(since Di is i-valent)
I However due to the commutative law:

I e(A) = E0

I e′(e(A)) = E1

I Thus the resulting configuration is bi-valent. Impossible since
the algorithm has decided!

Consensus with One Faulty Process: Impossibility Result

C0

D0

e

C1

e ′

D1

e

A

S

E0

S

e
E1

S
e ′e

Changes
state of p

Changes
state of p

Problem: Pro-
cesses change

their deci-
sion value

Consensus with One Faulty Process: Impossibility Result
Based on the previous observations we may construct an execution
that does not terminate

I There is a bi-valent initial configuration
I Each event that my lead to a uni-valent configuration is

delayed long enough to lose this property
I Since we interchange two bi-valent configuration, the decision

is never reached
I The algorithm does not terminate

Importance of the impossibility result

I Why bother?
I We prove the non-existence of an applicable solution in any

network
I We just proved impossibility in a network of 2 processes

I The above result is very strong!
I It shows that no solution exists event if we look into a specific

network
I Even if just one process fails
I It is enough not to know a-priori which process fails

1 solution for 1 instance 1 solution for each instance≤

Result: Impos-
sible to solve
the problem

We are interested
for such solutions



Open Problem # 9

Assume a synchronous distributed system consisting of a set of n
processes that are connected by a directed ring network, where
each process has a unique identity but is not aware of the total
number of processes neither of the network’s topology. Design a
distributed leader election algorithm that can tolerate 1 byzantine
failure. Define algorithm’s properties and verify it’s correctness, as
well as the time and message complexity. You should prove your
claims.


