
Modern Distributed Computing
Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 6
Tuesday, April 16, 2013

Part 3: Static Asynchronous Networks

1. I/O Automata Model

2. Distributed Data Structures

3. Time, Clocks and Ordering of Events

4. Synchronizers

5. Global Predicates

6. Termination Detection

Asynchronous Message Passing Model

We study distributed systems where

1. the entities of the system execute their actions

I with arbitrary order,
I and with arbitrary speed relative to the other entities,
I we do not assume any rate of execution actions.

2. the communications channels of the system deliver messages
with arbitrary speeds relative to the other channels

I we do not assume any message delivery rate.

Asynchronous Message Passing Model

I We model this undetermined temporal behavior using
Input/Output automata

I Each process is modeled as an I/O automaton,
I Each communication channel is modeled as an I/O automaton.

I The I/O automata model is generic enough.

I We can use it to describe almost all types of asynchronous
message passing systems.



Input/Output Automata

I An I/O automaton models an entity of the distributed system
that interacts with other entities of the system.

I It is a state automaton (state machine) where transitions
between states are connected by a set of actions.

I The actions of I/O automaton A are grouped:

1. Input Actions – in(A)
2. Output Actions – out(A)
3. Internal Actions – int(A)

Input/Output Automata
I The input and output actions are used to model the

communication of the automata with their environment
I Example – an input action is the reception of a message by a

neighboring process.
I Example – an output action is the delivery of a message from a

communication channel.

I Internal actions are visible only by the automaton performing
the action.

I An automaton does not determine when an input action will
be invoked – this depends on its neighboring automata.

I It can only determine when an output action or and internal
action will be executed.

Input/Output Automata

I A set of states states(A)

I Some states are the initial states – start(A)
I Some states are the halting states – halt(A)

I A state transition function
trans(A) ⊆ states(A)×(in(A) ∪ out(A) ∪ int(A))×states(A)

I For each state κ and for each action ε
I There is a transition (κ, ε, κ′) ∈ trans(A)

Input/Output Automata
An execution of the I/O automaton A is defined as follows:

κ0, ε1, κ1, ε2, . . . εr , κr , . . .

where for each r ≥ 0 it holds that (κr , εr+1, κr+1) ∈ trans(A)

Given the three sets of actions in(A), out(A), int(A), we define

I external actions: ext(A) = in(A) ∪ outA
I internal actions: local(A) = out(A) ∪ int(A)

I all actions: actions(A) = in(A) ∪ out(A) ∪ int(A)



Modeling Processes

C

Q
init(q, vq) out(q, v ′q)

receive(m, p, q)

P
init(p, vp) out(p, v ′p)

send(m, p, q)

I I/O automata
I Defined by a state

I Special states: initial, halt states

I and a state transition function:
states × (messagein, process)→
states × (messageout , process)

I Some tasks may be executed
internally states ×
{(messagein, process) ∪ ∅} →
states×{(messageout , process)∪∅}

I We need to define the notion of
fairness

An example of a Process I/O Automaton

I Executes a distributed consensus
algorithm

I Input actionsin(Pu)

1. init(i)u, i ∈ S
2. receive(i)v ,u,

i ∈ S, 1 ≤ v ≤ n, v 6= u

I Output actions out(Pu)

1. decide(i)u, i ∈ S
2. send(m)u,v , i ∈ S, 1 ≤ v ≤ n, v 6= u

I States:

1. val – vector, indexed by {1, . . . , n}
elements of S ∪ null, initially null

Process Pu

Pu

init(v)u decide(v)u

send(m)u,v receive(m)v ,u

An example of a Process I/O Automaton
I Transitions

1. init(i)u, i ∈ S
I effect – val(u) = i

2. send(i)u,v , i ∈ S
I precondition – val(u) == i
I effect – none

3. receive(i)v ,u, i ∈ S
I effect – val(v) = i

4. decide(i)u, i ∈ S
I precondition – for each v , 1 ≤ v ≤ n : val(v) 6= null

i = f
(
val(1), . . . , val(n)

)
I effect – none

Modeling Communication Channels

C

send(m, p, q)

receive(m, p, q)

Q
init(q, vq) out(q, v ′q)

P
init(p, vp) out(p, v ′p)

I I/O automata
I Defined by a state

I We assume a queue of messages
that need to be delivered

I e.g., a FIFO priority queue

I Execute actions receive(m, p, q)
and send(m, p, q)



An example of a Channel I/O Automaton

I Connects processes u, v

I Delivers messages by respecting the order they were received
(FIFO)

I Let M be the message alphabet

I Input actions in(Cu,v )

1. send(m)u,v , m ∈M
I Output actions out(Cu,v )

1. receive(m)u,v , m ∈M

Communication Channel Cu,v

Cu,v
send(m)u,v

receive(m)u,v

An example of a Channel I/O Automaton

I States:

1. queue – a FIFO queue of elements of M, initially empty

I Transitions:

1. send(m)u,v

I effect – place m in queue

2. receive(m)u,v

I precondition – m is in head of queue
I effect – remove head of queue

Possible executions (the queue state is defined as [,])

[], send(1)u,v , [1], receive(1)u,v , [], send(2)u,v , [2], receive(2)u,v , []

[], send(1)u,v , [1], send(2)u,v , [12], send(2)u,v , [122], receive(1)u,v ,

[22], send(1)u,v , [221], receive(2)u,v , [21], receive(2)u,v , [1], . . .

An example of a Channel I/O Automaton

Other types of communication channels:

I Reliable, FIFO – deliver all messages by respecting the order
they were transmitted (previous example)

I Unreliable, FIFO – Transitions:

1. send(m)u,v – effect: place a finite number of copies of m in
queue

I Unreliable – States:

1. in-transit– a vector of items of type M, initially empty

Transitions:

1. send(m)u,v – effect: place a finite number of copies of m in
in-transit

2. receive(m)u,v – precondition: m ∈ in-transit – effect:
remove one copy of m from in-transit

Composition of I/O Automata

I We model the asynchronous
distributed system by composing
a set of I/O automata

I We define one automaton

1. for each process,
2. for each communication

channel.

Example of a System

P1 P2

P3



Composition of I/O Automata

I We model the asynchronous
distributed system by composing
a set of I/O automata

I We define one automaton

1. for each process,

2. for each communication
channel.

Example of a System

P1 P2

P3

Composition of I/O Automata

I We model the asynchronous
distributed system by composing
a set of I/O automata

I We define one automaton

1. for each process,
2. for each communication

channel.

Example of a System

P1 P2

P3

C1,2

C2,1

C 1,3 C 3,
1

C
2,3

C
3,2

Complexity Measures

I Message complexity

I We measure the total number of messages transmitted or
received.

I Time complexity

I The undetermined temporal behavior does not allow to
measure time complexity in a straight forward way

I We make the following assumptions when evaluating time
complexity

1. We set an upper bound l for the execution time of every
action ε at each state κ

2. We set an upper bound d for the transmission of the oldest
message stored in any communication channel

Leader Election
The election of a leader in a network requires
the selection of a single, unique, process that
will enter a state “leader” (or “elected”) while
all other processes enter the state
“non-leader” (or “non-elected”).

Ring network

I We count mod n, allowing 0 to be another name for process
n, n + 1 another name for process 1, . . .

I Process with largest ID is umax

I We assume that communication channels are reliable and
FIFO



The LCR Algorithm

Algorithm LCR (informal)

Each process sends its identifier around the ring. When a process receives

an incoming identifier, it compares that identifier to its own. If the

incoming identifier is greater than its own, it keeps passing the identifier;

if it is less that its own, it discards the incoming identifier; if it is equal to

its own, the process declares itself the leader.

I Originally designed for synchronous systems.
I We can adapt for asynchronous systems,

I implement an outgoing message queue.

I/O Automaton AsynchLCRu

Actions:

I Input action in(AsynchLCRu)

1. receive(τ)u−1,u, where τ a UID

I Output actions out(AsynchLCRu)

1. send(τ)u,u+1, where τ a UID
2. leaderu

Transitions:

I τ – a UID, initially the UID of u

I send – a queue (FIFO) with UID, initial contains only the UID
of u

I status – may be assigned values {unknown, chosen,

reported}, initially set to unknown.

I/O Automaton AsynchLCRu

Transitions:

I send(τ)u,u+1

I precondition – τ head of send
I effect – remove head of send

I receive(τ)u−1,u
I effect

τ > u – place τ tail of send
τ = u – status = chosen
τ < u – nothing

I leaderu

I precondition – status == chosen
I effect – status = reported

Properties of AsynchLCR

I Message complexity O(n2)

I Time complexity

I The processing of a message may be delayed in some process
where (at most) n messages are in queue – given that the
delay of each message is (at most) l, the overall delay is O(nl)
or O(nd) for the communication channels respectively.

I Since the message will go through all the processes and all
channels, the time complexity is O

(
n2(l + d)

)
I In reality, AsynchLCR is faster than that – if we examine the

case more carefully we can show that the time complexity is
O
(
n(l + d)

)



Directed spanning tree

A directed spanning tree of a directed graph G = (V ,E ) is a
rooted tree that consists entirely of directed edges in E , all edges
directed from parents to children in the tree, and that contains
every vertex of G .

I We can modify SynchBFS for the asynchronous message
passing model.

I The algorithm constructs a spanning tree,
I it may not hold the Breadth-First property.

AsynchSpanningTree Algorithm

At any point during execution, there is some set of processes that
is “marked”, initially just i0. Process i0 sends out a search message
at round 1, to all of its outgoing neighbors. At any round, if an
unmarked process receives a search message, it marks itself and
chooses one of the processes from which the search has arrived as
its parent. At the first round after a process gets marked, it sends
a search message to all of its outgoing neighbors.

I Processes are not aware of the total number of processes (n)
I All processes have UIDs.

I/O Automaton AsynchSpanningTreeu

Actions:

I Input actions in(AsynchSpanningTreeu)

1. receive(“search”)u,v , where v ∈ nbrs

I Output actions out(AsynchSpanningTreeu)

1. send(“search”)u,v , where v ∈ nbrs
2. parent(v)u, where v ∈ nbrs

Στατες:

I parent ∈ nbrs ∪ {null} – initially null

I reported – type boolean, initially false.

I for each v ∈ nbrs – send(v) ∈ {search, null} – initially search

if u = u0, otherwise null

I/O Automaton AsynchSpanningTreeu

Transitions:

I send(“search”)u,v

I precondition – send(v) == search
I effect – send(v) = null

I receive(“search”)u,v

I effect if u 6= u0 and parent == null then

parent = v
for each k ∈ nbrs − v – send(k) = search

I parent(v)u

I precondition – parent == v , reported == false
I effect – reported = true



Properties of AsynchSpanningTree
I AsynchSpanningTree constructs a directed spanning tree

I The distance of any process from u0 may differ in T (G ) and in
G .

I The communication complexity is O (m)
I Time complexity:

I If we do not experience message congestion
I All processes will have selected a parent process within time
δ(l + d) + l

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from i in G appears at depth d in the
tree.

I We can modify AsynchSpanningTree in order to fix the wrong
selected parents.

I If a process receives a search message from a parent that is
closer to the root than the existing one, we allow the process
to change its parent.

I We need to add a counter in the search messages so that we
can measure the distance of each process from the root.

Algorithm AsynchBFS

Each process u holds a variable du with its current distance from u0

(initially if u 6= u0, du =∞ otherwise if u = u0, du = 0). Process u0

starts the execution by transmitting du0 to all its neighbors. During each

turn, if a process receives a message m from v where m + 1 < du, it sets

du = m + 1, and the variable parent to the UID of v from which it

received the message.

I Let d(u) the distance of u0 from u in G

I During each execution, for any neighboring u, v either
dv < du + 1 or du is transmitted from u to v

I/O Automaton AsynchBFSu

Actions:

I Input action in(AsynchSpanningTreeu)

1. receive(m)u,v , where m ∈ N , v ∈ nbrs

I Output action out(AsynchSpanningTreeu)

1. send(m)u,v , where m ∈ N , v ∈ nbrs

States:

I du ∈ N ∪ {∞} – initially 0 if u = u0 otherwise ∞
I parent ∈ nbrs ∪ {null} – initially null

I for each v ∈ nbrs – send(v) – a queue (FIFO) containing
elements of N , initially contains 0, if u = u0, otherwise empty.



I/O Automaton AsynchBFSu

Transitions:

I send(m)u,v

I precondition – m head of send(v)
I effect – remove head of send(v)

I receive(m)u,v

I effect – if m + 1 < du then

parent = v
for each k ∈ nbrs − v – add du tail of send(k)

Properties of AsynchBFS

I In each time instance of the execution where
a du is not set to ∞, the value of du will be
the length of some path connecting u0 with
u

I d(u) ≤ du < n
I variable du will change value at most n

times

I Message complexity is O (nm)

Example

1 2

3

100

1

1

Properties of AsynchBFS

Lemma
For each u within time d(u)n

(
(l) + (d)

)
it holds that du = d(u).

I For d(u) = 0 it is trivial.
I Let assume that it holds for every v where d(v) ≤ k
I Let process u with d(u) = k + 1 and process v (neighboring

of u) with d(v) = k
I Within time kn

(
(l) + (d)

)
, process v has set d(v) = k and

has decided to send k to process u
I Within additional time n(l), process v will send k to Cvu
I Within additional time v(d), process u will receive it, set

du = k + 1 and choose v as parent.

Properties of AsynchBFS

Theorem
The execution of AsynchBFS converges to a configuration where the

processes have constructed a breadth-first spanning tree T (G ) such that

the distance of each vertex from u0 is the same in G and in T (G ) and

this is completed within time O
(
δn

(
(l) + (d)

))

I The convergence technique is common for asynchronous
distributed systems.


