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1. I/O Automata Model

2. Distributed Data Structures
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5. Global Predicates
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Asynchronous Message Passing Model

We study distributed systems where

1. the entities of the system execute their actions

I with arbitrary order,
I and with arbitrary speed relative to the other entities,
I we do not assume any rate of execution actions.

2. the communications channels of the system deliver messages
with arbitrary speeds relative to the other channels

I we do not assume any message delivery rate.

Asynchronous Message Passing Model

I We model this undetermined temporal behavior using
Input/Output automata

I Each process is modeled as an I/O automaton,
I Each communication channel is modeled as an I/O automaton.

I The I/O automata model is generic enough.

I We can use it to describe almost all types of asynchronous
message passing systems.



Input/Output Automata

I An I/O automaton models an entity of the distributed system
that interacts with other entities of the system.

I It is a state automaton (state machine) where transitions
between states are connected by a set of actions.

I The actions of I/O automaton A are grouped:

1. Input Actions – in(A)
2. Output Actions – out(A)
3. Internal Actions – int(A)

Input/Output Automata
I The input and output actions are used to model the

communication of the automata with their environment
I Example – an input action is the reception of a message by a

neighboring process.
I Example – an output action is the delivery of a message from a

communication channel.

I Internal actions are visible only by the automaton performing
the action.

I An automaton does not determine when an input action will
be invoked – this depends on its neighboring automata.

I It can only determine when an output action or and internal
action will be executed.

Input/Output Automata

I A set of states states(A)

I Some states are the initial states – start(A)
I Some states are the halting states – halt(A)

I A state transition function
trans(A) ⊆ states(A)×(in(A) ∪ out(A) ∪ int(A))×states(A)

I For each state κ and for each action ε
I There is a transition (κ, ε, κ′) ∈ trans(A)

Input/Output Automata
An execution of the I/O automaton A is defined as follows:

κ0, ε1, κ1, ε2, . . . εr , κr , . . .

where for each r ≥ 0 it holds that (κr , εr+1, κr+1) ∈ trans(A)

Given the three sets of actions in(A), out(A), int(A), we define

I external actions: ext(A) = in(A) ∪ outA
I internal actions: local(A) = out(A) ∪ int(A)

I all actions: actions(A) = in(A) ∪ out(A) ∪ int(A)



Modeling Processes

C

Q
init(q, vq) out(q, v ′q)

receive(m, p, q)

P
init(p, vp) out(p, v ′p)

send(m, p, q)

I I/O automata
I Defined by a state

I Special states: initial, halt states

I and a state transition function:
states × (messagein, process)→
states × (messageout , process)

I Some tasks may be executed
internally states ×
{(messagein, process) ∪ ∅} →
states×{(messageout , process)∪∅}

I We need to define the notion of
fairness

An example of a Process I/O Automaton

I Executes a distributed consensus
algorithm

I Input actionsin(Pu)

1. init(i)u, i ∈ S
2. receive(i)v ,u,

i ∈ S, 1 ≤ v ≤ n, v 6= u

I Output actions out(Pu)

1. decide(i)u, i ∈ S
2. send(m)u,v , i ∈ S, 1 ≤ v ≤ n, v 6= u

I States:

1. val – vector, indexed by {1, . . . , n}
elements of S ∪ null, initially null

Process Pu

Pu

init(v)u decide(v)u

send(m)u,v receive(m)v ,u

An example of a Process I/O Automaton
I Transitions

1. init(i)u, i ∈ S
I effect – val(u) = i

2. send(i)u,v , i ∈ S
I precondition – val(u) == i
I effect – none

3. receive(i)v ,u, i ∈ S
I effect – val(v) = i

4. decide(i)u, i ∈ S
I precondition – for each v , 1 ≤ v ≤ n : val(v) 6= null

i = f
(
val(1), . . . , val(n)

)
I effect – none

Modeling Communication Channels

C

send(m, p, q)

receive(m, p, q)

Q
init(q, vq) out(q, v ′q)

P
init(p, vp) out(p, v ′p)

I I/O automata
I Defined by a state

I We assume a queue of messages
that need to be delivered

I e.g., a FIFO priority queue

I Execute actions receive(m, p, q)
and send(m, p, q)



An example of a Channel I/O Automaton

I Connects processes u, v

I Delivers messages by respecting the order they were received
(FIFO)

I Let M be the message alphabet

I Input actions in(Cu,v )

1. send(m)u,v , m ∈M
I Output actions out(Cu,v )

1. receive(m)u,v , m ∈M

Communication Channel Cu,v

Cu,v
send(m)u,v

receive(m)u,v

An example of a Channel I/O Automaton

I States:

1. queue – a FIFO queue of elements of M, initially empty

I Transitions:

1. send(m)u,v

I effect – place m in queue

2. receive(m)u,v

I precondition – m is in head of queue
I effect – remove head of queue

Possible executions (the queue state is defined as [,])

[], send(1)u,v , [1], receive(1)u,v , [], send(2)u,v , [2], receive(2)u,v , []

[], send(1)u,v , [1], send(2)u,v , [12], send(2)u,v , [122], receive(1)u,v ,

[22], send(1)u,v , [221], receive(2)u,v , [21], receive(2)u,v , [1], . . .

An example of a Channel I/O Automaton

Other types of communication channels:

I Reliable, FIFO – deliver all messages by respecting the order
they were transmitted (previous example)

I Unreliable, FIFO – Transitions:

1. send(m)u,v – effect: place a finite number of copies of m in
queue

I Unreliable – States:

1. in-transit– a vector of items of type M, initially empty

Transitions:

1. send(m)u,v – effect: place a finite number of copies of m in
in-transit

2. receive(m)u,v – precondition: m ∈ in-transit – effect:
remove one copy of m from in-transit

Composition of I/O Automata

I We model the asynchronous
distributed system by composing
a set of I/O automata

I We define one automaton

1. for each process,
2. for each communication

channel.

Example of a System

P1 P2

P3
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Complexity Measures

I Message complexity

I We measure the total number of messages transmitted or
received.

I Time complexity

I The undetermined temporal behavior does not allow to
measure time complexity in a straight forward way

I We make the following assumptions when evaluating time
complexity

1. We set an upper bound l for the execution time of every
action ε at each state κ

2. We set an upper bound d for the transmission of the oldest
message stored in any communication channel

Leader Election
The election of a leader in a network requires
the selection of a single, unique, process that
will enter a state “leader” (or “elected”) while
all other processes enter the state
“non-leader” (or “non-elected”).

Ring network

I We count mod n, allowing 0 to be another name for process
n, n + 1 another name for process 1, . . .

I Process with largest ID is umax

I We assume that communication channels are reliable and
FIFO



The LCR Algorithm

Algorithm LCR (informal)

Each process sends its identifier around the ring. When a process receives

an incoming identifier, it compares that identifier to its own. If the

incoming identifier is greater than its own, it keeps passing the identifier;

if it is less that its own, it discards the incoming identifier; if it is equal to

its own, the process declares itself the leader.

I Originally designed for synchronous systems.
I We can adapt for asynchronous systems,

I implement an outgoing message queue.

I/O Automaton AsynchLCRu

Actions:

I Input action in(AsynchLCRu)

1. receive(τ)u−1,u, where τ a UID

I Output actions out(AsynchLCRu)

1. send(τ)u,u+1, where τ a UID
2. leaderu

Transitions:

I τ – a UID, initially the UID of u

I send – a queue (FIFO) with UID, initial contains only the UID
of u

I status – may be assigned values {unknown, chosen,

reported}, initially set to unknown.

I/O Automaton AsynchLCRu

Transitions:

I send(τ)u,u+1

I precondition – τ head of send
I effect – remove head of send

I receive(τ)u−1,u
I effect

τ > u – place τ tail of send
τ = u – status = chosen
τ < u – nothing

I leaderu

I precondition – status == chosen
I effect – status = reported

Properties of AsynchLCR

I Message complexity O(n2)

I Time complexity

I The processing of a message may be delayed in some process
where (at most) n messages are in queue – given that the
delay of each message is (at most) l, the overall delay is O(nl)
or O(nd) for the communication channels respectively.

I Since the message will go through all the processes and all
channels, the time complexity is O

(
n2(l + d)

)
I In reality, AsynchLCR is faster than that – if we examine the

case more carefully we can show that the time complexity is
O
(
n(l + d)

)



Directed spanning tree

A directed spanning tree of a directed graph G = (V ,E ) is a
rooted tree that consists entirely of directed edges in E , all edges
directed from parents to children in the tree, and that contains
every vertex of G .

I We can modify SynchBFS for the asynchronous message
passing model.

I The algorithm constructs a spanning tree,
I it may not hold the Breadth-First property.

AsynchSpanningTree Algorithm

At any point during execution, there is some set of processes that
is “marked”, initially just i0. Process i0 sends out a search message
at round 1, to all of its outgoing neighbors. At any round, if an
unmarked process receives a search message, it marks itself and
chooses one of the processes from which the search has arrived as
its parent. At the first round after a process gets marked, it sends
a search message to all of its outgoing neighbors.

I Processes are not aware of the total number of processes (n)
I All processes have UIDs.

I/O Automaton AsynchSpanningTreeu

Actions:

I Input actions in(AsynchSpanningTreeu)

1. receive(“search”)u,v , where v ∈ nbrs

I Output actions out(AsynchSpanningTreeu)

1. send(“search”)u,v , where v ∈ nbrs
2. parent(v)u, where v ∈ nbrs

Στατες:

I parent ∈ nbrs ∪ {null} – initially null

I reported – type boolean, initially false.

I for each v ∈ nbrs – send(v) ∈ {search, null} – initially search

if u = u0, otherwise null

I/O Automaton AsynchSpanningTreeu

Transitions:

I send(“search”)u,v

I precondition – send(v) == search
I effect – send(v) = null

I receive(“search”)u,v

I effect if u 6= u0 and parent == null then

parent = v
for each k ∈ nbrs − v – send(k) = search

I parent(v)u

I precondition – parent == v , reported == false
I effect – reported = true



Properties of AsynchSpanningTree
I AsynchSpanningTree constructs a directed spanning tree

I The distance of any process from u0 may differ in T (G ) and in
G .

I The communication complexity is O (m)
I Time complexity:

I If we do not experience message congestion
I All processes will have selected a parent process within time
δ(l + d) + l

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from i in G appears at depth d in the
tree.

I We can modify AsynchSpanningTree in order to fix the wrong
selected parents.

I If a process receives a search message from a parent that is
closer to the root than the existing one, we allow the process
to change its parent.

I We need to add a counter in the search messages so that we
can measure the distance of each process from the root.

Algorithm AsynchBFS

Each process u holds a variable du with its current distance from u0

(initially if u 6= u0, du =∞ otherwise if u = u0, du = 0). Process u0

starts the execution by transmitting du0 to all its neighbors. During each

turn, if a process receives a message m from v where m + 1 < du, it sets

du = m + 1, and the variable parent to the UID of v from which it

received the message.

I Let d(u) the distance of u0 from u in G

I During each execution, for any neighboring u, v either
dv < du + 1 or du is transmitted from u to v

I/O Automaton AsynchBFSu

Actions:

I Input action in(AsynchSpanningTreeu)

1. receive(m)u,v , where m ∈ N , v ∈ nbrs

I Output action out(AsynchSpanningTreeu)

1. send(m)u,v , where m ∈ N , v ∈ nbrs

States:

I du ∈ N ∪ {∞} – initially 0 if u = u0 otherwise ∞
I parent ∈ nbrs ∪ {null} – initially null

I for each v ∈ nbrs – send(v) – a queue (FIFO) containing
elements of N , initially contains 0, if u = u0, otherwise empty.



I/O Automaton AsynchBFSu

Transitions:

I send(m)u,v

I precondition – m head of send(v)
I effect – remove head of send(v)

I receive(m)u,v

I effect – if m + 1 < du then

parent = v
for each k ∈ nbrs − v – add du tail of send(k)

Properties of AsynchBFS

I In each time instance of the execution where
a du is not set to ∞, the value of du will be
the length of some path connecting u0 with
u

I d(u) ≤ du < n
I variable du will change value at most n

times

I Message complexity is O (nm)

Example
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Properties of AsynchBFS

Lemma
For each u within time d(u)n

(
(l) + (d)

)
it holds that du = d(u).

I For d(u) = 0 it is trivial.
I Let assume that it holds for every v where d(v) ≤ k
I Let process u with d(u) = k + 1 and process v (neighboring

of u) with d(v) = k
I Within time kn

(
(l) + (d)

)
, process v has set d(v) = k and

has decided to send k to process u
I Within additional time n(l), process v will send k to Cvu
I Within additional time v(d), process u will receive it, set

du = k + 1 and choose v as parent.

Properties of AsynchBFS

Theorem
The execution of AsynchBFS converges to a configuration where the

processes have constructed a breadth-first spanning tree T (G ) such that

the distance of each vertex from u0 is the same in G and in T (G ) and

this is completed within time O
(
δn

(
(l) + (d)

))

I The convergence technique is common for asynchronous
distributed systems.


