Modern Distributed Computing

Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 6 Tuesday, April 16, 2013

Part 3: Static Asynchronous Networks

- 1. I/O Automata Model
- 2. Distributed Data Structures
- 3. Time, Clocks and Ordering of Events
- 4. Synchronizers
- 5. Global Predicates
- 6. Termination Detection

Asynchronous Message Passing Model

We study distributed systems where

- 1. the entities of the system execute their actions
 - with arbitrary order,
 - > and with arbitrary speed relative to the other entities,
 - we do not assume any rate of execution actions.
- 2. the communications channels of the system deliver messages with **arbitrary** speeds relative to the other channels
 - we do not assume any message delivery rate.

Asynchronous Message Passing Model

- We model this undetermined temporal behavior using Input/Output automata
 - Each process is modeled as an I/O automaton,
 - \blacktriangleright Each communication channel is modeled as an I/O automaton.
- ► The I/O automata model is generic enough.
 - We can use it to describe almost all types of asynchronous message passing systems.

Input/Output Automata

- An I/O automaton models an entity of the distributed system that interacts with other entities of the system.
- It is a state automaton (state machine) where transitions between states are connected by a set of actions.
- The actions of I/O automaton \mathcal{A} are grouped:
 - 1. Input Actions in(A)
 - 2. Output Actions out(A)
 - 3. Internal Actions int(A)

Input/Output Automata

- The input and output actions are used to model the communication of the automata with their environment
 - Example an input action is the reception of a message by a neighboring process.
 - Example an output action is the delivery of a message from a communication channel.
- Internal actions are visible only by the automaton performing the action.
- An automaton does not determine when an input action will be invoked – this depends on its neighboring automata.
 - It can only determine when an output action or and internal action will be executed.

Input/Output Automata

- ► A set of states *states*(A)
 - ▶ Some states are the **initial states** *start*(A)
 - ► Some states are the halting states halt(A)
- A state transition function trans(A) ⊆ states(A)×(in(A) ∪ out(A) ∪ int(A))×states(A)
 - \blacktriangleright For each state κ and for each action ϵ
 - There is a transition $(\kappa, \epsilon, \kappa') \in trans(\mathcal{A})$

Input/Output Automata

An execution of the I/O automaton ${\cal A}$ is defined as follows:

 $\kappa_0, \epsilon_1, \kappa_1, \epsilon_2, \ldots \epsilon_r, \kappa_r, \ldots$

where for each $r \ge 0$ it holds that $(\kappa_r, \epsilon_{r+1}, \kappa_{r+1}) \in trans(\mathcal{A})$ Given the three sets of actions $in(\mathcal{A})$, $out(\mathcal{A})$, $int(\mathcal{A})$, we define

- external actions: $ext(\mathcal{A}) = in(\mathcal{A}) \cup out\mathcal{A}$
- internal actions: $local(A) = out(A) \cup int(A)$
- ▶ all actions: $actions(A) = in(A) \cup out(A) \cup int(A)$

Modeling Processes

- Special states: initial, halt states
- ► and a state transition function: states × (message_{in}, process) → states × (message_{out}, process)
- Some tasks may be executed internally states ×
- $\{(message_{in}, process) \cup \emptyset\} \rightarrow$ states $\times \{(message_{out}, process) \cup \emptyset\}$
- We need to define the notion of fairness

An example of a Process I/O Automaton

- Executes a distributed consensus algorithm
- Input actions $in(\mathcal{P}_u)$
 - 1. $init(i)_u, i \in S$ 2. $receive(i)_{v,u}, i \in S, 1 \le v \le n, v \ne u$
- Output actions $out(\mathcal{P}_u)$
 - 1. $decide(i)_u$, $i \in S$
 - 2. $send(m)_{u,v}$, $i \in S, 1 \le v \le n, v \ne u$
- States:
 - 1. val vector, indexed by $\{1, \ldots, n\}$ elements of $S \cup$ null, initially null

An example of a Process I/O Automaton

- Transitions
 - 1. $init(i)_u, i \in S$
 - effect val(u) = i
 - 2. send(i)_{u,v}, $i \in S$
 - ▶ precondition val(u) == i
 - ► effect none
 - 3. receive(i)_{v,u}, $i \in S$

4. decide
$$(i)_u$$
, $i\in\mathcal{S}$

▶ precondition - for each $v, 1 \le v \le n$: $val(v) \ne null$ i = f(val(1), ..., val(n))

Modeling Communication Channels

I/O automata

- Defined by a state
 - We assume a queue of messages that need to be delivered
 - e.g., a FIFO priority queue
- Execute actions receive(m, p, q) and send(m, p, q)

An example of a Channel I/O Automaton

- ► Connects processes *u*, *v*
- Delivers messages by respecting the order they were received (FIFO)
- \blacktriangleright Let ${\mathcal M}$ be the message alphabet
- ▶ Input actions $in(C_{u,v})$
 - 1. send $(m)_{u,v}$, $m \in \mathcal{M}$
- ▶ Output actions *out*(C_{*u*,*v*})
 - 1. receive $(m)_{u,v}$, $m \in \mathcal{M}$

Communication Channel $C_{u,v}$

 $send(m)_{u,v}$

An example of a Channel I/O Automaton

Other types of communication channels:

 Reliable, FIFO – deliver all messages by respecting the order they were transmitted (previous example)

receive(m),

- Unreliable, FIFO Transitions:
 - 1. $send(m)_{u,v}$ effect: place a finite number of copies of m in queue
- Unreliable States:
 - 1. in-transit- a vector of items of type \mathcal{M} , initially empty

Transitions:

- 1. $send(m)_{u,v} effect$: place a finite number of copies of m in in-transit
- 2. $receive(m)_{u,v}$ precondition: $m \in in-transit effect$: remove one copy of m from in-transit

An example of a Channel I/O Automaton

- States:
 - 1. queue a FIFO queue of elements of $\mathcal{M},$ initially empty
- Transitions:
 - 1. $send(m)_{u,v}$
 - ▶ effect place *m* in *queue*
 - 2. receive $(m)_{u,v}$
 - precondition m is in head of queue
 - effect remove head of queue

Possible executions (the queue state is defined as [,])

[], $send(1)_{u,v}$, [1], $receive(1)_{u,v}$, [], $send(2)_{u,v}$, [2], $receive(2)_{u,v}$, [] [], $send(1)_{u,v}$, [1], $send(2)_{u,v}$, [12], $send(2)_{u,v}$, [122], $receive(1)_{u,v}$, [22], $send(1)_{u,v}$, [221], $receive(2)_{u,v}$, [21], $receive(2)_{u,v}$, [1], ...

Composition of I/O Automata

Example of a System

- We model the asynchronous distributed system by composing a set of I/O automata
- We define one automaton

Composition of I/O Automata

Composition of I/O Automata

Complexity Measures

- Message complexity
 - We measure the total number of messages transmitted or received.
- Time complexity
 - The undetermined temporal behavior does not allow to measure time complexity in a straight forward way
 - We make the following assumptions when evaluating time complexity
 - 1. We set an upper bound / for the execution time of every action ϵ at each state κ
 - 2. We set an upper bound d for the transmission of the oldest message stored in any communication channel

Leader Election

The election of a leader in a network requires the selection of a single, unique, process that will enter a state "leader" (or "elected") while all other processes enter the state "non-leader" (or "non-elected").

Ring network

- We count mod n, allowing 0 to be another name for process n, n + 1 another name for process 1, ...
- Process with largest ID is u_{max}
- We assume that communication channels are reliable and FIFO

The LCR Algorithm

Algorithm LCR (informal)

Each process sends its identifier around the ring. When a process receives an incoming identifier, it compares that identifier to its own. If the incoming identifier is greater than its own, it keeps passing the identifier; if it is less that its own, it discards the incoming identifier; if it is equal to its own, the process declares itself the leader.

- Originally designed for synchronous systems.
- We can adapt for asynchronous systems,
 - implement an outgoing message queue.

I/O Automaton AsynchLCR_u

Actions:

- Input action in(AsynchLCR_u)
 - 1. $receive(\tau)_{u-1,u}$, where τ a UID
- Output actions *out*(AsynchLCR_u)
 - 1. $send(\tau)_{u,u+1}$, where τ a UID
 - 2. leader_u

Transitions:

- τ a UID, initially the UID of u
- send a queue (FIFO) with UID, initial contains only the UID of u
- status may be assigned values {unknown, chosen, reported}, initially set to unknown.

I/O Automaton AsynchLCR_u

Transitions:

- send $(\tau)_{u,u+1}$
 - precondition τ head of send
 - effect remove head of send
- receive $(\tau)_{u-1,u}$
 - ▶ effect
 - $au > {\it u} {\it place} \ au$ tail of send
 - $\tau = u status = chosen$
 - $\tau < u$ nothing
- ► leader_u
 - precondition status == chosen
 - effect status = reported

Properties of AsynchLCR

- Message complexity $\mathcal{O}(n^2)$
- Time complexity
 - ► The processing of a message may be delayed in some process where (at most) *n* messages are in queue – given that the delay of each message is (at most) *l*, the overall delay is O(*nl*) or O(*nd*) for the communication channels respectively.
 - Since the message will go through all the processes and all channels, the time complexity is O(n²(1+d))
 - In reality, AsynchLCR is faster than that if we examine the case more carefully we can show that the time complexity is *O*(n(*I*+*d*))

Directed spanning tree

A directed spanning tree of a directed graph G = (V, E) is a rooted tree that consists entirely of directed edges in E, all edges directed from parents to children in the tree, and that contains every vertex of G.

- We can modify SynchBFS for the asynchronous message passing model.
- The algorithm constructs a spanning tree,
- it may not hold the Breadth-First property.

AsynchSpanningTree Algorithm

At any point during execution, there is some set of processes that is "marked", initially just i_0 . Process i_0 sends out a search message at round 1, to all of its outgoing neighbors. At any round, if an unmarked process receives a search message, it marks itself and chooses one of the processes from which the search has arrived as its parent. At the first round after a process gets marked, it sends a search message to all of its outgoing neighbors.

- Processes are not aware of the total number of processes (n)
- ► All processes have UIDs.

I/O Automaton AsynchSpanningTree_u

Actions:

- Input actions in(AsynchSpanningTree_u)
 - 1. receive ("search")_{u,v}, where $v \in nbrs$
- Output actions out(AsynchSpanningTree_u)
 - 1. send("search")_{*u*,*v*}, where $v \in nbrs$
 - 2. $parent(v)_u$, where $v \in nbrs$

Στατες:

- ▶ $parent \in nbrs \cup \{null\} initially null$
- reported type boolean, initially false.
- For each v ∈ nbrs − send(v) ∈ {search, null} − initially search if u = u₀, otherwise null

I/O Automaton AsynchSpanningTree_u

Transitions:

- ▶ send("search")_{u,v}
 - precondition send(v) == search
 - effect send(v) = null
- ▶ receive("search")_{u,v}
 - effect if $u \neq u_0$ and parent == null then

parent = vfor each $k \in nbrs - v - send(k) = search$

- ▶ parent(v)_u
 - precondition parent == v, reported == false
 - ► effect reported = true

Properties of AsynchSpanningTree

- AsynchSpanningTree constructs a directed spanning tree
 - The distance of any process from u₀ may differ in T(G) and in G.
- The communication complexity is $\mathcal{O}(m)$
- Time complexity:
 - If we do not experience message congestion
 - ► All processes will have selected a parent process within time δ(*l* + *d*) + *l*

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided that each node at distance d from i in G appears at depth d in the tree.

- We can modify AsynchSpanningTree in order to fix the wrong selected parents.
- If a process receives a search message from a parent that is closer to the root than the existing one, we allow the process to change its parent.
- We need to add a counter in the search messages so that we can measure the distance of each process from the root.

Algorithm AsynchBFS

Each process u holds a variable d_u with its current distance from u_0 (initially if $u \neq u_0$, $d_u = \infty$ otherwise if $u = u_0$, $d_u = 0$). Process u_0 starts the execution by transmitting d_{u_0} to all its neighbors. During each turn, if a process receives a message m from v where $m + 1 < d_u$, it sets $d_u = m + 1$, and the variable **parent** to the UID of v from which it received the message.

- Let d(u) the distance of u_0 from u in G
- During each execution, for any neighboring u, v either d_v < d_u + 1 or d_u is transmitted from u to v

I/O Automaton AsynchBFS_u

Actions:

- ▶ Input action $in(AsynchSpanningTree_u)$ 1. $receive(m)_{u,v}$, where $m \in \mathcal{N}, v \in nbrs$
 - Output = etion out(Acumel Score in Trace)
- Output action *out*(AsynchSpanningTree_u)
 - 1. $send(m)_{u,v}$, where $m \in \mathcal{N}, v \in nbrs$

States:

- $d_u \in \mathcal{N} \cup \{\infty\}$ initially 0 if $u = u_0$ otherwise ∞
- ▶ parent ∈ nbrs ∪ {null} initially null
- For each v ∈ nbrs − send(v) − a queue (FIFO) containing elements of N, initially contains 0, if u = u₀, otherwise empty.

I/O Automaton AsynchBFS_u

Transitions:

- $send(m)_{u,v}$
 - precondition m head of send(v)
 - effect remove head of send(v)
- ► receive(m)_{u,v}
 - effect if $m + 1 < d_u$ then

```
parent = v
for each k \in nbrs - v - add d_u tail of send(k)
```

Properties of AsynchBFS

- In each time instance of the execution where a d_u is not set to ∞, the value of d_u will be the length of some path connecting u₀ with u
 - $d(u) \leq d_u < n$
 - variable d_u will change value at most n times
- Message complexity is $\mathcal{O}(nm)$

Example

Properties of AsynchBFS

Lemma

For each u within time d(u)n((l) + (d)) it holds that $d_u = d(u)$.

- For d(u) = 0 it is trivial.
- Let assume that it holds for every v where $d(v) \leq k$
- ▶ Let process u with d(u) = k + 1 and process v (neighboring of u) with d(v) = k
- Within time kn((l) + (d)), process v has set d(v) = k and has decided to send k to process u
- Within additional time n(l), process v will send k to C_{vu}
- Within additional time v(d), process u will receive it, set d_u = k + 1 and choose v as parent.

Properties of AsynchBFS

Theorem

The execution of AsynchBFS converges to a configuration where the processes have constructed a breadth-first spanning tree T(G) such that the distance of each vertex from u_0 is the same in G and in T(G) and this is completed within time $O(\delta n((l) + (d)))$

 The convergence technique is common for asynchronous distributed systems.

