Modern Distributed Computing
Theory and Applications

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 6
Tuesday, April 16, 2013

Part 3: Static Asynchronous Networks

|/O Automata Model

Distributed Data Structures

Time, Clocks and Ordering of Events
Synchronizers

Global Predicates

Termination Detection

o ok w o=

Asynchronous Message Passing Model

We study distributed systems where

1. the entities of the system execute their actions

» with arbitrary order,
» and with arbitrary speed relative to the other entities,
» we do not assume any rate of execution actions.

2. the communications channels of the system deliver messages
with arbitrary speeds relative to the other channels

» we do not assume any message delivery rate.

Asynchronous Message Passing Model

» We model this undetermined temporal behavior using
Input/Output automata

» Each process is modeled as an 1/O automaton,
» Each communication channel is modeled as an I/O automaton.

» The 1/O automata model is generic enough.

» We can use it to describe almost all types of asynchronous
message passing systems.

Input/Output Automata

» An |/O automaton models an entity of the distributed system
that interacts with other entities of the system.

» It is a state automaton (state machine) where transitions
between states are connected by a set of actions.
» The actions of I/O automaton A are grouped:
1. Input Actions — in(.A)
2. Output Actions — out(.A)
3. Internal Actions — int(.A)

Input/Output Automata

» The input and output actions are used to model the
communication of the automata with their environment
» Example — an input action is the reception of a message by a
neighboring process.
» Example — an output action is the delivery of a message from a
communication channel.
» Internal actions are visible only by the automaton performing
the action.
» An automaton does not determine when an input action will
be invoked — this depends on its neighboring automata.

> It can only determine when an output action or and internal
action will be executed.

Input/Output Automata

» A set of states states(.A)

» Some states are the initial states — start(.A)
» Some states are the halting states — halt(.A)

» A state transition function
trans(A) C states(.A) x (in(A) U out(A) U int(A)) x states(.A)

» For each state x and for each action ¢
» There is a transition (k, €, k') € trans(A)

Input/Output Automata

An execution of the 1/O automaton A is defined as follows:

’%07 617 'l{la 627 6!‘7 Kfr?

where for each r > 0 it holds that (k,,€,41, /,+1) € trans(A)
Given the three sets of actions in(.A), out(.A), int(.A), we define

» external actions: ext(A) = in(A)U outA
» internal actions: local(A) = out(A) U int(A)
» all actions: actions(A) = in(.A) U out(A) U int(.A)

Modeling Processes

» 1/O automata
Defined by a state
» Special states: initial, halt states

v

nite) g o)
P

lsend(m,p, q) and a state transition function:

states X (messagej,, process) —
states x (messageoyt, process)

v

» Some tasks may be executed
internally states X
{(messagei,, process) U 0} —
states x {(messageoyt, process) U}

init(q, vq)C&Dout(q7 Vq) » We need to define the notion of
fairness

lreceive(m, p,q)

An example of a Process I/O Automaton

Process P,

Executes a distributed consensus
algorithm

v

init(v), decide(v),

v

Input actionsin(P,)

1. init(i)y, i € S
2. receive(i)y u,
ieS1<v<nv#u

v

Output actions out(P,)
1. decide(i),, i € S
2. send(m)y,, i€ S,1<v<nv#u

send(m), , receive(m), ,

States:

v

1. val — vector, indexed by {1,...,n}
elements of S Unull, initially null

An example of a Process I/O Automaton

» Transitions

1. init(i)y, i €S
> effect — val(u) =i

2. send(i)yyv, 1 €S
> precondition — val(u) == i
> effect — none

3. receive(i)y,y, I €S
> effect — val(v) =i

4. decide(i),, i € S
> precondition — for each v,1 < v < n: val(v) # null

i = f(val(1),...,val(n))

> effect — none

Modeling Communication Channels

» 1/0 automata
» Defined by a state

» We assume a queue of messages
C that need to be delivered
> e.g., a FIFO priority queue

receive(m, p, q)

» Execute actions receive(m, p, q)

send(m, p, q) and send(m, p, q)

An example of a Channel I/O Automaton

» Connects processes u, v

v

Delivers messages by respecting the order they were received
(FIFO)

Let M be the message alphabet

v

v

Input actions in(Cy,v)
1. send(m),,,, me M

v

Output actions out(Cy.)

1. receive(m),,,, me M

Communication Channel C,,

send(m),,,
receive(m), .

An example of a Channel I/O Automaton

» States:
1. queue — a FIFO queue of elements of M, initially empty
» Transitions:
1. send(m),,,
> effect — place m in queue
2. receive(m),,,
» precondition — m is in head of queue

> effect — remove head of queue

Possible executions (the queue state is defined as [,])

(1, send(1),,,, [1], receive(1),,, [1, send(2),,, [2], receive(2),,, []
(1, send(1),,,, [1]1, send(2),,,, [12], send(2),,,, [122], receive(1l),,y,
[22], send(1),,,, [221], receive(2),,, [21], receive(2),,, [1], ...

An example of a Channel I/O Automaton

Other types of communication channels:
» Reliable, FIFO — deliver all messages by respecting the order
they were transmitted (previous example)
» Unreliable, FIFO — Transitions:

1. send(m),,, — effect: place a finite number of copies of m in
queue

» Unreliable — States:
1. in-transit— a vector of items of type M, initially empty
Transitions:

1. send(m),,, — effect: place a finite number of copies of m in
in-transit

2. receive(m),,, — precondition: m € in-transit — effect:
remove one copy of m from in-transit

Composition of /O Automata

Example of a System

» We model the asynchronous @
distributed system by composing

a set of 1/0 automata

» We define one automaton

Composition of /O Automata

Example of a System

» We model the asynchronous
distributed system by composing
a set of I/O automata

» We define one automaton

1. for each process,

Composition of /O Automata

Example of a System

@/@i‘é’?

» We model the asynchronous
distributed system by composing
a set of I/O automata

» We define one automaton

1. for each process,
2. for each communication
channel.

Complexity Measures

» Message complexity

» We measure the total number of messages transmitted or
received.

» Time complexity

» The undetermined temporal behavior does not allow to
measure time complexity in a straight forward way

» We make the following assumptions when evaluating time
complexity

1. We set an upper bound / for the execution time of every
action € at each state

2. We set an upper bound d for the transmission of the oldest
message stored in any communication channel

Ring network

Leader Election

The election of a leader in a network requires
the selection of a single, unique, process that
will enter a state “leader” (or “elected”) while
all other processes enter the state
“non-leader” (or “non-elected”).

» We count mod n, allowing 0 to be another name for process
n, n+ 1 another name for process 1, ...

» Process with largest ID is umax

» We assume that communication channels are reliable and
FIFO

The LCR Algorithm
Algorithm LCR (informal)

Each process sends its identifier around the ring. When a process receives
an incoming identifier, it compares that identifier to its own. If the
incoming identifier is greater than its own, it keeps passing the identifier;
if it is less that its own, it discards the incoming identifier; if it is equal to
its own, the process declares itself the leader.

» Originally designed for synchronous systems.
» We can adapt for asynchronous systems,
» implement an outgoing message queue.

|/O Automaton AsynchLCR,
Actions:
» Input action in(AsynchLCR,)
1. receive(T)y—1,4, where 7 a UID
» Output actions out(AsynchLCR),)

1. send(7)y,u+1, Where 7 a UID
2. leader,

Transitions:

» 7 —a UID, initially the UID of u

» send — a queue (FIFO) with UID, initial contains only the UID
of u

> status — may be assigned values {unknown, chosen,
reported}, initially set to unknown.

2
b

\

|/O Automaton AsynchLCR,
Transitions:
> send(T)y u+1

» precondition — 7 head of send
» effect — remove head of send

> receive(T)y—1,u
» effect

T > u — place 7 tail of send
T = u — status = chosen
7 < u — nothing

» leader,

» precondition — status == chosen
» effect — status = reported

Properties of AsynchLCR

» Message complexity O(n?)
» Time complexity

» The processing of a message may be delayed in some process
where (at most) n messages are in queue — given that the
delay of each message is (at most) /, the overall delay is O(n/)
or O(nd) for the communication channels respectively.

» Since the message will go through all the processes and all
channels, the time complexity is O (n?(/+ d))

> In reality, AsynchLCR is faster than that — if we examine the
case more carefully we can show that the time complexity is

O(n(l+ d))

Directed spanning tree

A directed spanning tree of a directed graph G = (V,E) is a
rooted tree that consists entirely of directed edges in E, all edges
directed from parents to children in the tree, and that contains
every vertex of G.

» We can modify SynchBFS for the asynchronous message
passing model.

» The algorithm constructs a spanning tree,

» it may not hold the Breadth-First property.

AsynchSpanningTree Algorithm

At any point during execution, there is some set of processes that
is “marked”, initially just ip. Process iyp sends out a search message
at round 1, to all of its outgoing neighbors. At any round, if an
unmarked process receives a search message, it marks itself and
chooses one of the processes from which the search has arrived as
its parent. At the first round after a process gets marked, it sends
a search message to all of its outgoing neighbors.

» Processes are not aware of the total number of processes (n)
» All processes have UIDs.

'\

|/O Automaton AsynchSpanningTree,

Actions:
» Input actions in(AsynchSpanningTree,,)
1. receive(“search"), ,, where v € nbrs
» Output actions out(AsynchSpanningTree,)

1. send(‘search"), ., where v € nbrs
2. parent(v),, where v € nbrs

Y TOTEC:
» parent € nbrs U {null} — initially null

> reported — type boolean, initially false.

» for each v € nbrs — send(v) € {search, null} — initially search
if u= ug, otherwise null

|/O Automaton AsynchSpanningTree,

Transitions:
» send(“search™), ,

» precondition — send(v) == search
» effect — send(v) = null

> receive(“search”),
> effect if u# uy and parent == null then

parent = v
for each k € nbrs — v — send(k) = search

» parent(v),

» precondition — parent == v, reported == false
> effect — reported = true

Properties of AsynchSpanningTree

» AsynchSpanningTree constructs a directed spanning tree
» The distance of any process from ug may differ in T(G) and in
G.
» The communication complexity is O (m)
» Time complexity:
> If we do not experience message congestion

» All processes will have selected a parent process within time
o(l+d)+1

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from / in G appears at depth d in the
tree.

» We can modify AsynchSpanningTree in order to fix the wrong
selected parents.

» If a process receives a search message from a parent that is
closer to the root than the existing one, we allow the process
to change its parent.

» We need to add a counter in the search messages so that we
can measure the distance of each process from the root.

2

Algorithm AsynchBFS

Each process v holds a variable d, with its current distance from ug
(initially if u # wg, d, = oo otherwise if u = ug, d, =0). Process u
starts the execution by transmitting d,, to all its neighbors. During each
turn, if a process receives a message m from v where m+ 1 < d,, it sets
d, = m+ 1, and the variable parent to the UID of v from which it
received the message.

> Let d(u) the distance of ug from uin G

» During each execution, for any neighboring u, v either
d, < d,+1ord,is transmitted from u to v

|/O Automaton AsynchBFS,

Actions:
» Input action in(AsynchSpanningTree,,)
1. receive(m),,,, where m € N, v € nbrs
» Output action out(AsynchSpanningTree,,)
1. send(m), ., where m € N, v € nbrs
States:
> d, € N U{oo} —initially 0 if u = ug otherwise co
> parent € nbrs U {null} — initially null

» for each v € nbrs — send(v) — a queue (FIFO) containing
elements of V, initially contains 0, if u = wug, otherwise empty.

|/O Automaton AsynchBFS,

Transitions:
> send(m),,,

» precondition — m head of send(v)
» effect — remove head of send(v)

> receive(m)y
» effect — if m+1 < d, then

parent = v
for each k € nbrs — v — add d, tail of send(k)

Properties of AsynchBFS

» |n each time instance of the execution where Example

a d, is not set to oo, the value of d, will be
the length of some path connecting ug with
u
» du)<d,<n 100
» variable d, will change value at most n
times

» Message complexity is O (nm)

Properties of AsynchBFS

Lemma
For each u within time d(u)n((1) + (d)) it holds that d, = d(u).

» For d(u) =0 it is trivial.

» Let assume that it holds for every v where d(v) < k

» Let process u with d(u) = k 4+ 1 and process v (neighboring
of u) with d(v) = k

» Within time kn((/) + (d)), process v has set d(v) = k and
has decided to send k to process u

» Within additional time n(1), process v will send k to Cy,

» Within additional time v(d), process u will receive it, set
d, = k+ 1 and choose v as parent.

Properties of AsynchBFS

Theorem

The execution of AsynchBFS converges to a configuration where the
processes have constructed a breadth-first spanning tree T(G) such that
the distance of each vertex from ug is the same in G and in T(G) and

this is completed within time O(én((/) + (d)))

» The convergence technique is common for asynchronous
distributed systems.

