
Modern Distributed Computing
Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 7
Tuesday, April 23, 2013

Part 3: Static Asynchronous Networks

1. I/O Automata Model

2. Distributed Data Structures

3. Time, Clocks and Ordering of Events

4. Synchronizers

5. Global Predicates

6. Termination Detection

Global State in Centralized Systems
I The state of a centralized system at a given time instance is

given by the state of each active process
I Let n processes.
I Each process Pu at time instance i is at state κui .

I Describing the state of the system, at a given time instance i ,
requires storing the state of all processes at time instance i .

I In a centralized system storing the state of all processes can
be fairly simple:

I The process scheduler temporarily de-activates all processes.
I A copy of the memory is dumped to the storage system.
I This can take place in a fairly short period of time.

Global State in Distributed Systems
I How can we repeat this process for a distributed system ?

I Temporary de-activation of the processes cannot take place at
the same time.

I Processes are executed at different computational units.
I Control messages may arrive at different time instances.
I How can we synchronize all processes to stop at a

predetermined time instance ? (clock synchronization is not
trivial and takes time)

I In real systems it is not reasonable to expect that all the
processes of the system will be de-activated for a “visible”
period of time – e.g., due to efficiency, or just because it is
not acceptable.

Applications
Storing the global state of a distributed systems has numerous
applications:

1. Assist in debugging the system, e.g., by checking for violations
of desired invariants.

2. Produce backup versions of the global state for recovering
purposes.

3. Detect if the execution has terminated.
4. Detect whether some of the processes of the system are

involved in a “deadlock”, that is, a situation in which several
processes are all waiting for each other to do something.

5. Compute some global quantity (e.g., the total amount of
money available in a set of accounts) being managed by the
system.

Definitions – Ordering of Events
I We define as event σu an action ε that forces Pu to change its

internal state.
I We assume that processes evolve strictly sequentially.
I We assume that sending or receiving a message is an event in

a process.

Happened Before ()

We say that an event a happened before b (a b) if the following
conditions are satisfied:

1. If a and b are events in the same process, and a comes before
b.

2. If a is the sending of a message by one process and b is the
receipt of the same message by another process.

Properties of Happened Before relation
I If σi σj and σj σk , then σi σk .
I The happened before relation defines only a partial ordering of

the set of events that are observed during the execution of the
system.

I Some events cannot be related by the happened before
relation.

I Such events are called “concurrent”:

σui ‖ σvj ⇔
(
σui 6 σvj

)
∧

(
σvj 6 σui

)

I Events that take place in the same process are related to each
other.

I Based on the above definition, if two events are concurrent
then it is not necessary that they take place at the same time
instance.

Examples of Happened Before relation

It holds that

I e1.1 e3.3 given
that e1.1 e1.2
e2.2 e2.3 e3.3

I e3.1 e1.4 given
that
e3.1 e3.2 e1.4

Execution Example

Examples of Happened Before relation

It holds that

I e1.1 ‖ e3.2
I e2.1 ‖ e1.4

Based on the example,
event e1.1 takes place
before e3.2 and e2.1
before e1.4

Execution Example

Definitions – Ordering of Events

I There is a strict ordering of events σu1 , σ
u
2 , . . . for each process

Pu such that σuk , σ
u
k+1, that is σuk happened before σuk+1.

Local History

The local history of process Pu is noted as hu and defines a
sequence of events that take place in the process, e.g.,
hu = σu1 , σ

u
2 , σ

u
3 , σ

u
4 .

Example Execution – Send/Receive diagram

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6

I Local History – h1 = σ11, σ
1
2, σ

1
3, σ

1
4, σ

1
5, σ

1
6

I Local History – h2 = σ21, σ
2
2, σ

2
3

I Local History – h3 = σ31, σ
3
2, σ

3
3, σ

3
4, σ

3
5, σ

3
6

I The local history of each process is temporally fully ordered.

Definitions – Global History / Global State

Global History

The global history H of a distributed system is defined as the
union of the local histories of all the process participating in it, i.e.,
H = h1 ∪ . . . ∪ hn.

Global State
The global state of a distributed system defined as Σ is the union
of the local states of all the processes participating in it, i.e.,
Σ = {κ1, . . . κn}.

Execution Example – Send/Receive diagram

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6

I Global history – H = h1 ∪ h2 ∪ h3
I The set is only partially ordered.
I Global state – Σ1 = {κ12, κ21, κ32}
I Global state – Σ2 = {κ13, κ22, κ34}

Definitions – Cut / Cut Frontier

Cut
A cut C of a distributed system is a subset of the global history H
that consists of events σu ≥ 0 of initial events from each process
Pu, e.g., C = hσ

1

1 ∪ . . . ∪ hσ
n

n . Thus a cut is defined via a vector
{σ1, . . . σn}.

Cut Frontier
The set of last events {max(σ1), . . . ,max(σn)} that are included in
athe cut C are called the cut frontier.

Execution Example – Send/Receive diagram

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6C1 C2

I C1 = h
σ1
5

1 ∪ h
σ2
2

2 ∪ h
σ3
4

3 = {σ11, . . . , σ15, σ21, σ22, σ31, . . . , σ34}
I Frontier cut of C1 is {σ15, σ22, σ34}
I C2 = h

σ1
3

1 ∪ h
σ2
2

2 ∪ h
σ3
6

3 = {σ11, . . . , σ13, σ21, σ22, σ31, . . . , σ36}
I Frontier cut of C2 is {σ13, σ22, σ36}

Discussion
I Every cut of a distributed system corresponds to a global

state.
I Only specific cuts correspond to global states that may occur

during an execution of the system.
I During the execution of the previous example, the cut C1

represents a “possible” global state.
I While cut C2 is “impossible” to occur since process P3

appears to be receiving a message from P1, that P1 has not
yet transmitted based on the events defined by the cut.

Definition – Consistent Cut

Consistent Cut
A cut C if for all pair of events σ and σ′ it holds that

σ ∈ C ∧
(
σ′ σ

)
⇒ σ′ ∈ C

I A global state is consistent if it corresponds to a consistent
cut.

I The consistent global states are those that can appear in an
actual execution of the distributed system.

Example Execution – Send/Receive diagram

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6C1 C2

Rule of thumb for identifying a consistent cut:
I All the Send/Receive arrows that “intersect” the cut must

start from the left part of the cut and end up on the right part
of the cut.

C1 is consistent – arrows σ1
4 → σ2

3 , σ1
5 → σ3

6 intersect the cut from left to

right.

C2 is not – arrow σ1
5 → σ3

6 intersects the cut from right to left.

Introduction to Logical Clocks
I We begin with an abstract point of view.
I A clock is just a way of assigning a number to an event,

where the number is thought of as the time at which the
event occurred.

I We define a clock Ci for each process Pi to be a function
which assigns a number (timestamp) TSi (a) to any event a in
that process.

I The entire system of clocks is represented by the function C
which assigns to any event b the number (timestamp) TS(b)
where TS(b) = TSi (b) if b is an event in process Pj .

I Let’s not make any assumption about the relation of the
numbers TSi (a) to physical time.

Discussion on Logical Clocks
I We can think of the clocks Ci as logical rather than physical

clocks.
I They may be implemented by counters with no actual timing

mechanism.
I In order to understand what it means for such a system of

clocks to be correct, we cannot base our definition of
correctness on physical time.

I That requires introducing clocks which keep physical time.
I Our definition must be based on the order in which events

occur.
I The strongest reasonable condition is that if an event a occurs

before another event b, then a should happen at an earlier
time than b.

Logical Clock Condition

I For each event σ we assign a timestamp TS(σ) ∈ T , where T
is a fully ordered set.

I We wish that the timestamp of σi where σi σj must have a
smaller timestamp from σj that is TS(σi) < TS(σj)

I If we can implement such a clock then we can serialize all
events without violating their logical relation.

I Such a serialization of the events dues not necessarily depict
the actual ordering of events.

I However such a serialization avoids the necessity to
synchronize physical clocks:

I reduces time complexity,
I reduces message complexity,
I avoid periodic execution of the synchronization mechanism.

Lamport Logical Clock

I Lamport defines a simple mechanism that satisfies the logical
clock condition.

I It named this mechanism the “logical clock”.

I A logical clock is a monotonously strictly increasing counter,
whose value does not need to be related with a physical clock.

I Each process Pu maintain its own internal logical clock LCu.

I We use the values provided by the logical clock to timestamp
each event observed by the process.

LamportTime Algorithm

Each process maintains a counter LC initially set to 0. For each
internal event or a send(m) event they set LC + +. For each
message m sent, they include the value of LC. For each message m
is received with timestamp TS(m) they set
LC = max{LC,TS(m)}+ 1.

I If two events σi and σj it holds that σi σj the algorithm
LamportTime guarantees that TS(σi) < TS(σj).

I If TS(σi) < TS(σj) it does not necessarily hold that σi σj .

Lamport’s Algorithm
I It is possible that two events σi and σj that take place in two

different processes are not related and yet they have the same
timestamp.

I Yet, we do not wish two events to have identical timestamps.
I A simple solution is to use the unique identifiers of the

processes when generating the timestamps.
I we assume that processes have unique identifiers.

I Therefore the timestamps of σui and σvi will look like i .u and
i .v – e.g., 11.15 and 11.306.

Execution Example

Actual Execution

Execution Transformation

Implementing Lamport’s Algorithm
1. Given an automaton P we can integrate Lamport’s algorithm

within P.

2. We “extend” P by implementing Lamport’s algorithm as
LamportTime(P).

1st Approach

L1 L2

P1 P2

C1,2

C2,1

Implementing Lamport’s Algorithm
1. Given an automaton P we can integrate Lamport’s algorithm

within P.
2. We “extend” P by implementing Lamport’s algorithm as

LamportTime(P).

1st Approach

L1 L2

P1 P2

C1,2

C2,1

2nd Approach

L1 L2L (P)1 L (P)2
C1,2

C2,1

Automaton LamportTimeu
Actions:

I Input actions in(LamportTimeu)

1. send (m)u – where m a message
2. advanceClocku

I Output actions out(LamportTimeu)

1. receive (m)u – where m a message

State:

I clocku – a logical clock, initially set to 0

Automaton LamportTimeu
Transitions:
I send (m)u

I effect:
clock++

send(m, clock)

I advanceClocku
I effect:

clock++

I receive (m)u
I precondition:

receive(m, c)
I effect:

clock = max(clock, c) + 1

Automaton LamportTime(A)u
Actions:
I Same with A
I We replace send (m)u of A with send (m, c)u
I We replace receive (m)u of A with receive (m, c)u

State:
I Same with A
I clocku – a logical clock, initially set to 0

Transitions:

I Input/output/internal actions apart from send , receive
I precondition:

Same with A
I effect:

clock++

Automaton LamportTime(A)u
Transitions: (continued)
I send (m, c)u

I precondition:
Same with send(m)u of A
c = clock + 1

I effect:
Same with send(m)u of A
clock = c

I receive (m, c)u
I effect:

Same with receive(m)u of A
clock = max(clock, c) + 1

I Processes share a common (critical) resource.
I Access to this resource requires exclusive access from only one

process.
I The part of the process that handles the resource exclusively

is called the “critical section” (CS).
I We need to coordinate the actions of the processes.
I In centralized systems, various primitives are available such as

I semaphores, locks, monitors . . .

I The problem of mutual exclusion was introduced by Edsger
Dijkstra in 1965.

Minimum Requirements
I Safety – only and only one process may access the critical

resource at any given time instance.
I Liveness –

I If a process wishes to enter the critical section then it will
eventually succeed.

I If the common resource is not used, then any process
requesting access will be granted access within a finite period
of time.

I Ordering – access to enter the critical section will be givenn
according to the happened-before relation: the requests are
served based on the order that they where issued.

Assumptions

1. Processes are assigned unique identifiers.

2. Each process a critical section.

3. Processes compete for 1 critical resource.

4. No global clock is available.

5. Processes communicate using messages.

6. Communication channels are reliable, FIFO.

7. The network is fully connected.

Performance Measures

1. Correctness – the conditions of safety, liveness, ordering are
preserved.

2. Communication Complexity – processing of requests to enter
critical section minimize total number of message exchanges.

3. Latency – time elapsed between the issue of a request and the
access of the resource is minimized.

Coordinator Algorithm

During an initialization phase, processes elect a leader – the
coordinator process Pc . A process that wants to enter its CS sends
a request message to Pc . Pc adds the request at the tail of a
queue. If the critical resource is free, and the queue is not empty,
Pc informs the process whose request is a the head of the queue.
When the process exists its CS it informs Pc that the critical
resource is free.

I Inspired by centralized systems.
I Solves the problem: satisfies all 3 conditions.
I Easy solution – only 3 types of messages required: request,

reply, release

Properties of Coordinator Algorithm
I For a process to enter the CS only 2 messages are required –

the latency is related to the time of transmitting these two
messages or the roundtrip delay.

I Low scalability – the coordinator is a point of congestion: a
single process is servicing the whole network.

I Poor robustness – the coordinator is a single point of failure.
I In term of failure, the processes need to elect a new

coordinator,
I The new coordinator needs to reconstruct the queue of

requests, guaranteeing the ordering condition.

LamportME Algorithm

All processes maintain a local logical clock LamportTime and a
queue for incoming requests. A process that wishes to enter its CS
it sends a request (with a current timestamp) to all other processes
and adds its request to the tail of the queue. When a process
receives a request, it adds the request to the tail of its local queue
and confirms the request. The process whose request has the
smallest timestamp enters its CS. When the process exists its CS it
notifies all other processes and removes its request from the head
of the queue – similarly all other processes remove the request
from the head of their queue by receiving the release message.

I First fully distributed solution proposed in 1978.
I Solves the problem: all conditions are guaranteed.

Properties of LamportME
I Uses 3 types of messages: request, reply, release
I For each request a total of 3 (n − 1) messages are exchanged:

I n − 1 request messages,
I n − 1 reply messages,
I n − 1 release messages.

I The latency of the algorithm for one request is 2δ +O(l)
I The delay from the point when a process requires to enter the

CS is relevant to the time needed to exchange 2 (n − 1)
messages.

Correctness of LamportME

Lemma (LamportME.1)

LamportME guarantees the safety condition.

Proof: By contradiction.

I Let an execution of the system where two processes u and v
are within CS at the same time.

I Let the message requestu, sent by u at logical time tu and
the message requestv sent by v at logical time tv .

I Let assume that tu < tv .
I Then for v to enter CS, the queue of v must include some

message from u with timestamp greater than tv and thus
greater then tu.

Correctness of LamportME
I Since communication channels are FIFO, for this to happen

we need v to receive the message requestu while executing
its CS.

I However, to do so, v must have received releaseu before
entering CS.

I Thus u must have already existed its CS at the time when v
was executing its CS.

I YEt, we assumed that u and v are executing their CS at the
same time instance.

Correctness of LamportME

Lemma (LamportME.2)

LamportME guarantees the liveness condition.

Proof: The property of liveness is guaranteed due to the usage of
logical clocks, the processing of requests based on the timestamps
assigned by the logical clocks to the the request messages.

I We need to show that the process that sent the request

message with the smallest timestamp will the one to enter
first its CS.

I Based on the assumption that channels are reliable and FIFO.
I Since all request messages with timestamp smaller than a

given event are finite, by induction we can show that all
requests will be served.

Correctness of LamportME

Lemma (LamportME.3)

LamportME guarantees the ordering condition.

Proof: The property of ordering is guaranteed due to the usage of
logical clocks, the processing of requests based on the timestamps
assigned by the logical clocks to the the request messages and
the assumption that communication channels are FIFO.

Theorem (LamportME.4)

LamportME solves the problem of mutual exclusion.

Proof: Due to the LamportME.1, LamportME.2, LamportME.3.

