
Modern Distributed Computing
Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 8
Tuesday, April 30, 2013

Part 3: Static Asynchronous Networks

1. I/O Automata Model

2. Distributed Data Structures

3. Time, Clocks and Ordering of Events

4. Synchronizers

5. Global Predicates

6. Termination Detection

Introduction
I A process wishes to identify the global state of the distributed

system.
I We call this process the monitor

I It has to “collect” the local states of all the processes of the
system.

I Due to the time free property of asynchronous computation,
reconstructing the global state is a non-trivial task.

I Fundamental problem.

Passive Construction of Global Snapshots
I Let process P0 the monitor that wishes to construct the

global snapshot.
I No messages are sent by the monitor – it passively collects info

about the system.

I Whenever one of the other processes changes its state, it
informs P0 by sending a special message.

I P0 constructs an observation of the run of the system by
keeping track of the special messages.

I The observation is based on the sequence of events, as
received by P0.

Properties of Observations

I Due to the uncertainty in the delivery of messages, two
different monitoring processes may construct different
observations for the same run.

I An observation may not reflect an actual run.

Execution Example

R = {σ3
1, σ

1
1, σ

3
2, σ

2
1, σ

3
3, σ

3
4, σ

2
2, σ

1
2, σ

3
5, σ

1
3, σ

1
4, σ

1
5, σ

3
6, σ

2
3, σ

1
6}

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6

We identify the following observations of R:

I O1 = {σ21, σ11, σ31, σ32, σ34, σ12, σ22, σ33, σ13, σ14, σ35, . . .}
I O2 = {σ11, σ31, σ21, σ32, σ12, σ13, σ33, σ34, σ22, σ35, σ36, . . .}
I O3 = {σ31, σ21, σ11, σ12, σ32, σ33, σ13, σ34, σ14, σ22, σ15, . . .}

Execution Example

O1 = {σ2
1, σ

1
1, σ

3
1, σ

3
2, σ

3
4, σ

1
2, σ

2
2, σ

3
3, σ

1
3, σ

1
4, σ

3
5, . . .}

P0

P1

P2

P3

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3

σ3
1 σ3

2 σ3
3 σ3

4 σ3
5 σ3

6

σ0
1 σ0

2 σ0
3σ

0
4σ

0
5 σ0

6σ
0
7σ

0
8 σ0

9 σ0
10 σ0

11

I The observation does not reflect a real run of the system.
I The ordering of the events of P3 violates their ordering in the

local history of the process.
I Event σ34 appears before σ33.

Passive Construction using Physical Clocks
I We assume that processes have access to a physical clock.
I We assume that the physical clocks are synchronized.
I We assume that the processes are aware of an upper bound
µ ≥ l + d.

I The monitor, at time instance t records all messages received
with timestamps up to t − µ, in ascending timestamp order.

I The observations of the monitor may be used to construct
global snapshots.

I This simple algorithm is based on the design of the
Synchronizer by Tel and Leeuwen.

Synchronization of Physical Clocks
I Synchronizing physical clocks in a distributed system is not a

trivial task.
I The construction of global snapshots may be violated even in

weaker conditions
I All we need is to guarantee the chronological ordering of the

events!

I We can replace the physical clocks by logical clocks.
I We use the LamportTime algorithm for defining timestamps

using the “happened-before” relation.

Passive Construction using Logical Clocks
I We assume that each process has access to a logical clock.

I They execute the LaportTime algorithm.

I The monitor process, at time t records all messages received
in increasing timestamp order.

I The observations of monitor may be used to construct global
snapshots.

I for example
O4 = {σ11, σ21, σ31, σ12, σ32, σ33, σ13, σ34, σ14, σ22, σ35, . . .}

I is a consistent snapshot.

Passive Construction using Logical Clocks
I This algorithm needs a final modification to be correct.
I We may receive a message regarding event σ′′ after receiving

a message about event σ′ while LC(σ′′) < LC(σ′)
I This is because two logical clocks cannot detect the gap that

may exist between their local counters.

Gap Detection

Given two events σ and σ′ with timestamps LC(σ) and LC(σ′) for
which LC(σ) < LC(σ′), decide if another event σ′′ exists such that
LC(σ) < LC(σ′′) < LC(σ′)

Passive Construction using Logical Clocks
I We assume that the channels are FIFO.
I Then if P0 receives a message m from Pu with timestamp

LC(m) it can assume that no other message m′ can be
received from Pu with timestamp LC(m′) < LC(m)

I This is true since the logical clocks may not detect a gap
between the timestamps of different processes

I The message m is consistent.

I Thus, the monitor, at time t it notes down all the consistent
messages that it has received using an increasing order.

Properties of Algorithm
I This algorithm is known as the LogicalTimeSnapshot

algorithm.
I Note that the physical clocks are also unable to detect a

possible gap.
I However, due to the assumption that the processes know an

upper bound µ ≥ l + d we can come up with an equivalent
assumption:

I At time t, all messages with timestamps smaller than t − µ are
consistent.

Snapshots
I The two algorithms assume a passive process that takes up

the role of the monitor.
I All the other processes are constantly updating P0.
I We wish to construct snapshots on demand.
I Thus P0 wishes to “look” the other processes of the system

and record a “consistent” global snapshot.
I The snapshot is said to be consistent if it looks to the

processes as if it were taken at the same instant everywhere in
the system.

Definitions

Channel State
The state of a channel Cuv connecting Pu with Pv , includes all the
messages sent by Pu to Pv , that have not been received by Pv .

I We denote by nbrs inu = {v |(v , u) ∈ E} all the incoming
neighbors of u.

I We denote by nbrsoutu = {v |(u, v) ∈ E} all the outgoing
neighbors of u.

Consistent Global Snapshots with Physical Clocks
I We assume that processes have access to a physical clock.
I We assume that the physical clocks are synchronized.
I We assume that the processes are aware of an upper bound
µ ≥ l + d.

I The algorithm assumes that all processes record their state at
the same physical time instance.

I The monitor, selects a suitable time instance t∗, such that it
can guarantee that a message currently in transit will be
received by all the processes of the system before t∗.

Consistent Global Snapshots with Physical Clocks
I Initially, P0 transmits the message TakeSnapshot(t∗) to all

other processes.
I At time t∗ each process Pu

1. Records its local state σu,
2. Transmits a marker message to all nbrsoutu ,
3. Sets each state state(Cvu) to an empty state,
4. Records all messages received from nbrs inu .

I When Pu receives from Pv a message with timestamp(m)> t∗
1. Stops the recording of incoming messages from Pv ,
2. Transmits to P0 the state(Cvu).

Discussion

I For each Pv ∈ nbrs inu the state of Cvu includes

I The set of messages sent by Pv before time t∗ that were
received by Pu after time t∗.

I That is, all messages that at time t∗ where in transit.

I The marker messages guarantee that Pu will eventually
receive a message m for which timestamp(m)≥ t∗

Discussion
I Let an event σ belong to the cut C∗, that is related to the

constructed global state, then timestamp(σ)< t∗
I Thus,

(σ ∈ C∗) ∧
(
timestamp(σ′) < timestamp(σ)

)
⇒ σ′ ∈ C∗

I Since the physical clocks guarantee the clock property, the
above relation suffices to prove that the cut C∗ is consistent
ant thus the global state is consistent.

Consistent Global Snapshots with Logical Clocks
I Since logical clocks also guarantee the clock property, we can

replace the physical clocks with logical.
I However how can we define a time instance t∗ using logical

clocks?
I Also, in the previous algorithm we assumed that P0 can

somehow select such a time instance t∗.
I We now assume that P0 may compute a logical time instance
ω∗, big enough, such that no logical clock can reach this value

I Weaker assumption.

Consistent Global Snapshots with Logical Clocks
I Initially, process P0 transmits the message TakeSnapshot(ω∗)

to all the other processes and sets its logical timestamp to ω∗.
I At time instance ω∗ each process Pu

1. Records its local state σu,
2. Sends a marker message to all nbrsoutu ,
3. Starts recording the messages received from nbrs inu .

I When Pu receives a message from Pv with
timestamp(m)≥ ω∗

1. Stops recording messages received from Pv ,
2. Notifies P0 of state(Cvu).

Chandly and Lamport algorithm
I Chandy and Lamport observe that the monitor process does

not participate in the computation between the time instance
that the message TakeSnapshot(ω∗) is transmitted and until
a marker message is received by another process.

I Thus the logical clock is forced to take the value ω∗.
I We can replace the message TakeSnapshot(ω∗) by a simple

message TakeSnapshot
I the process records its local history upon receiving the message

TakeSnapshot.

I Based on this observation, Chandy and Lamport propose an
algorithm that integrates the idea of logical clocks.

Chandly and Lamport algorithm
I Initially, process P0 sends the message TakeSnapshot to itself.
I When a process Pu receives the message TakeSnapshot from

process Pπ for the first time

1. Records its local state σu,
2. Transmit a message TakeSnapshot to all nbrsoutu ,
3. Sets the set state(Cπu) to an empty set.
4. Records all messages received from nbrs inu except from Pπ.

I When Pu receives a second TakeSnapshot message from Pδ
1. Stops recording messages received from Pδ.
2. Notifies P0 of the state(Cδu).

Discussion
I The message TakeSnapshot is transmitted to all outgoing

channels of each process, as soon as the process receives the
message for the first time.

I If the system is strongly connected, then it is guaranteed that
the message TakeSnapshot will traverse each channel exactly
once.

I When a process receives the message TakeSnapshot from all
its incoming channels, the contribution of the process to the
construction of the global state is complete.

I The process terminates.

Correctness of Chandy and Lamport algorithm

Theorem (ChandyLamportSnapshot.1)

The ChandyLamportSnapshot algorithm records a consistent
snapshot for application A.

Proof: Let α an execution of the higher application A.

I Let’s assume that during the execution of A, at state Σε the
ChandyLamportSnapshot is activated, that terminates at
state Στ and records state Σ∗.

I Let α1 the part of α before state Σε.
I Let α2 the part of α after state Στ .

Correctness of Chandy and Lamport algorithm
I The global snapshot Σ∗ is consistent if the exists an execution
α′ such that

I no process can distinguish α from α′,
I execution α′ starts with α1 and concludes with α2,
I States Σε,Σ∗,Στ appear with the same order in α′.

I Our goal is to re-order the events of α in a way such that we
end up with an execution α′ in which Σε,Σ∗,Στ appear with
the same order.

I Essentially we re-arrange logically independent events.

Correctness of Chandy and Lamport algorithm
I Let σk and σk+1 to consecutive events in α that take place in

processes Pu and Pv and are after and before the
TakeSnapshot (respectively).

I Thus, σk cannot be the transmission of a message m and
σk+1 the reception of m.

I When Pu recorded it state, it transmitted the message
TakeSnapshot to Pv .

I Since channels are FIFO the message reached Pv before m as
σk+1 happens after the recording, which is a contradiction.

I Moreover, the state of Pv after σk+1 is not affected by σk as
it takes place in another process.

I Also, the state of Pu after σk is not affected by σk+1.
I Thus, we can re-order σk and σk+1.

Correctness of Chandy and Lamport algorithm
I We continue such re-orderings until we end up with α′ where

all events before the TakeSnapshot precede the events after
the markers.

I Then α′ starts with α1 and ends up with α2.
I Σ∗ appears in α′ immediately before α2.
I All re-orderings are related to events after Σε and before Στ .
I Σ∗ is the state of the network after the last event recorded

before the TakeSnapshot in execution α′ and before the first
event after the markers.

I In this way we end up with execution α′ where no process can
distinguish α from α′.

Properties of the Chandy and Lamport algorithm
I The algorithm is correct – it constructs consistent global

snapshots.
I The communication complexity is O (|E |).
I The time complexity is not easy to compute since the higher

level application is executed in parallel.
I If we ignore possible delays that may arise due to delays in the

delivery of the messages transmitted by the higher level
application, the ChandyLamportSnapshot algorithm
terminates within O (δ(l + d)) time.

Stable Property Detection
I In many fundamental problems of distributed computing, e.g.,

I Deadlock detection
I Termination detection
I Debugging
I Resource sharing
I Garbage collection
I Token detection

I We need to evaluate a global property
I We construct a global state,
I We evaluate the global predicate for this state.

Properties of the Problem
I Recording the global state

I Actively or Passively,
I Requires message exchanges,
I The system may encounter failures.

I The state may not be consistent.
I A global state (or a global snapshot)

I May be be inconsistent
I May be obsolete
I Two different monitors may construct two different global

states for the same execution.

Global Predicate

I A global predicate Φ is a function of the set of consistent
global states of a system to the set {true, false}.

I The Global Predicate Evaluation (GPE) determines if a global
predicate Φ holds for a given global state.

Stable Predicates
I Some properties of the system, at some point during the

execution become true, and remain true for the remainder of
the execution.

I We call such properties, stable

I A predicate that describes stable properties is said to be
stable.

I When a system reaches a state at which the predicate
evaluates to true,

I It remains true for all future states that are reachable from its
current state.

I Examples of stable predicates:
I Deadlock
I Termination
I Loss of token
I Garbage collection

Stable Predicates
I Let α an execution of a higher level application A.
I We assume the execution of a correct global snapshot

algorithm.
I During the execution of A, the algorithm is activated at Σε.
I It terminates at Στ .
I It records Σ∗.

I If Φ is stable, it holds that
I (Φ is true in Σ∗)⇒ (Φ is true in Στ)
I (Φ false in Σ∗)⇒ (Φ false in Στ)

Non Stable Predicates
I Some cases that we wish to detect cannot be described by

stable predicates.
I Monitor of two queues – notify user when the sum goes above

a certain threshold.
I The queues dynamically change during the execution – the

predicate that records the global property is non stable.

I If we evaluate a non-stable global predicate at a given time
instance,

I If may evaluate false – and at some later (or earlier) time
instance it may become true.

I It may evaluate true – while all other time instances it is false.

Non Stable Predicates

Execution Example – send/receive diagram

P1

P2

σ1
1 σ1

2 σ1
3 σ1

4 σ1
5 σ1

6

σ2
1 σ2

2 σ2
3 σ2

4 σ2
5

x = 3 x = 4 x = 5

y = 6 y = 4 y = 2

I Φ1 : x == y
I Φ2 : y − x == 2
I If a non-stable predicate is true for a given global state, then

the predicate was probably true at the time of the actual
execution.

Possibly or Definitely
I We extend global predicate such that

I They can be applied to the distributed computation,
I Rather than a specific time instance or specific global states of

the executions.

I Our goal is to detect cases when
I A global predicate is definitely true at some point of the

execution that we observer.
I A global predicate is possibly true.

I In some cases we wish to identify if a property possibly holds.
I In other cases we wish to know if something definitely

happened in an execution.

Evaluating Possibly

Possibly(Φ)

There exists at least one consistent observation of the execution Π
such that predicate Φ is true in a global state Σ(Π) of the
observation.

I If at least one global state exists for which Φ is true, then
there exists at least one execution that is reachable from this
state.

I Evaluating Possibly(Φ) requires to searching among all
consistent global states.

I Only if Φ(Σ) is false for all consistent global states Σ we can
rule out Possibly(Φ).

Evaluating Definitely

Definitely(Φ)

For every consistent observation of the execution Π, there exists a
global state Σ(Π) of the observation such that predicate Φ is true.

I All possible executions of a computation need to be reachable
from a given global state for which Φ holds.

I We need to identify a set of states, for which all possible
execution are reachable from at least one state sate, and for
each such state Φ is true.

I Searching is linear to the number of events.
I Searching is exponential to the number of processes.

I Let max(σ) bet he maximum number of events, then the
number of global states is O (max(σ)n).

