
Modern Distributed Computing
Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 9
Tuesday, May 7, 2013

Part 3: Static Asynchronous Networks

1. I/O Automata Model

2. Distributed Data Structures

3. Time, Clocks and Ordering of Events

4. Synchronizers

5. Global Predicates

6. Termination Detection

Termination of Distributed Computation

I A distributed algorithm is said to terminate when all processes
reach a halting state.

I Upon reaching such a state no further progress can be
achieved.

I If all processes reach a halting state we say that external
termination has been achieved.

I There are cases where no further progress can be achieved but
some (or all) process are not in a halting state.

I e.g., each process receives messages but never sends out
messages.

I The distributed algorithm has terminated yet the processes are
not aware.

I We say that internal termination has been achieved.

Termination of Distributed Computation

I Internal termination is also known as communication
termination.

I No further messages are transmitted, eventually
communication seizes.

I External termination is also known as process termination.

I All processes reach a halting state.

I It is easier to design an algorithm that achieves internal
termination (e.g., LCR, SyncBFS, . . .).

I Essentially we ignore the final stage of the computation where
external termination is achieved.

I In some cases we have to include this final step in our
algorithm.

I e.g., when committing transactions, releasing common
resources, . . .

Properties of Termination

I We work using the definition of termination detection, as
defined by Dijkstra

I Each process may be in one of the following states:

1. Active state
2. Passive state

I Only active processes may send messages (perform an output
action).

I Upon receiving a message (input action), a passive process
becomes active.

I The reception of a message is the only event that may flip a
passive process to become active.

I Each active process may become passive spontaneously, at
any time (due to an internal action).

Dijkstra and Scholten Algorithm

I Let P0 be the coordinating process.

I The algorithm constructs a inverted spanning tree with
process P0 as the root.

I The tree is modified while the higher-level algorithm is
executed in a way such:

I the active processes are located near the root (small height),
I the passive processes are located on the leaves of the tree

(large height).

I These trees are also known as Computation Trees.

I Termination is detected when the root of the tree becomes
passive.

Dijkstra and Scholten Algorithm

I We assume that the higher-lever algorithm is centralized, that
is, initially only P0 is active.

I The higher-level algorithm is based on diffusing computations.

I Each process stores a local pointer to the parent process in
the tree.

I If for process Pu, parent == null , we say Pu is free.

I Each process maintains a local counter children storing the
number of children in the tree.

Dijkstra and Scholten Algorithm

I Consider process Pu 6= P0, a free process, that receives a
message from Pv .

1. It sets parent = Pv (the edge uv is inserted in the tree),
2. Informs Pv (via a control message),
3. Process Pv sets childrenv + +.

I Pu is not free, and at some points become passive:

1. Informs Pv (via a control message),
2. Process Pv sets childrenv −−,
3. Pu sets parent = null (the edge uv is removed).

I Thus, all “isolated” processes (with no adjacent edges) are
passive processes.

I When P0 becomes passive, the algorithm terminates.

Correctness of Algorithm

Theorem
The Dijkstra–Scholten algorithm correctly detects termination
using M control messages, where M is the number of messages
exchanged by the higher-level algorithm.

I The algorithm offers a very good balance between control
messages and data messages.

I Based on the lower bound M (see next theorem) the
algorithm is optimal.

Correctness of Algorithm

Proof:
I Let the computation tree T = (VT ,ET)
I Either T is empty or it is directed to the root P0.
I The set VT includes all active processes and all messages in

transit.
I The coordinator P0 invokes the sub-algorithm informing all

nodes about termination when P0 6∈ VT .
I Since |VT | = 0 the predicate term is true.

I Essentially, T expands every time a data message is sent or
when a processes becomes active.

Correctness of Algorithm

Proof:
I To guarantee progress for the termination detection algorithm,

the tree has to “empty” in finite number of steps after the
termination of the higher-level algorithm.

I The proof requires that T is a tree and becomes empty only
after the higher-level algorithm terminates.

I For each execution γ of the higher-level algorithm we define

VT = {u : parentu 6= null}
∪ {data messages in transit}
∪ {control messages in transit}

Correctness of Algorithm

Proof:

ET = {(u, parentu) : parentu 6= null ∧ parentu 6= u}
∪ {data messages in transit}
∪ {control messages in transit}

Safety is based on the following condition P defined as follows:

P = stateu == active ⇒ u ∈ VT (1)

∧ (u, v) ∈ ET ⇒ u ∈ VT ∧ v ∈ VT ∩ P (2)

∧ childrenu = #v : (v , u) ∈ ET (3)

∧ VT 6= ∅ ⇒ T tree, rooted on P0 (4)

∧ (stateu == passive ∧ childrenu == 0)⇒ u ∈ VT (5)

Correctness of Algorithm

Proof:

1. stateu == active ⇒ u ∈ VT

Graph T includes all active processes.
2. (u, v) ∈ ET ⇒ u ∈ VT ∧ v ∈ VT ∩ P

T is a tree and all edges are directed towards some process.
3. childrenu = #v : (v , u) ∈ ET

Processes properly count their children.
4. VT 6= ∅ ⇒ T tree, rooted on P0

Graph T is a tree, rooted on P0
5. (stateu == passive ∧ childrenu == 0)⇒ u ∈ VT

The tree is empty when the higher-level algorithm terminates.

Correctness of Algorithm

Proof:
I The proof of correctness is based on the observation that in

condition P it holds that parentu == u only for u == P0.

Lemma
Condition P holds for the Dijkstra–Scholten algorithm.

I Let S =
∑n

u=0 childrenu the sum of all children counters.
I Initially S = 0,
I increases when the next control message is sent,
I decreases when a control message is received,
I cannot go negative, due to (3).

Correctness of Algorithm

Proof:
I After the higher-level algorithm terminates, only actions of the

termination detection algorithm will be executed.
I Since S decreases after each such action, the termination

detection algorithm will also terminate.
I In such a state, VT does not contain any message in transit.
I Due to (5), VT will not include any passive process.
I Thus T will have no leaves, and thus become empty.
I The tree will be empty when P0 will remove itself.
I The liveness requirement is guaranteed.

Correctness of Algorithm

Proof:
I Proving safety is done based on the observation that P0 will

invoke the sub-algorithm informing all nodes about
termination before removing itself from VT .

I Thus, due to (4), T will be empty when this takes place.
I Clearly, the non-interference condition holds.

Synchronous vs Asynchronous Execution
I In Synchronous Systems – we assume synchronized execution.

I The assumption is too strong and is not very realistic.
I Based on this assumption we can design efficient algorithmic

solutions.
I Based on this assumption we can evaluate the performance of

the system.

I In Asynchronous Systems – we avoid this assumption.
I It is more realistic.
I We may assume some upper bounds to study the performance

of the system.
I To achieve synchronized execution we need additional code.

Distributed Data Structures
I Spanning Tree construction – process u, constructs a

spanning Tu(G), rooted on u.
I Algorithm – AsynchSpanningTree

I Message Complexity – O(n ·m)
I Time complexity – O

(
δ(l + d)

)

I Algorithm – AsynchBFS
I Message Complexity – O(n ·m)
I Time complexity – O

(
n · δ(l + d)

)

Distributed Data Structures
I Spanning Tree construction – process u, constructs a

spanning Tu(G), rooted on u.
I Algorithm – AsynchSpanningTree

I Message Complexity – O(n ·m)
I Time complexity – O

(
δ(l + d)

)

I Algorithm – AsynchBFS / SyncBFS
I Message Complexity – O(n ·m) / O(n ·m)
I Time complexity – O

(
n · δ(l + d)

)
/ O(δ)

Discussion
I Observe that some algorithms designed for synchronous

systems are more efficient in terms of time and message
complexity.

I How can we adjust them for asynchronous systems ?

I The existence of a clock can be used to efficiency solve many
problems

I Synchronization Problem
I Commit Problem
I Authorization
I . . . [B.Liskov, PODC’91]

Synchronizers
I In synchronous execution, proper design leads to improved

efficiency both in terms of time and message complexity.
I In asynchronous execution, we wish to “guarantee” some kind

of synchrony by using a synchronizer.
I Then we can combine algorithms for synchronous execution

with a synchronizer so that they can be suitable for
asynchronous execution.

I In some sense, synchronizers, transform algorithms originally
designed for synchronous systems, to execute on asynchronous
systems.

Design Issues
Design approach:

1. We set the problem – e.g., spanning tree construction, BFS,
mutual exclusion, . . .

2. We model the system using an asynchronous model.
3. We design a new algorithm or apply an existing solution.

Alternative approach:

I We intervene an “intermediate level” between the hardware
(processor, channel) and the algorithm (processes).

I The “middle layer” makes the underlying system “look like” a
synchronous system.

Design Issues
Alternative Design approach:

1. We set the problem – e.g., spanning tree construction, BFS,
mutual exclusion, . . .

2. We model the system using an asynchronous model.
3. We introduce a “middle layer” for synchronization.
4. We design a new algorithm or apply an existing solution for

synchronous systems.

In this way we transform synchronous algorithms for asynchronous
mode of execution.

Design Issues

1η approach

compile algo-asynch.nc

execute

P1 P2
C1,2

C2,1

2η approach

compile algo-synch.nc

link synchronizer

execute
S1 S2

P1 P2

C1,2

C2,1

The basic idea: at each node u the process communicates with the rest

of the system via the synchronizer – the synchronizer “hides” from the

synchronous process the asynchronous mode of execution.

Synchronization Problem
We assume that each processor (node) executes 2 processes:

1. Process P that corresponds to the synchronous protocol.
2. Process S that corresponds to the asynchronous automaton of

the synchronizer.

Synchronization Problem

Algorithm A solves the synchronization problem if it provides an
execution environment where process P cannot distinguish if it is
executed in the asynchronous system (in combination with the
synchronizer) or if it is executed in a synchronous system.

Specifications for I/O Automaton P

I Let M a fixed message alphabet used
by the algorithm during the execution
in the synchronous system.

I For each message m we assign a label
v signifying the recipient of the
message.

Process Pu

Pu

send (T)ru receive (T)ru

I Output action of Pu is of type send (T)ru where

I T – a set of labeled messages (e.g. {〈m, v〉})
I r ∈ N+ – the round of the synchronous system during which the action

takes place.

Specifications for I/O Automaton P
I Input action for Pu is of type receive (T)ru where

I T – a set of labeled messages (e.g. {〈m, v〉})
I r ∈ N+ – the round of the synchronous system during which

the action takes place.

I If Pu does not have any outgoing message during round r ,
then it executes action send (null)ru

Execution Example for automaton P
Let n = 3. The action send ({〈m1, 1〉, 〈m2, 2〉})43 implies that during

round 4, process P3 transmits message m1 to P1 and m2 to P2.

Similarly, action receive ({〈m1, 1〉, 〈m2, 2〉})43 implies that during round

4, process P3 receives message m1 from P1 and m2 from P2.

SimpleSynch Algorithm

For each round r , process Su collects send (T)ru from Pu, and for each

〈m, v〉 ∈ T it sends 〈m, r〉 to Sv . For each message 〈m, r〉 received from

Sv , it inserts 〈m, r〉 to vector Tr . When a message is received from each

neighboring Sv during round r , it delivers receive (T)ru to Pu.

I If Pu does not have any messages to transmit during round r
to process Pv , we assume that it “fills-in” T with 〈null , v〉.

I A simple implementation of S.
I SimpleSynch operates at “local level” – processes coordinate

to synchronize the rounds of the higher-level algorithms.

SimpleSynchu Automaton
Actions:

I Input actions in(SimpleSynchu)

1. send (T)ru – where T a labeled set of messages, r ∈ N+

2. net-receive (N, r)v ,u – where N a set of messages, r ∈ N+,
v ∈ nbrsu

I Output actions out(SimpleSynchu)

1. receive (T)ru – where T a labeled set of messages, r ∈ N+

2. net-send (N, r)u,v – where N a set of messages, r ∈ N+,
v ∈ nbrsu

SimpleSynchu Automaton
States:

I proc-sent, proc-rcvd – boolean vectors, indexed by N+,
initially all elements set to false

I net-sent, net-rcvd –boolean vectors, indexed by
nbrsu ×N+, initially all elements set to false

I outbox – an array of message sets, indexed by nbrsu ×N+,
initially all elements set to null

I inbox – an array of labelled message sets, N+, initially all
elements set to null

SimpleSynchu Automaton
Transitions:

I send (T)ru
I effect:

proc-sent(r) = true

for each v ∈ nbrsu, outbox(v,r) = {m|〈m, v〉 ∈ T}
I net-send (N, r)u,v

I precondition:
proc-sent(r) == true

net-sent(v,r) = false

N = outbox(v,r)
I effect:

net-sent(v,r) = true

SimpleSynchu Automaton
Transitions:

I net-receive (N, r)v ,u
I effect:

inbox(r) = inbox(r) ∪{〈m, v〉|m ∈ N}
net-rcvd(v,r) = true

I receive (T)ru
I precondition:

proc-sent(r) == true

for each v ∈ nbrsu, net-rcvd(v,r) == true

T = inbox(r)

proc-rcvd(r) == false
I effect:

proc-rcvd(r) = true

Properties of SimpleSynch
For each simulated round:

I 2m messages are exchanged,
I Process Pu requires time O(l),
I Process Su requires time O(l).

For simulating r rounds, a total of r (d +O(l)) is required.

Execution Example

1

2

1st round

1st round

Properties of SimpleSynch
For each simulated round:

I 2m messages are exchanged,
I Process Pu requires time O(l),
I Process Su requires time O(l).

For simulating r rounds, a total of r (d +O(l)) is required.

Execution Example

1

2

1st round

1st round

2oς round

2oς round

Properties of SimpleSynch
For each simulated round:

I 2m messages are exchanged,
I Process Pu requires time O(l),
I Process Su requires time O(l).

For simulating r rounds, a total of r (d +O(l)) is required.

Execution Example

1

2

1st round

1st round

2oς round 3oς round

2oς round 3oς round

Properties of SimpleSynch
For each simulated round:

I 2m messages are exchanged,
I Process Pu requires time O(l),
I Process Su requires time O(l).

For simulating r rounds, a total of r (d +O(l)) is required.

Execution Example

1

2

1st round

1st round

2oς round 3oς round 4oς round

2oς round 3oς round 4oς round

Properties of SimpleSynch
For each simulated round:

I 2m messages are exchanged,
I Process Pu requires time O(l),
I Process Su requires time O(l).

For simulating r rounds, a total of r (d +O(l)) is required.

Execution Example

1

2

1st round

1st round

2oς round 3oς round 4oς round

2oς round 3oς round 4oς round

5th round

5th round

Tel — Leeuwen Synchronizer
I The synchronizer uses the following assumptions:

1. We set an upper bound l for the execution time of every action
ε at each state κ

2. We set an upper bound d for the transmission of the oldest
message stored in any communication channel

I Asynchronous systems that adhere to the above assumptions
are known as Asynchronous Bounded-Delay Networks

I Under these assumptions it is fairly easy to implement a
synchronizer.

I The only design issue is to guarantee that all messages sent
during round r have been properly received before round r + 1
is about to start.

Tel — Leeuwen Synchronizer
I We assume that all nodes are equipped with a local clock.
I We assume that clocks are synchronized.
I There is an upper bound µ ≥ l + d that is known to all

processes.
I No need for Pu to transmit null messages during a round r

where no actual messages are transmitted.

ABD Algorithm

During each round r , process Su after receiving all send (T)ru
messages from Pu, for each 〈m, v〉 ∈ T sends a message 〈m, r〉 to
Sv . For each message 〈m, r〉 received from Sv , it inserts 〈m, r〉 in
vector Tr . When the local clock reaches r · 2 · µ, it delivers the
final receive (T)ru to Pu.

ABDu Automaton
Actions:

I Input actions in(ABDu)

1. send (T)ru – where T a labeled set of messages, r ∈ N+

2. net-receive (N, r)v ,u – where N a set of messages, r ∈ N+,
v ∈ nbrsu

I Output actions out(ABDu)

1. receive (T)ru – where T a labeled set of messages, r ∈ N+

2. net-send (N, r)u,v – where N a set of messages, r ∈ N+,
v ∈ nbrsu

ABDu Automaton
States:

I clocku – a local clock
I round – integer variable, initially set to 1
I pulse – time variable
I proc-sent, proc-rcvd – boolean vectors indexed by N+,

initially all elements set to false
I outbox – an array of message sets, indexed by nbrsu ×N+

initially all rows are null
I inbox – an array of labeled message sets, indexed by N+,

initially all rows are null

ABDu Automaton
Transitions:

I send (T)ru
I effect:

proc-sent(r) = true

for each v ∈ nbrsu, outbox(v,r) = {m|〈m, v〉 ∈ T}
I net-send (N, r)u,v

I precondition:
proc-sent(r) == true

N = outbox(v,r)

ABDu Automaton
Transitions:

I net-receive (N, r)v ,u
I effect:

inbox(r) = inbox(r) ∪{〈m, v〉|m ∈ N}
I receive (T)ru

I precondition:
clocku - pulse == 2 · round · µ
T = inbox(r)

proc-rcvd(r) == false
I effect:

proc-rcvd(r) = true

Properties of ABD Algorithm
For each round:

I no message exchanged by process Su.
I Process Pu requires O(l) time.
I Process Su requires O(l) time.

For simulating r synchronous rounds we need r · O (d + l) rounds.

Execution Example

1

2

1st round

1st round

Properties of ABD Algorithm
For each round:

I no message exchanged by process Su.
I Process Pu requires O(l) time.
I Process Su requires O(l) time.

For simulating r synchronous rounds we need r · O (d + l) rounds.

Execution Example

1

2

1st round

1st round

2round

2round

Properties of ABD Algorithm
For each round:

I no message exchanged by process Su.
I Process Pu requires O(l) time.
I Process Su requires O(l) time.

For simulating r synchronous rounds we need r · O (d + l) rounds.

Execution Example

1

2

1st round

1st round

2round 3round

2round 3round

Properties of ABD Algorithm
For each round:

I no message exchanged by process Su.
I Process Pu requires O(l) time.
I Process Su requires O(l) time.

For simulating r synchronous rounds we need r · O (d + l) rounds.

Execution Example

1

2

1st round

1st round

2round 3round 4round

2round 3round 4round

Properties of ABD Algorithm
For each round:

I no message exchanged by process Su.
I Process Pu requires O(l) time.
I Process Su requires O(l) time.

For simulating r synchronous rounds we need r · O (d + l) rounds.

Execution Example

1

2

1st round

1st round

2round 3round 4round

2round 3round 4round

5th round

5th round

Discussion
SynchBFS SynchBFS

algorithm AsynchBFS SimpleSync ABD

time O (δ · n(d + l)) O (δ(d + l)) O (δ · µ)

messages O (n ·m) O
(
n ·m2

)
O (n ·m)

I The time complexity of ABD is an upper bound for
SimpleSync.

