Modern Distributed Computing

Theory and Applications

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 9 Tuesday, May 7, 2013

Part 3: Static Asynchronous Networks

- 1. I/O Automata Model
- 2. Distributed Data Structures
- 3. Time, Clocks and Ordering of Events
- 4. Synchronizers
- 5. Global Predicates
- 6. Termination Detection

Termination of Distributed Computation

- A distributed algorithm is said to terminate when all processes reach a halting state.
 - Upon reaching such a state no further progress can be achieved.
- If all processes reach a halting state we say that external termination has been achieved.
- There are cases where no further progress can be achieved but some (or all) process are not in a halting state.
 - e.g., each process receives messages but never sends out messages.
 - The distributed algorithm has terminated yet the processes are not aware.
 - ► We say that internal termination has been achieved.

Termination of Distributed Computation

- Internal termination is also known as communication termination.
 - No further messages are transmitted, eventually communication seizes.
- External termination is also known as process termination.
 - All processes reach a halting state.
- It is easier to design an algorithm that achieves internal termination (e.g., LCR, SyncBFS, ...).
- Essentially we ignore the final stage of the computation where external termination is achieved.
- In some cases we have to include this final step in our algorithm.
 - e.g., when committing transactions, releasing common resources, . . .

Properties of Termination

- We work using the definition of termination detection, as defined by Dijkstra
- Each process may be in one of the following states:
 - 1. Active state
 - 2. Passive state
- Only active processes may send messages (perform an output action).
- Upon receiving a message (input action), a passive process becomes active.
- The reception of a message is the only event that may flip a passive process to become active.
- Each active process may become passive spontaneously, at any time (due to an internal action).

Dijkstra and Scholten Algorithm

- ► We assume that the higher-lever algorithm is centralized, that is, initially only P₀ is active.
- ► The higher-level algorithm is based on diffusing computations.
- Each process stores a local pointer to the parent process in the tree.
 - If for process \mathcal{P}_u , parent == null, we say \mathcal{P}_u is free.
- Each process maintains a local counter children storing the number of children in the tree.

Dijkstra and Scholten Algorithm

- Let \mathcal{P}_0 be the coordinating process.
- ► The algorithm constructs a inverted spanning tree with process \mathcal{P}_0 as the root.
- The tree is modified while the higher-level algorithm is executed in a way such:
 - the active processes are located near the root (small height),
 - the passive processes are located on the leaves of the tree (large height).
- These trees are also known as Computation Trees.
- Termination is detected when the root of the tree becomes passive.

Dijkstra and Scholten Algorithm

- ► Consider process P_u ≠ P₀, a free process, that receives a message from P_v.
 - 1. It sets $parent = \mathcal{P}_v$ (the edge uv is inserted in the tree),
 - 2. Informs \mathcal{P}_{v} (via a control message),
 - 3. Process \mathcal{P}_v sets *children*_v + +.
- \mathcal{P}_u is not free, and at some points become passive:
 - 1. Informs \mathcal{P}_{v} (via a control message),
 - 2. Process \mathcal{P}_v sets *children*_v -,
 - 3. \mathcal{P}_u sets *parent* = *null* (the edge *uv* is removed).
- Thus, all "isolated" processes (with no adjacent edges) are passive processes.
- \blacktriangleright When \mathcal{P}_0 becomes passive, the algorithm terminates.

Correctness of Algorithm

Theorem

The Dijkstra–Scholten algorithm correctly detects termination using M control messages, where M is the number of messages exchanged by the higher-level algorithm.

- The algorithm offers a very good balance between control messages and data messages.
- ▶ Based on the lower bound *M* (see next theorem) the algorithm is optimal.

Correctness of Algorithm

Proof:

- Let the computation tree $T = (V_T, E_T)$
- Either T is empty or it is directed to the root \mathcal{P}_0 .
- The set V_T includes all active processes and all messages in transit.
- The coordinator \mathcal{P}_0 invokes the sub-algorithm informing all nodes about termination when $\mathcal{P}_0 \notin V_T$.
 - Since $|V_T| = 0$ the predicate *term* is true.
- Essentially, T expands every time a data message is sent or when a processes becomes active.

Correctness of Algorithm

Proof:

$$E_T = \{(u, parent_u) : parent_u \neq null \land parent_u \neq u\}$$

- \cup {data messages in transit}
- \cup {control messages in transit}

Safety is based on the following condition P defined as follows:

$$P = state_u == active \Rightarrow u \in V_T$$
(1)

$$\wedge \quad (u,v) \in E_T \Rightarrow u \in V_T \land v \in V_T \cap P \tag{2}$$

- $\wedge \quad children_u = \#v : (v, u) \in E_T \tag{3}$
- $\wedge \quad V_T \neq \emptyset \Rightarrow T \text{ tree, rooted on } \mathcal{P}_0 \tag{4}$
- $\land \quad (state_u == passive \land children_u == 0) \Rightarrow u \in V_T (5)$

Correctness of Algorithm

Proof:

- To guarantee progress for the termination detection algorithm, the tree has to "empty" in finite number of steps after the termination of the higher-level algorithm.
- ► The proof requires that *T* is a tree and becomes empty only after the higher-level algorithm terminates.
- \blacktriangleright For each execution γ of the higher-level algorithm we define

$$V_T = \{u : parent_u \neq null\}$$

- $\cup \ \ \{ \mathsf{data} \ \mathsf{messages} \ \mathsf{in} \ \mathsf{transit} \}$
- $\cup \ \ \{ {\rm control} \ {\rm messages} \ {\rm in} \ {\rm transit} \}$

Correctness of Algorithm

Proof:

- 1. $state_u == active \Rightarrow u \in V_T$ Graph *T* includes all active processes.
- 2. $(u, v) \in E_T \Rightarrow u \in V_T \land v \in V_T \cap P$ T is a tree and all edges are directed towards some process.
- 3. $children_u = \#v : (v, u) \in E_T$ Processes properly count their children.
- 4. $V_T \neq \emptyset \Rightarrow T$ tree, rooted on \mathcal{P}_0 Graph T is a tree, rooted on \mathcal{P}_0
- 5. $(state_u == passive \land children_u == 0) \Rightarrow u \in V_T$ The tree is empty when the higher-level algorithm terminates.

Correctness of Algorithm

Proof:

► The proof of correctness is based on the observation that in condition P it holds that parent_u == u only for u == P₀.

Lemma

Condition P holds for the Dijkstra-Scholten algorithm.

- Let $S = \sum_{u=0}^{n} children_u$ the sum of all children counters.
 - Initially S = 0,
 - increases when the next control message is sent,
 - decreases when a control message is received,
 - cannot go negative, due to (3).

Correctness of Algorithm

Proof:

- After the higher-level algorithm terminates, only actions of the termination detection algorithm will be executed.
- Since S decreases after each such action, the termination detection algorithm will also terminate.
- In such a state, V_T does not contain any message in transit.
- Due to (5), V_T will not include any passive process.
- ▶ Thus *T* will have no leaves, and thus become empty.
- The tree will be empty when \mathcal{P}_0 will remove itself.
- > The liveness requirement is guaranteed.

Correctness of Algorithm

Proof:

- Proving safety is done based on the observation that P₀ will invoke the sub-algorithm informing all nodes about termination before removing itself from V_T.
- > Thus, due to (4), T will be empty when this takes place.
- Clearly, the non-interference condition holds.

Synchronous vs Asynchronous Execution

- ► In Synchronous Systems we assume synchronized execution.
 - ► The assumption is too strong and is not very realistic.
 - Based on this assumption we can design efficient algorithmic solutions.
 - Based on this assumption we can evaluate the performance of the system.
- ► In Asynchronous Systems we avoid this assumption.
 - It is more realistic.
 - We may assume some upper bounds to study the performance of the system.
 - ► To achieve synchronized execution we need additional code.

Distributed Data Structures

- ► Spanning Tree construction process u, constructs a spanning T_u(G), rooted on u.
- Algorithm AsynchSpanningTree
 - Message Complexity $\mathcal{O}(n \cdot m)$
 - Time complexity $\mathcal{O}(\delta(l+d))$
- Algorithm AsynchBFS
 - Message Complexity $\mathcal{O}(n \cdot m)$
 - Time complexity $\mathcal{O}(n \cdot \delta(l+d))$

Distributed Data Structures

- Spanning Tree construction process u, constructs a spanning T_u(G), rooted on u.
- Algorithm AsynchSpanningTree
 - Message Complexity $\mathcal{O}(n \cdot m)$
 - Time complexity $O(\delta(l+d))$
- Algorithm AsynchBFS / SyncBFS
 - Message Complexity $\mathcal{O}(n \cdot m) / \mathcal{O}(n \cdot m)$
 - Time complexity $\mathcal{O}(n \cdot \delta(l+d)) / \mathcal{O}(\delta)$

Discussion

- Observe that some algorithms designed for synchronous systems are more efficient in terms of time and message complexity.
 - How can we adjust them for asynchronous systems ?
- The existence of a clock can be used to efficiency solve many problems
 - Synchronization Problem
 - Commit Problem
 - Authorization
 - ... [B.Liskov, PODC'91]

Synchronizers

- In synchronous execution, proper design leads to improved efficiency both in terms of time and message complexity.
- In asynchronous execution, we wish to "guarantee" some kind of synchrony by using a synchronizer.
- Then we can combine algorithms for synchronous execution with a synchronizer so that they can be suitable for asynchronous execution.
- In some sense, synchronizers, transform algorithms originally designed for synchronous systems, to execute on asynchronous systems.

Design Issues

Design approach:

- 1. We set the problem e.g., spanning tree construction, BFS, mutual exclusion, ...
- 2. We model the system using an asynchronous model.
- 3. We design a new algorithm or apply an existing solution.

Alternative approach:

- We intervene an "intermediate level" between the hardware (processor, channel) and the algorithm (processes).
- The "middle layer" makes the underlying system "look like" a synchronous system.

Design Issues

Alternative Design approach:

- 1. We set the problem e.g., spanning tree construction, BFS, mutual exclusion, . . .
- 2. We model the system using an asynchronous model.
- 3. We introduce a "middle layer" for synchronization.
- 4. We design a new algorithm or apply an existing solution for synchronous systems.

In this way we transform synchronous algorithms for asynchronous mode of execution.

Design Issues

 1^η approach compile algo-asynch.nc

execute

2^{η} approach

compile algo-synch.nc
link synchronizer
execute

 $\mathcal{C}_{2,1}$

 $\mathcal{C}_{1,2}$

 \mathcal{P}_1

 \mathcal{S}_1

 \mathcal{P}_2

Synchronization Problem

We assume that each processor (node) executes 2 processes:

- 1. Process $\ensuremath{\mathcal{P}}$ that corresponds to the synchronous protocol.
- 2. Process $\ensuremath{\mathcal{S}}$ that corresponds to the asynchronous automaton of the synchronizer.

Synchronization Problem

Algorithm \mathcal{A} solves the synchronization problem if it provides an execution environment where process \mathcal{P} cannot distinguish if it is executed in the asynchronous system (in combination with the synchronizer) or if it is executed in a synchronous system.

Specifications for I/O Automaton ${\cal P}$

Process \mathcal{P}_u

- Let *M* a fixed message alphabet used by the algorithm during the execution in the synchronous system.
- For each message *m* we assign a label *v* signifying the recipient of the message.

- Output action of \mathcal{P}_u is of type send $(T)_r u$ where
 - T a set of labeled messages (e.g. $\{\langle m, v \rangle\}$)
 - r ∈ N⁺ the round of the synchronous system during which the action takes place.

Specifications for I/O Automaton ${\cal P}$

- Input action for \mathcal{P}_u is of type receive $(T)_r u$ where
 - T a set of labeled messages (e.g. $\{\langle m, v \rangle\}$)
 - r ∈ N⁺ − the round of the synchronous system during which the action takes place.
- If P_u does not have any outgoing message during round r, then it executes action send (null)_ru

Execution Example for automaton $\ensuremath{\mathcal{P}}$

Let n = 3. The action send $(\{\langle m_1, 1 \rangle, \langle m_2, 2 \rangle\})_4 3$ implies that during round 4, process \mathcal{P}_3 transmits message m_1 to \mathcal{P}_1 and m_2 to \mathcal{P}_2 . Similarly, action receive $(\{\langle m_1, 1 \rangle, \langle m_2, 2 \rangle\})_4 3$ implies that during round 4, process \mathcal{P}_3 receives message m_1 from \mathcal{P}_1 and m_2 from \mathcal{P}_2 .

SimpleSynch Algorithm

For each round r, process S_u collects send $(T)_r u$ from \mathcal{P}_u , and for each $\langle m, v \rangle \in T$ it sends $\langle m, r \rangle$ to S_v . For each message $\langle m, r \rangle$ received from S_v , it inserts $\langle m, r \rangle$ to vector T_r . When a message is received from each neighboring S_v during round r, it delivers receive $(T)_r u$ to \mathcal{P}_u .

- If P_u does not have any messages to transmit during round r to process P_v, we assume that it "fills-in" T with ⟨null, v⟩.
- A simple implementation of S.
- SimpleSynch operates at "local level" processes coordinate to synchronize the rounds of the higher-level algorithms.

SimpleSynch_u Automaton

Actions:

- Input actions in(SimpleSynch_u)
 - 1. send (T)_r u where T a labeled set of messages, $r \in \mathcal{N}^+$
 - 2. net-receive $(N, r)_{v,u}$ where N a set of messages, $r \in \mathcal{N}^+$, $v \in \textit{nbrs}_u$
- Output actions *out*(SimpleSynch_u)
 - 1. receive (T) $_r$ u where T a labeled set of messages, $r \in \mathcal{N}^+$
 - 2. net-send $(N, r)_{u,v}$ where N a set of messages, $r \in \mathcal{N}^+$, $v \in nbrs_u$

SimpleSynch_u Automaton

States:

- proc-sent, proc-rcvd boolean vectors, indexed by N⁺, initially all elements set to false
- ▶ net-sent, net-rcvd -boolean vectors, indexed by $nbrs_u \times N^+$, initially all elements set to false
- ▶ outbox an array of message sets, indexed by nbrs_u × N⁺, initially all elements set to null
- ▶ inbox an array of labelled message sets, N⁺, initially all elements set to null

SimpleSynch_u Automaton

Transitions:

- send $(T)_r$ u
 - effect: proc-sent(r) = true for each $v \in nbrs_u$, outbox(v,r) = $\{m | \langle m, v \rangle \in T\}$
- net-send $(N, r)_{\mu,\nu}$

```
precondition:
```

```
proc-sent(r) == true
net-sent(v,r) = false
```

```
N = outbox(v,r)
```

```
effect:
```

```
net-sent(v,r) = true
```

SimpleSynch_u Automaton

Transitions:

- ▶ net-receive $(N, r)_{v,u}$
 - ▶ effect: inbox(r) = inbox(r) $\cup \{ \langle m, v \rangle | m \in N \}$ net-rcvd(v,r) = true
- ▶ receive(T)_ru
 - ▶ precondition: proc-sent(r) == true for each v ∈ nbrs_u, net-rcvd(v,r) == true
 - T = inbox(r)
 - proc-rcvd(r) == false
 - effect:
 - proc-rcvd(r) = true

Properties of SimpleSynch

For each simulated round:

- > 2*m* messages are exchanged,
- Process \mathcal{P}_u requires time $\mathcal{O}(I)$,
- Process S_u requires time O(I).

For simulating r rounds, a total of r(d + O(l)) is required.

Execution Example

Properties of SimpleSynch

For each simulated round:

- ► 2*m* messages are exchanged,
- Process \mathcal{P}_u requires time $\mathcal{O}(l)$,
- Process S_u requires time O(I).

For simulating r rounds, a total of r(d + O(l)) is required.

For each simulated round:

- 2m messages are exchanged,
- Process \mathcal{P}_u requires time $\mathcal{O}(I)$,
- Process S_u requires time O(I).

For simulating r rounds, a total of r(d + O(l)) is required.

Properties of SimpleSynch

For each simulated round:

- ► 2*m* messages are exchanged,
- Process \mathcal{P}_u requires time $\mathcal{O}(I)$,
- Process S_u requires time $\mathcal{O}(l)$.

For simulating r rounds, a total of r(d + O(l)) is required.

Execution Example

Properties of SimpleSynch

For each simulated round:

- 2m messages are exchanged,
- Process \mathcal{P}_u requires time $\mathcal{O}(I)$,
- Process S_u requires time $\mathcal{O}(I)$.

For simulating r rounds, a total of r(d + O(l)) is required.

Execution Example

Tel — Leeuwen Synchronizer

- ► The synchronizer uses the following assumptions:
 - 1. We set an upper bound / for the execution time of every action ϵ at each state κ
 - 2. We set an upper bound d for the transmission of the oldest message stored in any communication channel
- Asynchronous systems that adhere to the above assumptions are known as Asynchronous Bounded-Delay Networks
- Under these assumptions it is fairly easy to implement a synchronizer.
- The only design issue is to guarantee that all messages sent during round r have been properly received before round r + 1 is about to start.

Tel — Leeuwen Synchronizer

- ▶ We assume that all nodes are equipped with a local clock.
- We assume that clocks are synchronized.
- ► There is an upper bound µ ≥ l + d that is known to all processes.
- No need for P_u to transmit null messages during a round r where no actual messages are transmitted.

ABD Algorithm

During each round r, process S_u after receiving all send $(T)_r u$ messages from \mathcal{P}_u , for each $\langle m, v \rangle \in T$ sends a message $\langle m, r \rangle$ to S_v . For each message $\langle m, r \rangle$ received from S_v , it inserts $\langle m, r \rangle$ in vector T_r . When the local *clock* reaches $r \cdot 2 \cdot \mu$, it delivers the final receive $(T)_r u$ to \mathcal{P}_u .

ABD_u Automaton

Actions:

- Input actions in(ABD_u)
 - 1. send $(T)_r$ u where T a labeled set of messages, $r \in \mathcal{N}^+$
 - 2. net-receive $(N, r)_{v,u}$ where N a set of messages, $r \in \mathcal{N}^+$, $v \in nbrs_u$
- Output actions *out*(ABD_u)
 - 1. receive $(T)_r$ u where T a labeled set of messages, $r \in \mathcal{N}^+$
 - 2. net-send $(N, r)_{u,v}$ where N a set of messages, $r \in \mathcal{N}^+$, $v \in nbrs_u$

ABD_u Automaton

States:

- clock_u a local clock
- round integer variable, initially set to 1
- pulse time variable
- proc-sent, proc-rcvd boolean vectors indexed by N⁺, initially all elements set to false
- ▶ outbox an array of message sets, indexed by nbrs_u × N⁺ initially all rows are null
- inbox an array of labeled message sets, indexed by N⁺, initially all rows are null

ABD_u Automaton

Transitions:

▶ send $(T)_r$ u

• effect: proc-sent(r) = true for each $v \in nbrs_u$, outbox(v,r) = $\{m | \langle m, v \rangle \in T\}$

- ▶ net-send $(N, r)_{u,v}$
 - > precondition: proc-sent(r) == true N = outbox(v,r)

ABD_u Automaton

Transitions:

- ▶ net-receive $(N, r)_{v,u}$
 - effect: inbox(r) = inbox(r) $\cup \{ \langle m, v \rangle | m \in N \}$
- ▶ receive(T)_ru

```
precondition:
    clock<sub>u</sub> - pulse == 2 · round · µ
    T = inbox(r)
    proc-rcvd(r) == false
> effect:
```

```
proc-rcvd(r) = true
```

Properties of ABD Algorithm

For each round:

- no message exchanged by process S_u .
- Process \mathcal{P}_u requires $\mathcal{O}(I)$ time.
- Process S_u requires O(I) time.

For simulating *r* synchronous rounds we need $r \cdot O(d+l)$ rounds.

Execution Example

Properties of ABD Algorithm

For each round:

- no message exchanged by process S_u .
- Process \mathcal{P}_u requires $\mathcal{O}(I)$ time.
- Process S_u requires $\mathcal{O}(I)$ time.

For simulating r synchronous rounds we need $r \cdot \mathcal{O}(d+l)$ rounds.

Execution Example

For each round:

- no message exchanged by process S_u .
- Process \mathcal{P}_u requires $\mathcal{O}(l)$ time.
- Process S_u requires O(I) time.

For simulating *r* synchronous rounds we need $r \cdot O(d+l)$ rounds.

Properties of ABD Algorithm

For each round:

- no message exchanged by process S_u .
- Process \mathcal{P}_u requires $\mathcal{O}(I)$ time.
- Process S_u requires $\mathcal{O}(I)$ time.

For simulating *r* synchronous rounds we need $r \cdot O(d+l)$ rounds.

Execution Example

Properties of ABD Algorithm

For each round:

- no message exchanged by process S_u .
- Process \mathcal{P}_u requires $\mathcal{O}(I)$ time.
- Process S_u requires O(I) time.

For simulating *r* synchronous rounds we need $r \cdot O(d+l)$ rounds.

Execution Example

Discussion

		SynchBFS	SynchBFS
algorithm	AsynchBFS	SimpleSync	ABD
time	$\mathcal{O}\left(\delta \cdot n(d+l)\right)$	$\mathcal{O}\left(\delta(d+l)\right)$	$\mathcal{O}\left(\delta\cdot\mu ight)$
messages	$\mathcal{O}(n \cdot m)$	$\mathcal{O}\left(n\cdot m^2\right)$	$\mathcal{O}(n \cdot m)$

 The time complexity of ABD is an upper bound for SimpleSync.

