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Analysis of Data

» Viewing and analyzing vast amounts of biological data in its
unstructured entirety can be perplexing.

» It is easier to interpret data if it is organized into clusters that
combine similar (i.e., related) data points.

Analyzing data from DNA microarray experiments (expression
analysis i.e., determining which genes are switched on or off under
certain conditions of interest).

Building and understanding phylogenetic (evolutionary) trees based
on genomic or other data.

Microarray Analysis

» What do newly sequenced genes do?

» Simply comparing new gene sequences to known DNA
sequences often does not reveal the function of a new gene.

» For 40% of sequenced genes, functionality cannot be
ascertained by comparing to sequences of other known genes.

» It is easier to interpret data if it is organized into clusters that
combine similar (i.e., related) data points.

Microarrays and expression analysis

» Microarrays measure activity (expression level) of genes under
varying conditions and/or points in time.

» Expression level is estimated by measuring amount of mRNA
for that particular gene:

» A gene is active if it is being transcribed.
» More mRNA usually indicates more gene activity.




A Microarray Experiment

» Produce cDNA from mRNA (cDNA is more stable)

» Label cDNA with a fluorescent dye or biotin for detection

» Different color labels are available to compare many samples
at once

» Wash cDNA over the microarray containing thousands of high
density probes that hybridize to complementary strands in the
sample and immobilize them on the surface.

» For biotin-labeled samples, stain with the biotin-specific
fluorescently labeled antibody

» Read the microarray, using a laser or a high-resolution CCD

» Illumination reveals transcribed/co-expressed genes

A Microarray Experiment
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Microarray Data Transformation

» Microarray data are usually transformed into a (relative,
normalized) intensity matrix

» Can also be represented as a bit matrix (logy of relative
intensity)

» The intensity matrix allows biologists to infer correlations
between different genes (even if they are dissimilar) and to
understand how genes functions might be related

» Care must be taken to normalize the data appropriately, e.g.
different time points can come from different arrays.




Microarray Data Intensity Matrix
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Clustering Principles

» Homogeneity — elements of the same cluster are maximally
close to each other.
» Separation — elements in separate clusters are maximally far
apart from each other.
» One is actually implied by the other (in many cases).
» Generally it is a hard problem.
» Clustering in 2 dimensions looks easy
» Clustering small amounts of data looks easy
» High-dimensional spaces look different — Almost all pairs of
points are at about the same distance

Some Examples

» Both principles are violated » More reasonable assignment.

» We need to use an objective
function to optimize cluster
assignment.

» Points in the same cluster
are far apart

» Points in different cluster
are close

Intra/Inter Cluster Distances

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized

» Suitably select distance metric.
» Maximize Inter-cluster distances.
» Minimize Intra-cluster distances.

Distance Measures

» Each clustering problem is based on some kind of “distance”
between points.
» Two major classes of distance measure:

1. Euclidean
2. Non-Euclidean

» A Euclidean space has some number of real-valued dimensions.
» There is a notion of “average” of two points.
» A Euclidean distance is based on the locations of points in
such a space.
» A Non-Euclidean distance is based on properties of points, but
not their “location” in a space.




Axioms of a Distance Measure

d is a distance measure if it is a function from pairs of points to
real numbers such that:

1. d(x,y) >0
2. d(x,y)=0 iff x=y

3. d(x,y) = d(y, x)

4. d(x,y) < d(x,z)+ d(z,y) (triangle inequality)

Some Euclidean Distances

Ly norm: d(x,y) = square root of the sum of the squares of the
differences between x and y in each dimension.
The most common notion of “distance”.

L1 norm: sum of the differences in each dimension.
Manhattan distance = distance if you had to travel along

coordinates only.
L,-norm: y =(9,8)
dist(x,y) =
V(424-32)
=5

L,-norm:

4 dist(x,y) =
X = (5'5) 4+3 = 7

Some Non-Euclidean Distances

Jaccard distance for sets = 1 minus ratio of sizes of intersection
and union.

Cosine distance = angle between vectors from the origin to the
points in question.

Edit distance = number of inserts and deletes to change one string
into another.

Jaccard Distance for Sets

Example: p; = 10111; p, = 10011.
Size of intersection = 3; size of union = 4, Jaccard similarity (not
distance) = 3.

d(x,y) = 1(Jaccard similarity) = 7

Why JD is a distance measure?
1. d(x,x) =0 because xNx = x U x
2. d(x,y) = d(y, x) because union and intersection are
symmetric
3. d(x,y) > 0 because [xNy| < |xUy|
4. d(x,y) < d(x,z)+ d(z,y) more difficult...

e  yn]  xyl
(1 |xUz|> + (1 |yUz|> 2 1-14)




Edit Distance

The edit distance of two strings is the number of inserts and deletes
of characters needed to turn one into the other. Equivalently:

d(x,y) = x| + |yl = 2|LCS(x, )|

LCS = longest common subsequence = any longest string obtained
both by deleting from x and deleting from .

Example
» X = abcde ; y = bcduve.
» Turn x into y by deleting a, then inserting u and v after d.
Edit distance = 3.
» Or, LCS(x,y) = bcde.
» Note: |x| + |y| —2|LCS(x,y)| =5+6 —2 x 4 = 3 = edit dist

Why Edit Distance is a Distance Measure?

1. d(x,x) = 0 because 0 edits suffice.

2. d(x,y) = d(y, x) because insert/delete are inverses of each
other

3. d(x,y) > 0 no notion of negative edits
4. d(x,y) < d(x,z)+ d(z,y) Triangle inequality:
changing x to z and then to y is one way to change x to .

Hierarchical Clustering

» Produces a set of nested clusters organized as a hierarchical
tree

» Can be visualized as a dendrogram — A tree like diagram that
records the sequences of merges or splits
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Agglomerative Hierarchical Clustering

» Initially, each point is a cluster
» Repeatedly combine the two “nearest” clusters into one

1 Compute the proximity matrix
2 Let each data point be a cluster

3 Repeat
4 Merge the two closest clusters
5 Update the proximity matrix

6 Until only a single cluster remains

» Key operation is the computation of the proximity of two
clusters

» Different approaches to defining the distance between clusters
distinguish the different algorithms




How to define Inter-cluster similarity?

Similarity?

A ————

» Minimum — based on the two most similar (closest) points in
the different clusters

» Maximum — based on the two least similar (most distant)
points in the different clusters

» Group Average

Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters
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Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters

0.1s
01

0.0s

®y

Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters
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Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters
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Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters
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Minimum — Example

Minimum — based on the two most similar (closest) points in the
different clusters
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Minimum — Limitations
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Maximum — Example

Maximum — based on the two least similar (most distant) points in
the different clusters
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Maximum — Example

Maximum — based on the two least similar (most distant) points in
the different clusters
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Maximum — Example

Maximum — based on the two least similar (most distant) points in
the different clusters
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Maximum — Example

Maximum — based on the two least similar (most distant) points in
the different clusters

Maximum — Example

Maximum — based on the two least similar (most distant) points in
the different clusters
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Maximum — Limitations
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