
Principles of Computer Science II
Concurrency in Python

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 16

John Ousterhout
The best performance improvement is the transition from the
nonworking to the working state.

Donald Knuth
Premature optimization is the root of all evil.

Unknown
You can always optimize it later.

Code Optimization vs Concurrency

Python

I A very high-level language
. . . good at implementing complex systems in much less time

I Code is interpreted
. . . many programs are “I/O bound”

I Python can be extended with C code
Examples: ctypes, Cython, Swig, . . .

I If you need really high-performance, you’re not coding
Python–you’re using C extensions

I This is what most of the big scientific computing hackers are
doing . . . “using the right tool for the job”

Concurrency

Doing more than one thing at a time. Important when we wish to
take advantage of the full capabilities of multicore PCs. Usually a
bad idea–except when it’s not.

I Main concept of concurrent programming
I Creation of programs that can work on more than one thing at

a time.
I Example: A network server that communicates with several

hundred clients all connected at once
I Example: A big number crunching job that spreads its work

across multiple CPUs

I A look at tradeoffs and limitations
I Introduction to various parts of the standard library

Code Optimization vs Concurrency

I If you’re trying to make an inefficient Python script run faster
. . . Probably not a good idea

I marginal improvement of parallelizing a slow script to run on a
couple of CPU cores

I Huge gains by focusing on better algorithms

I Huge gains by utilising C extensions

Multitasking

I Concurrency typically implies “multitasking”
I If only one CPU is available, the only way it can run multiple

tasks is by rapidly switching between them

Parallel Processing

I You may have parallelism (many CPUs)
I Here, you often get simultaneous task execution
I Note: If the total number of tasks exceeds the number of

CPUs, then each CPU also multitasks

Task Execution

I All tasks execute by alternating between CPU processing and
I/O handling

I For I/O, tasks must wait (sleep)
I Behind the scenes, the underlying system will carry out the

I/O operation and wake the task when it’s finished

CPU Bound Tasks

I A task is “CPU Bound” if it spends most of its time
processing with little I/O

I Examples
I Crunching big matrices
I Image processing

I/O Bound Tasks

I A task is “I/O Bound” if it spends most of its time waiting for
I/O

I Examples
I Reading input from the user
I Networking
I File processing

I Most “normal” programs are I/O bound

Shared Memory

I Tasks may run in the same memory space
I Simultaneous access to objects
I A technically difficult task

Process

I Tasks might run in separate processes
I Processes coordinate using IPC
I Pipes, FIFOs, memory mapped regions, etc.

Distributed Computing

I Tasks may be running on distributed systems
I For example, a cluster of servers
I Communication via sockets

Threads

I Mainstream concurrency programming paradigm

I An independent task running inside a program

I Shares resources with the main program
(memory, files, network connections, etc.)

I Has its own independent flow of execution
(stack, current instruction, etc.)

A Simple Example A Simple Example

A Simple Example Threading module – definition
I Python threads are defined by a class

1 impor t t ime
2 impor t t h r e a d i n g
3

4 c l a s s CountdownThread (t h r e a d i n g . Thread) :
5 de f i n i t (s e l f , count) :
6 t h r e a d i n g . Thread . i n i t (s e l f)
7 s e l f . count = count
8

9 de f run (s e l f) :
10 wh i l e s e l f . count > 0 :
11 p r i n t ” Count ing down” , s e l f . count
12 s e l f . count −= 1
13 t ime . s l e e p (5)
14 r e t u r n

I You inherit from Thread and redefine run()
I The code within the run() function executes in the separate

thread

Threading module – execution

I To launch, create thread objects and call start()

1 t1 = CountdownThread (10) # Crea te the th r ead o b j e c t
2 t1 . s t a r t () # Launch the th r ead
3

4 t2 = CountdownThread (20) # Crea te ano the r t h r ead
5 t2 . s t a r t () # Launch the second th r ead

Threading module – alternative
I Alternative method of launching thread
I Create a Thread object, but its run() method just calls the

given function
1 de f countdown (count) :
2 wh i l e count > 0 :
3 p r i n t ” Count ing down” , count
4 count −= 1
5 t ime . s l e e p (5)
6

7 t1 = th r e a d i n g . Thread (t a r g e t=countdown , a r g s =(10 ,))
8 t1 . s t a r t ()

Threading module – joining a thread
I Once you start a thread, it runs independently
I Use t.join() to wait for a thread to exit

1 t . s t a r t () # Launch a th r ead
2

3 . . .
4# Do othe r work
5 . . .
6

7# Wait f o r t h r ead to f i n i s h
8 t . j o i n () # Waits f o r t h r ead t to e x i t

I This only works from other threads
I A thread cannot join itself

Threading module – daemonic mode
I If a thread runs forever, make it “daemonic”

1 t . daemon = True
2 t . setDaemon (True)

I If you do not do this, the interpreter will lock when the main
thread exits–waiting for the thread to terminate (which never
happens)

I Normally you use this for background tasks

Access to Shared Data
I Threads share all of the data in your program
I Thread scheduling is non-deterministic
I Operations often take several steps and might be interrupted

mid-stream (non-atomic)
I Thus, access to any kind of shared data is also

non-deterministic
I Main reason for errors arising in concurrent programs

An example of shared access
I Consider a shared object

1 x = 0

I And two threads that modify it
1 Thread−1 Thread−2
2−−−−−−−−−−− −−−−−−−−−−−
3
4 x = x + 1 x = x − 1
5

I It’s possible that the resulting value will be unpredictably
corrupted

An example of shared access
I The two threads

1 Thread−1 Thread−2
2−−−−−−−−−−− −−−−−−−−−−−
3 x = x + 1 x = x − 1

I Low level interpreter execution

An example of shared access
I The two threads

1 Thread−1 Thread−2
2−−−−−−−−−−− −−−−−−−−−−−
3 x = x + 1 x = x − 1

I Low level interpreter execution

I These operations get performed with a “stale” value of x.
The computation in Thread-2 is lost.

An example of shared access
I One more example:

1 x = 0 # A sha r ed v a l u e
2 de f foo () :
3 g l o b a l x
4 f o r i i n x range (100000000) : x += 1
5

6 de f bar () :
7 g l o b a l x
8 f o r i i n x range (100000000) : x −= 1
9

10 t1 = th r e a d i n g . Thread (t a r g e t=foo)
11 t2 = th r e a d i n g . Thread (t a r g e t=bar)
12 t1 . s t a r t () ; t2 . s t a r t ()
13 t1 . j o i n () ; t2 . j o i n () # Wait f o r comp l e t i on
14 p r i n t (x) # Expected r e s u l t i s 0

I The print produces a random value each time

Race Conditions
I This phenomenon is also known as a “race condition”
I The corruption of shared data due to thread scheduling
I A program may produce slightly different results each time it

runs
I Or result may rarely happen . . .
I It depends on the actual CPU, other programs being executed

on the sme time, . . .
I Fix: use thread synchronization

Thread Syncronization
The threading library defines the following objects for
synchronizing threads

I Lock
I RLock
I Semaphore
I BoundedSemaphore
I Event
I Condition

Mutual Exclusion Lock (Mutex)
1m = th r e a d i n g . Lock ()

I Probably the most commonly used synchronization primitive
I Synchronize threads so that only one thread can make

modifications to shared data at any given time
I Concurrency is lost
I Only one thread can successfully acquire the lock at any given

time
I If another thread tries to acquire the lock when its already in

use, it gets blocked until the lock is released

Using Mutex Locks
I Commonly used to enclose critical sections

I Only one thread can execute in critical section at a time (lock
gives exclusive access)

Using Mutex Locks
I It is your responsibility to identify and lock all “critical

sections”

Lock Management
I Simple mechanism for dealing with locks and critical sections

1 x = 0
2 x l o c k = th r e a d i n g . Lock ()
3

4# C r i t i c a l s e c t i o n
5 with x l o c k :
6 s t a t emen t s u s i n g x
7

8 . . .

I This automatically acquires the lock and releases it when
control enters/exits the associated block of statements

Locks and Deadlock
I Do not write code that acquires more than one mutex lock at

a time
1 x = 0
2 y = 0
3 x l o c k = th r e a d i n g . Lock ()
4 y l o c k = th r e a d i n g . Lock ()
5

6# C r i t i c a l s e c t i o n
7 with x l o c k :
8 s t a t emen t s u s i n g x
9 . . .

10 with y l o c k :
11 s t a t emen t s u s i n g x and y
12 . . .
13 . . .

I This almost invariably ends up creating a program that
mysteriously deadlocks

