
Principles of Computer Science II
Large Scale Computation

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 17

Problem: Lots of data
I Example: Homo sapiens high coverage assembly GRCh37

I 27478 contigs
I contig length total 3.2 Gb.
I chromosome length total 3.1 Gb.

I One computer can read 30-35MB/sec from disc
I ∼ 10 months to read the data

I ∼ 100 hard drives just to store the data in compressed format
I Even more to do something with the data.

Spread the work over many machines
I Good news: same problem with 1000 machines: ≤ 1 hour
I Bad news: concurrency

I communication and coordination
I recovering from machine failure
I status reporting
I debugging
I optimization

I Bad news 2: repeat for every problem you want to solve

Computing Clusters
I Many racks of computers
I Thousands of machines per cluster
I Limited bandwidth between racks

Computing Environment
I Each machine has 2-4 CPUs

I Typically quad-core
I Future machines will have more cores

I 1-6 locally-attached disks
I ∼ 10TB of disk

I Overall performance more important than peak performance
of single machines

I Reliability
I In 1 server environment, it may stay up for three years (1000

days)
I If you have 10000 servers, expect to lose 10 each day

I Ultra reliable hardware still fails
I We need to keep in mind cost of each machine

Map Reduce Computing Paradigm
I A simple programming model

I Applies to large-scale computing problems

I Hides difficulties of concurrency
I automatic parallelization
I load balancing
I network and disk transfer optimization
I handling of machine failures
I robustness
I improvements to core libraries benefit all users of library

A typical problem

I Read a lot of data

I Map: extract something important from each record

I Shuffle and sort

I Reduce: aggregate, summarize, filter or transform

I Write the results

In more details
I Programmer specifies two primary methods:

I map(k, v) → < k ′, v ′ > ∗
I Takes a key-value pair and outputs a set of key-value pairs
I There is one Map call for every (k, v) pair

I reduce(k ′, < v ′ > ∗) → < k ′, v ′ > ∗
I All values v with same key k are reduced together and

processed in v order
I There is one Reduce function call per unique key k

I All v ′ with same k ′ are reduced together, in order.

An example: Frequencies in DNA sequence
A typical exercise for a new engineer in his/her first week:

I Input files with one document per record
I Specify a map function that takes a key/value pair

I key = document URL
I value = document contents

I Output of map function is (potentially many) key/value pairs.
I In this case, output:

(word, 1) once per word in the document

“document 1”, “CTGGGCTAA”
converted to
(C, 1), (T, 1), (G, 1), . . .

An example: Frequencies in DNA sequence
I MapReduce library gathers together all pairs with the same

key (shuffle/sort)
I The reduce function combines the values for a key
I In this example:

key = “A”
values = 1, 1
summarize
2

key = “G”
values = 1, 1, 1
summarize
3

key = “C”
values = 1, 1
summarize
2

key = “T”
values = 1, 1
summarize
2

I Output of reduce paired with key and saved

(A, 3), (G, 3), (C, 2), (T, 2)

An example: Frequencies in DNA sequence
I Python threads are defined by a class

1 s = 'CTGGGCTAA'

2 seq = l i s t (s) # ['C ' , 'T ' , 'G ' , 'G ' , 'G ' , 'C ' , 'T ' , '

A ' , 'A ']
3 s c . p a r a l l e l i z e (seq) \
4 . map(lambda symbol : (symbol , 1)) \
5 . reduceByKey (add) \
6 . c o l l e c t ()

I Output
1 [('A ' , 2) , ('C ' , 2) , ('G ' , 3) , ('T ' , 2)]

Fault tolerance: handled via re-execution
I On worker failure:

I Detect failure via periodic heartbeats
I Re-execute completed and in-progress map tasks
I Re-execute in progress reduce tasks
I Task completion committed through master

I On master failure:
I Restart execution

Apache Spark
I Download latest version:

http://spark.apache.org/downloads.html
I Install with PySpark

1 p ip i n s t a l l py spa rk

I Download dataset
http:

//hplgit.github.io/bioinf-py/data/yeast_chr1.txt

Apache Spark
1 from pyspa rk impor t SparkContext , SparkConf
2

3 con f = SparkConf () . setAppName (” F r e qu en c i e s ”) . s e tMas t e r (”
l o c a l ”)

4 s c = SparkContext (con f=con f)
5

6 raw data = sc . t e x t F i l e (”/home/ i c h a t z / Loca l / psc2 / l e c 1 7 /
y e a s t c h r 1 . t x t ”)

7 p r i n t (raw data . take (5))
8 p r i n t (raw data . count ())
9 p r i n t (raw data . f i r s t ())

Apache Spark
1 de f s p l i t L i n e (l i n e) :
2 p a i r s = []
3 symbol s = l i s t (l i n e)
4 i f l e n (symbo ls) > 1 :
5 f o r symbol i n symbo ls :
6 p a i r s . append ([symbol , 1])
7

8 r e t u r n p a i r s
9

10 p a i r s = raw data . f l a tMap (s p l i t L i n e)
11 p r i n t (p a i r s . t ake (10))
12

13 f i n a l = p a i r s . reduceByKey (lambda a , b : a + b)
14 p r i n t (f i n a l . c o l l e c t ())

