Principles of Computer Science I

Large Scale Computation

loannis Chatzigiannakis
Sapienza University of Rome

Lecture 17

Problem: Lots of data

» Example: Homo sapiens high coverage assembly GRCh37
> 27478 contigs
» contig length total 3.2 Gb.
» chromosome length total 3.1 Gb.
» One computer can read 30-35MB/sec from disc
» ~ 10 months to read the data
» ~ 100 hard drives just to store the data in compressed format
» Even more to do something with the data.

Spread the work over many machines

» Good news: same problem with 1000 machines: < 1 hour
» Bad news: concurrency

» communication and coordination

» recovering from machine failure

» status reporting

» debugging

» optimization

» Bad news 2: repeat for every problem you want to solve

Computing Clusters

» Many racks of computers
» Thousands of machines per cluster
» Limited bandwidth between racks




Computing Environment

» Each machine has 2-4 CPUs

» Typically quad-core
» Future machines will have more cores

> 1-6 locally-attached disks
» ~ 10TB of disk
» Overall performance more important than peak performance
of single machines
» Reliability
> In 1 server environment, it may stay up for three years (1000
days)
> If you have 10000 servers, expect to lose 10 each day
» Ultra reliable hardware still fails

» We need to keep in mind cost of each machine

Map Reduce Computing Paradigm

» A simple programming model

> Applies to large-scale computing problems
» Hides difficulties of concurrency

» automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures

robustness
improvements to core libraries benefit all users of library

vV vV vVVvYYyYy

A typical problem

» Read a lot of data

» Map: extract something important from each record
Shuffle and sort

Reduce: aggregate, summarize, filter or transform
Write the results

v

v

v

In more details

» Programmer specifies two primary methods:
» map(k,v) — <k',v >x
> Takes a key-value pair and outputs a set of key-value pairs
> There is one Map call for every (k, v) pair

» reduce(k’, < v/ >%) — <K',V >«
> All values v with same key k are reduced together and

processed in v order
> There is one Reduce function call per unique key k

» All v/ with same k' are reduced together, in order.




An example: Frequencies in DNA sequence
A typical exercise for a new engineer in his/her first week:
» Input files with one document per record
» Specify a map function that takes a key/value pair

» key = document URL
» value = document contents

» Output of map function is (potentially many) key/value pairs.

» In this case, output:
(word, 1) once per word in the document

“document 1", “CTGGGCTAA"
converted to

(C, 1), (T, 1), (G, 1), ...

An example: Frequencies in DNA sequence

» MapReduce library gathers together all pairs with the same
key (shuffle/sort)

» The reduce function combines the values for a key

» In this example:

key = “A” key = “G" key = "“C" key = “T"
values=1,1 values=1,1,1 values=1,1 values=1,1
summarize summarize summarize summarize

2 3 2 2

» Qutput of reduce paired with key and saved

(A 3). (G, 3), (€, 2), (T, 2)

An example: Frequencies in DNA sequence

» Python threads are defined by a class
1s = '"CTGGGCTAA'

2Seq — |ISt(S) # [ICI, ITI’ ]G], IGI, ]GI, IC],

AI IAI]
3sc.parallelize (seq)\
4 .map(lambda symbol: (symbol, 1))\
5 .reduceByKey(add)\
6 .collect()

» Qutput
t[("AY, 2), ('CH, 2),

Fault tolerance: handled via re-execution

» On worker failure:

Detect failure via periodic heartbeats

Re-execute completed and in-progress map tasks
Re-execute in progress reduce tasks

Task completion committed through master

vV vy VvVvyy

» On master failure:
» Restart execution




Apache Spark

» Download latest version:
http://spark.apache.org/downloads.html

» Install with PySpark
1 pip install pyspark

» Download dataset
http:
//hplgit.github.io/bioinf-py/data/yeast_chrl.txt

Apache Spark

1 from pyspark import SparkContext, SparkConf

2

3 conf = SparkConf().setAppName(” Frequencies”).setMaster ("
local”)

4sc = SparkContext(conf=conf)

5

6 raw_data = sc.textFile(” /home/ichatz/Local/psc2/lecl7/
yeast_chrl . txt")

7print(raw_data.take(5))

g print(raw_data.count())

o print(raw_data. first())

Apache Spark

1 def splitLine(line):
pairs = []
symbols = list(line)
if len(symbols) > 1:
for symbol in symbols:
pairs.append ([symbol, 1])

return pairs

© 0 N o g WwN

1

o

pairs = raw_data.flatMap(splitLine)
print(pairs.take(10))

i
=

12
13 final = pairs.reduceByKey(lambda a,b: a + b)
14 print(final.collect())




