Principles of Computer Science I

Sequence Similarity

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 20

Edit Distance

» We looked for repeating patterns within DNA sequences.

» How can we measure the similarity between different
sequences?

» We use the notion of Vladimir Levenshtein introduced in 1966

» Edit distance — the minimum number of editing operations
needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATATATA
AT AT A T A T -

- T AT A T A T A

Sequence Similarity

Alignment of ATATATAT vs TATAAT
AT A TATAT

- T A T A - AT

Sequence Similarity
Alignment of TGCATAT vs ATCCGAT

TGCATAT
J delete last T
TGCATA
4 delete last A
TGCAT
4 insert A at the front
ATGCAT
+ substitute C for G in the third position
ATCCAT
4 insert a G before the last A
ATCCGAT

Five operations.

Sequence Similarity

Alignment of TGCATAT vs ATCCGAT

TGCATAT

d insert A at the front
ATGCATAT

d delete T in the sixth position
ATGCAAT

3 substitute G for A in the fifth position
ATGCGAT

+ substitute C for G in the third position
ATCCGAT

Four operations.

Edit Distance

» Vladimir Levenshtein defined the notion of Edit distance

» Did not provide an algorithm to compute it.

Edit Distance Algorithm using Dynamic Programming

» Assume two strings:

» v (of n characters)
» w (of m characters)

v

The alignment of v, w is a two-row matrix such that

» first row: contains the characters of v (in order)
» second row: contains the characters of w (in order)
> spaces are interpersed throughout the table.

v

Characters in each string appear in order, though not
necessarily adjacently.

AlT|-|G|T|T|A|T|-
AT C|G|IT|-|A|-|C
» No column contains spaces in both rows.
» At most n + m columns.

Edit Distance Algorithm using Dynamic Programming

AIT[-[G[T[T[A[T][-
AT ClG|T[-JAa]-]C

» Matches — columns with the same letter,
» Mismatches — columns with different letters.
» Columns containing one space are called indels

» Space on top row: insertions
» Space on bottom row: deletions

matches + # mismatches + #indels < n 4+ m

Representing the rows Representing the rows

v A|T|-|G|T|T|A|T|- v A|T|-|G|T|T|A|T]-
AlT|C|G|T|-|A|-]|C w A TIC|G| T|-]A]-]|C
» One way to represent v v | 1|2|2|3|4|5]|6|7|7
» AT-CGTAT- w|l[2|3|4|5[5|6|6|7
» One way to represent w

can be viewed as a coordinate in 2-dimensional n x m grid:
» ATCGT-A-C

S DOOOOOOOE

» 122345677 The entire alignment is simply a path:

» number of symbols of v present up to a given position (0,0) = (1,1) = (2,2) — (2,3) — (3,4) — (4,5) — (5,5) —

» Similarly, to represent w (6,6) — (7,6) — (7,7)
» ATCGT-A-C

> 123455667

Edit distance graph Edit distance graph
» Edit graph: a grid of n, m size. w. A T C G T A C
» The edit graph will help us in calculating the edit distance. ol 1l ol sl ol s 1 6l 4
» Alignment: a path from (0,0) to (n, m). Y
» Every alignment corresponds to a path in the edit graph. A ’ ?Q K ?
. ' ' ' ! '
» Diagonal movement at point /i, correspond to column vvv’ T ! T(TN N \T
j ' NEONG N \i
2 —> > >
» Horizontal movement correspond to column (v;) G ' T< I \
J‘ 3
: Vi T NG NN NI
> Vertical movement correspond to column | 1
T ENEN NE N

NN =N N LN L -
AT - G TTAT -
A T C G T A C

Profile most-frequent k-mer

1 def edit_distance(sl, s2):

2 m=len (sl)+1

3 n=len (s2)+1

4

5 tbl = {}

6 for i in range(m): tbl[i, 0]=i

7 for j in range(n): tbl[0,]j]=]

8 for i in range(l, m):

9 for j in range(1l, n):

10 cost = 0 if sl[i—1] = s2[]j—1] else 1

11 tbl[i,j] = min(tbl[i, j—1]+1, tbl[i—1, j]+1,
tbl[i—1, j—1]+cost)

12

13 return tbl[i,j]

Profile most-frequent k-mer

1 def levenshteinDistance(sl, s2):

2 if len(sl) > len(s2):

3 sl, s2 = s2, sl

4

5 distances = range(len(sl) + 1)

6 for i2, c2 in enumerate(s2):

7 distances_. = [i2+1]

8 for il, cl in enumerate(sl):

9 if cl = c2:

10 distances_.append(distances[il])

11 else:

12 distances_.append (1 + min((distances[il],
distances[il + 1], distances_[—1])))

13 distances = distances_

14 return distances|[—1]

4t Assignment

» Work in groups of 3 — not the same as 3" assignment

» Implement an algorithm to solve the following Equivalent
Words problem.

» Implement an algorithm to solve the generalized Equivalent
Words problem.

» Solve the third problem.

» Email ichatz@dis.uniromal.it
Subject: [PCS2] Homework 4
A link to a github repository with your python code.

» Deadline: 18/January/2018 or 15/February/2018

4th Assignment — 1st Problem
Equivalent Words

Transform one English word v into another word w by going
through a series of intermediate English words, where each word in
the sequence differs from the next by only one substitution (1
character).

» Given two words v, w and a dictionary, find out whether the
words are equivalent.

» Your program should output the series of transformations for
v to become w

» Use the following dictionary: https://goo.gl/hBvqqr

» Example: To transform head into tail one can use four
intermediates:
head — heal — teal — tell — tall — tail

4th Assignment — 2nd Problem

Generalized Equivalent Words

Find an algorithm to solve a generalization of the Equivalent
Words problem when insertions, deletions, and substitutions are
allowed (rather than only substitutions).

» Given two words v, w and a dictionary, find out whether the
words are equivalent.

» Your program should output the series of transformations for
v to become w

» Use the following dictionary: https://goo.gl/hBvqqr

» Example: To transform head into tea one can use four
intermediates:
head — heal — teal — tea

4th Assignment — 3rd Problem

Two players play the following game with a nucleotide sequence of
length n = na 4+ nt + nc + ng, where na, ny, nc, and ng are the
number of A, T,C, and G in the sequence. At every turn a player
may delete either one or two nucleotides from the sequence. The
player who is left with a uni-nucleotide sequence of an arbitrary
length (i.e., the sequence containing only one of 4 possible
nucleotides) loses. Who will win? Describe the winning strategy
for each na, n1, nc , and ng.

