
Principles of Computer Science II
Sequence Similarity

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 20

Edit Distance
I We looked for repeating patterns within DNA sequences.
I How can we measure the similarity between different

sequences?
I We use the notion of Vladimir Levenshtein introduced in 1966
I Edit distance – the minimum number of editing operations

needed to transform one string into another (insert/delete
symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATATATA
A T A T A T A T -

: : : : : : :
- T A T A T A T A

Sequence Similarity

Alignment of ATATATAT vs TATAAT
A T A T A T A T

: : : : : : :
- T A T A - A T

Sequence Similarity

Alignment of TGCATAT vs ATCCGAT
TGCATAT
↓ delete last T

TGCATA
↓ delete last A

TGCAT
↓ insert A at the front

ATGCAT
↓ substitute C for G in the third position

ATCCAT
↓ insert a G before the last A

ATCCGAT

Five operations.

Sequence Similarity

Alignment of TGCATAT vs ATCCGAT
TGCATAT
↓ insert A at the front

ATGCATAT
↓ delete T in the sixth position

ATGCAAT
↓ substitute G for A in the fifth position

ATGCGAT
↓ substitute C for G in the third position

ATCCGAT

Four operations.

Edit Distance

I Vladimir Levenshtein defined the notion of Edit distance

I Did not provide an algorithm to compute it.

Edit Distance Algorithm using Dynamic Programming
I Assume two strings:

I v (of n characters)
I w (of m characters)

I The alignment of v ,w is a two-row matrix such that
I first row: contains the characters of v (in order)
I second row: contains the characters of w (in order)
I spaces are interpersed throughout the table.

I Characters in each string appear in order, though not
necessarily adjacently.

A T - G T T A T -

A T C G T - A - C

I No column contains spaces in both rows.
I At most n + m columns.

Edit Distance Algorithm using Dynamic Programming

A T - G T T A T -

A T C G T - A - C

I Matches – columns with the same letter,
I Mismatches – columns with different letters.
I Columns containing one space are called indels

I Space on top row: insertions
I Space on bottom row: deletions

matches + # mismatches + # indels < n + m

Representing the rows

v A T - G T T A T -

w A T C G T - A - C

I One way to represent v
I AT-CGTAT-

I One way to represent w
I ATCGT-A-C

I Another way to represent v
I AT-CGTAT-
I 122345677
I number of symbols of v present up to a given position

I Similarly, to represent w
I ATCGT-A-C
I 123455667

Representing the rows

v A T - G T T A T -

w A T C G T - A - C

v 1 2 2 3 4 5 6 7 7

w 1 2 3 4 5 5 6 6 7

can be viewed as a coordinate in 2-dimensional n ×m grid:(
0
0

) (
1
1

) (
2
2

) (
2
3

) (
3
4

) (
4
5

) (
5
5

) (
6
6

) (
7
6

) (
7
7

)

The entire alignment is simply a path:

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→
(6, 6)→ (7, 6)→ (7, 7)

Edit distance graph
I Edit graph: a grid of n,m size.
I The edit graph will help us in calculating the edit distance.
I Alignment: a path from (0, 0) to (n,m).
I Every alignment corresponds to a path in the edit graph.

I Diagonal movement at point i , j correspond to column

(
vi
wj

)

I Horizontal movement correspond to column

(
−
wj

)

I Vertical movement correspond to column

(
vi
−

)

Edit distance graph

Profile most-frequent k-mer
1 de f e d i t d i s t a n c e (s1 , s2) :
2 m=l e n (s1)+1
3 n=l e n (s2)+1
4

5 t b l = {}
6 f o r i i n range (m) : t b l [i ,0]= i
7 f o r j i n range (n) : t b l [0 , j]= j
8 f o r i i n range (1 , m) :
9 f o r j i n range (1 , n) :

10 c o s t = 0 i f s1 [i −1] == s2 [j −1] e l s e 1
11 t b l [i , j] = min (t b l [i , j −1]+1, t b l [i −1, j]+1 ,

t b l [i −1, j −1]+co s t)
12

13 r e t u r n t b l [i , j]

Profile most-frequent k-mer
1 de f l e v e n s h t e i nD i s t a n c e (s1 , s2) :
2 i f l e n (s1) > l e n (s2) :
3 s1 , s2 = s2 , s1
4

5 d i s t a n c e s = range (l e n (s1) + 1)
6 f o r i2 , c2 i n enumerate (s2) :
7 d i s t a n c e s = [i 2 +1]
8 f o r i1 , c1 i n enumerate (s1) :
9 i f c1 == c2 :

10 d i s t a n c e s . append (d i s t a n c e s [i 1])
11 e l s e :
12 d i s t a n c e s . append (1 + min ((d i s t a n c e s [i 1] ,

d i s t a n c e s [i 1 + 1] , d i s t a n c e s [−1])))
13 d i s t a n c e s = d i s t a n c e s
14 r e t u r n d i s t a n c e s [−1]

4th Assignment
I Work in groups of 3 – not the same as 3rd assignment
I Implement an algorithm to solve the following Equivalent

Words problem.
I Implement an algorithm to solve the generalized Equivalent

Words problem.
I Solve the third problem.
I Email ichatz@dis.uniroma1.it

Subject: [PCS2] Homework 4
A link to a github repository with your python code.

I Deadline: 18/January/2018 or 15/February/2018

4th Assignment – 1st Problem

Equivalent Words

Transform one English word v into another word w by going
through a series of intermediate English words, where each word in
the sequence differs from the next by only one substitution (1
character).

I Given two words v ,w and a dictionary, find out whether the
words are equivalent.

I Your program should output the series of transformations for
v to become w

I Use the following dictionary: https://goo.gl/hBvqqr
I Example: To transform head into tail one can use four

intermediates:
head → heal → teal → tell → tall → tail

4th Assignment – 2nd Problem

Generalized Equivalent Words

Find an algorithm to solve a generalization of the Equivalent
Words problem when insertions, deletions, and substitutions are
allowed (rather than only substitutions).

I Given two words v ,w and a dictionary, find out whether the
words are equivalent.

I Your program should output the series of transformations for
v to become w

I Use the following dictionary: https://goo.gl/hBvqqr
I Example: To transform head into tea one can use four

intermediates:
head → heal → teal → tea

4th Assignment – 3rd Problem

Two players play the following game with a nucleotide sequence of
length n = nA + nT + nC + nG , where nA, nT , nC , and nG are the
number of A,T ,C , and G in the sequence. At every turn a player
may delete either one or two nucleotides from the sequence. The
player who is left with a uni-nucleotide sequence of an arbitrary
length (i.e., the sequence containing only one of 4 possible
nucleotides) loses. Who will win? Describe the winning strategy
for each nA, nT , nC , and nG .

