Principles of Computer Science Il

Collections

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 4

Simple Statistics

1
2
3
4
5
6
7
8
9

10
11
12

def main():
sum = 0.0
count = 0
xStr = input(” Enter a number (<Enter> to quit) >> ")
while xStr = "":
x = eval (xStr)
sum = sum + X
count = count + 1
xStr = input(” Enter a number (<Enter> to quit) >>

print("\nThe average of the numbers is”, sum / count)

main ()

Simple Statistics: Observations

» The program itself doesnt keep track of the numbers that
were entered it only keeps a running total.

» We want to extend the program to compute not only the
mean, but also the median and standard deviation.

Median
The median is the data value that splits the data into equal-sized
parts.

Standard Deviation

Simple Statistics: Extensions

» We need to keep track of all the values inserted by the user

» We do not know how many variables the user will provide.

Lists Lists: Basic Examples

» Python provides List to store sequences of values
Ist = [1,5,15,7]

» Lists in python are dynamic. :
print(lst)

1
» They grow/shrink on demand. i
> Lists are mutable ‘51 :zt [2] = 22
6
7
8

» Values can change on demand

» Data type of individual items can change ::: e Hetle
9
10 zeroes = [0] * 5
11 zerones = [0,1] % 3

12 zerones .append (2)

Lists: Operators Lists: Basic Examples
Operator Meaning
seq + seq Concatenation
seq * integer | Repetition i::E(Tstljt + 22, 3]
seq(] Indexing 3
len(seq) Length ‘5‘;5“1" ls':t
sec|] Slicing 6
for var in sec: | lteration 7sum = 0 _
(expr) in sec | Membership (boolean) zfor Zur:]n+ie;0nes'

10 print (sum)

1

12X = zerones

13 zerones .append (2)
14

1Y = Ist[1:3]
16Z = Ist[3:—1]
17K = Ist[1: —3]

Lists: Methods

seq.reverse()
seq.index(x)
seq.insert(i, x)
seq.count(x)
seq.remove(x)

seq.pop(i)

Method Meaning
seq.append(x) | Add element x to end of list.
seq.sort() Sort (order) the list. A comparison function may

be passed as a parameter.

Reverse the list.

Returns index of first occurrence of x.

Insert x into list at index i.

Returns the number of occurrences of x in list.
Deletes the first occurrence of x in list.

Deletes the ith element of the list and returns its
value.

Lists: Basic Examples

©O© 00 N O O A W N =

e e i e e
0w N O s W N = O

Ist = [3, 1, 4, 1, 5, 9]
Ist.append(2)
Ist

Ist.sort ()
Ist

Ist.reverse ()
Ist.index (4)
Ist.insert (4, "Hello")
Ist.count(1)

Ist.remove(1)

Ist.pop(3)

Simple Statistics:

» Collect input
» Store in a list

Modifications

from user

Simple Statistics: Modifications

» Collect input from user
» Store in a list

1nums = []
2x = input('Enter a number: ")
3while x >= 0:

4
5

nums.append (x)
x = input('Enter a number: ')

Simple Statistics: Modifications

» Collect input from user
» Store in a list

1nums = []

2x = input('Enter a number: ')
3while x >= 0:

4 nums.append (x)

5 x = input('Enter a number: ')
1 def mean(nums):

2 sum = 0.0

3 for num in nums:

4 sum = sum -+ num

5 return sum / len(nums)

Further Extensions

» How do we compute the standard deviation?
» Do we re-compute the mean?

» Inefficient for large collections
» Do we pass the mean as a parameter?

» Forced to invoke both functions sequentially

Further Extensions

» How do we compute the standard deviation?
» Do we re-compute the mean?
» Inefficient for large collections

» Do we pass the mean as a parameter?
» Forced to invoke both functions sequentially

1 def stdDev(nums, xbar):

2 sumDevSq = 0.0

3 for num in nums:

4 dev = xbar — num

5 sumDevSq = sumDevSq + dev x dev
6 return sqrt(sumDevSq/(len (nums)—1))

Median

» How do we compute the median?
» Pseudocode

1. sort the numbers into ascending order

if the size of the data is odd:

median = the middle value

otherwise median = the average of the two
return median

SANE Sl A

middle values

Median

» How do we compute the median?
» Pseudocode

Simple Statistics: New Version

1 def main():
1. sort the numbers into ascending order 2 print(This program computes mean, median and
2. if the size of the data is odd: standard deviation.)
dian = the middle val ;
3. me ian = t e middle value . . data — getNumbers ()
4. otherwise median = the average of the two middle values 5 xbar = mean(data)
5. return median 6 std = stdDev(data, xbar)
7 med = median(data)
8
9 print ('\nThe mean is', xbar)
1 def median(nums): 10 print ('The standard deviation is', std)
2 nums.sort () 11 print ('The median is ', med)
3 size = len (nums)
4 midPos = size / 2
5 if size % 2 =— 0:
6 median = (nums[midPos] + nums[midPos—1]) / 2.0
7 else:
8 median = nums|[midPos]
9 return median
Range Zipping Lists
» range creates a list of numbers in a specified range
» range([start,] stop], step]) st = [1.5.15.7]
» When step is given, it specifies the increment (or decrement). > zerones — [0,1] * 3
3
4k = zip(Ist, zerones)

1range(5)

2

3range(5, 10)

4

5range(0, 10, 2)

6

7for i in range(0, len(Ist), 2):
8 print Ist[i]

5
6 for (i,j) in k:
7 print (i,])

Tuples

tdata = [(" julius”,
2 (" maria”, 2),
3("alice”, 4)]

4

5 for (n, a) in data:
6 print ("1 met %s
7

g data.sort ()

3),

%s times” % (n,

a))

