Principles of Computer Science I
Errors & Abstract Data Types

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 8

Syntax Errors

Until now error messages havent been more than mentioned.
There are (at least) two distinguishable kinds of errors:

> syntax errors and

> exceptions.

1>>> while True print('Hello world")

2 File "<stdin >", line 1

3 while True print('Hello world")
. A

5 SyntaxError: invalid syntax

» File name and line number are printed so you know where to
look in case the input came from a script.

Exceptions

1. Even if a statement or expression is syntactically correct, it
may cause an error when an attempt is made to execute it.

2. Errors detected during execution are called exceptions and are
not unconditionally fatal: you will soon learn how to handle
them in Python programs.

3. Most exceptions are not handled by programs, however, and
result in error messages.

1>>> 10 % (1/0)

2 Traceback (most recent call last):

3 File "<stdin >", line 1, in <module>
4 ZeroDivisionError: division by zero

Exceptions: Examples

1>>> 4 + spamx3

2 Traceback (most recent call last):
3 File "<stdin >", line 1, in <module>
4 NameError: name 'spam' is not defined

5
6>>> 2" 4 2

7 Traceback (most recent call last):

8 File "<stdin >", line 1, in <module>

9 TypeError: Can't convert 'int' object to str implicitly

v

The last line of the error message indicates what happened.
Exceptions come in different types, and the type is printed as
part of the message.

Standard exception names are built-in identifiers (not reserved
keywords).

We are allowed to define our own exceptions.

v

v

v

Handling Exceptions

» It is possible to write programs that handle selected
exceptions.

1 while True:

2 try:

3 x = int(input (" Please enter a number: "))
4 break

5 except ValueError:

6

print (" Oops! That was no valid number. Try again

Try statement
The try statement works as follows:

1. First, the try clause (the statement(s) between the try and
except keywords) is executed.

2. If no exception occurs, the except clause is skipped and
execution of the try statement is finished.

3. If an exception occurs during execution of the try clause, the
rest of the clause is skipped. Then if its type matches the
exception named after the except keyword, the except clause
is executed, and then execution continues after the try
statement.

4. If an exception occurs which does not match the exception
named in the except clause, it is passed on to outer try
statements; if no handler is found, it is an unhandled
exception and execution stops with a message as shown above.

Try statement

» A try statement may have more than one except clause, to
specify handlers for different exceptions.

» At most one handler will be executed.

» Handlers only handle exceptions that occur in the
corresponding try clause, not in other handlers of the same try

statement.
1 except (RuntimeError, TypeError, NameError):
2 pass

Last Try statement

» The last except clause may omit the exception name(s), to
serve as a wildcard.

1import sys
2

3try:
4 f = open('myfile.txt")
5 s = f.readline ()

6 i int(s.strip())
7 except OSError as err:

8 print("OS error: {0}".format(err))

9except ValueError:

10 print (" Could not convert data to an integer.”)
11 except:

12 print (" Unexpected error:”, sys.exc_info()[0])

13 raise

Else Statement

» The try ...except statement has an optional else clause,
which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does
not raise an exception.

1 for arg in sys.argv|[1l:]:

2 try:

3 f = open(arg, 'r')
4 except OSError:

5 print ('cannot open', arg)
6 else:

7 print(arg, 'has',
8 f.close()

len(f.readlines()), 'lines ')

Exception details

1
2
3
4
5
6

» When an exception occurs, it may have an associated value,
also known as the exceptions argument.

» The presence and type of the argument depend on the
exception type.

try
raise Exception('spam', 'eggs')

except Exception as inst:
print (type(inst)) the exception instance
print(inst.args) arguments stored in .args

printed directly ,
but may be overridden in
exception subclasses

#
#
print(inst) # __str__ allows args to be
#
unpack args

X, y = inst.args
print('x =", x)

print('y =", vy)

Raising Exceptions

» The raise statement allows the programmer to force a
specified exception to occur.

» The sole argument to raise indicates the exception to be
raised.

1>>> raise NameError('HiThere')

2 Traceback (most recent call last):

3 File "<stdin >", line 1, in <module>
4 NameError: HiThere

User Defined Exceptions

1
2
3

» Programs may name their own exceptions by creating a new
exception class.

» Exceptions should typically be derived from the Exception
class, either directly or indirectly.

class Error(Exception):
""" Base class for exceptions in this module.
pass

noaon

User Defined Exceptions: An Example

1 class InputError(Error):

2 """ Exception raised for errors in the input.

3

4 Attributes:

5 expression — input expression in which the error
occurred

6 message — explanation of the error

.

8

9 def __init__(self, expression, message):

10 self . expression = expression

11 self . message = message

User Defined Exceptions: An Example

1 class TransitionError(Error):

2 """ Raised when an operation attempts a state transition
that's not

3 allowed .

4

5 Attributes:

6 previous — state at beginning of transition

7 next — attempted new state

8 message — explanation of why the specific

transition is not allowed

9

10

11 def __init__(self, previous, next, message):

12 self . previous = previous

13 self . next = next

14 self . message = message

Clean Up Actions

» The try statement has another optional clause which is
intended to define clean-up actions that must be executed
under all circumstances.

1try:
2 raise KeyboardInterrupt
3finally:

4 print ('Goodbye, world!")

Clean Up Actions; An Example

1def divide(x, vy)

2 try:

3 result = x /vy

4 except ZeroDivisionError:

5 print(”" division by zero!”)

6 else:

7 print (" result is”, result)

8 finally :

9 print (" executing finally clause”)
10>>> divide (2, 1)

11 result is 2.0

12 executing finally clause

13>>> divide (2, 0)

14 division by zero!

15 executing finally clause

16>>> divide ("27, "1")

17 executing finally clause

18 Traceback (most recent call last):

19 File "<stdin >", line 1, in <module>
20 File "<stdin >", line 3, in divide

21 TypeError: unsupported operand type(s) for /: 'str

str !

1

and

Stacks

Stack is an abstract data type with a bounded(predefined)
capacity. It is a simple data structure that allows adding and
removing elements in a particular order.

» Every time an element is added, it goes on the top of the
stack,

» the only element that can be removed is the element that was
at the top of the stack, just like a pile of objects.

» The simplest application of a stack is to reverse a word. You
push a given word to stack - letter by letter - and then pop
letters from the stack.

» Parsing, Expression Conversion(Infix to Postfix, Postfix to
Prefix etc) and many more.

Stacks

- — — /1

le
/—:_} SRl = pap)
push) | |

| |

| |

| | STACK

| | DATA STRUCTURE

| |

| |

Stacks: An Example

STACK - LIFO Structure

e~ N

pushi)

Empty Stack

n a Stack, all operations take place at the "top" of the
stack. The "push” operation adds an item to the top of the
Stack.

The "pop" operation removes the item on top of the stack.

Basic features of Stacks

1. Stack is an ordered list of similar data type.

Stack is a LIFO structure. (Last in First out).

3. push() function is used to insert new elements into the Stack
and

4. pop() function is used to delete an element from the stack.

5. Both insertion and deletion are allowed at only one end of
Stack called Top.

6. Stack is said to be in Overflow state when it is completely full
and is said to be in Underflow state if it is completely empty.

N

Stacks Code: Initialization

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

class Error(Exception):
pass

class StackError(Error):

def __init__(self, expression, message):
self . expression = expression
self . message = message

class Stack(object):

def __init__(self, size):
self . content = []
self .size = size

def size(self):
return len(self.content)

def isEmpty(self):
return not bool(self.content)

Stacks: Algorithm for PUSH operation

g oA W N R

1. Check if the stack is full or not.

2. If the stack is full,then print error of overflow and exit the
program.

3. If - the stack is not full, then increment the top and add the
element.

def push(self, value):
if len(self.content) >= self.size:
raise StackError(self, "Overflow")

self.content.append(value)

Stacks: Algorithm for POP operation

o oA W N

1. Check if the stack is empty or not.

2. If the stack is empty, then print error of underflow and exit
the program.

3. If the stack is not empty, then print the element at the top
and decrement the top.

def pop(self):
if self.content:
value = self.content.pop()
return value
else:
raise StackError(self, "Empty List")

Stacks: Testing

1
2
3
4
5
6
7
8
9

10

if __name_. =— '__main__":
q = Stack(5)
for i in range(15,20):
q.push(i)
for i in range(10,5,—1):
q.push (i)
for i in range(1l, 13):

print(q.pop())

Stacks: Testing with Error handling

Queues

Lif mame.. — ' _main__ - Queue is also an abstract data type or a linear data structure, in
2 q = Stack(5) which
3
4 try : > the first element is inserted from one end called REAR
5 for i in range(15,20): (abo called taH)
6 q.push (i))
7 for i in r?nie(loﬁ,—l): » and the deletion of existing element takes place from the
8 q.push (i
; except StackError other end called as FRONT (also called head).
10 print (" Stack is full”) This makes queue as FIFO(First in First Out) data structure,
11
1 try - which means that element inserted first will also be removed first.
13 for i in range(1l, 13):
14 print(q.pop()) » The process to add an element into queue is called Enqueue.
" except StackError: , » the process of removal of an element from queue is called
16 print(” Stack is empty”)
Dequeue.
Queues Basic features of Queues

""I'III|LI"'LI"'|) :||:|=rat an

dequeusl) operation

“IZIZIZIZIIIJ

HEAH

FHDNT

engueue() is the aperation for adding an element into Queue.

dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

1. Like Stack, Queue is also an ordered list of elements of similar
data types.

2. Queue is a FIFO (First in First Out) structure.

3. Once a new element is inserted into the Queue, all the
elements inserted before the new element in the queue must
be removed, to remove the new element.

4. peek() function is oftenly used to return the value of first
element without dequeuing it.

Implementation of Queues

» Queue can be implemented using an Array, Stack or Linked
List.

» The easiest way of implementing a queue is by using an Array.

» Initially the head(FRONT) and the tail(REAR) of the queue
points at the first index of the array (starting the index of
array from 0).

» As we add elements to the queue, the tail keeps on moving
ahead, always pointing to the position where the next element
will be inserted, while the head remains at the first index.

Queues: An Example
[0] [1] [21 [3] [4 [s1 [8] [7]

Head Tail

[0] [[21 [31 [4 [51 [6] [7] Adding elements to

Queue
27

Head Tail

[0 [21 [B1 [4 [51 [6] [7]

\ removing element
Head Tail from Queue
[o] [[I[3] [o1 [21 [81 [4]
19 17 7 19 17 7
T N
Head Tail Head Tail
[A] [B]

Queues Code: Initialization

class Error(Exception):
""" Base class for exceptions in this module.”"”
pass

1
2

3

4

5 class QueueError(Error):
6 def __init__(self, expression, message):
7 self . expression = expression

8 self . message = message

9

0 class Queue(object):

-

11 def __init__(self):

12 self.content = []

13

14 def size(self):

15 return len(self.content)
16

17 def isEmpty(self):

18 return not bool(self.content)

Queues: Algorithm for ENQUEUE operation

1. Check if the queue is full or not.

2. If the queue is full, then raise overflow error and exit the

program.
3. If the queue is not full, then increment the tail and add the
element.
1 def enqueue(self, value):
2 return self.content.append(value)

Queues: Algorithm for DEQUEUE operation

1. Check if the queue is empty or not.

2. If the queue is empty, then raise underflow error and exit the
program.

3. If the queue is not empty, then return the element at the head
and increment the head.

def dequeue(self):
if self.content:
return self.content.pop()
else:
raise QueueError (" Queue is Empty”)

g r W N R

Queues: Help function

def __repr__(self):
if self.content:
return '{}'.format(self.content)
else:
return " Queue empty!”

oA W N =

Queues: Testing

1if __name__ =— '__main__":

2 queue = Queue()

3 print(”Is the queue empty? ", queue.isEmpty())
4 print (" Adding 0 to 10 in the queue...”)

5 for i in range(10):

6 queue.enqueue (i)

7 print (" Queue size: ", queue.size())

8 print (" Queue peek : ", queue.peek())

9 print (" Dequeue...” , queue.dequeue())

10 print (" Queue peek: ", queue.peek())

11 print(”"Ils the queue empty? ", queue.isEmpty())
12

13 print (" Printing the queue...”)

14 print(queue)

Queues implemented with Stacks

Pop elements from SI and push into 59,
int x = Slpop();
S2 push(x);

a N .

Once the comp|efe

3l’d Stack Sl gets copied to Ist
S92, then we can simply

9nd call pop() on S2, it will 2nd
remove the Ist element.

Ist 3rd

|

Then push back elements to S1 from 52

279 Assignment

https://www.hackerrank.com/

vV Vv VvYyVvyy

Complete all Algorithms challenges under the following
subdomains:

Warmup (10), Sorting (15), Recursion (11), Strings (any 9)
Total: 45

You can cooperate, You can search on the Internet, ...

You need to write your own code

Email ichatz@dis.uniromal.it

Subject: [PCS2] Homework 2

A link to a github repository with your python solutions, for
all challenges.

Deadline: 30/November/2017, 23:59

