Principles of Computer Science I
Abstract Data Types

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 11

Queues

Queue is also an abstract data type or a linear data structure, in
which

» the first element is inserted from one end called REAR
(also called tail),

» and the deletion of existing element takes place from the
other end called as FRONT (also called head).

This makes queue as FIFO(First in First Out) data structure,
which means that element inserted first will also be removed first.

» The process to add an element into queue is called Enqueue.
» the process of removal of an element from queue is called
Dequeue.

Queues

""I'III|LI"'LI"'|| :||:|=rat on ﬂ-|:||_|°|_| |I CI|:I"'FEt oan

“IZIZIZIZIIIJ

HEP.H FHDNT

engueue() is the aperation for adding an element into Queue.

dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

Basic features of Queues

1. Like Stack, Queue is also an ordered list of elements of similar
data types.

2. Queue is a FIFO (First in First Out) structure.

3. Once a new element is inserted into the Queue, all the
elements inserted before the new element in the queue must
be removed, to remove the new element.

4. peek() function is oftenly used to return the value of first
element without dequeuing it.

Implementation of Queues

» Queue can be implemented using an Array, Stack or Linked
List.

» The easiest way of implementing a queue is by using an Array.

» Initially the head(FRONT) and the tail(REAR) of the queue
points at the first index of the array (starting the index of
array from 0).

» As we add elements to the queue, the tail keeps on moving
ahead, always pointing to the position where the next element
will be inserted, while the head remains at the first index.

Queues: An Example
[0] [1] [21 [3] [4 [s1 [8] [7]

Head Tail

[0] [[21 [31 [4 [51 [6] [7] Adding elements to

Queue
27

Head Tail

[0 [21 [B1 [4 [51 [6] [7]

removing element
H;Ed I\Ta” ' from Queue
[o] [[I[3] [o1 [[21 [381 [4]
19 17 7 19 17 7
T N
Head Tail Head Tail
[A] [B]

Queues Code: Initialization

class Error(Exception):
""" Base class for exceptions in this module.”"”
pass

def __init__(self, expression, message):
self . expression = expression

1
2

3

4

5 class QueueError(Error):
6

7

8 self . message = message
9

-

0 class Queue(object):

11 def __init__(self):

12 self.content = []

13

14 def size(self):

15 return len(self.content)
16

17 def isEmpty(self):

18 return not bool(self.content)

Queues: Algorithm for ENQUEUE operation

1. Check if the queue is full or not.

2. If the queue is full, then raise overflow error and exit the

program.
3. If the queue is not full, then increment the tail and add the
element.
1 def enqueue(self, value):
2 return self.content.append(value)

Queues: Algorithm for DEQUEUE operation

1. Check if the queue is empty or not.

2. If the queue is empty, then raise underflow error and exit the
program.

3. If the queue is not empty, then return the element at the head
and increment the head.

def dequeue(self):
if self.content:
return self.content.pop()
else:
raise QueueError (" Queue is Empty”)

g r W N R

Queues: Help function

def __repr__(self):
if self.content:
return '{}'.format(self.content)
else:
return " Queue empty!”

oA W N =

Queues: Testing

1if __name__ =— '__main__":

2 queue = Queue()

3 print(”Is the queue empty? ", queue.isEmpty())
4 print (" Adding 0 to 10 in the queue...”)

5 for i in range(10):

6 queue.enqueue (i)

7 print (" Queue size: ", queue.size())

8 print (" Queue peek : ", queue.peek())

9 print (" Dequeue...” , queue.dequeue())

10 print (" Queue peek: ", queue.peek())

11 print(”"Ils the queue empty? ", queue.isEmpty())
12

13 print (" Printing the queue...”)

14 print(queue)

Queues implemented with Stacks

Pop elements from SI and push into 59,
int x = Slpop();
S2 push(x);

a N .

Once the comp|efe

3l’d Stack Sl gets copied to Ist
S92, then we can simply

9nd call pop() on S2, it will 2nd
remove the Ist element.

Ist 3rd

|

Then push back elements to S1 from 52

Introduction to Linked Lists

Linked List is a linear data structure and it is very common data
structure which consists of group of nodes in a sequence which is
divided in two parts. Each node consists of its own data and the
address of the next node and forms a chain. Linked Lists are used
to create trees and graphs.

HEADER

Data ADDR Data ADDR Data ADDR

Basic features of Linked Lists

1. They are a dynamic in nature which allocates the memory
when required.

Insertion and deletion operations can be easily implemented.
Stacks and queues can be easily executed.

Linked List reduces the access time.

Pointers require extra memory for storage.

No element can be accessed randomly; it has to access each
node sequentially.

Reverse Traversing is difficult in linked list.

Linked lists let you insert elements at the beginning and end
of the list.

oo AsE W

o N

Linear Linked Lists

Singly linked lists contain nodes which have a data part as well as
an address part i.e. next, which points to the next node in
sequence of nodes. The operations we can perform on singly linked
lists are insertion, deletion and traversal.

data next data next data next

3 10 2 SO on...

t head

Double Linked Lists

In a doubly linked list, each node contains two links the first link
points to the previous node and the next link points to the next
node in the sequence.

e |

Prev Data MNext Prev Data MNext Prev Data MNext

Circular Linked Lists

In the circular linked list the last node of the list contains the

address of the first node and forms a circular chain.

data next data next data next
3 10 2
HEAD Last Element points back to First

Linked List Nodes as Pointers

1 class Node(object):

2 def __init__(self, value=None,
3 self.value = value

4 self.pointer = pointer

5

6 def getData(self):

7 return self.value

8

9 def getNext(self):

10 return self.pointer

11

12 def setData(self, newdata):

13 self.value = newdata

14

15 def setNext(self, newpointer):
16 self . pointer = newpointer

pointer=None) :

Nodes: Testing

if __name__ — '__main__":
L = Node("a”, Node("b"”, Node("c”, Node("d"))))

assert(L.pointer.pointer.value=='c')

print(L.getNext().getData())
L.setData('aa')
L.setNext(Node('e'))
print(L.getData())

10 print(L.getNext().getData())

1
2
3
4
5 print(L.getData())
6
7
8
9

Linked List Code: Initialization

1 from node import Node
class LinkedList(object):

def __init__(self):
self .head = None
self.length = 0
self.tail = None # this

W N O 0~ W N

is

different from

lifo

Linked List: Insertion at the Beginning Linked List: Insertion at the Beginning
1. The first Node is the Head for any Linked List. : def addFirst(self , value):
2. When a new Linked List is instantiated, it just has the Head, 2 self . length =1
which is Null 3 node = Node(value)
: 4 self.head = node
3. Else, the Head holds the pointer to the first Node of the List. 5 self.tail = node
4. When we want to add any Node at the front, we must make
the head point to it.
5. And the Next pointer of the newly added Node, must point to
the previous Head, whether it be NULL(in case of new List) or
the pointer to the first Node of the List.
6. The previous Head Node is now the second Node of Linked
List, because the new Node is added at the front.
Linked List: Insertion at the End Linked List: Insertion at the Beginning
. .- . 1 def add(self, value):
1. If the Linked List is e?mpty then we simply, add the new Node , self length +— 1
as the Head of the Linked List. 3 node = Node(value)
2. If the Linked List is not empty then we find the last node, and i o Sziﬁft:;|,| pointer — node
make it' next to the new Node, hence making the new node 6 self.tail = node
7
the last Node. 8 def addNode(self , value):
9 if not self.head:
10 self . addFirst(value)
11 else:
12 self.add(value)

Linked List: Printing the elements Linked List: Finding an elements
1 def find(self, index):
1 def printList(self): 2 prev = None
2 node = self.head 3 node = self.head
3 while node: 4 i =0
4 print(node.value) 5 while node and i < index:
5 node = node. pointer 6 prev = node
7 node = node. pointer
8 i +=1
9 return node, prev, i
Linked List: Deleting a Node Linked List: Deleting a Node
1. We first search the Node with data which we want to delete. ! def deleteNode(self, index): ,
2 if not self.head or not self.head.pointer:
2. If the Node to be deleted is the first node, then simply set the 3 self.deleteFirst ()
Next pointer of the Head to point to the next element from i elser'mde' prev. i — self find(index)
the Node to be deleted. 6 if i = index and node:
. . . 7 self.length —= 1
3. If the Node is in the middle somewhere, then find the Node 5 if i — 0 or not prev
before it, and make the Node before it point to the Node next 9 | self . head = node.pointer
. 10 else:
to It. 11 prev.pointer = node. pointer
12 if not self.tail = node:
13 self.tail = prev
14 else:
15 print ('Node with index {} not found'. format
(index))

Linked Lists: Testing

1if __name__ =— '__main__":

2 Il = LinkedList()

3 for i in range(1l, 5):

4 Il .addNode(i)

5 print('The list is:"')

6 Il . printList ()

7 print ('The list after deleting node with index 2:')
8 Il .deleteNode (2)

9 Il . printList ()

10 print ('The list after adding node with value 15'")
11 Il add(15)

12 Il . printList ()

13 print(”"The list after deleting everything...”)

14 for i in range(Il.length -1, —1, —1):

15 Il .deleteNode(i)

16 Il . printList ()

2" Assignment

1. https://www.hackerrank.com/
P> Complete 25 Algorithms challenges under the following
subdomains:
Warmup (10), Sorting (any 10), Strings (any 5).
2. Do a benchmark analysis for each one: Quicksort, MergeSort
» Generate a random list of integers (where n = {10, 100, 1000,
10000, ... }).
P> Use timeit to measure execution time.
» Produce a report in GitHub explaining the performance of the
two algorithms.
3. Email ichatz@diag.uniromal.it
Subject: [PCS2] Homework 2
A link to a github repository with your python solutions, for
all challenges.
4. Deadline: 7/December/2018, 23:59

