

Edit Distance Algorithm using Dynamic Programming

- Assume two strings:
 - v (of n characters)
 - ▶ w (of m characters)
- The alignment of v, w is a two-row matrix such that
 - ▶ first row: contains the characters of *v* (in order)
 - second row: contains the characters of w (in order)
 - spaces are interpersed throughout the table.
- Characters in each string appear in order, though not necessarily adjacently.

А	Т	-	G	Т	Т	Α	Т	-
А	Т	С	G	Т	-	Α	-	С

- No column contains spaces in both rows.
- At most n + m columns.

Edit Distance Algorithm using Dynamic Programming

А	Т	-	G	Т	Т	Α	Т	-
А	Т	С	G	Т	-	А	-	С

- Matches columns with the same letter,
- Mismatches columns with different letters.
- Columns containing one space are called indels
 - Space on top row: insertions
 - Space on bottom row: deletions

matches + # mismatches + # indels < n + m

Representing the rows

v	A	Т	-	G	Т	Т	Α	Т	-
w	A	Т	С	G	Т	-	Α	-	C

- One way to represent v
 - ► AT-CGTAT-
- One way to represent w
 - ATCGT-A-C
- Another way to represent v
 - ► AT-CGTAT-
 - ▶ 122345677
 - number of symbols of v present up to a given position
- ► Similarly, to represent *w*
 - ATCGT-A-C
 - 123455667

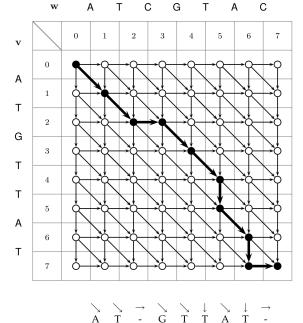
Representing the rows

ſ	v	А	Т	-	G	Т	Т	А	Т	-
	w	А	Т	С	G	Т	-	А	-	С

v	1	2	2	3	4	5	6	7	7
W	1	2	3	4	5	5	6	6	7

can be viewed as a coordinate in 2-dimensional $n \times m$ grid:

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix}$


The entire alignment is simply a path:

(0,0)
ightarrow (1,1)
ightarrow (2,2)
ightarrow (2,3)
ightarrow (3,4)
ightarrow (4,5)
ightarrow (5,5)
ightarrow (6,6)
ightarrow (7,6)
ightarrow (7,7)

Edit distance graph

- **Edit graph**: a grid of *n*, *m* size.
- ► The edit graph will help us in calculating the edit distance.
- Alignment: a path from (0,0) to (n,m).
- Every alignment corresponds to a path in the edit graph.
- ▶ Diagonal movement at point *i*, *j* correspond to column $\begin{pmatrix} v_i \\ w_i \end{pmatrix}$
- Horizontal movement correspond to column $\begin{pmatrix} \\ w_i \end{pmatrix}$
- Vertical movement correspond to column (¹


```
Profile most-frequent k-mer
   1 def edit_distance(s1, s2):
         m = len(s1) + 1
    2
         n = len(s2) + 1
    3
    4
         tbl = \{\}
    5
         for i in range(m): tbl[i,0]=i
    6
         for j in range(n): tbl[0,j]=j
   7
         for i in range(1, m):
   8
             for j in range(1, n):
   9
                 cost = 0 if s1[i-1] = s2[j-1] else 1
   10
                 tbl[i,j] = min(tbl[i, j-1]+1, tbl[i-1, j]+1,
   11
                     tbl[i-1, j-1]+cost)
   12
         return tbl[i,j]
   13
```

Profile most-frequent k-mer

```
1 def levenshtein Distance (s1, s2):
      if len(s1) > len(s2):
2
          s1 , s2 = s2 , s1
3
4
      distances = range(len(s1) + 1)
5
      for i2, c2 in enumerate(s2):
6
          distances_ = [i2+1]
7
          for i1, c1 in enumerate(s1):
8
              if c1 = c2:
9
                  distances_.append(distances[i1])
10
              else :
11
                  distances_.append(1 + min((distances[i1],
12
                      distances [i1 + 1], distances [-1]))
          distances = distances_
13
      return distances [-1]
14
```

