
Principles of Computer Science II
Sorting Algorithms

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 8

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

Selection Sort: Example Selection Sort Code

1 a = [5 , 1 , 6 , 2 , 4 , 3]
2 f o r i i n range (0 , l e n (a)) :
3 min = i
4 f o r j i n range (i + 1 , l e n (a) − 1) :
5 i f a [j] > a [min] :
6 min = j
7

8 temp = a [j]
9 a [j] = a [min]

10 a [min] = temp

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I How much memory is needed ?

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I How much memory is needed ?
I 1 additional slot.

Bubble Sort Algorithm

Bubble Sort is an algorithm which is used to sort N elements that
are given in a memory. Bubble Sort compares all the element one
by one and sort them based on their values.

I It is called Bubble sort, because with each iteration the largest
element in the list bubbles up towards the last place, just like
a water bubble rises up to the water surface.

I Sorting takes place by stepping through all the data items
one-by-one in pairs and comparing adjacent data items and
swapping each pair that is out of order.

Bubble Sorting: Example

Bubble Sort Code

1 a = [5 , 1 , 6 , 2 , 4 , 3]
2 f o r i i n range (0 , l e n (a)) :
3 f o r j i n range (0 , l e n (a) − i − 1) :
4 i f a [j] > a [j +1] :
5 temp = a [j]
6 a [j] = a [j +1]
7 a [j +1] = temp

I The above algorithm is not efficient because as per the above
logic, the for-loop will keep executing for six iterations even if
the list gets sorted after the second iteration.

Bubble Sort Code: Version 2
I We can insert a flag and can keep checking whether swapping

of elements is taking place or not in the following iteration.
I If no swapping is taking place, it means the list is sorted and

we can jump out of the for loop, instead executing all the
iterations.

1 a = [5 , 1 , 6 , 2 , 4 , 3]
2 f o r i i n range (0 , l e n (a)) :
3 f o r j i n range (0 , l e n (a) − i − 1) :
4 i f a [j] > a [j +1] :
5 temp = a [j]
6 a [j] = a [j +1]
7 a [j +1] = temp

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I How many loops are required?

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I How many loops are required?
I The list is already sorted

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I How many loops are required?
I The list is already sorted
I N comparisons are required

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I How many loops are required?
I The list is already sorted
I N comparisons are required

I How much memory is needed ?

How good is Bubble Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I How many loops are required?
I The list is already sorted
I N comparisons are required

I How much memory is needed ?
I 1 additional slot.

Insert Sort Algorithm

A simple Sorting algorithm which sorts the list by shifting elements
one by one.

I It has one of the simplest implementation
I It is efficient for smaller data sets, but very inefficient for

larger lists.
I Insertion Sort is adaptive, that means it reduces its total

number of steps if given a partially sorted list, hence it
increases its efficiency.

I It is better than Selection Sort and Bubble Sort algorithms.
I Like Bubble Sorting, insertion sort also requires a single

additional memory space.

Insertion Sort: Example

Insertion Sort Code

1 a = [5 , 1 , 6 , 2 , 4 , 3]
2 f o r i i n range (1 , l e n (a)) :
3 key = a [i]
4 j = i − 1
5 wh i l e j >= 0 and key < a [j] :
6 a [j +1] = a [j]
7 j −= 1
8 a [j +1] = key

I key: we put each element of the list, in each pass, starting
from the second element: a[1].

I using the while loop, we iterate, until j becomes equal to zero
or we find an element which is greater than key, and then we
insert the key at that position.

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I The list is already sorted
I N comparisons are required

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I The list is already sorted
I N comparisons are required

I How much memory is needed ?

How good is Insertion Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I Is there a “simple” case ?
I The list is already sorted
I N comparisons are required

I How much memory is needed ?
I 1 additional slot.

Quick Sort Algorithm

Quick sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

I Elements less than the Pivot element

I Pivot element(Central element)

I Elements greater than the pivot element

I Sorts any list very quickly
I Performance depends on the selection of the Pivot element

Quick Sort: Example
List: 25 52 37 63 14 17 8 6

I We pick 25 as the pivot.
I All the elements smaller to it on its left,
I All the elements larger than to its right.
I After the first pass the list looks like:

6 8 17 14 25 63 37 52
I Now we sort two separate lists:

6 8 17 14 and 63 37 52
I We apply the same logic, and we keep doing this until the

complete list is sorted.

Quick Sort: Example

Quick Sort Code

1 a = [25 , 52 , 37 , 63 , 14 , 17 , 8 , 6]
2

3 de f p a r t i t i o n (l i s t , p , r) :
4 p i v o t = l i s t [p]
5 i = p
6 j = r
7 wh i l e (1) :
8 wh i l e (l i s t [i] < p i v o t and l i s t [i] != p i v o t) :
9 i += 1

10

11 wh i l e (l i s t [j] > p i v o t and l i s t [j] != p i v o t) :
12 j −= 1
13

14 i f (i < j) :
15 temp = l i s t [i]
16 l i s t [i] = l i s t [j]
17 l i s t [j] = temp
18 e l s e :
19 r e t u r n j

Quick Sort Code

1 de f q u i c k s o r t (l i s t , p , r) :
2 i f (p < r) :
3 q = p a r t i t i o n (l i s t , p , r)
4 q u i c k s o r t (l i s t , p , q) ;
5 q u i c k s o r t (l i s t , q + 1 , r) ;
6

7 p r i n t (” Be fo r e : ” , a)
8 q u i c k s o r t (a , 0 , l e n (a) − 1)
9 p r i n t (” A f t e r : ” , a)

How good is Quick Sort?
I How many comparisons are required until the list is sorted?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

I How much memory is needed ?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

I How much memory is needed ?
I 1 additional slot.

