Principles of Computer Science I
Sorting Algorithms

loannis Chatzigiannakis

Sapienza University of Rome

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

Lecture 8
Selection Sort: Example Selection Sort Code
Original After 1st I After 2nd After 3rd After 4th After 5th
Array pass pass pass pass pass la=[5, 1,6, 2, 4, 3]
3 y 1] y " 2 for i.in ra}nge(O, len(a)):
- - 3 min = 1
6 6 3 3 3 3 4 for j in range(i + 1, len(a) — 1):
- 5 if a[j] > a[min]:
O @ & 4 4 4 6 min = j
=== 7
8 8] 8 5 A 8 temp = a[j]
9 al[j] = a[min]
4 4 @ & @ 6 10 a[min] = temp
5 5 5 ® 8 8

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ...

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ..
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
2" |oop: n - 2

>
> ..
» (n-1)+(n-2)+(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required

How good is Insertion Sort? How good is Insertion Sort?

» How many comparisons are required until the list is sorted? » How many comparisons are required until the list is sorted?
> 1t loop: n-1 > 1t loop: n-1
» 27 |oop: n -2 » 27 |oop: n -2
> .. > ...
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required » (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required > Z@ comparisons are required

» How much memory is needed 7 » How much memory is needed 7

» 1 additional slot.

Bubble Sort Algorithm Bubble Sorting: Example

5 1 [2 4 3 Lets take this Array.

Bubble Sort is an algorithm which is used to sort N elements that
are given in a memory. Bubble Sort compares all the element one

by one and sort them based on their values. 5 1 6 2 4 3
— Here we can see the Armray
» It is called Bubble sort, because with each iteration the largest 1 a6 2 4 3 after the first iteration.
element in the I|§t bubbles up towards the last place, just like 1 5 2 6 4 3 Similarly, after other
a water bubble rises up to the water surface. 1 5 92 4 § 3 consecutive iterations, this
» Sorting takes place by stepping through all the data items — array will get sorted.

one-by-one in pairs and comparing adjacent data items and
swapping each pair that is out of order.

Bubble Sort Code Bubble Sort Code: Version 2

» We can insert a flag and can keep checking whether swapping
of elements is taking place or not in the following iteration.

1ta=1[5, 1, 6, 2, 4, 3]
>for i in range(0, len(a)): » If no swapping is taking place, it means the list is sorted and
3 for j in range(0, len(a) — i — 1): . - :
. oalj] > al) 1) we can jump out of the for loop, instead executing all the
5 temp = a[j] Iterations.
6 alj] = alj+1]
7 a[j+1] = temp
1a=1[5,1, 6, 2, 4, 3]
» The above algorithm is not efficient because as per the above 2for i in range(0, len(a)):
. 3 for j in range(0, len(a) — i — 1):
logic, the for-loop will keep executing for six iterations even if , ifoali] > al)+1]:
the list gets sorted after the second iteration. 5 temp = al[j]
6 alj] = alj+1]
7 al[j+1] = temp
How good is Bubble Sort? How good is Bubble Sort?
» How many comparisons are required until the list is sorted? » How many comparisons are required until the list is sorted?

> 1t loop: n-1

» 27 |oop: n -2

> ..

» (n-1)+(n-2)+(n-3)+ ... +3+2+1 comparisons are required
> Z@ comparisons are required

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ..
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required

» |s there a “simple” case ?

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
> 27 Joop: n - 2
>

» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required

» |s there a “simple” case ?
» How many loops are required?

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ..
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required
» |s there a “simple” case ?
» How many loops are required?
» The list is already sorted

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ...
» (n-1)+(n-2)+(n-3)+ ... +3+2+1 comparisons are required
> Z@ comparisons are required
» |s there a “simple” case ?
> How many loops are required?
P The list is already sorted
» N comparisons are required

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ..
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required
» |s there a “simple” case ?
» How many loops are required?
» The list is already sorted
» N comparisons are required

» How much memory is needed 7

How good is Bubble Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ...
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required
» |s there a “simple” case ?
» How many loops are required?
P The list is already sorted
»> N comparisons are required
» How much memory is needed 7
» 1 additional slot.

Insert Sort Algorithm

A simple Sorting algorithm which sorts the list by shifting elements
one by one.

» It has one of the simplest implementation

» It is efficient for smaller data sets, but very inefficient for
larger lists.

» Insertion Sort is adaptive, that means it reduces its total
number of steps if given a partially sorted list, hence it
increases its efficiency.

» |t is better than Selection Sort and Bubble Sort algorithms.

» Like Bubble Sorting, insertion sort also requires a single
additional memory space.

Insertion Sort: Example

Lets take this Array.

As we can see here, in
insertion sort, we pick up a
key, and compares it with
elemnts ahead of it, and

6
1 s @ 2 4 3 puts the key in the right
place

1.5 6 4 3
’_//@ & has nothing before it.

1is compared to 5 and is
inserted before 5.

6 iz greater than 5 and 1.

2 is smaller than 6 and &,
but greater than 1, so its is
inserted after 1.

{ Always we start with the second
element as key.)

And this goes on...

Insertion Sort Code

(€]

1, 6, 2, 4, 3]

i in range(1l, len(a)):

key = a[i]

=i -1

while j >= 0 and key < a[j]:
ali+1] = ali]
i =

alj+1]

W N oUW N =
- L
o
=l

key

P key: we put each element of the list, in each pass, starting
from the second element: a[l].

» using the while loop, we iterate, until j becomes equal to zero
or we find an element which is greater than key, and then we
insert the key at that position.

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
2" oop: n - 2

(n-1)4+(n-2)4(n-3)+ ... +3+2+1 comparisons are required

1)

| 4
> ..
>
> ZH(HT_ comparisons are required

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ...
» (n-1)+(n-2)+(n-3)+ ... +3+2+1 comparisons are required
> Z@ comparisons are required

» |s there a “simple” case ?

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
> ..
» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required

» |s there a “simple” case ?

» The list is already sorted
» N comparisons are required

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
> 27 Joop: n - 2
>

» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required
» |s there a “simple” case ?

» The list is already sorted
> N comparisons are required

» How much memory is needed 7

How good is Insertion Sort?

» How many comparisons are required until the list is sorted?
> 1t loop: n-1
» 27 |oop: n -2
»

» (n-1)+(n-2)4(n-3)+ ... +3+2+1 comparisons are required
> Zw comparisons are required
» |s there a “simple” case ?

» The list is already sorted
» N comparisons are required

» How much memory is needed ?
> 1 additional slot.

Quick Sort Algorithm

Quick sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

» Elements less than the Pivot element
» Pivot element(Central element)

» Elements greater than the pivot element

» Sorts any list very quickly
» Performance depends on the selection of the Pivot element

Quick Sort: Example
List: 25 523763 14178 6

» We pick 25 as the pivot.

All the elements smaller to it on its left,

All the elements larger than to its right.

After the first pass the list looks like:

68 17 14 25 63 37 52

Now we sort two separate lists:

68 17 14 and 63 37 52

» We apply the same logic, and we keep doing this until the
complete list is sorted.

vvyy

v

Quick Sort: Example

25 52 37 63 14 1 17 8 6

o ?

pivot Now we will keep on here also we will keep
on traversing the list

traversing the list, from back
PR i .
if a[i]=pivot & a[i]l=pivot i alj]>pivot & a[jJi=pivot

if both sides we find the element
not satisfying their respective
conditions, we swap them. And
keep repeating this.

DIVIDE AND CONQUER - QUICK SORT

Quick Sort Code

1a = [25, 52, 37, 63, 14, 17, 8, 6]

2

3def partition(list, p, r):

4 pivot = list [p]

5 i =p

6 j=r

7 while (1) :

8 while(list[i] < pivot and list[i] != pivot):
9 i =1

10

11 while(list[j] > pivot and list[]j] != pivot):
12 j =1

13

14 if(i < j):

15 temp list[i]

16 list| list[j]

—
3

i] =
list[j] = temp
else:

return j

=
©

Quick Sort Code

1 def quicksort(list, p, r):

2 if (p<r):

3 q = partition(list, p, r)
4 quicksort(list, p, q);

5 quicksort(list, q + 1, r);
6

7 print (" Before: ", a)

g quicksort(a, 0, len(a) — 1)
9oprint (" After: ", a)

How good is Quick Sort?

» How many comparisons are required until the list is sorted?

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?
> 15t loop: n-1
2" loop: n - 2

>
> ...
» (n-1)4+(n-2)+(n-3)+ ... 434241 comparisons are required
> Zw comparisons are required

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?

> 15t loop: n-1

» 27 Joop: n - 2

> ..

» (n-1)4(n-2)+(n-3)+ ... 434241 comparisons are required
> Z@ comparisons are required

» What if we choose the median item as pivot?

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?
> 15t loop: n-1
» 27 Joop: n - 2
|
» (n-1)4+(n-2)+(n-3)+ ... 434241 comparisons are required
> Z@ comparisons are required
» What if we choose the median item as pivot?
> 15t loop: two lists 2 each

2
2™ loop: four lists 4 each

For each partition we do n comparisons

>

> ..

» log n steps
| 4

» In total nlog n comparisons

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?
> 15t loop: n-1
» 27 Joop: n - 2
> ...
» (n-1)4(n-2)+(n-3)+ ... 434241 comparisons are required
> Z@ comparisons are required
» What if we choose the median item as pivot?
> 1% loop: two lists 7 each
2" loop: four lists 4 each
log n steps
For each partition we do n comparisons
» In total nlog n comparisons

>
>
>
>

» How much memory is needed 7

How good is Quick Sort?

» How many comparisons are required until the list is sorted?
» What if we choose the smallest or the largest item as pivot?
> 15t loop: n-1
» 27 Joop: n - 2
|
» (n-1)4+(n-2)+(n-3)+ ... 434241 comparisons are required
> Z@ comparisons are required
» What if we choose the median item as pivot?
> 1% loop: two lists 7 each
> 2" Joop: four lists 7 each
|
» log n steps
» For each partition we do n comparisons
» In total nlog n comparisons
» How much memory is needed 7
» 1 additional slot.

