
Principles of Computer Science II
Recursive Algorithms

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 9

Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a
recursive function.

Termination condition:
I A recursive function has to terminate to be used in a program.
I A recursive function terminates, if with every recursive call the

solution of the problem is downsized and moves towards a
base case.

I A base case is a case, where the problem can be solved
without further recursion.

Factorial Computation: Using Iteration

1 de f i t e r a t i v e f a c t o r i a l (n) :
2 r e s u l t = 1
3 f o r i i n range (2 , n+1) :
4 r e s u l t *= i
5 r e t u r n r e s u l t

Factorial Computation: Using Recursion

1 de f f a c t o r i a l (n) :
2 i f n == 1 :
3 r e t u r n 1
4 e l s e :
5 r e t u r n n * f a c t o r i a l (n−1)

Factorial Computation

1 de f f a c t o r i a l (n) :
2 p r i n t (” f a c t o r i a l has been c a l l e d w i th n = ” + s t r (n))
3 i f n == 1 :
4 r e t u r n 1
5 e l s e :
6 r e s = n * f a c t o r i a l (n−1)
7 p r i n t (” i n t e rm e d i a t e r e s u l t f o r ” , n , ” * f a c t o r i a l

(” , n−1, ”) : ” , r e s)
8 r e t u r n r e s
9

10 p r i n t (f a c t o r i a l (5))

Fibonacci Numbers

The Fibonacci numbers are defined by:
Fn = Fn−1 + Fn−2
where F0 = 0 and F1 = 1

I 0,1,1,2,3,5,8,13,21,34,55,89, . . .

Factorial Computation: Using Recursion

1 de f f i b (n) :
2 i f n == 0 :
3 r e t u r n 0
4 e l i f n == 1 :
5 r e t u r n 1
6 e l s e :
7 r e t u r n f i b (n−1) + f i b (n−2)

Factorial Computation: Using Iteration

1 de f f i b i (n) :
2 a , b = 0 , 1
3 f o r i i n range (n) :
4 a , b = b , a + b
5 r e t u r n a

Measure Performance

1 from t im e i t impor t Timer
2 from f i b o impor t f i b
3

4 t1 = Timer (” f i b (10) ” ,” from f i b o impor t f i b ”)
5

6 f o r i i n range (1 ,41) :
7 s = ” f i b (” + s t r (i) + ”) ”
8 t1 = Timer (s , ” from f i b o impor t f i b ”)
9 t ime1 = t1 . t i m e i t (3)

10 s = ” f i b i (” + s t r (i) + ”) ”
11 t2 = Timer (s , ” from f i b o impor t f i b i ”)
12 t ime2 = t2 . t i m e i t (3)
13 p r i n t (” n=%2d , f i b : %8.6 f , f i b i : %7.6 f , p e r c en t : %10.2 f

” % (i , t ime1 , t ime2 , t ime1 / t ime2))

Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

1 memo = {0 : 0 , 1 :1}
2 de f f ibm (n) :
3 i f not n i n memo :
4 memo[n] = f ibm (n−1) + f ibm (n−2)
5 r e t u r n memo[n]

Merge Sort Algorithm

In Merge Sort the unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

I Divide and Conquer algorithm
I Performance always same for Worst, Average, Best case

Merge Sort: Example Merge Sort Code

1 a = [25 , 52 , 37 , 63 , 14 , 17 , 8 , 6]
2

3 de f merge so r t (l i s t) :
4 i f l e n (l i s t) == 1 :
5 r e t u r n l i s t
6

7 l e f t = l i s t [0 : l e n (l i s t) // 2]
8 r i g h t = l i s t [l e n (l i s t) // 2 :]
9

10 l e f t = merge so r t (l e f t)
11 r i g h t = merge so r t (r i g h t)
12

13 r e t u r n merge (l e f t , r i g h t)

Merge Sort Code

1 de f merge (l e f t , r i g h t) :
2 r e s u l t = []
3 wh i l e l e n (l e f t) > 0 and l e n (r i g h t) > 0 :
4 i f l e f t [0] <= r i g h t [0] :
5 r e s u l t . append (l e f t . pop (0))
6 e l s e :
7 r e s u l t . append (r i g h t . pop (0))
8

9 wh i l e l e n (l e f t) > 0 :
10 r e s u l t . append (l e f t . pop (0))
11

12 wh i l e l e n (r i g h t) > 0 :
13 r e s u l t . append (r i g h t . pop (0))
14

15 r e t u r n r e s u l t
16

17 p r i n t (” Be fo r e : ” , a)
18 r = merge so r t (a)
19 p r i n t (” A f t e r : ” , r)

How good is Merge Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: two lists n
2 each

I 2nd loop: four lists n
4 each

I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

I How much memory is needed ?
I 1 additional slot.

Quick Sort Algorithm

Quick sort is very fast and requires very less additional space. It is
based on the rule of Divide and Conquer. This algorithm divides
the list into three main parts :

I Elements less than the Pivot element

I Pivot element(Central element)

I Elements greater than the pivot element

I Sorts any list very quickly
I Performance depends on the selection of the Pivot element

Quick Sort: Example
List: 25 52 37 63 14 17 8 6

I We pick 25 as the pivot.
I All the elements smaller to it on its left,
I All the elements larger than to its right.
I After the first pass the list looks like:

6 8 17 14 25 63 37 52
I Now we sort two separate lists:

6 8 17 14 and 63 37 52
I We apply the same logic, and we keep doing this until the

complete list is sorted.

Quick Sort: Example Quick Sort Code

1 a = [25 , 52 , 37 , 63 , 14 , 17 , 8 , 6]
2

3 de f p a r t i t i o n (l i s t , p , r) :
4 p i v o t = l i s t [p]
5 i = p
6 j = r
7 wh i l e (1) :
8 wh i l e (l i s t [i] < p i v o t and l i s t [i] != p i v o t) :
9 i += 1

10

11 wh i l e (l i s t [j] > p i v o t and l i s t [j] != p i v o t) :
12 j −= 1
13

14 i f (i < j) :
15 temp = l i s t [i]
16 l i s t [i] = l i s t [j]
17 l i s t [j] = temp
18 e l s e :
19 r e t u r n j

Quick Sort Code

1 de f q u i c k s o r t (l i s t , p , r) :
2 i f (p < r) :
3 q = p a r t i t i o n (l i s t , p , r)
4 q u i c k s o r t (l i s t , p , q) ;
5 q u i c k s o r t (l i s t , q + 1 , r) ;
6

7 p r i n t (” Be fo r e : ” , a)
8 q u i c k s o r t (a , 0 , l e n (a) − 1)
9 p r i n t (” A f t e r : ” , a)

How good is Quick Sort?
I How many comparisons are required until the list is sorted?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

I How much memory is needed ?

How good is Quick Sort?
I How many comparisons are required until the list is sorted?
I What if we choose the smallest or the largest item as pivot?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

I What if we choose the median item as pivot?
I 1st loop: two lists n

2 each
I 2nd loop: four lists n

4 each
I . . .
I log n steps
I For each partition we do n comparisons
I In total n log n comparisons

I How much memory is needed ?
I 1 additional slot.

