
Principles of Computer Science II
Bash Shell Scripting

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 10

UNIX Shell
I The shell

I Allows the execution of command scripts
I Enables alternative methods to carry out complex tasks
I Provides variables

I Various types of shells exist, e.g., korn, tcsh, zsh . . .
I Every user has a preselected shell

I The selection is stored in the file /etc/passwd
ichatz:x:1000:1000:,,,:/home/ichatz:/bin/bash

I The command chsh allows to change the preselected shell

I Each shell uses a specific file for user settings

BASH Script Example

$ for dir in $PATH

>do

> if [ -x $dir/gcc ]

> then

> echo Found $dir/gcc

> break

> else

> echo Searching $dir/gcc

> fi

>done

I For each folder within the variable $PATH

I Check if the folder contains the file gcc

I If the file is found, print out the path and stop
I Otherwise continue to the next folder.

CSH/TCSH Script Example

$ foreach dir ( $path )

> if ( -x $dir/gcc ) then

> echo Found $dir/gcc

> break

> else

> echo Searching $dir/gcc

> endif

> end

I Looks more like a C code

I We will focus on BASH

I It is based on the Bourne Shell
I It is open source
I To use it, simply execute the command: bash



Command line

# bash

bash-4.4.20#

I Left part of # can be changed.
I Right part of # is used to type in commands.
I Offers certain built-in commands

I Implemented within the BASH source code
I These commands are executed within the BASH process

I Allows to execute scripts
I For this reason it is called a UNIX programming environment

Built-in Commands
Command Description Exception

cd Change Folder cd ..

declare Set a variable declare myvar

echo Print out a text to the standard out-
put

echo hello

exec Replace bash with another process exec ls

exit Terminate shell process exit

export Set a global variable export myvar=1

history List of command history history

kill Send a message to a process kill 1121

let Evaluate an arithmetic expression let myvar=3+5

Built-in Commands
Command Description Exception

local Declare a local variable local myvar=5

pwd The current folder pwd

read Read a value from standard input read myvar

readonly Lock the contents of a variable readonly myvar

return Complete a function call and return a
value

return 1

set List declared variables set

shift Shifts the command parameters shift 2

test Evaluate an expression test -d temp

trap Monitor a signal trap "echo Signal" 3

Input/Output Redirection
I Commands produce an output – using the descriptor > the

output is redirected to a file
# ls > filelist
I A new file is created under the name filelist
I If the file already exists, the new file will replace the old one.
I We can use the descriptor >> to redirect the output to an

existing file
# ls -lt /root/doc >> /root/filelist

I The commands that require input – using the descriptor < the
input is redirected from a file
# sort < /root/filelist

I The output of a command can be redirector to the input of
another – using the descriptor |
# ls | sort – sorting the files of a folder

# ls /root | wc -l – counting files



Processes
I We may execute commands in series by using the delimeter ;

I Commands are executed one by one. When the first is
completed, the next one starts. When the last command is
completed, we get a new prompt

I # who | sort ; date

I We may execute commands in the background using the
delimeter &
I The commands are executed and a new prompt is provided

immediately
I # pr junk | lpr &

I The execution of a command results to a new process
I The command ps shows up in the list of active processes
I The command wait is active until all the commands executed

using the delimeter & complete.

List of processes

# ps -a

PID TTY TIME CMD

106 c1 0:01 -sh

4114 co 0:00 /bin/sh /usr/bin/packman

2114 co 0:00 -sh

6762 c1 0:00 ps -a

87 c2 0:00 getty

90 c3 0:00 getty

I Parameter a – list all the commands created by consoles
I Column PID – unique ID of the process
I Column TTY – the console ID that created the process
I Column TIME – total execution time
I Column CMD – the name of the command

Process management
I To terminate a process we use the command kill [PID]
I We may change the priority of a process

I prefix nice
# nice pr junk | lpr &

I We may delay the execution of a command
I prefix at

# at 1500

ls -l / /root /dir | wc > allfiles

pr allfiles | lpr ; date > lpr-endtime &

date > lpr-starttime

^D

at: /usr/spool/at/07.111.1500.67 created

#

The echo command (1)
I Main way to produce output
I Prints out values of variables
I Recognizes special characters (or meta-characters)

bash-4.4.20# echo hello there

hello there

bash-4.4.20# let myvar=1; echo $myvar

1

bash-4.4.20# echo *

junk lpr-starttime temp

bash-4.4.20# echo print ’*’ "don’t"

print * don’t



The echo command (2)
I May contain more than 1 lines
I May also execute commands

bash-4.4.20# echo ’hello

there’

hello

there

bash-4.4.20# echo hello\

there

hello there

bash-4.4.20# echo ‘date‘

Mon Apr 30 16:12:21 GMT 2007

bash-4.4.20# echo -n ‘date‘ " "

Mon Apr 30 16:12:21 GMT 2007 bash-4.4.20#

Meta-characters
I The character ? – defines any single character, e.g.,

ls /etc/rc.????
I The character * – defines multiple characters, e.g.,

ls /etc/rc.*
I The array [...] – defines a specific set of characters, e.g.

ls [abc].c
I The use of the above meta-characters is also called filename

substitution
I We may use these meta-characters in any combination within

command execution
I The following command is disabled

mv *.x *.y

Shell Variables
I The shell allows the declaration of variables
I Initial values of variables are defined in the user settings file
I The scope of the variables is connected with the session

I Or until the user removes them

I The variables with UPPER-case letters are global – they are
transfered to all processes executed by the shell

I The variables with LOWER-case letters are local – they are
accessible only by the shell process

HOME # The path to your home directory

term # The terminal type

Shell Variables
I We may use variables at the command line
I We use the descriptor $

bash-4.4.20# myvar="hello"; echo $myvar

hello

bash-4.4.20# myvar="ls -la"

bash-4.4.20# $myvar

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin

-r--r--r-- 1 root operator 448 Jun 1 1993 boot

drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

...



Special Variables
I Some special variables are provided

Variable Description

USER User name

HOME Home folder of user

TERM Type of terminal

SHELL Name of shell

PATH List of folders to look for commands

MANPATH List of folders to look for manual
pages

PWD Active folder

OLDPWD Previously active folder

HOSTNAME Name of the system

Variable Handling
I The commands env, printenv provide a list of GLOBAL

variables
I The command set provides a list of LOCAL variables
I To declare a new GLOBAL variable we use the command

export
I Variable type is define by content type

I String variables – myvar = "value"
I Integer variables – declare -i myvar
I Constant variables – readonly me="ichatz"
I Array variables – declare -a MYARRAY

MYARRAY[0]="one"; MYARRAY[1]=5; echo ${MYARRAY[*]}
I The names of the variables are case-sensitive
I The command unset removes a variable

Local vs Global Variables
I A global variable is declared using export

bash-4.4.20# myvar="hello"

bash-4.4.20# set | grep myvar

myvar=hello

bash-4.4.20# bash --- 2nd Shell

bash-4.4.20# set | grep myvar

bash-4.4.20# exit --- End of 2nd Shell

bash-4.4.20# export myvar="hello"

bash-4.4.20# set | grep myvar

myvar=hello

bash-4.4.20# bash --- 2nd Shell

bash-4.4.20# set | grep myvar

myvar=hello

Creation of scripts
I Scripts are used as if they were commands/applications

I Defined by a source file

I We execute the script using the command sh
I Or directly by setting execute access permissions

bash-4.4.20# echo ’who | wc -l’ > nu

bash-4.4.20# cat nu

who | wc -l

bash-4.4.20# sh nu

1

bash-4.4.20# chmod a+x nu

bash-4.4.20# nu

1



Handling (1)
I We may pass parameters to a script at command-line

I These are called the command-line arguments

I We use arguments as variables

Argument Description

$0 The name of the script

$1 ... $9 The value of 1st ... 9th argument

$# Number of arguments

$ All the arguments as string

bash-4.4.20# cat nu

echo Files found: ‘ls -la $1* | wc -l‘ "($1\*)"

bash-4.4.20# nu /b

Files found: 57 (/b*)

Handling Parameters (2)
I In order to access more than 9 parameters

I We may not use $10

I We need to use command shift x
I Shifts the parameters left-wise by x positions
I Shifted parameters are lost (!)

bash-4.4.20# cat ten

shift 10

echo $1

echo $* " -- " $#

bash-4.4.20# ten 1 2 3 4 5 6 7 8 9 10

10

10 -- 1

Input from the standard input
I We may use the standard input using read

I The syntax is read var-name
I We may use multiple variables

read var1 var2 ...
I We may output a message before requesting the input

read -p "Enter value:" var

bash-4.4.20# read -p "Enter values:" i j k;\

echo i=$i, j=$j, k=$k

abc d e f

i = abc, j = d, k = e f

Mathematical Expressions
I Allows the evaluation of mathematical expressions using

integers
I Similar with C programming language
I No need to explicitely declare a variable as an integer
I We use expr rather than int

((a = a + 1))

a=$((a+1))

a=$(($a+1))

let a = a + 1

let a++

a=‘expr $a + 1‘



If Expressions

if [ condition 1 ]; then

if [[ condition 2 && condition 3]]; then

...

fi

elif [ condition 4 ] || [ condition 5 ] ; then

...

else

...

fi

I The command test allows the evaluation of an expression
I Returns either true or false
I Supports broad range of expressions
I e.g., we might check if we have write access to a given file

if test -w "$1"; then echo "File $1 is writable"

fi

Evaluation using test
Expression Description

-gt Greater or equal

-ge Greater

-lt Smaller

-le Smaller or equal

-eg Equal

-ne Not Equal

-n str Size of the string bigger than 0

-z str Empty string

-d file The file is a folder

-s file A non empty file

-f file The file exists

-r file Read access to file

-w file Write access to file

-x file Execution access to file

Evaluation Example (1)

bash-4.4.20# cat check.sh

#!/bin/bash

read -p "Enter a filename: " filename

if [ ! -w "$filename" ]; then

echo "File is not writeable"

exit 1

elif [ ! -r "$filename" ] ; then

echo "File is not readable"

exit 1

fi

...

Evaluation Example (2)

bash-4.4.20# cat check.sh

#!/bin/bash

TMPFILE = "diff.out"

diff $1 $2 > $TMPFILE

if [ ! -s "$TMPFILE" ]; then

echo "Files are the same"

else

more $TMPFILE

fi

if [ -f "$TMPFILE" ]; then

rm -rf $TMPFILE

fi



Boolean expressions

if [ condition 1 && condition a]; then

if [ condition 2 || condition b]; then

...

fi

elif [ ! condition 3 ] ; then

...

else

...

fi

Case

case STRING in

pattern 1 )

... ;;

pattern 2 | pattern 3)

... ;;

*)

echo "None of the above";

...

esac

Case: An Example

#!/bin/bash

read -p "Enter command: " command

case $command in

all | ALL )

echo "Display all files..."

ls -la;;

list | LIST)

echo "Display all non-hidden files ..."

ls -l;;

*)

echo "Invalid choise"

ls;;

esac

For Loop

for VAR in <list>

do

...

done

for i in 6 3 1 2

do

echo $i

done | sort -n

for i in *.c

do

echo $i

done



While Loop

while [ expression ];

do

...

done

i = 1

while [[ $i -lt 10 ]];

do

echo $i

((i++))

done

while true;

do

echo "alive..."

sleep 3

done

Until Loop

until [ expression ];

do

...

done

Stop = "N"

until [[ $Stop = "Y" ]];

do

ps -ef

read -p "Do you want to stop? (Y/N)" Stop

done

echo "Stopping..."

I Within loops we may use break, continue

Functions

function name [()]

{

...

[return]

}

I All functions declaration must be location at the top of the
script

I A function may not have any parameters
I Parameters and Return value can be of any type
I Parameters defined within the function are global!

I We need to explicitely define them as local

Functions: An Example

#!/bin/bash

outside = "a global variable"

function mine() {

local inside="this is local"

echo $outside

echo $inside

outside = "a global with new value"

}

echo $outside

mine

echo $outside

echo $inside



3th Assignment
I https://www.rosalind.info/

I Complete the following challenges:
fibo, ins, maj, mer, 2sum, bins, ms, par, 3sum, inv, par3, med

I http://rosalind.info/problems/{challenge}
I Create a GitHub repository and upload the code for each

exercise.
I Email ichatz@diag.uniroma1.it

Subject: [PCS2] Homework 3
A .zip or a .tar.gz file with your python solutions, for all
challenges.
Also send your account user account link:
http://rosalind.info/users/{username}

I Deadline: 12/November/2019, 23:59


