Principles of Computer Science I
Bash Shell Scripting

loannis Chatzigiannakis

Sapienza University of Rome

UNIX Shell
» The shell

P Allows the execution of command scripts
» Enables alternative methods to carry out complex tasks
» Provides variables

» Various types of shells exist, e.g., korn, tcsh, zsh ...

» Every user has a preselected shell

> The selection is stored in the file /etc/passwd
ichatz:x:1000:1000:,,,:/home/ichatz:/bin/bash
> The command chsh allows to change the preselected shell

» Each shell uses a specific file for user settings

Lecture 10
BASH Script Example CSH/TCSH Script Example
$ for dir in $PATH $ foreach dir ($path)
>do > if (-x $dir/gcc) then
> if [-x $dir/gecc] > echo Found $dir/gcc
> then
. > break
> echo Found $dir/gcc
> else
> break
> else > echo Searching $dir/gcc
> echo Searching $dir/gcc > endif
> fi > end
>done

» For each folder within the variable $PATH
» Check if the folder contains the file gcc

» If the file is found, print out the path and stop
» Otherwise continue to the next folder.

» Looks more like a C code
» We will focus on BASH

P |t is based on the Bourne Shell
P It is open source
» To use it, simply execute the command: bash

Command line Built-in Commands

] Command \ Description Exception
cd Change Folder cd ..
bash declare Set a variable declare myvar
bash-4.4.20# echo Print out a text to the standard out- | echo hello
put
> Left part of # can be changed exec Replace bash with another process exec ls
» Right part of # is used to type in commands. exit Terminate shell process exit
» Offers certain built-in commands export Set a global variable export myvar=1
» Implemented within the BASH source code history List of command history history
» These commands are executed within the BASH process kill Send a message to a process kill 1121
> Allows to execute scripts let Evaluate an arithmetic expression let myvar=3+5
» For this reason it is called a UNIX programming environment
Built-in Commands Input/Output Redirection
’ Command ‘ Description Exception ‘ » Commands produce an output — using the descriptor > the
local Declare a local variable local myvar=5 output is redirected to a file
pwd The current folder pwd # 1s > filelist
read Read a value from standard input read myvar » A new file is created under the name filelist
readonly Lock the contents of a variable readonly myvar > If the file already exists, the new file will replace the old one.
return Complete a function call and return a | return 1 » We can use the descriptor >> to redirect the output to an
value existing file
set List declared variables set # 1s -1t /root/doc >> /root/filelist
Shift Shifts the command parameters shift 2 » The commands that require input — using the descriptor < the
test Evaluate an expression test -d temp input is redirected frf)m a'flle
trap MOnitOl’ a S|gna| trap "echo Signal" 3 # sort < /rOOt/flle]-lSt

» The output of a command can be redirector to the input of
another — using the descriptor |
1s | sort — sorting the files of a folder
1s /root | wc -1 — counting files

Processes

» We may execute commands in series by using the delimeter ;
» Commands are executed one by one. When the first is
completed, the next one starts. When the last command is
completed, we get a new prompt
» # who | sort ; date
» We may execute commands in the background using the
delimeter &
» The commands are executed and a new prompt is provided
immediately
> # pr junk | lpr &
» The execution of a command results to a new process
» The command ps shows up in the list of active processes
» The command waijt is active until all the commands executed
using the delimeter & complete.

List of processes

ps -a
PID TTY TIME CMD
106 c1 0:01 -sh
4114 co 0:00 /bin/sh /usr/bin/packman
2114 co 0:00 -sh
6762 c1 0:00 ps -a
87 c2 0:00 getty
90 c3 0:00 getty

» Parameter a — list all the commands created by consoles
» Column PID — unique ID of the process

» Column TTY — the console ID that created the process
» Column TIME - total execution time

» Column CMD — the name of the command

Process management

» To terminate a process we use the command kill [PID]
» We may change the priority of a process
» prefix nice
nice pr junk | lpr &
» We may delay the execution of a command
» prefix at

at 1500

1s -1 / /root /dir | wc > allfiles

pr allfiles | lpr ; date > lpr-endtime &
date > lpr-starttime

“D

at: /usr/spool/at/07.111.1500.67 created
#

The echo command (1)

» Main way to produce output
» Prints out values of variables
» Recognizes special characters (or meta-characters)

bash-4.4.20# echo hello there

hello there

bash-4.4.20# let myvar=1; echo $myvar
1

bash-4.4.20# echo *

junk lpr-starttime temp

bash-4.4.20# echo print ’*’ "don’t"
print * don’t

The echo command (2)

» May contain more than 1 lines
» May also execute commands

bash-4.4.20# echo ’hello

there’

hello

there

bash-4.4.20# echo hello\

there

hello there

bash-4.4.20# echo ‘date

Mon Apr 30 16:12:21 GMT 2007
bash-4.4.20# echo -n ‘date‘ " "
Mon Apr 30 16:12:21 GMT 2007 bash-4.4.20#

Meta-characters

» The character 7 — defines any single character, e.g.,

» The character * — defines multiple characters, e.g.,
1ls /etc/rc.*

» The array [...] — defines a specific set of characters, e.g.
1s [abc]l.c

» The use of the above meta-characters is also called filename
substitution

» We may use these meta-characters in any combination within
command execution

» The following command is disabled
mv *.x *.y

Shell Variables

» The shell allows the declaration of variables
» Initial values of variables are defined in the user settings file
» The scope of the variables is connected with the session
» Or until the user removes them
» The variables with UPPER-case letters are global — they are
transfered to all processes executed by the shell
» The variables with LOWER-case letters are local — they are
accessible only by the shell process

HOME # The path to your home directory
term # The terminal type

Shell Variables

» We may use variables at the command line
» We use the descriptor $

bash-4.4.20# myvar="hello"; echo $myvar

hello

bash-4.4.20# myvar="1ls -1la"

bash-4.4.20# $myvar

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin
-r——-r--r—-— 1 root operator 448 Jun 1 1993 boot
drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

Special Variables Variable Handling

» Some special variables are provided » The commands env, printenv provide a list of GLOBAL

| Variable | Description variables
USER User name » The command set provides a list of LOCAL variables
HOME Home folder of user » To declare a new GLOBAL variable we use the command
TERM Type of terminal exp.ort . .
SHELL Name of shell » Variable type is define by content type
PATH List of folders to look for commands > String variables — myvar = "value"

P Integer variables — declare -i myvar
» Constant variables — readonly me="ichatz"

MANPATH List of folders to look for manual

pages » Array variables — declare -a MYARRAY
PWD Active folder MYARRAY[0]="one"; MYARRAY[1]=5; echo ${MYARRAY [*]}
OLDPWD Previously active folder » The names of the variables are case-sensitive
HOSTNAME | Name of the system » The command unset removes a variable

Local vs Global Variables Creation of scripts

» A global variable is declared using export » Scripts are used as if they were commands/applications
» Defined by a source file

bash-d . 4. 20# MelloM » We execute the script using the command sh
ash-4.4. myvar="hello

bash-4.4.20# set | grep myvar
myvar=hello

P Or directly by setting execute access permissions

bash-4.4.20# bash --- 2nd Shell

bash-4.4.20# set | grep myvar bash-4.4.20# echo ’who | wc -1’ > nu
bash-4.4.20# exit ——— End of 2nd Shell bash-4.4.20# cat nu

bash-4.4.20# export myvar="hello" who | wc -1

bash-4.4.20# set | grep myvar bash-4.4.20# sh nu

myvar=hello 1

bash-4.4.20# bash ——— 2nd Shell bash-4.4.20# chmod a+x nu
bash-4.4.20# set | grep myvar bash-4.4.20# nu

myvar=hello 1

Handling (1)

» We may pass parameters to a script at command-line
» These are called the command-line arguments

» We use arguments as variables

’ Argument ‘ Description

$0 The name of the script

$1 ... 39 | The value of 1st ... 9th argument
$+# Number of arguments

$ All the arguments as string

bash-4.4.20# cat nu

echo Files found: ‘ls -la $1* | wc -1°¢ "($1*x)"
bash-4.4.20# nu /b

Files found: 57 (/b%)

Handling Parameters (2)

» In order to access more than 9 parameters
» We may not use $10

» \We need to use command shift x

P Shifts the parameters left-wise by x positions
» Shifted parameters are lost (!)

bash-4.4.20# cat ten

shift 10

echo $1

echo $* " —— " $#

bash-4.4.20# ten 1 2 3456 7 8 9 10
10

10 -- 1

Input from the standard input

» We may use the standard input using read

» The syntax is read var-name

» We may use multiple variables
read varl var2 ...

»> We may output a message before requesting the input
read -p "Enter value:" var

bash-4.4.20# read -p "Enter values:" i j k;\
echo i=$i, j=$j, k=$k

abc d e f

i=abc, j=d, k=ef

Mathematical Expressions

» Allows the evaluation of mathematical expressions using
integers
» Similar with C programming language
»> No need to explicitely declare a variable as an integer
> We use expr rather than int

((a=a+ 1))
a=$((a+1))
a=$(($a+1))

let a=a + 1
let at++
a=‘expr $a + 1°¢

If Expressions

if [condition 1]; then
if [[condition 2 && condition 3]]; then
fi
elif [condition 4 1 || [condition 5] ; then

else

fi

» The command test allows the evaluation of an expression

» Returns either true or false

» Supports broad range of expressions

» e.g., we might check if we have write access to a given file
if test -w "$1"; then echo "File $1 is writable"
fi

Evaluation using test

’ Expression ‘ Description

-gt Greater or equal

-ge Greater

-It Smaller

-le Smaller or equal

-eg Equal

-ne Not Equal

-n str Size of the string bigger than 0
-z str Empty string

-d file The file is a folder

-s file A non empty file

-f file The file exists

-r file Read access to file

-w file Write access to file

-x file Execution access to file

Evaluation Example (1)

bash-4.4.20# cat check.sh
#!/bin/bash

read -p "Enter a filename: " filename
if [! -w "$filename"]; then

echo "File is not writeable"

exit 1

elif [! -r "$filename"] ; then
echo "File is not readable"

exit 1
fi

Evaluation Example (2)

bash-4.4.20# cat check.sh
#!/bin/bash
TMPFILE = "diff.out"

diff $1 $2 > $TMPFILE

if [! -s "$TMPFILE"]; then
echo "Files are the same"

else
more $TMPFILE

fi
if [-f "$TMPFILE"]; then

rm -rf $TMPFILE
fi

Boolean expressions

if [condition 1 && condition al]; then
if [condition 2 || condition b]l; then

fi
elif [! condition 3] ; then

else

fi

Case

case STRING in

pattern 1)

)

pattern 2 | pattern 3)

)

*)

echo "None of the above";

esac

Case: An Example

#!/bin/bash
read -p "Enter command: " command
case $command in
all | ALL)
echo "Display all files..."
1ls -1a;;

list | LIST)
echo "Display all non-hidden files ..."
1s -1;;

*)
echo "Invalid choise"
1s;;

esac

For Loop

for VAR in <list>
do

done

for i in 6 3 1 2
do

echo $i
done | sort -n

for i in *.c
A A

While Loop

while [expression];

Until Loop

until [expression];

do do
done done
i=1 Stop = "N"
while [[$i -1t 10 1]1; until [[$Stop = "Y" 171;
do do

echo $i ps -ef

((i++)) read -p "Do you want to stop? (Y/N)" Stop
done done

echo "Stopping..."
Functions Functions: An Example

function name [()]

{

[return]

» All functions declaration must be location at the top of the
script
» A function may not have any parameters
» Parameters and Return value can be of any type
» Parameters defined within the function are global!
»> We need to explicitely define them as local

#!/bin/bash
outside = "a global variable"

function mine() {
local inside="this is local"
echo $outside
echo $inside
outside = "a global with new value"

echo $outside
mine

echo $outside
echo $inside

3t Assignment

» https://www.rosalind.info/
» Complete the following challenges:
fibo, ins, maj, mer, 2sum, bins, ms, par, 3sum, inv, par3, med
» http://rosalind.info/problems/{challenge}
» Create a GitHub repository and upload the code for each
exercise.
» Email ichatz@diag.uniromal.it
Subject: [PCS2] Homework 3
A .zip or a .tar.gz file with your python solutions, for all
challenges.
Also send your account user account link:
http://rosalind.info/users/{username}
» Deadline: 12/November/2019, 23:59

