Principles of Computer Science I
Bash Shell Scripting

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 11

Introduction to Regular Expressions (1)

» A regular expression (regex) describes a set of possible input
strings.
» Regular expressions descend from a fundamental concept in
» Computer Science called finite automata theory
» Regular expressions are endemic to Unix
» vi, ed, sed, and emacs
> awk, tcl, perl and Python
> grep, egrep, fgrep
P> compilers

Introduction to Regular Expressions (2)

» The simplest regular expressions are a string of literal
characters to match.

» The string matches the regular expression if it contains the
substring.

Introduction to Regular Expressions (3)

regular expression

cl k| s

UNIX Tools rokks|.

I

match

UNIX Tools sukks|.

match

UNIX Tools is okay.

no match

Introduction to Regular Expressions (4)

» A regular expression can match a string in more than one
place.

regular expression ——— | 5 PP ll e

Scrappple| from the apple

match 1 match 2

Introduction to Regular Expressions (5)

» The . regular expression can be used to match any character.

regular expression 4>| o) |
[

Flor me to popp 6On.

|

match 1 match 2

Character Classes (1)

» Character classes [| can be used to match any specific set of
characters.

regular expression ———11y [eor] al't

beat| a |brat| on a |[boat

! | I

match 1 match 2 match 3

Character Classes (2)

» Character classes can be negated with the [*] syntax.

regular expression ——» b [/\eo] alt

beat a |brat| on a boat

T

match

Character Classes (3) Named Character Classes

» [aeiou] will match any of the characters a, e, i, o, or u » Commonly used character classes can be referred to by name
» [kK]orn will match korn or Korn (alpha, lower, upper, alnum, digit, punct, cntrl)

» Ranges can also be specified in character classes » Syntax [: name :]

» [1 — 9] is the same as [123456789] » [a— zA — Z] is equivalent [[: alpha :]]

» [abcde] is equivalent to [a — €] » [a— zA — Z0 — 9] is equivalent [[: alnum :]]

» You can also combine multiple ranges » [45a — z] is equivalent [45[: lower :]]

» [abcdel23456789] is equivalent to [a — el — 9] » Important for portability across languages

» Note that the - character has a special meaning in a character

class but only if it is used within a range,
» [—123] would match the characters -, 1, 2, or 3

Anchor Characters regular expression —— |~ || [eor] | a|t
» Anchors are used to match at the beginning or end of a line
Eor both). : beat] a brat on a boat
» ”~ means beginning of the line I
» $ means end of the line

match

regular expression ——— | [eor] alt $

beat a brat on a |boat

|

match

‘word$ ~S

Repetition
» The * is used to define zero or more occurrences of the single
regular expression preceding it.

regular expression —— Yy al*)4

I got mail, |yaaaaaaaaaay

match

regular expression —— ola * lo)

For me to -@- on.

match

Match Length

» A match will be the longest string that satisfies the regular
expression.

regular expression ——» a * e

Scrapple| from the apple,.

|
yes

no

Repetition Ranges

» Ranges can also be specified

» { } notation can specify a range of repetitions for the
immediately preceding regex

» {n} means exactly n occurrences

» {n,} means at least n occurrences

» {n,m} means at least n occurrences but no more than m
occurrences

» Example:

{0,} same as .*
a{2,} same as aaa*

Subexpressions

» If you want to group part of an expression so that * or { }
applies to more than just the previous character, use ()
notation

Subexpresssions are treated like a single character

a* matches 0 or more occurrences of a

abc* matches ab, abc, abcc, abcecg, ...

(abc)* matches abc, abcabc, abcabcabe, . ..

(abc)2,3 matches abcabc or abcabcabce

vvyvyYVvyy

Global Regular Expressions Print — grep

» grep comes from the ed (Unix text editor) search command
“global regular expression print” or g/re/p

» This was such a useful command that it was written as a
standalone utility

» There are two other variants, egrep and fgrep that comprise
the grep family

» grep is the answer to the moments where you know you want
the file that contains a specific phrase but you cant remember
its name

Syntax

» Regular expression concepts we have seen so far are common
to grep

> grep: \(\and \), \{ and \}

Introduction to sed (1)

sed: Stream Editor:

» Input from a file or from a pipe

» Qutput to a file or to a pipe

» Filters and edits the input text and produces the modified text
as output

» Examines input line-by-line, searches for a pattern and makes
a replace

» We usually use it when we know how content is structured
(lines, columns)

Introduction to sed (2)

» Sed is very useful for simple operations, such as
> replace or remove patterns,
» when the operation is not necessarily related with the
formatting of the input.
» We wish to repeat the operation over all the lines of the input

text.

Main Concepts

pattern space = the data we wish to edit (data buffer)

while (readline) {

1. read the input one line at a time
2. for each line, sed executes a series of commands on the

pattern space

3. outputs the resulting/modified text

}

Command Syntax
sed <options> ’<address><command>’

1. address: the line number of the input text, the pattern to
search, contained within slashes (/pattern/). Defines where
the command will be applied, in which lines or to all lines.

2. The pattern is described using regular expressions,

3. We can provide a range of lines as comma separated values to
execute the command over a given range of lines, including
the lines defined.

4. 1 = NOT (to apply the command to all lines excluding the
range provided)

Common Commands
a\
c\
d
i\
p
r

w
-e
-f SCRIPT_FILE

-n

Insert text after current line
Change current text into (new text)
Delete text

Insert text before current line
Print text

Read file

Search and replace text

Write to file

To set multiple commands

To use a sed file with commands
Print only the p commands

Replace
Common usage:

sed s ’pattern/replacement/<flags>’

» pattern: search pattern
» replacement: the string with which to replace the pattern
» flags (optional):

» n (number): number of occurance to replace

» g (global): replace all occurances

» p (print): print the content of the pattern space

Example file

bash-3.1% cat -n example.sed

1 This is the first line of an example text.

2 It is a text with erors.

3 Lots of erors.

4 So many erors, all these erors are making me sick.
5 This is a line not containing any errors.

6 This is the last line.

Usage Example 1

bash-3.1$ sed ’s/erors/errors/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.
This is a line not containing any errors.

This is the last line.

What if we replace the command g with number 27
What if we remove command g completely?

Example 2
~ Start of line - $ End of line

bash-3.1$ sed ’s/~/> /’ example.sed

This is the first line of an example text.

It is a text with erors.

Lots of erors.

So many erors, all these erors are making me sick.
This is a line not containing any errors.

This is the last line.

V V. V V V V

What if we replace the command of ~ with $?

Example 3

bash-3.1$ sed -e ’s/erors/errors/g’ -e
’s/last/final/g’ example.sed

(or, alternatively)

sed ’s/erors/errors/g; s/last/final/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.
This is a line not containing any errors.

This is the final line.

Other special characters

» The characters _ or (comma) may replace / for improved
readability

» \: escape character

» & Signifies the pattern found (always referring to the current
line)

» Take special care on those symbols that are part of the regular
expression

One more example

bash-3.18% sed ’s/[~ 1[" 1*/(&)/’ example.sed

(This) is the first line of an example text.

(It) is a text with erors.

(Lots) of erors.

(S0) many erors, all these erors are making me sick.
(This) is a line not containing any errors.

(This) is the last line.

What if the pattern was

[a-z]\+\. ?
s/["] ?

Yet another example

Print only lines that match the pattern after changing it, based on
the conditions set:

bash-3.1% sed -n ’s/erors/errors/gp’ example.sed
It is a text with errors.

Lots of errors.
So many errors, all these errors are making me sick.

What if there was a ! before p (print)?

Focus on specific lines (1)

We may focus the changes only in specific lines, declaring the lines
with their number.

bash-3.1$ sed ’1,3 s/erors/errors/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many erors, all these erors are making me sick.
This is a line not containing any errors.

This is the last line.

Focus on specific lines (2)
We can do the same by providing the common pattern

bash-3.1$ sed ’/"T/ s/\ is/\ was/g’ example.sed

This was the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these erors are making me sick.
This was a line not containing any errors.

This was the last line.

What if we use the following command in a python file?

sed */\/*/,/*\// s/.\+//’ program.c

Delete
d all lines
6d line 6
/"$/d all empty lines
/~\./d all lines starting with .
1,10d lines 1 -10
1,/°$/d from the first line until the first empty line

/"$/,8d from the first empty line
until the last line

sed —e */\/*/,/*x\// s/.\+//’> -e *s/"[\tI\+//’ -e’/"$/ &’ file.c

sed — extra examples

» Replace "foo" with "bar” only in lines containing " baz"

sed ’/baz/s/foo/bar/g’

» Remove empty space from the stand and end of each line

sed ’s/~[\tl*//;s/[\tl*$//’
» Add 5 spaces at the start of each line

sed ’s/"/ /’

» Remove all empty lines from a file

sed /"~ $/4’

