
Principles of Computer Science II
Bash Shell Scripting

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 11

Introduction to Regular Expressions (1)
I A regular expression (regex) describes a set of possible input

strings.
I Regular expressions descend from a fundamental concept in
I Computer Science called finite automata theory
I Regular expressions are endemic to Unix

I vi, ed, sed, and emacs
I awk, tcl, perl and Python
I grep, egrep, fgrep
I compilers

Introduction to Regular Expressions (2)
I The simplest regular expressions are a string of literal

characters to match.
I The string matches the regular expression if it contains the

substring.

Introduction to Regular Expressions (3)

Introduction to Regular Expressions (4)
I A regular expression can match a string in more than one

place.

Introduction to Regular Expressions (5)
I The . regular expression can be used to match any character.

Character Classes (1)
I Character classes [] can be used to match any specific set of

characters.

Character Classes (2)
I Character classes can be negated with the [ˆ] syntax.

Character Classes (3)
I [aeiou] will match any of the characters a, e, i, o, or u
I [kK]orn will match korn or Korn
I Ranges can also be specified in character classes
I [1− 9] is the same as [123456789]
I [abcde] is equivalent to [a− e]
I You can also combine multiple ranges
I [abcde123456789] is equivalent to [a− e1− 9]
I Note that the - character has a special meaning in a character

class but only if it is used within a range,
I [−123] would match the characters -, 1, 2, or 3

Named Character Classes
I Commonly used character classes can be referred to by name

(alpha, lower, upper, alnum, digit, punct, cntrl)
I Syntax [: name :]
I [a− zA− Z] is equivalent [[: alpha :]]
I [a− zA− Z0− 9] is equivalent [[: alnum :]]
I [45a− z] is equivalent [45[: lower :]]
I Important for portability across languages

Anchor Characters
I Anchors are used to match at the beginning or end of a line

(or both).
I ˆ means beginning of the line
I $ means end of the line

Repetition
I The * is used to define zero or more occurrences of the single

regular expression preceding it.

Match Length
I A match will be the longest string that satisfies the regular

expression.

Repetition Ranges
I Ranges can also be specified
I { } notation can specify a range of repetitions for the

immediately preceding regex
I {n} means exactly n occurrences
I {n,} means at least n occurrences
I {n,m} means at least n occurrences but no more than m

occurrences
I Example:

.{0,} same as .*
a{2,} same as aaa*

Subexpressions
I If you want to group part of an expression so that * or { }

applies to more than just the previous character, use ()
notation

I Subexpresssions are treated like a single character
I a* matches 0 or more occurrences of a
I abc* matches ab, abc, abcc, abccc, . . .
I (abc)* matches abc, abcabc, abcabcabc, . . .
I (abc)2,3 matches abcabc or abcabcabc

Global Regular Expressions Print – grep
I grep comes from the ed (Unix text editor) search command

“global regular expression print” or g/re/p
I This was such a useful command that it was written as a

standalone utility
I There are two other variants, egrep and fgrep that comprise

the grep family
I grep is the answer to the moments where you know you want

the file that contains a specific phrase but you cant remember
its name

Syntax
I Regular expression concepts we have seen so far are common

to grep
I grep: \(and \), \{ and \}

Introduction to sed (1)
sed: Stream Editor:
I Input from a file or from a pipe
I Output to a file or to a pipe
I Filters and edits the input text and produces the modified text

as output
I Examines input line-by-line, searches for a pattern and makes

a replace
I We usually use it when we know how content is structured

(lines, columns)

Introduction to sed (2)
I Sed is very useful for simple operations, such as

I replace or remove patterns,
I when the operation is not necessarily related with the

formatting of the input.
I We wish to repeat the operation over all the lines of the input

text.

Main Concepts
pattern space = the data we wish to edit (data buffer)
while (readline) {

1. read the input one line at a time
2. for each line, sed executes a series of commands on the

pattern space
3. outputs the resulting/modified text

}

Command Syntax

sed <options> ’<address><command>’

1. address: the line number of the input text, the pattern to
search, contained within slashes (/pattern/). Defines where
the command will be applied, in which lines or to all lines.

2. The pattern is described using regular expressions,
3. We can provide a range of lines as comma separated values to

execute the command over a given range of lines, including
the lines defined.

4. ! = NOT (to apply the command to all lines excluding the
range provided)

Common Commands

a\ Insert text after current line
c\ Change current text into (new text)
d Delete text
i\ Insert text before current line
p Print text
r Read file
s Search and replace text
w Write to file
-e To set multiple commands
-f SCRIPT FILE To use a sed file with commands
-n Print only the p commands

Replace
Common usage:

sed s ’pattern/replacement/<flags>’

I pattern: search pattern
I replacement: the string with which to replace the pattern
I flags (optional):

I n (number): number of occurance to replace
I g (global): replace all occurances
I p (print): print the content of the pattern space

Example file

bash-3.1$ cat -n example.sed

1 This is the first line of an example text.

2 It is a text with erors.

3 Lots of erors.

4 So many erors, all these erors are making me sick.

5 This is a line not containing any errors.

6 This is the last line.

Usage Example 1

bash-3.1$ sed ’s/erors/errors/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.

This is a line not containing any errors.

This is the last line.

What if we replace the command g with number 2?

What if we remove command g completely?

Example 2
ˆ Start of line - $ End of line

bash-3.1$ sed ’s/^/> /’ example.sed

> This is the first line of an example text.

> It is a text with erors.

> Lots of erors.

> So many erors, all these erors are making me sick.

> This is a line not containing any errors.

> This is the last line.

What if we replace the command of ^ with $?

Example 3

bash-3.1$ sed -e ’s/erors/errors/g’ -e

’s/last/final/g’ example.sed

(or, alternatively)

sed ’s/erors/errors/g; s/last/final/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.

This is a line not containing any errors.

This is the final line.

Other special characters
I The characters or (comma) may replace / for improved

readability
I \: escape character
I & Signifies the pattern found (always referring to the current

line)
I Take special care on those symbols that are part of the regular

expression

One more example

bash-3.1$ sed ’s/[^][^]*/(&)/’ example.sed

(This) is the first line of an example text.

(It) is a text with erors.

(Lots) of erors.

(So) many erors, all these erors are making me sick.

(This) is a line not containing any errors.

(This) is the last line.

What if the pattern was

[a-z]\+\. ?

s/[^] ?

Yet another example

Print only lines that match the pattern after changing it, based on
the conditions set:

bash-3.1$ sed -n ’s/erors/errors/gp’ example.sed

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.

What if there was a ! before p (print)?

Focus on specific lines (1)
We may focus the changes only in specific lines, declaring the lines
with their number.

bash-3.1$ sed ’1,3 s/erors/errors/g’ example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many erors, all these erors are making me sick.

This is a line not containing any errors.

This is the last line.

Focus on specific lines (2)
We can do the same by providing the common pattern

bash-3.1$ sed ’/^T/ s/\ is/\ was/g’ example.sed

This was the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these erors are making me sick.

This was a line not containing any errors.

This was the last line.

What if we use the following command in a python file?

sed ’/\/*/,/*\// s/.\+//’ program.c

Delete

d all lines
6d line 6
/^$/d all empty lines
/^\./d all lines starting with .
1,10d lines 1 -10
1,/^$/d from the first line until the first empty line
/^$/,$d from the first empty line

until the last line

sed -e ’/\/*/,/*\// s/.\+//’ -e ’s/^[\t]\+//’ -e’/^$/ d’ file.c

sed – extra examples
I Replace ”foo” with ”bar” only in lines containing ”baz”

sed ’/baz/s/foo/bar/g’

I Remove empty space from the stand and end of each line

sed ’s/^[\t]*//;s/[\t]*$//’

I Add 5 spaces at the start of each line

sed ’s/^/ /’

I Remove all empty lines from a file

sed ’/^$/d’

